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formé, guidé, soutenu, entouré.
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Abstract

How to make the best decision in a complex environment is a question that
has haunted many generations of researchers and practitioners. It has given
rise to the field of Operations Research which is all about optimized decision
making. If moreover, the environment in which decisions need to be made is
stochastic, then one is probably trying to solve a Markov Decision Process.
If above that, an adversary is to be taken into account, then we enter the
framework of Two-Player Turn-Based Stochastic Games.

Solving these problems is of critical importance in a huge variety of
domains. With the constant growth in problem sizes, efficiency is a main
focus. One of the best practical algorithms out there to solve these problems
is Policy Iteration. However, the analysis of its performance is admittedly
a complex task which is the one we undertake in this thesis. We take as
starting point a recent breakthrough from Fearnley showing that Policy
Iteration may require an exponential number of steps for two of the three
classical objective functions. Despite this result, the gap between upper and
lower bounds on the complexity of Policy Iteration is still huge and needs
to be tightened.

We analyze Policy Iteration through the angle of Unique Sink Orien-
tations, an abstract framework that generalizes Markov Decision Processes
and Two-Player Turn-Based Stochastic Games but also Linear Program-
ming for instance. In our tools, we also exploit the Order-Regularity struc-
ture, a new line of ideas that has not yet been exploited.

Our results include tighter bounds on the complexity of Policy Iteration,
both from above and below, and they invalidate a conjectured upper bound
related to the Fibonacci sequence. We also show the limits of the classical
approaches to obtain new bounds. Finally, we extend Fearnley’s result and
show that Policy Iteration may exhibit exponential complexity for all three
classical objective functions. Today with the recent results regarding its
complexity, the full portrait of Policy Iteration is closer to completion than
it ever was.





Dear reader,

In this thesis, you will find the results of five years of my life as a researcher.
The two first chapters are introductory. The Prelude portrays (or should
I say fictionalizes?) the main concepts of the thesis in a tutorial way. It
is meant as an optional introduction for anyone with a minimal scientific
knowledge. Chapter 1 is a more advanced summary of everything we know
about the Policy Iteration algorithm. It also summarizes our contributions
to the field.

The chapters that follow contain all the details about the main technical
contributions of the thesis. Except for a few add-ons, Chapters 2, 3 and 4
are essentially drawn from Hollanders et al. (2012), Hollanders et al. (2015)
and Gerencsér et al. (2015) respectively. The last chapter is novel, unpub-
lished material. Finally, the conclusion brings a different perspective on our
results. It narrates my journey all the way from February 2010 when I first
started studying Policy Iteration in the context of my master’s thesis.

A summary of the acronyms we use across the thesis is available at the end
of the manuscript.

I wish you a pleasant reading.

Romain
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Prelude

Jesse recently created the website of KeepEatCool, a small-budget company
specialized in the creation of frozen meals—small but nevertheless with a
cutting edge expertise.1 Even though the company was freshly ranked by
the New York Times as one of the top companies in its category, Jesse
has been quite disappointed to see that his website was hardly visible on
the web. For instance, on Google, when typing keywords such as “frozen
meals”, users barely end up on the website after the third page of search
results. When Jesse went to see his boss with a suggestion to make things
right, it did not go so well.

“No, I will not be paying for ads on Google,” his boss said. “Do you
realize how much money it costs? And what about Bing users? Should I
pay for them as well? Besides, everybody knows that no one ever clicks on
these links!”

“You are aware that visibility is essential if we want to attract new cus-
tomers, right?”, Jesse argued.

“Well, then, find another way. But I am not committing any money to
web ads.”

Another way? Easier said than done... Jesse knew how valuable it is
to be visible on search engines. Despite this setback, he undertook some
research, starting from the basics: how does Google even rank the web pages?

Of course, the answer was easily found: “it is a secret”. Yet, even
so, it quickly appeared to Jesse that one of the central criteria that search
engines like Google use in their recipe is PageRank. The idea is quite simple:
imagine a user randomly clicking on links as they come, a very large—if not
infinite—number of times, starting from a random website. This user—that
is referred to as the agent—will thereby perform what we call a random walk
on the web. The frequency at which the agent visits each web page is defined
as its PageRank. The higher, the better in Google’s ranking.

