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Abstract— The question of knowing whether the Policy Iter- thetotal-reward and thediscounted-rewardriteria. In total-
ation algorithm (PI) for solving stationary Markov Decision  reward MDPs, rewards are summed up during the whole
Processes (MDPs) has exponential or (strongly) polynomial \,qcass. In that case, a necessary condition for the problem
complexity has attracted much attention in the last 25 years. . . .

Recently, a family of examples on which Pl requires an to be well deflneq is to have a reward-free absorbing state (or
exponential number of iterations to converge was proposed for Sét of states), which we call tharget state Then, the goal of

the total-reward and the average-reward criteria. On the other the controller is to reach that target state while maxingzin
hand, it was shown that Pl runs in strongly polynomial time  the expected sum of rewards until there. In discountednigwa
on _dlscounted-reward MDPs, yet only when the discount factor MDPs, the reward of an action at timés multiplied by some

is fixed beforehand. factor At where0 < A < 1is thedi t factor This fact

In this work, we show that PI needs an exponential number actorA’, w er(? <A<LIS (_3 Iscount factor fhis fac or
of steps to converge on discounted-reward MDPs with a general €an be seen either as a deflation rate or as the probability for
discount factor. the process to stop at each time step. For an advanced study

of MDPs and optimality criteria, see for example [16].
. INTRODUCTION Markov Decision Processes can be solved in weakly

Markov Decision Processe@VDPs) are a popular and polynomial time using_ipgar Programming(LP) [16]. How-
efficient tool to solve sequential decision problems undéfVel. @ much more efficient way of solving these problems
uncertainty. They are widely used to model stochastic op? Practice is to use an appropriate iterative algorithm .
timization problems that appear in various engineering arfdmong them,(greedy) Policy Iteration(Pl) is one of the
industrial applications such as PageRank Optimization [5{10St studied. It usually converges in a few iterations and
18], [13], Smart Grids [18] or Epidemics Management [4]'S guarante'ed to find thgz optimal sglu'uon in ﬂmte time.
for instance. See [19] for a survey of numerous applicatior! c@n be viewed as a Simplex algorithm in which several
in which MDP models play an essential role. pivoting steps are performed S|mu_ltane0usly. Unfortugate

More specifically, an MDP describes the random proced@€ algorithmic complexity of Pl is not well understood.
of anagentthat evolves on a finite set sfates One of the DeSPite its practical efficiency, examples in which Pl reesi
states is chosen to be the initial state. At every time stefl €xponential number of iterations to converge exist in a
the controller of the process needs to choose one amorfgMPer of cases of practical importance.
the severahctionsavailable in the current state. The chosen There is a significant research effort for understanding the
action determines @ansition probabilitydistribution for the complexity of PI. For general MDPs, the best upper bound -
next state to reach as well as an immediatgard (or cost). O(k™/n) - is due to Mansour and Singh [14], whereand
The goal of the controller is to choose the right actions i are respectively the number of states and the maximum
each state in order to maximize the rewards collected bByumber of actions per state. For total- and average-reward
the agent over time according to some ad hoc optimizatiodDPs, the largest known lower bound is also exponential
criterion. We call such a choice of actionspalicy, the and has recently been found by Fearnley through a carefully
one maximizing the optimization criterion being thptimal  built family of examples [6], based on a construction for
policy. parity games that was proposed by Friedmann [9]. This was

In this work, we only consider infinite-horizon MDPs in @ breakthrough after more than 25 years of research on the
which the agent is assumed to follow the process for a@uestion of the complexity of Pl [11], [15]. The story seems
infinite number of steps. Furthermore, we consider two different though for discounted-reward MDPs for which a
the most important optimization criteria in practice, nyne strongly polynomial upper bound has recently been found

