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Abstract— The question of knowing whether the Policy Iter-
ation algorithm (PI) for solving stationary Markov Decision
Processes (MDPs) has exponential or (strongly) polynomial
complexity has attracted much attention in the last 25 years.
Recently, a family of examples on which PI requires an
exponential number of iterations to converge was proposed for
the total-reward and the average-reward criteria. On the other
hand, it was shown that PI runs in strongly polynomial time
on discounted-reward MDPs, yet only when the discount factor
is fixed beforehand.

In this work, we show that PI needs an exponential number
of steps to converge on discounted-reward MDPs with a general
discount factor.

I. I NTRODUCTION

Markov Decision Processes(MDPs) are a popular and
efficient tool to solve sequential decision problems under
uncertainty. They are widely used to model stochastic op-
timization problems that appear in various engineering and
industrial applications such as PageRank Optimization [5],
[8], [13], Smart Grids [18] or Epidemics Management [4]
for instance. See [19] for a survey of numerous applications
in which MDP models play an essential role.

More specifically, an MDP describes the random process
of an agentthat evolves on a finite set ofstates. One of the
states is chosen to be the initial state. At every time step,
the controller of the process needs to choose one among
the severalactionsavailable in the current state. The chosen
action determines atransition probabilitydistribution for the
next state to reach as well as an immediatereward (or cost).
The goal of the controller is to choose the right actions in
each state in order to maximize the rewards collected by
the agent over time according to some ad hoc optimization
criterion. We call such a choice of actions apolicy, the
one maximizing the optimization criterion being theoptimal
policy.

In this work, we only consider infinite-horizon MDPs in
which the agent is assumed to follow the process for an
infinite number of steps. Furthermore, we consider two of
the most important optimization criteria in practice, namely
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the total-rewardand thediscounted-rewardcriteria. In total-
reward MDPs, rewards are summed up during the whole
process. In that case, a necessary condition for the problem
to be well defined is to have a reward-free absorbing state (or
set of states), which we call thetarget state. Then, the goal of
the controller is to reach that target state while maximizing
the expected sum of rewards until there. In discounted-reward
MDPs, the reward of an action at timet is multiplied by some
factorλt, where0 < λ < 1 is thediscount factor. This factor
can be seen either as a deflation rate or as the probability for
the process to stop at each time step. For an advanced study
of MDPs and optimality criteria, see for example [16].

Markov Decision Processes can be solved in weakly
polynomial time usingLinear Programming(LP) [16]. How-
ever, a much more efficient way of solving these problems
in practice is to use an appropriate iterative algorithm .
Among them,(greedy) Policy Iteration(PI) is one of the
most studied. It usually converges in a few iterations and
is guaranteed to find the optimal solution in finite time.
It can be viewed as a Simplex algorithm in which several
pivoting steps are performed simultaneously. Unfortunately,
the algorithmic complexity of PI is not well understood.
Despite its practical efficiency, examples in which PI requires
an exponential number of iterations to converge exist in a
number of cases of practical importance.

There is a significant research effort for understanding the
complexity of PI. For general MDPs, the best upper bound -
O(kn/n) - is due to Mansour and Singh [14], wheren and
k are respectively the number of states and the maximum
number of actions per state. For total- and average-reward
MDPs, the largest known lower bound is also exponential
and has recently been found by Fearnley through a carefully
built family of examples [6], based on a construction for
parity games that was proposed by Friedmann [9]. This was
a breakthrough after more than 25 years of research on the
question of the complexity of PI [11], [15]. The story seems
different though for discounted-reward MDPs for which a
strongly polynomial upper bound has recently been found
by Ye [20], yet only for afixeddiscount factor; PI is shown
to run in at mostn
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(
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1−λ

)

iterations in that case.
This bound was later improved by a factorn by Hansen
et al. [11] and adapted to two-player turn-based zero-sum
games, a natural two-player extension of MDPs for which
PI also applies. Thereby, they provided the first (strongly)
polynomial time algorithm for this latter class of problems.

In this work, we show that if we do not assume a
constant discount factor, then PI runs in exponential time.



This question was mentioned as an open problem by both Ye
[20] and Fearnley [7]. Our proof uses perturbation analysis
to provide an adequate value of the discount factor such that
adding discount to Fearnley’s family of examples does not
change the choices made by PI. Hence, it takes the same
number of steps with or without discount and therefore, it
requires an exponential number of steps to converge in both
cases. Our result combined with the ones of Ye [20] and
Fearnley [6] completes the characterization of the worst-
case complexity of PI for MDPs: it is strongly polynomial
for discounted-reward MDPs with a fixed discount rate but
exponential for total-reward, average-reward and discounted-
reward MDPs in general.