In fact, some additional tricks are needed for the above methodology

1Any resemblance to actual persons or companies is purely coincidental.
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2 Prelude

to work. For instance to make sure that the visited pages are focused on
the desired keywords, it appears that Google first restricts the search of the
agent to some predefined set of pages that we will call the focused network.
Only links pointing inside this network are considered. Furthermore, to
avoid a situation where the agent would be stuck on some web page(s) with
no links to the outside world, the agent will restart the random walk from
time to time from a random page.

Markov chains

The random walk originating from the computation of PageRank is
usually described mathematically as a Markov chain. We represent each
website as a state. In each state, we add a directed edge for each link
it possesses, leading to the target state of the link. We thereby create
a network of states that corresponds to the fraction of the web we are
interested in. A random walk describes the process of the agent visiting
states by following the edges randomly, starting from some initial state.
“Randomly” here means that each possible link is chosen with some
probability—by default, the same probability for each possible choice.
These transition probabilities can be summarized in a matrix P where
Pij is the probability of jumping to state j when being in state i. It
is then possible to compute the desired frequency of visit of each state
after an infinite number of steps, which we call their PageRank.
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Mathematically, we may represent the initial state as a probability
distribution vector u = 1

n1 that is uniform over all states (here 1 is a
vector of ones). Then, after one step of the agent in the Markov chain,
the new probability distribution over the states become P>u. Applying
P> repeatedly, the vector eventually converges to the stationary dis-
tribution µ. To compute µ, we may observe that once we converged,
applying P> once more to µ should not change anything and therefore,
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3

Markov chains (continued)

we must have P>µ = µ. Additionally, the elements of µ are frequencies
and should sum to 1, so 1>µ = 1. Solving this system of equations
yields the PageRank vector we aim for. A solution always exists pro-
vided the agent cannot get stuck (there are solutions to ensure that).

Many other situations can be efficiently modeled by a Markov chain,
provided they can be represented through a set of states with transitions
between them, where the next state only depends on the current one.
Transition costs can be added as well if relevant to the situation, as we
will see in the next box.

After the first period of excitement had passed, Jesse realized that ex-
ploiting the concept of PageRank to increase the visibility of his website
was not as easy as he first thought it would be. But he would not give up
and organized a meeting with his good friend Leonhard, a mathematician.

“I first realized that adding links towards my own web page would surely
increase its PageRank,” Jesse said when Leonhard asked him what he had
tried so far. “I therefore asked a few friends to add a link towards me on
their blog and so on.”

“And did it work?”
“A little. But not well enough. I am still not on the first page of Google’s

search results.”
“OK, let’s recap then. You say that the higher the frequency at which a

random walker visits your website, the higher its PageRank, right?”
“Absolutely.”
“So it means that the average time between two visits of your website by

the agent should be as low as possible, correct?”
“Oh! You mean that to increase my PageRank, I should reduce the

average time-length of the path between me and myself? My average return
time in a sense...”

“Exactly! Although I believe that this also goes through reducing the
average time between a visit of any other page and a visit of yours.”

This simple fact came as a revelation to Jesse. His average return time
was something he could apprehend: look at every possible path from his
page to itself that the random walker might choose and weigh their time-
length by the probability that they are actually chosen. The total is then
the desired average return time. Then he should exploit this fact by... But
Leonhard interrupted his thoughts.

“This is all very nice, but I am not sure yet about how you could actually
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influence your average return time. First, you would need to identify the
focused network of KeepEatCool, which seems quite tough, yet not impossible
I guess. But then, you would need to somehow modify the network. How do
you plan to do that?”

“I have a number of friends in my community. I am sure that they would
agree to add some new links on their websites if I asked them to. Several of
them already agreed to add links towards our website so why not a few more?
If I manage to gather enough of these potential links, I should be able to
create shortcuts for the random walker and thereby reduce my average return
time, don’t you think?”

“I can’t see why not! Now the trick will probably be to choose which subset
of these potential links to activate in order to maximize your PageRank.”

The network of contacts Jesse has maintained over the years would now
become a great asset!