by Ye [20], yet only for afixed discount factor; Pl is shown
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This question was mentioned as an open problem by both Yeobability matrix obtained using action(s) in each state
[20] and Fearnley [7]. Our proof uses perturbation analysis € S and let the substochastic mati be the same matrix
to provide an adequate value of the discount factor such thas P" but without the row and column corresponding to state
adding discount to Fearnley’s family of examples does nat. Similarly, let7 be the reward vector obtained when using
change the choices made by PIl. Hence, it takes the sapelicy = and letr™ be the same vector & without the entry
number of steps with or without discount and therefore, itorresponding to state.
requires an exponential number of steps to converge in bothWe also define thevalue =7 of a policy = at states as
cases. Our result combined with the ones of Ye [20] anthe expected total reward collected by the agent during its
Fearnley [6] completes the characterization of the worstnfinite walk starting ins and following policyn thereafter.
case complexity of Pl for MDPs: it is strongly polynomial Again, " is the vector containing entries] for all s € S
for discounted-reward MDPs with a fixed discount rate buand 2™ is the same vector a" but without its 7" entry.
exponential for total-reward, average-reward and distamlin The vectorz™ is the solution of the following linear system:
reward MDPs in general. [ Sy 1
It has to be mentioned that Andersson and Miltersen have ( )zt =", @
already used the same kind of tools to show that discounteshere designates the identity matrix. The controller’s goal
and undiscounted games are polynomial-time equivalent [1§ to find the optimal policyr* such tha@g* > x™ for every
However, in their work, they do not focus on a particulastates and every policyr. It can be shown that such a policy
algorithm—Ilike Pl—but rather on the general complexity ofalways exists [16, Theorem 7.1.9].
these problems. Hence, their result only has a small impact ) ,
on MDPs, since those are already known to be solved fi Policy lteration
(weakly) polynomial-time when using linear programming The Policy Iterationalgorithm (PI) jumps from one policy
methods, which is not the case for games. to another until it converges to a global optimum. Every step
The paper is organized as follows. In Section I, wds made through a comparison between policies, therefore we
properly define MDPs and some related concepts and vgay that
formulate the greedy Policy Iteration algorithm. We also « policy = weakly dominates’ (7 > ') if 27 > 27 for
give a number of preliminary results. In Section lll, we every states; '
state Fearnley's family of examples and analyze some of « 7 (strongly) dominatesr’ (= = =’) if the previous
its properties. Section IV lays the foundations for our main  inequality is strict for at least one state;
result by analyzing how the optimal solution of an MDP + 7 and#’ areequivalent(r ~ ') if 27 = a:;" for every
is modified when perturbing the problem instance. Section states.

V applies the analysis of Section IV to discounted-rewargyje can also compare policies with respect to some fixed

MDPs and presents our main result. policy, sayr. Therefore, for every state following Fearnley
Il. DEFINITIONS AND PRELIMINARIES [6], we define theappealof an actionu € U with respect

In this section, we properly define Markov Decision Pro-tO Tas
, we properly al, =ri+ > P'al 2)

cesses and the Policy Iteration algorithm and we summarize
the main features of the total-reward example on which

Policy Iteration needs an exponential number of steps 4" _ / '
is said to beappealingwith respect tor if a7_,, > 27. A

s'eS
herex™ is solution of (1). At some statg an actionu € Us

converge. ) ' . St
formulation of the greedy version of Policy Iteration is giv
A. Total-reward Markov Decision Processes in Algorithm 1.
An instance of dotal-reward Markov Decision Process
a tupleM = (S,U,P,R) where letterpaper 1 GREEDY POLICY ITERATION
« S = {1,..,n,7} is the finite set ofstates(r is a Require: An arbitrary policym, k = 0.
reward-free absorbing state); Ensure: The optimal policyr™.
o U i_s the fin_ite set of allactions_ and/, is the set of 1. while 7, # 7, do
actions available to the agent in state N 2 Evaluation step: compute™.
probabllmefsthaI represents uncertainty. For any action Tri1(s) = argmax o™, for all statess € S.
u € U available ins, P, is the probability of going u €U,
from states to states’ when the action € U, is chosen; % ke k+1.