It has to be mentioned that Andersson and Miltersen have
already used the same kind of tools to show that discounted
and undiscounted games are polynomial-time equivalent [1].
However, in their work, they do not focus on a particular
algorithm—like PI—but rather on the general complexity of
these problems. Hence, their result only has a small impact
on MDPs, since those are already known to be solved in
(weakly) polynomial-time when using linear programming
methods, which is not the case for games.

The paper is organized as follows. In Section II, we
properly define MDPs and some related concepts and we
formulate the greedy Policy Iteration algorithm. We also
give a number of preliminary results. In Section III, we
state Fearnley’s family of examples and analyze some of
its properties. Section IV lays the foundations for our main
result by analyzing how the optimal solution of an MDP
is modified when perturbing the problem instance. Section
V applies the analysis of Section IV to discounted-reward
MDPs and presents our main result.

II. D EFINITIONS AND PRELIMINARIES

In this section, we properly define Markov Decision Pro-
cesses and the Policy Iteration algorithm and we summarize
the main features of the total-reward example on which
Policy Iteration needs an exponential number of steps to
converge.

A. Total-reward Markov Decision Processes

An instance of atotal-reward Markov Decision Processis
a tupleM = (S,U ,P,R) where

• S = { 1, ..., n, τ } is the finite set ofstates (τ is a
reward-free absorbing state);

• U is the finite set of allactions, andUs is the set of
actions available to the agent in states;

• P = {Pu
s,s′ | s, s

′ ∈ S, u ∈ Us } is the set oftransition
probabilities that represents uncertainty. For any action
u ∈ Us available ins, Pu

s,s′ is the probability of going
from states to states′ when the actionu ∈ Us is chosen;

• R = { rus | s ∈ S, u ∈ Us } is the set ofrewards
collected by the agent at any states when using action
u ∈ Us.

We define adeterministic stationary policy(or strategy)π :
S → U as the deterministic choice of one action in each
state. In this context, letP

π
be the (row-stochastic) transition

probability matrix obtained using actionπ(s) in each state
s ∈ S and let the substochastic matrixPπ be the same matrix
asP

π
but without the row and column corresponding to state

τ . Similarly, letrπ be the reward vector obtained when using
policy π and letrπ be the same vector asrπ without the entry
corresponding to stateτ .

We also define thevalue xπ
s of a policy π at states as

the expected total reward collected by the agent during its
infinite walk starting ins and following policyπ thereafter.
Again, xπ is the vector containing entriesxπ

s for all s ∈ S
and xπ is the same vector asxπ but without itsτ th entry.
The vectorxπ is the solution of the following linear system:

(I − Pπ)xπ = rπ, (1)

whereI designates the identity matrix. The controller’s goal
is to find the optimal policyπ∗ such thatxπ∗

s ≥ xπ
s for every

states and every policyπ. It can be shown that such a policy
always exists [16, Theorem 7.1.9].

B. Policy Iteration

ThePolicy Iterationalgorithm (PI) jumps from one policy
to another until it converges to a global optimum. Every step
is made through a comparison between policies, therefore we
say that

• policy π weakly dominatesπ′ (π � π′) if xπ
s ≥ xπ′

s for
every states;

• π (strongly) dominatesπ′ (π ≻ π′) if the previous
inequality is strict for at least one state;

• π andπ′ areequivalent(π ≈ π′) if xπ
s = xπ′

s for every
states.

We can also compare policies with respect to some fixed
policy, sayπ. Therefore, for every states, following Fearnley
[6], we define theappealof an actionu ∈ Us with respect
to π as:

aπs→u = rus +
∑

s′∈S

Pu
s,s′ x

π
s′ (2)

wherexπ is solution of (1). At some states, an actionu ∈ Us
is said to beappealingwith respect toπ if aπs→u > xπ

s . A
formulation of the greedy version of Policy Iteration is given
in Algorithm 1.

letterpaper 1 GREEDY POLICY ITERATION

Require: An arbitrary policyπ0, k = 0.
Ensure: The optimal policyπ∗.

1: while πk 6= πk−1 do
2: Evaluation step: computexπk .
3: Greedy Improvement step:

πk+1(s) = argmax
u∈Us

aπk

s→u for all statess ∈ S.