Markov Decision Processes

The above problem of finding Jesse’s average return time for the ran-
dom walker can be represented with a Markov chain. First we reuse
the same model as described in the previous box and we split the state
corresponding to Jesse’s page into two states: the starting state s and
the target state t. To s, we give all the out-edges and to t, all the
in-edges (hence t is an absorbing state). Additionally, since we want
to count the number of transitions before reaching t, we now append
a cost of 1 for each visit of a state, representing the time spent there,
except for t which is cost-free. We may assume that every path will
eventually end up in t in a finite number of steps, possibly with the use
of some tricks as mentioned above. Then, the average return time is
given by the sum, over all possible paths, of their time-length weighted
by their probability of happening (which is simply given by the product
of the probabilities of each transition that yield this path).

1/2

1/2

1/2

1/2

1

1/3

1/2

1/3

1/3

1/2

$1

$1

$1

$1$1

$0

s t

I



5

Markov Decision Processes (continued)

The above computation can be formulated mathematically. Let P
be the transition matrix of the Markov chain (with all rows summing
to 1 except for the row corresponding to t that sums to 0) and let c
be its cost vector (where ci = 1 for all states i except for state t where
ct = 0). We can compute the average time needed to reach t starting
from any of the states by:

x =

∞∑

k=0

P kc = (I − P )−1c,

where I is the identity matrix. In this expression, xi corresponds to
the average time needed to reach t starting from i, and thus xs is the
average return time we are looking for. The vector x is often referred
to as the value vector.

In the situation discussed by Jesse and Leonhard, an additional el-
ement appears: the potential links. If there is a potential link in a
state i, we have the choice between two sets of transition probabilities,
depending on whether we activate the link or not. We call these choices
actions and the choice of one or the other locally modifies the dynamics
of the random walker. Now if there were, say, k potential links in a
single state, there would be 2k possible actions—one for each set of ac-
tivation decision (e.g., activate all, activate none, activate the first one
but not the others, etc.)—and this is annoying. However, it is possible
to reformulate the problem in an equivalent way where we add a few
auxiliary states such that each state has the choice between at most two
actions, thereby reducing the complexity of the problem (Csáji et al.,
2014). Of course, the final goal is to find the set of actions that yields
the best value for our objective function—here the average return time.
The framework we just described is that of Markov Decision Processes.
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6 Prelude

Markov Decision Processes (continued)

Markov Decision Processes can model many situations that can be
formulated with states and actions, including applications where a more
general framework than in Jesse and Leonhard’s problem is required.
Indeed, in general, an action of a state may hide any transition prob-
ability distribution and any cost to be paid for visiting the state. The
objective function to optimize may also vary depending on the situa-
tion. In our case, we chose to minimize the sum of costs for an infinite
number of steps of the random walker (which is usually referred to as
the total-cost criterion), and it was fine to do so because we were sure
to eventually reach the absorbing state t. However, in general, without
the right circumstances or without imposing an arbitrary number of
steps (a horizon), this way of summing the costs may not yield a finite
value. Therefore, in some cases, and depending on the problem studied,
it may be useful to consider other objective functions. Among them,
the two most widespread are the discounted-cost criterion where future
costs become less important (they are multiplied by a discount factor
less than one to allow the infinite sum to converge), or the average-cost
criterion where only the long-run average cost of each step matters.

In practice, Markov Decision Processes are a very powerful tool to
model decision problems in stochastic environments with many appli-
cations for instance in engineering. See for instance Puterman (1994)
for a trusted and broad reference on the topic.

Gathering and negotiating all the potential links took some time but
eventually, Jesse managed to collect about a hundred links that he would
be allowed to activate or deactivate at will—all located on websites of the
focused network of his company (figuring out this network did require some
advanced investigations). But he would soon realize that extracting the
solution from this mess of data was not as easy as anticipated.

“I need an algorithm but I can’t figure it out”, Jesse said when he met
again with Leonhard.

“I’ll do my best to help then. First, tell me what your solution should
look like.”

“This part is quite clear: I must decide for each potential link whether
I should activate it or not. I naively thought that I could simply check each
possibility separately, but there are billions of them, each inducing a different
network for the random walk.”