« R = {r‘|s € S,u € U} is the set ofrewards 5 €nd while

collected by the agent at any statevhen using action 6 "etum  m.

u € Us.
We define adeterministic stationary policyor strategy)r : The two following well known theorems are the main
S — U as the deterministic choice of one action in eaclrguments behind the finite time convergence guarantees of
state. In this context, IgP" be the (row-stochastic) transition P!l. (Proofs can be found, e.g., in [2].)




Theorem 1:Let 7 and «' be two policies such that IV. PERTURBED TOTAL-REWARD MDP
al_,.5 = @5 for every states and such that this inequality
is strict for some states. Theti > .

Theorem 2:For any sub-optimak, 3 (s, u),u € Us such
thata?_,, > 7.

Theorem 1 essentially says that replacing any actions
more appealing ones strictly improves a policy, hence
never considers the same policy twice. Theorem 2 says t
if, for some policy, no appealing action exists, then thiiprocedure that Iead; tovyards Theorem 7,
policy is optimal. Therefore, since there are only a finite Let 7 be some policy in a tota_l-rewarq MDP_ and lebe
number of policies, Pl converges to a global optimum in c&he value of all states when using poliey which can be

finite number of steps. However, Theorems 1 and 2 do n&pmput_ed by solving t_he linear system (1). Our go_al is to
guarantee convergence in polynomial time. determine how much: is perturbed from a perturbation of

the system’s matrix.

In this section, we study how a small perturbation of the
total-reward MDP instance affects the value of the states. W
expect that a small enough perturbation should not affect th

havior of Policy Iteration. This section builds the bamsis
%ich our main result will rely. It may be useful to have a

nce at Figure 1 at this point to have a better idea of the

[1l. EXPONENTIAL COMPLEXITY EXAMPLE Lemma 1:Let 2 be the solution of
FOR POLICY ITERATION
In [6], Fearnley provides a family of examples for a Az =10 (4)

total-reward MDP withn states on which Pl requires an d7 be th luti  th bed
exponential number of steps to converge. For that purpos%r,‘ x be the solution of the perturbed system

he implements a binary counter. Ai—b )

Example 1 (Fearnley, [6]):Let Mey, be the MDP in- ’
stance withn states proposed in [6]. There exists an initialyhere A is an invertible matrix and lef\z 2 7 — = and
policy my such that Policy Iteration needs to explore thens 2 4 — A. Then the following bound holds for any
sequence of policies subordinate norm:

{70, 71,7 } © |zl _ _JlATY) - A4 )
to converge, withK' > 2™ — 1, wherem is the number of lz| — 1—]A-Y - [|AA]’
bits of the binary counter and where the number of statesh
I Whenever
: -1
We now state three important properties of Example 1 that A7 - [[AA] < 1. (7)

will be useful to our analysis. These features all follownfiro
the developments made in [6].

Property 1: In Example 1, every step of Policy Iteration, ) . _ u
starting atr, is made in a non-ambiguous way, i.e. at every NOt€ that (4) can be identified to (1) by taking =

stepk = 0,..,K of sequence (3) and for every state (I —P™) andb = r™. We now bound the different norms
argmax a7, iS unique that appear in (6) to obtain a usable bound |akz||. For
sS—u "

u €U, . i _ that purpose, we will use the north- ||.. Recall that for
Property 2: Every policy of Example 1 is proper, which any matrix M, || M||oc = max; ), |M; ;|. Our analysis will
means that whatever the chosen polieyand the starting ake use of Hadamard’s deter?ninaht inequality.

states, there exists a positive-probability path fronto the Theorem 3 (Hadamard)Let M be ann by n matrix such
final stater, i.e., for eachr and s, there exists a sequencepat \M; ;| < 3 for all 4, j. Then:
5,J1 = 1S :

of states{sy = s, s1, ..., 8 = 7} such thatP;j,TSiJr1 > 0 for

Proof: See, e.g., [12].