4: k ← k + 1.
5: end while
6: return πk.

The two following well known theorems are the main
arguments behind the finite time convergence guarantees of
PI. (Proofs can be found, e.g., in [2].)



Theorem 1:Let π and π′ be two policies such that
aπs→π′(s) ≥ xπ

s for every states and such that this inequality
is strict for some states. Thenπ′ ≻ π.

Theorem 2:For any sub-optimalπ, ∃ (s, u), u ∈ Us such
that aπs→u > xπ

s .
Theorem 1 essentially says that replacing any actions by

more appealing ones strictly improves a policy, hence PI
never considers the same policy twice. Theorem 2 says that
if, for some policy, no appealing action exists, then this
policy is optimal. Therefore, since there are only a finite
number of policies, PI converges to a global optimum in a
finite number of steps. However, Theorems 1 and 2 do not
guarantee convergence in polynomial time.

III. E XPONENTIAL COMPLEXITY EXAMPLE

FOR POLICY ITERATION

In [6], Fearnley provides a family of examples for a
total-reward MDP withn states on which PI requires an
exponential number of steps to converge. For that purpose,
he implements a binary counter.

Example 1 (Fearnley, [6]):Let Mexp be the MDP in-
stance withn states proposed in [6]. There exists an initial
policy π0 such that Policy Iteration needs to explore the
sequence of policies

{π0, π1, ..., πK } (3)

to converge, withK ≥ 2m − 1, wherem is the number of
bits of the binary counter and where the number of states
n = 7m+ 4.

We now state three important properties of Example 1 that
will be useful to our analysis. These features all follow from
the developments made in [6].

Property 1: In Example 1, every step of Policy Iteration,
starting atπ0, is made in a non-ambiguous way, i.e. at every
step k = 0, ...,K of sequence (3) and for every states,
argmax
u∈Us

aπk

s→u is unique.

Property 2: Every policy of Example 1 is proper, which
means that whatever the chosen policyπ and the starting
states, there exists a positive-probability path froms to the
final stateτ , i.e., for eachπ and s, there exists a sequence
of states{s0 = s, s1, ..., sk = τ} such thatPπ

si,si+1
> 0 for

i = 0, 1, ..., k − 1. Note that if such a sequence exists, then
there exists a sequence of length at mostn+ 1.

Property 3: In Example 1,Pπ ∈ Qn×n and rπ ∈ Zn×n

for every policyπ and there exist valuesδ(n) ∈ N, δ(n) ≤
(10m + 4)2m and κ(n) ∈ N, κ(n) ≤ (10m + 4)2m, with
n = 7m+ 4, such thatδ(n) · Pπ ∈ Nn×n for all π and that
|rπs | ≤ κ(n) for all s, π1.

Property 2 makes sure that the value of the total-reward
MDP from Example 1 is finite for any policy and any starting
state, i.e., that the linear system (1) always has a unique
solution [3]. Property 3 guarantees that the considered MDP
has reasonable size.

Note that Properties 2 and 3 summarize the restrictive
assumptions that are made in our results at the next Sections.

1To keep notations simple, we will writeδ andκ and temporarily forget
about the dependence inn

IV. PERTURBED TOTAL-REWARD MDP

In this section, we study how a small perturbation of the
total-reward MDP instance affects the value of the states. We
expect that a small enough perturbation should not affect the
behavior of Policy Iteration. This section builds the basison
which our main result will rely. It may be useful to have a
glance at Figure 1 at this point to have a better idea of the
procedure that leads towards Theorem 7.

Let π be some policy in a total-reward MDP and letx be
the value of all states when using policyπ, which can be
computed by solving the linear system (1). Our goal is to
determine how muchx is perturbed from a perturbation of
the system’s matrix.

Lemma 1:Let x be the solution of

Ax = b (4)

and x̃ be the solution of the perturbed system

Ã x̃ = b, (5)

whereA is an invertible matrix and let∆x , x̃ − x and
∆A , Ã − A. Then the following bound holds for any
subordinate norm:

‖∆x‖

‖x‖
≤

‖A−1‖ · ‖∆A‖

1− ‖A−1‖ · ‖∆A‖
, (6)

whenever

‖A−1‖ · ‖∆A‖ < 1. (7)

Proof: See, e.g., [12].