“But once a candidate solution is chosen, it is rather easy to evaluate
it—I mean to compute the PageRank you would get with it—correct?”
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“Yes, my computer does that reasonably fast. But as you mentioned
last time, what I would actually compute is neither only nor exactly my
PageRank, but rather the average time-distance between all the pages of the
focused network (including mine) and my own website.”

“Good to know. Now, you say that there are tons of possibilities but
some of them are not so different from each other, right? For instance, is
it hard to compare two candidate solutions that are identical except for one
potential link?”

“No, you’re right. Once I evaluated one of them, I simply need to check
whether switching (I mean, changing the activation state of) the potential
link at which they differ creates a “ probabilistic shortcut” for the random
walker or not. If it does, then switching it will improve my PageRank. And
this is indeed almost free to check computationally.”

“That is interesting! What do you think about the following then: you
first take any candidate solution, regardless of how good it is, and evaluate
it. Then, for every potential link independently, you determine whether it
is better to switch it or not by checking if it creates a probabilistic shortcut.
And then you do all the good switches at once and hopefully, you should
obtain a much better candidate solution now!”

“Yes it might work! And then we should iterate this procedure, for in-
stance until there is no link to switch anymore.”

“Or until your PageRank decreases compared to the previous iterate, if
it can even happen. We must check how well it works!”

“Wait! We need to give a name to our algorithm.”
“What do you think about... PageRank Iteration?”

What Jesse and Leonhard did not yet know at the time was that Page-
Rank Iteration would always terminate with the optimal solution. And
quite fast at that too. In fact, the same algorithm was already long known
for a more general framework.

Policy Iteration

PageRank Iteration is more widely known as Policy Iteration and is, in
practice, one of the fastest known algorithms to solve Markov Decision
Processes. The word policy refers to what Jesse and Leonhard call a
“candidate solution”: It is a choice of one action in each state. Selecting
a policy fixes a Markov chain, so, a possible network for the random
walker. Once a policy has been chosen, we may evaluate it to obtain the
corresponding value of the objective function—here the average time
to get from any state to the target state t. The final aim is the optimal
policy that yields the lowest value, regardless of the starting state, and

I



8 Prelude

Policy Iteration (continued)

therefore corresponds to the most favorable dynamics.
The way Policy Iteration works is similar to what Jesse and Leon-

hard describe. It first starts from a policy, say π, and using the cho-
sen objective function, it evaluates the value xπ of the corresponding
Markov chain. Now, let us consider an action a that is available in
state i but that is not chosen by π. Suppose that choosing a makes
us pay ca and implies a vector pa of transition probabilities. Then it
is easy to determine whether changing the action of π in state i to a
would improve its value (that is, decrease all the entries of xπ): simply
ask whether ca + pa · xπ < xπi (this formula may vary depending on
the objective function). If it is the case, then a is what we call an
improving action over π, or a shortcut in some sense. Then, the way
Policy Iteration works is by identifying all the improving actions over
π and by switching them all together to obtain a new policy—the next
iterate (if several improving actions exist in a state, it chooses the one
that creates the “best shortcut”). This procedure is then repeated until
reaching a policy where there are no more improving actions.

Regardless of its speed, there are some nice guarantees backing up
Policy Iteration. First, it always considers strictly better policies from
one iteration to the next and therefore, it always terminates in a finite
number of steps (since there are only a finite number of them—even
though a possibly large one). Moreover, it always finds a globally op-
timal policy.

Promises of growth have been held for KeepEatCool which has become
the leading group in its field. Jesse has been promoted and is now leading
the IT department. A growth in size also brought a handful of new partners
from which to acquire potential links. Unfortunately, PageRank Iteration’s
performance gradually started to drop in terms of computation time. Jesse
identified that the number of iterations needed by the algorithm was to be
blamed, probably due to the increasing number of potential links to handle.
After trying a number of fixes, Jesse decided to call his good friend Leonhard
again.