1=0,1,....k — 1. Note that if such a sequence exists, then |det(M)| < g" n/?,
there exists a sequence of length at most 1. The next lemma gives us an upper bound|ofi ! || .
Property 3: In Example 1,P™ € Q"*" andr™ € Z"*" Lemma 2:Let us assume that € Q"*" is an invertible

for every policyr and there exist valueS(n) € N, 6(n) < matrix such thatA, ;| < 1 ands- A, ; € Z for all i, j. Then:
(10m + 4)2™ and k(n) € N, s(n) < (10m + 4)2™, with

n = Tm + 4, such thatj(n) - P™ € N**" for all = and that A7 oo < 6 n(n /2,

|rT| < k(n) for all s, 7.

Property 2 makes sure that the value of the total-reward Proof: SinceA is invertible, we may use Cramer’s rule
MDP from Example 1 is finite for any policy and any startingand expressi~! as:
state, i.e., that the linear system (1) always has a unique adj(s - A)
solution [3]. Property 3 guarantees that the considered MDP ATl =65(6-A)"1t =6 a9 - &) (8)
has reasonable size. det(d - A)

Note that Properties 2 and 3 summarize the reStriCti‘%hereadj(é - A) is the adjugate matrix of - A in which
assumptions that are made in our results at the next Sectiog§ery entry is the determinant of dn—1) x (n— 1) sub-

1To keep notations simple, we will writ& and x and temporarily forget matrix of the inteQer matrix - A (pOSSi.ny with a minus
about the dependence in sign). We know that every entry ¢f - A| is less thary and



that | det(d - A)| > 1. Hence, using (8) and Theorem 3, weA. The minimum difference between the appeals of actions

have: First, let us observe that the value of the states of an MDP
A oo <6 - [ladj(d - A)||so can be expressed as a fraction with bounded denominator.
N n Lemma 4:Let z be the solution of (4) and let us assume
< §- max & (n— 1)(n71)/2 that A € Q"> is an invertible matrix such that4, ;| <
Isjsn — lLandé - A;; € Z for all i,j. Then the vector: can be
< §npntD/2. expressed as:
- v
n YT
It now remains to find an upper bound ¢m|| . wherev is an integer vector of the same dimensionzaand
Lemma 3 Let x be 'Fhe soluti_on of (4), and assume thatj is a positive integer satisfying < 6" n"/2.
A€ Q" is an invertible matrix such that, ;| < 1 and Proof: The linear system (4) can be rewritten as
(.S-Aiﬂ‘ € N for all i, ] and thatb € Z™ with |bl| < k for all (5 . A) z = 6 -b, where bothd - A and§ - b are integer
i. Then: s valued. Hence, using Cramer’s rule for linear systemsan
[2]loo < r 6™ n(mTD/2, be expressed as:
(Y
Proof: Using Lemma 2, we havéz|. < |47} - T = [det(s - A)[
[1Bl]oc < 8™ n( /2 . u o : : :
The next theorem uses the bounds from Lemmas 1 toVgherewv is an integer vector with the same dimensionzas
to obtain an upper bound oAz . and| det(§-4)| is a positive integer, say. Since[d-A; ;| < 0
Theorem 4:Let z be the solution of (4) and: be the for everyi, j, Theorem 3 enables us to conclude. =
solution of the perturbed system (5), and Iet = 7 — The following bound makes use of the fact that every step
and AA = A — A. Let us further assume that € Qnx»  Of Plis made in a non-ambiguous way. _
is an invertible matrix such tha#; ;| <1 andé- A;; € N Theorem 5:For any states and any stepk of Policy
for all i,j and thatb € Z" with |b;| < « for all i. Then, Iteration applied to Example 1, lei" = argmax agt,, and
. C e u € Us
provided thaf|| A4l satisfies: let v/ # u* be any other action itf,. Then:
1AA]lo0 < 1/2- 67" n= (D2, 9) 1
a™. . —a" , )
we have: T e T gt/
om mil Proof: From the definition of appeal (2) and from
[Az]oo < 2K0™ 0" - [[AAloo. Property 1, we know that
Proof: We know from Lemma 2 thaf|A~ !, < o g™
6" n("+t1/2 S0 if we impose||AA| . to satisfy (9), then sout o Teout ) )
Assumption (7) from Lemma 1 is satisfied and the denom- = =)+ > (P, = PE)alr > 0.
inator in (6) is at least 1/2. Substituting the other avddab s'es
bounds from Lemmas 2 and 3 into (6) gives the resul Since Example 1 has Properties 2 and$3(P;ff, _ P;L;,)
V. DISCOUNTED-REWARD MDPs is an integer and we can use Lemma 4 and write:
AS A PERTURBATION OF TOTAL-REWARD MDPs - _— w
e N T
In this section, we show that adding a discount factor . o 6-d