Note that (4) can be identified to (1) by takingA =
(I − Pπ) and b = rπ. We now bound the different norms
that appear in (6) to obtain a usable bound on‖∆x‖. For
that purpose, we will use the norm‖ · ‖∞. Recall that for
any matrixM , ‖M‖∞ = maxi

∑

j |Mi,j |. Our analysis will
make use of Hadamard’s determinant inequality.

Theorem 3 (Hadamard):Let M be ann by n matrix such
that |Mi,j | ≤ β for all i, j. Then:

| det(M)| ≤ βn nn/2.

The next lemma gives us an upper bound on‖A−1‖∞.
Lemma 2:Let us assume thatA ∈ Qn×n is an invertible

matrix such that|Ai,j | ≤ 1 andδ ·Ai,j ∈ Z for all i, j. Then:

‖A−1‖∞ ≤ δn n(n+1)/2.

Proof: SinceA is invertible, we may use Cramer’s rule
and expressA−1 as:

A−1 = δ (δ ·A)−1 = δ
adj(δ ·A)

det(δ ·A)
(8)

where adj(δ · A) is the adjugate matrix ofδ · A in which
every entry is the determinant of an(n− 1)× (n− 1) sub-
matrix of the integer matrixδ · A (possibly with a minus
sign). We know that every entry of|δ ·A| is less thanδ and



that | det(δ · A)| ≥ 1. Hence, using (8) and Theorem 3, we
have:

‖A−1‖∞ ≤ δ · ‖adj(δ ·A)‖∞

≤ δ · max
1≤j≤n

n
∑

i=1

δn−1 (n− 1)(n−1)/2

≤ δn n(n+1)/2.

It now remains to find an upper bound on‖x‖∞.
Lemma 3:Let x be the solution of (4), and assume that

A ∈ Qn×n is an invertible matrix such that|Ai,j | ≤ 1 and
δ ·Ai,j ∈ N for all i, j and thatb ∈ Zn with |bi| ≤ κ for all
i. Then:

‖x‖∞ ≤ κ δn n(n+1)/2.

Proof: Using Lemma 2, we have‖x‖∞ ≤ ‖A−1‖∞ ·
‖b‖∞ ≤ δn n(n+1)/2 · κ.

The next theorem uses the bounds from Lemmas 1 to 3
to obtain an upper bound on‖∆x‖∞.

Theorem 4:Let x be the solution of (4) and̃x be the
solution of the perturbed system (5), and let∆x = x̃ − x
and∆A = Ã − A. Let us further assume thatA ∈ Qn×n

is an invertible matrix such that|Ai,j | ≤ 1 andδ · Ai,j ∈ N

for all i, j and thatb ∈ Zn with |bi| ≤ κ for all i. Then,
provided that‖∆A‖∞ satisfies:

‖∆A‖∞ ≤ 1/2 · δ−n n−(n+1)/2, (9)

we have:

‖∆x‖∞ ≤ 2κ δ2n nn+1 · ‖∆A‖∞.

Proof: We know from Lemma 2 that‖A−1‖∞ ≤
δn n(n+1)/2. So if we impose‖∆A‖∞ to satisfy (9), then
Assumption (7) from Lemma 1 is satisfied and the denom-
inator in (6) is at least 1/2. Substituting the other available
bounds from Lemmas 2 and 3 into (6) gives the result.

V. D ISCOUNTED-REWARD MDPS

AS A PERTURBATION OF TOTAL-REWARD MDPS

In this section, we show that adding a discount factor
λ , 1 − ε close enough to1 to the originally discount-
free total-reward MDP of Example 1 does not change the
behavior of Policy Iteration and thus that the latter requires
an exponential number of steps to converge on discounted-
reward MDPs. We show this by providing a value ofε such
that the same choices are made by Algorithm 1 on both
problems at each improvement step. We proceed in three
steps:

1) first, we identify the minimum possible difference
between the appeal of the best action and the appeal
of the other actions in a state;

2) then, we characterize the perturbation induced by
adding a discount factorλ;

3) finally, we provide a value forε that induces a small
enough perturbation so that the action with the best
appeal does not change in each state, and this at every
step of PI.

A. The minimum difference between the appeals of actions

First, let us observe that the value of the states of an MDP
can be expressed as a fraction with bounded denominator.

Lemma 4:Let x be the solution of (4) and let us assume
that A ∈ Qn×n is an invertible matrix such that|Ai,j | ≤
1 and δ · Ai,j ∈ Z for all i, j. Then the vectorx can be
expressed as:

x =
v

d

wherev is an integer vector of the same dimension asx and
d is a positive integer satisfyingd ≤ δn nn/2.

