On the Policy Iteration algorithm For PageRank optimization

Romain Hollanders UCLouvain / ICTEAM

Supervisors : Raphaël Jungers Vincent Blondel Jean-Charles Delvenne

PageRank = average portion of time spent in a node

during an infinite random walk

A not so trivial task

Several algorithms have been proposed

But which one should we use ?

- 1 Approximation of the optimal solution But running in polynomial time
- Linear programming : runs in polynomial time
 But doesn't take all the problem's specificity into account
- 3 Iterative algorithm based on Policy Iteration : interesting behavior But no theoretical complexity results

Several algorithms have been proposed

But which one should we use ?

- 1 Approximation of the optimal solution But running in polynomial time
- Linear programming : runs in polynomial time
 But doesn't take all the problem's specificity into account
- 3 Iterative algorithm based on Policy Iteration : interesting behavior But no theoretical complexity results

Our main focus

Can we improve the existing complexity results for our webmaster's problem ?

On the policy Iteration algorithm

for Page Rank Optimisation

1. The Max-PageRank problem

Which problem do we want to solve?

2. The PageRank Iteration algorithm

How do we solve the problem?

3. Our results

What did we find about the algorithm?

To maximize the PageRank of v or minimize its first return time

We formulate the problem as a Stochastic Shortest Path problem

We formulate the problem as a Stochastic Shortest Path problem

To maximize the PageRank of v_s or minimize the distance from v_s to v_t

We often add damping to the problem

The optimal solution may change but the problem is better conditioned

On the policy Iteration algorithm

for Page Rank Optimisation

1. The Max-PageRank problem

Which problem do we want to solve?

2. The PageRank Iteration algorithm

How do we solve the problem?

3. Our results

What did we find about the algorithm?

Iteration 1 : Evaluation step

Initial policy : all fragile edges are OFF

Iteration 1 : Evaluation step

Initial policy : all fragile edges are OFF

Iteration 1 : Improvement step

It is better to be at a distance d from the target node than at distance > d+1, even at the cost of a displacement

Iteration 1 : Improvement step

Iteration 2 : Evaluation step

Iteration 2 : Improvement step

Iteration 2 : Improvement step

Iteration 3 : Evaluation step

Iteration 4 : convergence

Nothing changes

On the policy Iteration algorithm

for Page Rank Optimisation

1. The Max-PageRank problem

Which problem do we want to solve?

2. The PageRank Iteration algorithm

How do we solve the problem?

3. Our results

What did we find about the algorithm?

In practice, PRI is by far the best method

in terms of execution times

The number of iterations of PRI seems to grow at most linearly (or even logarithmically ?)

With respect to the problem size

No theoretical bounds on the complexity of PRI yet

This is where we step in !

• PRI is a particular case of Policy Iteration

No theoretical bounds on the complexity of PRI yet

This is where we step in !

- PRI is a particular case of Policy Iteration
- We know that Policy Iteration converges in $O\left(p(L) \ \eta^{2r}\right)$ iterations where :
 - $\Rightarrow \eta$ is the smallest non-zero transition probability
 - ightarrow r is the diameter of the graph

A polynomial bound for a particular case of PRI

This is where we step in !

• In our case, with damping, we have :

$$\eta = O\left(\min\left(\frac{1}{n}, c\right)\right)$$

A polynomial bound for a particular case of PRI

This is where we step in !

• In our case, with damping, we have :

•
$$\eta \equiv O\left(\min\left(\frac{1}{n}, c\right)\right)$$

• $r = 2$

A polynomial bound for a particular case of PRI

This is where we step in !

• In our case, with damping, we have :

•
$$\eta \equiv O\left(\min\left(\frac{1}{n}, c\right)\right) \Longrightarrow$$
 Weakly polynomial bound
• $r = 2$ on the complexity of PRI

What can we do for the undamped case ?

Several ideas have been explored

What can we do for the undamped case ?

Several ideas have been explored

- 2. Can we show that PRI makes at least one definitive choice at each iteration ?
 - ➡ If we do, then PRI takes at most [# fragile edges] iterations

Conclusions on the theoretical complexity of PRI

Few existing results

- Each iteration : asymptotic polynomial complexity
- Number of iterations :
 - New polynomial bound for the case with damping This is our main contribution
 - The undamped case is still open Several approaches have been explored

Conclusions on the theoretical complexity of PRI

Few existing results

- Each iteration : asymptotic polynomial complexity
- Number of iterations :
 - New polynomial bound for the case with damping This is our main contribution
 - The undamped case is still open Several approaches have been explored

Any ideas welcome !