“PageRank Iteration has always worked great to optimize our Page-
Rank”, he explained. “Until lately. I have tried a number of other algo-
rithms and none of them ever surpassed ours. Nevertheless, the situation as
it is now is not satisfactory. We are forced to use suboptimal solutions with
no guarantee of quality and we recently lost our first position in Google’s
ranking. Do you have any idea how we could improve our algorithm?”
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“I think that what you need is to analyze the complexity of PageRank
Iteration. I mean, how fast does the execution time increase when you add
new potential links to your problem? If you better understood when and why
the algorithm requires more steps, then maybe you could figure out the right
fix.”

“I see. But how can we identify this complexity?”
“Well, first, you need to properly identify the structure of your problem.

You agree that if you have 3 potential links for instance, then you have 23

candidate solutions, right? And if you give a label 1 to 3 to each potential
link, then each solution can be represented as a binary vector with 3 entries:
assign 1 to the link i if it is activated, 0 otherwise. You probably see that
these 23 vectors correspond to the vertices of a (hyper-)cube. Let me sketch
this for you.”

“Then what does PageRank Iteration do?”, Leonhard continued. “Well,
it starts from an initial vertex—a candidate solution—and then jumps from
vertex to vertex on this cube. What we must understand is how it makes the
jumps with the way we update the solutions at each step of the algorithm.
Maybe the cube contains some special structure that could help us as well.”

“Wow, this sounds like really advanced stuff!”
“It sure is.”

Back home, Jesse immediately set to work. A few days later, Leonhard
received an unexpected visit.

“I think I got it! The structure!”, Jesse said with an unusually thrilled
tone. “Do you have a minute?”

“Sure! Come in. Tell me everything.”
“OK. First, you remember the trick we used earlier when we observed

that once a candidate solution was evaluated, then it is easy and always
possible to decide whether switching a potential link is a good thing or not,
right?”

“Yes.”
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“Well, the candidate solution and the solution you obtain by switching
a single link are exactly neighbors in the cube you drew the other day.”
Jesse said while showing the sketch in question. “This basically means that
you can always give an orientation to the edges, pointing toward the better
solution of the two. And you do that for every edge, like this for instance.”

“Indeed. And what structure does it reveal?”
“It took me a while to figure it out but I think I got it. The first key

observation is that the best solution we are looking for should be unique and
it has only incoming edges in the cube, so it is some kind of sink. Now,
assume I had one less potential link to deal with. I would end up with a sub-
cube of my original cube: with one less dimension but the same orientations
for the remaining edges. This sub-cube would represent my problem with one
less potential link and in this respect, it would also have a unique optimal
solution, that is, a unique sink of its own. Now if you repeat the argument
recursively, this means that every sub-cube of my original cube must have a
unique sink, which looks like a strong characteristic. Don’t you think?”

“Yes, I can believe that it must quite significantly reduce the number of
oriented cubes that correspond to your PageRank problem.”
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“There is more. Since we know that PageRank Iteration never cycles, I
assume that there must also be some kind of acyclicity in the cube.”

“I see... And what does this all mean for PageRank Iteration then?”
“Well, it is quite easy to picture how PageRank Iteration jumps from

one candidate solution to another on the cube. Remember that, starting
from some solution, it switches all the potential links that correspond to an
improvement to that solution at once. This somehow means that, from the
current vertex in the cube, we follow all the outgoing edges at once to jump
to the next iterate. On this picture for instance, starting from 000, this is
how it would look like.” Jesse picked his red pen.

“I chose an example where many steps are needed on purpose”, Jesse
continued. “I mean, here, the algorithm needs to explore five solutions before
finding the best one, and there are only three potential links. Imagine what
could happen with a thousand potential links. I believe this might explain
the drop of performance.”

“OK, but how bad can it really be? And how can we get around these
bad cases? Can we somehow adapt the jumping rule to ensure faster con-
vergence?”

“These are actually the central questions. I was not able to figure out
their answers yet.”

“You know what? I am sure these questions would make a super-nice
topic for a Ph.D. thesis!”

Acyclic Unique Sink Orientations

The way Jesse and Leonhard analyze the complexity of their algorithm
using a (hyper-)cube can also be used to analyze Policy Iteration for
solving a Markov Decision Process. The dimension of the cube corre-
sponds to the number of states of the process and its vertices represent

I
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Acyclic Unique Sink Orientations (continued)

the possible policies. Two policies that differ in only one action are
neighbors in the cube and are connected by an edge. (Note that if
there are states with more than two available actions, we would have
a grid instead of a cube, but we can deal with them as well.) As men-
tioned in the previous box, it is always possible to determine which
of two neighboring policies is best, therefore all the edges of the cube
receive an orientation accordingly.