Proof: The linear system (4) can be rewritten as
(δ · A)x = δ · b, where bothδ · A and δ · b are integer
valued. Hence, using Cramer’s rule for linear systems,x can
be expressed as:

x =
v

| det(δ ·A)|

wherev is an integer vector with the same dimension asx
and| det(δ·A)| is a positive integer, sayd. Since|δ·Ai,j | ≤ δ
for every i, j, Theorem 3 enables us to conclude.

The following bound makes use of the fact that every step
of PI is made in a non-ambiguous way.

Theorem 5:For any states and any stepk of Policy
Iteration applied to Example 1, letu∗ = argmax

u∈Us

aπk

s→u and

let u′ 6= u∗ be any other action inUs. Then:

aπk

s→u∗ − aπk

s→u′ ≥
1

δn+1 nn/2
.

Proof: From the definition of appeal (2) and from
Property 1, we know that

aπk

s→u∗ − aπk

s→u′

= (ru
∗

s − ru
′

s ) +
∑

s′∈S

(Pu∗

s,s′ − Pu′

s,s′)x
πk

s′ > 0.

Since Example 1 has Properties 2 and 3,δ · (Pu∗

s,s′ − Pu′

s,s′)
is an integer and we can use Lemma 4 and write:

aπk

s→u∗ − aπk

s→u′ =
w

δ · d
,

wherew is an integer strictly greater than 0 andd is less
thanδn nn/2.

B. The perturbation induced by the discount

Let M be a total-reward MDP and letMλ be the
corresponding discounted-reward MDP, i.e., the MDP with
same states- and actions space, transition probabilities and
rewards but with an additional discount factorλ = 1 − ε.
The valuex̃π of the states ofMλ under policyπ is obtained
by solving the following linear system:

(I − λPπ) x̃π = rπ. (10)

We can identify this system to (5), wherẽA = I − λPπ.
Furthermore, if we defineA = I − Pπ as in (4), thenÃ
can be expressed as a perturbation∆A of A, namely∆A =
Ã − A = ε Pπ. Hence,‖∆A‖∞ ≤ ε. Given a states in
the discounted MDPMλ, we define the appeal̃aπs→u of an



action u ∈ Us with respect to some policyπ in a similar
way as in (2):

ãπs→u , rus +
∑

s′∈S

λPu
s,s′ x̃

π
s′ . (11)

Let us now quantify the perturbation on the appeals incurred
from the discount.

Theorem 6:For any states, any actionu ∈ Us and any
stepk of Policy Iteration applied to Example 1, we have:

| aπk

s→u − ãπk

s→u | ≤ 4κ δ2n nn+2 ε,

whereaπk

s→u and ãπk

s→u are defined by (2) and (11) respec-
tively andλ = 1− ε is the discount factor.

Proof: In the definition (11) ofãπk

s→u, we may write
x̃πk as a perturbation ofxπk using the same notation as in
Lemma 1:x̃πk , xπk +∆xπk . From (2) and (11), we have:

| aπk

s→u − ãπk

s→u |

≤
∑

s′∈S

Pu
s,s′ | ε x

πk

s′ − (1− ε)∆xπk

s′ |

SincePu
s,s′ ≤ 1 and |vi| ≤ ‖v‖∞ for any i and any vector

v, we have:

| aπk

s→u − ãπk

s→u |

≤ n · ( ε ‖xπk‖∞ + (1− ε) ‖∆xπk‖∞ ).

Using the fact that1 − ε < 1 and the bounds from Lemma
3 and Theorem 4 with a perturbation‖∆A‖∞ ≤ ε gives the
result.

C. Main result

Let us now combine the results from Sections V-A and V-B
to show that the choices made by PI at every improvement
step do not change when applied to the discounted or the
undiscounted version of Example 1.

Theorem 7 (Main Theorem):There exists an infinite fa-
mily of discounted-reward MDPs with a particular starting
policy on which the number of iterations that Policy Iteration
takes is lower bounded by an exponential function of the size
n of the MDP.

Proof: LetM be the total-reward MDP from example
1 on which PI explores the exponential size sequence of
policies (3) and letMλ be the corresponding discounted-
reward MDP withλ = 1 − ε defined in Section V-B. We
show that PI also explores sequence (3) onMλ providedε
is small enough. Figure 1 sketches the idea of the proof.

