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EXTENDED ABSTRACT. In search engines, it is critical to be able to com-
pare webpages according to their relative importance, with as few as possible compu-
tational resources. This is done by computing the PageRank of every webpage from
the web [4] (i.e., the average portion of time spent in the webpage during an infinite
and uniform random walk on the web). Pages with higher PageRank will then appear
higher in the list of results. See [3] for a survey on PageRank and its applications.

The concept of PageRank has generated a large number of questions and chal-
lenges. Among these, the problem of optimizing the PageRank of webpages raises
increasing interest, as evidenced by the growing literature on the subject [1, 20, 7, 5,
17, 6, 10]. In the PageRank Optimization problem (PRO) that we study, one aims to
maximize (or minimize) the PageRank of some target node when control is granted
on some subset of free edges that may be chosen to be activated or deactivated.

A typical application of PRO is the so-called webmaster problem in which a web-
master tries to maximize the PageRank of one of his webpage by determining which
links under his control (i.e. on his website, or on an allied website for instance) he
should activate and which links he should not [1, 7]. The same tools may be used to
find how much the PageRank of some nodes can vary when the presence or absence
of some links is uncertain (e.g. because a link is broken, the server is down or because
of traffic problems) [17]. Similar situations also exist in economic networks in which
agents choose partners in order to increase their centrality (i.e., their PageRank) [22]
or decrease the centrality of other agents. For instance, a government might want to
prevent a bank from acquiring excessive influence in order to limit the sensitivity of
the bank network to a possible bankruptcy, and it should therefore allow or reject
some transactions [2, 8, 11, 19].

Csáji et al. proposed a way of modeling PRO as a Markov Decision Process

(MDP), thereby showing that an exact solution of the problem could be found in
weakly polynomial time using linear programming [6]. (For more on MDP see, e.g.,
[21].) Yet in practice, MDPs are solved much more efficiently using algorithms adapted
to their special structure. Among these algorithms, Policy Iteration (PI) [16] performs
very well in practice and is guaranteed to converge to the optimal solution in a finite
number of iterations. However, even though PI usually converges in a few iterations,
its actual complexity remains unclear.
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There is a significant research effort for understanding the complexity of PI. Re-
cently, an example has been proposed on which PI runs in exponential time [9].

Theorem 1 (Fearnley, [9]). There exists an infinite family of MDPs on which

the number of iterations that PI takes is lower bounded by an exponential function

of the size of the MDP. This result holds for most of the main classes of MDPs,
namely total-cost, average-cost [9] and discounted-cost MDPs [14]. However, special
cases exist for which the example from Theorem 1 does not work, as for instance
the case of discounted-cost MDPs with a fixed discount factor [23, 13] for which PI
runs in strongly polynomial time, thereby showing that the gap between exponential
and strongly polynomial time guarantees is sometimes narrow. Deterministic MDPs
are another interesting case for which strongly polynomial time algorithms exist [18]
and for which the highest known lower bound on the number of iterations of PI is
quadratic [12].

In this work, we focus on the performance of PI when it is applied to PRO. We
show that the exponential complexity example from Theorem 1 in which PI needs an
exponential number of iterations to converge can be extended to PRO if 0 and -1 costs
are allowed, thereby suggesting that both positive and negative costs are required for
the exponential complexity example to work in general. We provide more arguments
to support this suggestion through two particular cases of practical importance in
which PI solves the unit-cost version of PRO in polynomial time:

1. In many applications, such as web search engines, it is assumed that the
random walk used to compute PageRank can be interrupted at any time with
some fixed probability and start again from an arbitrary node of the graph
[3]. This restarting probability is called zapping and can be interpreted as
if one could get bored of surfing with some probability and decide to start a
new search from a new randomly chosen page. We show that in the case of a
fixed zapping probability, PI solves PRO in weakly polynomial time.

2. We show that if all free edges either leave some arbitrary node and/or the
target node, then PRO can be solved in strongly polynomial time using PI.
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