As Jesse and Leonhard rightfully observed, the resulting oriented
cube has a strong structure: it is acyclic and every sub-cube has a
unique sink. We call such a structure an Acyclic Unique Sink Orien-
tation. One of the central goals of this thesis is to extract as much
information as possible from this structure, and to use it to obtain new
bounds on the number of steps of Policy Iteration.



Chapter 1

The epic story of Policy
Iteration

In the prelude of this thesis, we had a first chance to grasp the idea of
the Policy Iteration algorithm: how it works, how its complexity can be
analyzed, how it generates fascinating research questions.

The aim of this introduction is to draw a complete portrait of Policy
Iteration as we know it. To this end, we first describe the framework of
Markov Decision Processes for which it was first designed. After exploring
some links with Linear Programming and the Simplex algorithm, we de-
scribe Two-Player Turn-Based Stochastic Games for which Policy Iteration
also applies. We then present Acyclic Unique Sink Orientations, a powerful
framework to analyze the complexity of Policy Iteration as well as many
other algorithms. Diving one step deeper in the analysis, we introduce the
Order-Regularity condition that provides a tool specifically designed for the
study of Policy Iteration.

During this chapter, we gradually introduce our different contributions
to the field, in their context. Then in the last section, we detail the outline
of the thesis and provide a summary of our results. The paragraphs with a
“Good to know” label are of general interest but they are not required to
understand the contributions of the thesis.

It should be noted that a reader familiar with the topic of this thesis
should be able to read each chapter independently; each of them indeed in-
cludes all the necessary context and technical material, as well as reminders
of previous chapters whenever necessary.

13



14 Chapter 1. The epic story of Policy Iteration

Solving Markov Decision Processes with Policy Iteration

Markov Decision Processes (MDPs) were introduced by Bellman (1957) to
model sequential decision making in stochastic environments. MDPs proved
a powerful modeling tool for the decision problems that arise daily in various
domains of engineering such as control (Bertsekas, 2007), robotics (Mahade-
van and Connell, 1992), maintenance (Dekker et al., 2007), manufacturing
(Chao, 2013), finance (Bäuerle and Rieder, 2011), communication networks
(Altman, 2002), queuing systems (Chevalier and Wein, 1993; Meyn, 2008)
or PageRank optimization as we saw in the Prelude of this thesis (Csáji
et al., 2014; Fercoq et al., 2013). See White (1993) for a more complete list
of successful applications.

Good to know. Markov Decision Processes are one of the successful
fields of Operations Research. The name of the discipline originates from
World War II when the necessity of improving the planning quality of
military operations became obvious. Since then, it essentially refers to
any field that has to do with optimal decision making. Today, Operations
Research tools are widely used in almost all businesses and governments.
They are still an active topic for research as well.

Markov Decision Processes are described from the set of n states in which
a system can be. When being in a state, the controller (or decision maker)
of the system must chooses an available action in that state, each of which
induces a reward and randomly moves the system to another state according
to given transition probabilities. The process is repeated a possibly infinite
number of times. The goal of the controller is then to choose the set of
actions (or decisions) that rewards him with the highest “long term income”,
whose precise definition depends on the application. We then call this set
of actions a solution to the MDP.

