Make the right choice using Markov Decision Processes

Romain Hollanders

ICTEAM Tutorial Seminars

March 2013

A storage problem

1 like seeing friends ☺ = 30 $\odot = 30$ (2)(1) (3) 4 0 5 6 C

Transition probabilities and happiness are stored in matrices

Transition probabilities and happiness are stored in matrices

Stationnary probabilities and the average happiness are easy to compute

But I was not very smart, was I?

$$n = 0$$
 : $\overline{\textcircled{\odot}} = 20.5$

$$n = 0 \quad : \quad \overline{\textcircled{\odot}} = 20.5$$
$$n = 1 \quad : \quad \overline{\textcircled{\odot}} = 21.3$$

$$n = 0$$
 : $\overline{\odot} = 20.5$
 $n = 1$: $\overline{\odot} = 21.3$
 $n = 2$: $\overline{\odot} = 21.2$

 \blacksquare Fill in the fridge whenever there are less than n beers left

$$n = 0 \quad : \quad \overline{\textcircled{\odot}} = 20.5$$

$$n = 1 \quad : \quad \overline{\textcircled{\odot}} = 21.3$$

$$n = 2 \quad : \quad \overline{\textcircled{\odot}} = 21.2$$

$$n = 3 \quad : \quad \overline{\textcircled{\odot}} = 20.1$$

. . .

 \blacksquare Fill in the fridge whenever there are less than n beers left

$$n = 0 : \quad \bigcirc = 20.5$$

$$n = 1 : \quad \bigcirc = 21.3$$

$$n = 2 : \quad \bigcirc = 21.2$$

$$n = 3 : \quad \bigcirc = 20.1$$

. . .

 \blacksquare Fill in the fridge whenever there are less than n beers left

$$n = 0 : \quad \overline{\textcircled{\odot}} = 20.5$$

$$n = 1 : \quad \overline{\textcircled{\odot}} = 21.3$$

$$n = 2 : \quad \overline{\textcircled{\odot}} = 21.2$$

$$n = 3 : \quad \overline{\textcircled{\odot}} = 20.1$$

Less veggies, more beer!

. . .

 \blacksquare Fill in the fridge whenever there are less than n beers left

$$n = 0 : \quad \bigcirc = 20.5$$
$$n = 1 : \quad \bigcirc = 21.3$$
$$n = 2 : \quad \bigcirc = 21.2$$
$$n = 3 : \quad \bigcirc = 20.1$$

Less veggies, more beer!

. . .

. . . .

MODEL: Represent the decision problem with states and actions

GOAL: Find the strategy with highest reward

RESOLUTION: Efficient algorithms exist (Policy Iteration, Dynamic Programming, Linear Programming, ...)

A storage problem

PageRank is the average portion of time spent in a node during an infinite random walk

PageRank is the average portion of time spent in a node during an infinite random walk

$PageRank \ is \ the \ average \ portion \ of \ time \ spent \ in \ a \ node \ during \ an \ infinite \ random \ walk$

How can I improve my PageRank? If I can tune the web a little bit...

Improvents in the ranking can be important I have become the third most important page. Hurray!

Many decision problems can be modeled as Markov decision processes

These processes can be solved efficiently

Maybe they can help for one of your own problems?

Thanks for your attention!