Let F (n, δ, κ) , 4κ δ2n nn+2 andG(n, δ) , δn+1 nn/2.
Theorem 6 tells us that

| aπk

s→u − ãπk

s→u | ≤ F (n, δ, κ) · ε,

for every states, actionu ∈ Us and policyπk of sequence
(3), whereaπk

s→u and ãπk

s→u are respectively defined by (2)
and (11). Similarly, Theorem 5 tells us that for every states
and policyπk from sequence (3),

aπk

s→u∗ − aπk

s→u ≥
1

G(n, δ)
,

aπk

s→u

ãπk

s→u

ãπk

s→u∗

aπk

s→u∗

≤ F (n, δ, κ) ε

≤ F (n, δ, κ) ε

≥ 1
G(n,δ)

Fig. 1. The idea of the proof of Theorem 7 is to bound the parameter
ε in order to make sure that|aπk

s→u
∗ − ã

πk

s→u
∗ | + |a

πk
s→u − ã

πk
s→u| ≤

a
πk

s→u
∗ − a

πk
s→u.

whereu∗ = argmaxu′∈Us
aπk

s→u′ andu is any action inUs
different fromu∗. Since|y−x| ≥ y−x ≥ −|y−x| for any
x, y ∈ R, the following relations are true:

aπk

s→u − ãπk

s→u ≥ −|a
πk

s→u − ãπk

s→u |

≥ −F (n, δ, κ) ε (12)

aπk

s→u∗ − ãπk

s→u∗ ≤ |aπk

s→u∗ − ãπk

s→u∗ |

≤ F (n, δ, κ) ε. (13)

Substracting (13) to (12), we obtain

ãπk

s→u∗ − ãπk

s→u

≥ aπk

s→u∗ − aπk

s→u − 2F (n, δ, κ) ε.

From Theorem 5, we know that

ãπk

s→u∗ − ãπk

s→u ≥
1

G(n, δ)
− 2F (n, δ, κ) ε.

If we takeε to satisfy

ε <
1

2F (n, δ, κ)G(n, δ)
=

1

8κ δ3n+1 n3/2n+2
, (14)

we have ãπk

s→u∗ > ãπk

s→u for every u 6= u∗ and hence,
argmaxu∈Us

ãπk

s→u = u∗ = argmaxu′Us
aπk

s→u′ . Therefore,
by induction, PI makes the same choice on bothM and
Mλ at every stepk and sequence (3) is observed on both
problems.

Note thatMλ has the same size asM and recall that
δ(n) = κ(n) = (10m + 4)2m, wheren = 7m + 4 > m.
Hence, anε that satisfies condition (14) can be written with
a polynomial number of bits since:

ε <
1

23+log2 κ+(3n+1) log2 δ+(1.5n+2) log2 n

=
1

23+m+(3n+1)n+(3n+2) log2(10n+4)+(1.5n+2) log2 n

<
1

2q(n)
,

where q is a suitable polynomial2. Finally, observe that
condition (14) implies condition (9) from Theorem 4.

2In practice, one would already observe Theorem 7 withq linear inn.



VI. CONCLUSIONS AND PERSPECTIVES

In conclusion, Example 1 rules out hope for greedy Policy
Iteration to be a strongly polynomial time algorithm to solve
Markov Decision Processes, even though it was one of the
best candidates. Nevertheless, Example 1 is artificial and is
unlikely to be encountered in practical applications. In Figure
2, we attempt to challenge the robustness of Example 1 and
we therefore perturb PI by makingall but one (instead of
all) improving switches at every step of the algorithm. We
observe that the number of iterations seems to grow at a
polynomial rate in that case.
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Fig. 2. (Red) Policy Iteration run on instances of Example 1 ofincreasing
size. The exponential increase of the number of iterations isobserved. (Blue)
At each step of the algorithm, instead of making every improvingswitch,
we choose one at random that is not switched. 200 trials have been made for
every problem size and the number of iterations achieved has been recorded
: the straight line is the average number of steps observed, the blue shadow
contains2/3 of the points and the blue dots are the extreme values for each
problem size. The exponential behavior seems to have disappeared.

Furthermore, Example 1 uses probabilistic actions and
both positive and negative rewards. We would like to in-
vestigate whether Policy Iteration runs in polynomial time
on deterministic MDPs or on MDPs with only positive
rewards. Such situations appear in a number of practical
application such as computing minimum mean-cost cycles
[10] or optimizing the PageRank of nodes [5]. We would
also like to apply smoothed analysis [17] on PI to explain
its practical efficiency.
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