In this thesis, we focus on finite size MDPs (that is, with finite states
and actions sets) with an infinite horizon and memoryless decisions, which
is usually claimed to be the case where the theory is the most complete and
elegant. With these hypotheses, an MDP always allows a solution where a
single stationary action is selected in every state. Here, stationary means
that the action does not change over time when we visit the same state
again. Such a choice of one action in every state is what we call a (stationary
deterministic) policy and we can restrict ourselves to this class of candidate
solutions. Choosing a policy implies fixing a dynamics that corresponds to a
Markov chain. To any policy, we can associate a value vector whose entries
correspond to the “long term income” of an agent starting in each of the
states of the MDP. (When following a policy, we refer to the value of a state
to designate the corresponding entry of its value vector.) In fine, a solution
of an MDP is a policy that maximizes the value of every state. We say
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that such a policy is optimal. Moreover, an MDP always allows an optimal
policy. Depending on the application, we classically use a total-, discounted-
or average-reward criterion to define the value function, that is, to define
what we mean by the “long term income”. Note that in all three cases, an
optimal policy always exists. We give a more precise definition of MDPs
and discuss the three classical reward criteria in Chapter 2, Section 2.1.1.
For more, see, e.g., the excellent books of Puterman (1994) and Bertsekas
(2007).

Good to know. Originating from their framework, MDPs have given
rise to a number of specialized fields to capture always more elements
from the problems encountered in applications. Some of the most impor-
tant ones are Reinforcement Learning (Sutton and Barto, 1998) where
the system is initially unknown to the controller, Partially Observable
MDPs (Spaan, 2012) where the agent only has partial knowledge of his
position in the system, Constrained MDPs (Altman, 1999; Chang, 2007)
where the controller seeks to ensure a certain level of performance re-
garding some secondary variables or Continuous Time MDPs (Guo and
Hernández-Lerma, 2009) which is suited for systems that naturally ex-
hibit continuous time dynamics.

One of the most practical ways to find an optimal policy for an MDP
is to use the Policy Iteration algorithm (PI). Starting from an initial policy
π0, i = 0, this simple iterative scheme computes the value vector of πi and,
based on this evaluation, switches to a more “appealing” action in states
where such an action exists to obtain the next iterate πi+1. Here, an action
in a state is called appealing if using this action once and then continuing
with the current policy πi improves the value of the state. It can be shown
that the modification always ensures that the value vector of πi+1 improves
on that of πi in every entry. The process is then repeated until convergence
to the optimal policy π∗ for which there is no more appealing action. The
same policy is never encountered twice and therefore, the process always
terminates with the optimal policy in a finite number of steps (at most the
total number of policies). See Chapter 2, Section 2.1.2 for a more precise
definition.

Notice that there is some freedom in the choice of which appealing ac-
tions we choose to switch at every step. The most obvious and most studied
choice is probably to switch to the most appealing action in every state. We
usually refer to this version of PI as Howard’s PI, by the name of its author
(Howard, 1960). Unless stated otherwise, we will usually use the term PI
to designate Howard’s version which is our main focus in this thesis.

Every iteration of PI can be performed in polynomial time but the ques-
tion of its number of iterations has remained a mystery for more than 30
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years. The best known upper bound was due to Mansour and Singh (1999)
with an O

(
kn

n

)
bound where n is the number of states of the MDP and k

is the maximum number of actions per state. This bound may sound as a
poor improvement over the trivial kn bound that corresponds to the maxi-
mum number of policies. It is also disappointing given that in practice, PI
mostly behaves as a polynomial time algorithm. Nevertheless, it holds for
the three classical reward criteria and improving it appears to be a difficult
challenge as we develop below.

It is only a few years ago that two major results regarding the complexity
of PI were found, roughly at the same time, and significantly enriched the
picture. On the positive side first, building on Meister and Holzbaur (1986)
and Tseng (1990), PI was shown to run in strongly polynomial time in the
important particular case of discounted-reward MDPs with a fixed discount
rate (Ye, 2011). The bound in this result was later improved by Hansen
et al. (2013) and Scherrer (2013). It was also adapted to fit other spe-
cial cases including average-reward MDPs modeling replacement and main-
tenance problems (Feinberg and Huang, 2013), Mean-Payoff Games with
bounded first return times (Akian and Gaubert, 2013) and deterministic
MDPs (Post and Ye, 2015), although for the latter case, the strongly poly-
nomial time bound only holds for a close variant of PI known as Simplex-PI.
In a recent paper, Feinberg and Huang (2015) also provide a set of condi-
tions under which a total- or average-reward MDP can be reduced to a
discounted-reward MDP.