A £ 1 — ¢ close enough td to the originally discount- wherew is an integer strictly greater than 0 ardis less
free total-reward MDP of Example 1 does not change thghan ™ n"/2. [ ]
behavior of Policy Iteration and thus that the latter regsiir
an exponential number of steps to converge on discounted- The perturbation induced by the discount
reward MDPs. We show this by providing a valuesc$uch Let M be a total-reward MDP and letm, be the
that the same choices are made by Algorithm 1 on bottorresponding discounted-reward MDP, i.e., the MDP with
problems at each improvement step. We proceed in threame states- and actions space, transition probabilitids a
steps: rewards but with an additional discount factder= 1 — ¢.
1) first, we identify the minimum possible difference The valuez™ of the states of\1, under policyr is obtained
between the appeal of the best action and the appdaf solving the following linear system:
of the other actions in a state; e -
2) then, we characterize the perturbation induced by (I =APT)E" =17 (10)
adding a discount factok; We can identify this system to (5), wheré = I — \ P~.
3) finally, we provide a value fot that induces a small Fyrthermore, if we definel = I — P™ as in (4), thenA
enough perturbation so that the action with the bestan pe expressed as a perturbatibd of A, namelyAA =
appeal does not change in each state, and this at evely_ 4 — - pr. Hence,|AA|| < . Given a states in
step of PI. the discounted MDPM,, we define the appeal” ,, of an



actionu € U, with respect to some policy in a similar at, . A_ ___________
way as in (2): L l < F(n,8,r)e
~T A u U T a’s—)u* T+ -¥- 1
As sy = T + /ZSAPS,S’ Lgr- (11) d;‘—gu | > G(n,0)
_ e _ _ ]gF(n,é,/@)E
Let us now quantify the perturbation on the appeals incurred am,, +-d---oooooooo
from the discount.

Theorem 6:For any states, any actionu € U, and any

stepk of Policy Iteration applied to Example 1, we have: Fig. 1. The idea of the proof of Theorem 7 is to bound the paramet
P y PP P e in order to make sure thdt’* . —a@." .|+ |as®y — askul <
Tk _ Tk
_ d?ﬁ,u | S 4!%52n n7L+2 g, Qg « Aglyqy.

s—u*
Tk
| a’s%u

whereal*,  andalx,, are defined by (2) and (11) respec-

tively and A = 1 — ¢ is the discount factor. whereu* = argmax,, ¢, al,, andu is any action int/,
Proof: In the definition (11) ofa7*,,, we may write different fromu*. Since|ly —x| > y —x > —|y — x| for any
2™ as a perturbation of™ using the same notation as inz, y € R, the following relations are true:

Lemma 1:3™ £ 2™ + Az™. From (2) and (11), we have:

Tk _ElTrk Tk ~Tk

|a77k — g7 As s—u > _|asau — gy

s—u iupu o A > —F(n,d,k)e (12)
< s lexlf — (1 —¢)Az]] ~ ~

=R ° NS A A
) < F(n,6,k)e. 13
Since P!, < 1 and|v;| < ||v||« for anyi and any vector < Fn,0.x) (13)

v, We have: Substracting (13) to (12), we obtain
‘ agiu - dgiu a7 e
<n-(c|z™ + (1 — &) ||Az™* . s—ru* s—u
(elle™ [loo + (1 =€) | lloo ) S aTh e aTe 2 F(n.d)e.

Using the fact thatt — ¢ < 1 and the bounds from Lemma
3 and Theorem 4 with a perturbatigi\ A|| < ¢ gives the From Theorem 5, we know that
result. [ ]

1
. A5ty e — 7% > e — :
C. Main result Gomur = Gomu = G(n,9) 2F(n, oK) e
Let us now combine the results from Sections V-A and V—E' :
: . f wi k i
to show that the choices made by PI at every improvement e takes to satisfy
step do not change when applied to the discounted or the 1 1
undiscounted version of Example 1. €< 2 F(n,5,r)G(n, o) T S8R odntlp3/ante’ (14)

Theorem 7 (Main Theorem)There exists an infinite fa-

mily of discounted-reward MDPs with a particular startingwe haveal*,,. > a™,, for everyuw # u* and hence,
policy on which the number of iterations that Policy Iteoati argmax, o, al*,, = u* = argmax,, a.*, . Therefore,
takes is lower bounded by an exponential function of the sizgy induction, PI makes the same choice on bgth and

n of the MDP. M, at every stepk and sequence (3) is observed on both

Proof: Let M be the total-reward MDP from example problems.

1 on which PI explores the exponential size sequence of Note thatM, has the same size a%t and recall that
policies (3) and letM, be the corresponding discounted-5(n) = x(n) = (10m + 4)2™, wheren = 7Tm + 4 > m.
reward MDP withA = 1 — ¢ defined in Section V-B. We Hence, are that satisfies condition (14) can be written with

show that PI also explores sequence (3)eh) providede a polynomial number of bits since:
is small enough. Figure 1 sketches the idea of the proof.

Let F(n,d,k) £ 4k6*n"*2 and G (n,s) £ 6"+ nn/2, . < 1
Theorem 6 tells us that 93+1ogy k+(3n+1) log, §+(1.5n42) logy
1
| agiu — &giu | < F(TL, (5, /i) <&, = 23+m+(3n+1)n+(3n+2) log, (10n+4)+(1.5n+2) logy n
. . 1
for every states, actionu € U, and policyr; of sequence < PSPk
(3), whereaZ*,  andaZl*,, are respectively defined by (2)
and (11) S|m||ar|y, Theorem 5 tells us that for every state where q is a suitable po'ynomié] Fina”y, observe that
and policyr, from sequence (3), condition (14) implies condition (9) from Theorem 4. m
a‘g]i)u* —agk, > !

soU = G(n, 5) ’ 2|n practice, one would already observe Theorem 7 wilmear inn.



VI. CONCLUSIONS AND PERSPECTIVES [5]

In conclusion, Example 1 rules out hope for greedy Policyjg)
Iteration to be a strongly polynomial time algorithm to solv
Markov Decision Processes, even though it was one of thﬁ]
best candidates. Nevertheless, Example 1 is artificial and i
unlikely to be encountered in practical applications. Ilgufe (8]
2, we attempt to challenge the robustness of Example 1 and
we therefore perturb Pl by makingll but one (instead of g
all) improving switches at every step of the algorithm. We
observe that the number of iterations seems to grow at a
polynomial rate in that case.

[10]
Fearnley 1
12
£280] ‘ [12]
5 o 13]
-% Perturbed [
5 Policy Improvement
— L]
© [14]
é 136
L]
E [15]
c
64 [16]
28 17
28 oo
11 88
number of nodes (18]
Fig. 2. (Red) Policy Iteration run on instances of Example inofeasing
size. The exponential increase of the number of iterationbserved. (Blue)
At each step of the algorithm, instead of making every improvdngtch, 19
we choose one at random that is not switched. 200 trials hese made for (19]

every problem size and the number of iterations achieved éas kecorded

: the straight line is the average number of steps observedltte shadow
contains2/3 of the points and the blue dots are the extreme values for eadr®
problem size. The exponential behavior seems to have diaeghe

Furthermore, Example 1 uses probabilistic actions and
both positive and negative rewards. We would like to in-
vestigate whether Policy Iteration runs in polynomial time
on deterministic MDPs or on MDPs with only positive
rewards. Such situations appear in a number of practical
application such as computing minimum mean-cost cycles
[10] or optimizing the PageRank of nodes [5]. We would
also like to apply smoothed analysis [17] on PI to explain
its practical efficiency.
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