On the negative side, Fearnley (2010) showed that PI requires at least
Ω(2n/7) steps to converge in the worst case for the total- and average-reward
criteria. His result is principally based on the work of Friedmann (2009)
on Parity Games. Forty years after the first exponential time proofs for
pivoting rules of the Simplex method for Linear Programming (Klee and
Minty, 1970), Fearnley’s result revives the message that behaving like a
polynomial time algorithm does not necessarily make you one. Besides,
together with Friedmann’s, his result did have a major impact on the study
of the remaining polynomial time candidate pivoting rules for the Simplex
method as well, as we mention below.

In Chapter 2, Section 2.2, we complete the above picture by showing
that Fearnley’s exponential complexity result extends to discounted-reward
MDPs when the discount factor approaches 1 sufficiently fast. We achieve
this using perturbation analysis.

Note that a similar analysis was performed by Andersson and Miltersen
(2009) to show polynomial time equivalence between solving Discounted
Games and Mean-Payoff Games that allow discounted-reward and average-
reward MDPs as special cases. This result was however focused on the
complexity of problems rather than a particular algorithm like PI. Moreover,
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it has no impact on MDPs since the latter problems are already known to
be solved in (weakly) polynomial time using their connection with Linear
Programming.

Good to know. Many algorithms exist to solve MDPs. A noticeable
competitor to PI is the well known Value Iteration (VI). To understand
how it works, assume we knew the optimal value vector xk of an agent
who has k steps left to perform in the MDP. Applying dynamic program-
ming, we can use xk to efficiently compute the optimal value xk+1 if there
were k+1 remaining steps. After a sufficient number of steps of this pro-
cedure, starting from k = 0, we are able to extract the optimal policy from
the obtained value vector. Allegedly, VI iterates on values rather than
policies, hence the name. The advantage is for cheaper steps than PI but
with the drawback of a slower convergence. Modified PI (MPI) provides
a middle ground between the two algorithms by performing iterations
both on policies and values (Puterman and Shin, 1978). Doing so, MPI
allies cheaper iterations than PI with a faster convergence than VI. Note
however that the strongly polynomial time result from Ye (2011) does not
apply to VI and MPI (Feinberg and Huang, 2014; Feinberg et al., 2014).
See, e.g., Bertsekas (1996), Scherrer (2014) or Chang et al. (2005) for
more variants of PI and VI suited for large-scale problems. In addition
to the aforecited iterative methods, one can also formulate an MDP as a
Linear Program and thereby, solve it in (weakly) polynomial time. This
last idea performs however quite poorly in practice.

The link with Linear Programming and the Simplex
method

Interestingly, MDPs with the three classical reward criteria can be written
as a Linear Program (LP) where the goal is to optimize a linear objective
function while satisfying a set of linear constraints that define a polytope of
feasible solutions. In that respect, MDPs are a particular case of LP. Using
this connection, MDPs can be solved in weakly polynomial time using either
the Ellipsoid method by Khachiyan (1980) or the Interior Point method
by Karmarkar (1984), the latter being actually efficient in practice. (Other
weakly polynomial time algorithms have been developed as well, see Bert-
simas and Vempala (2004), Dunagan and Vempala (2008) or Kelner and
Spielman (2006).) A weakly polynomial time algorithm takes into account
the bit-size of the input values and not only the number of values. So, as the
values become larger, the runtime scales polynomially with the bit size of
the input values too. In the case of LP, this means that a weakly polynomial
time algorithm depends not only in the number of variables and constraints
but also in the bit-size of the coefficients of the problem. Conversely, the
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complexity of a strongly polynomial time algorithm does not depend on the
bit-size of the input.

Today, LP and MDPs are some of the few problems that allow a weakly
polynomial time algorithm but for which we do not know any strongly
polynomial time one. A well known candidate for the job would be the
Simplex method for LP proposed by Dantzig (1948). This iterative scheme
evolves along the edges of the polytope representing the feasible solutions
of the LP, repeatedly jumping from a vertex to its neighbor, while heading
towards better objective values. The convergence of the algorithm, and
especially the number of steps it takes, depends on a pivoting rule, that
is, a rule to decide which improving neighbor to visit next when there are
several of them. Since the introduction of the method, the quest for a
pivoting rule that would ensure its (strongly) polynomial time convergence
has received a lot of attention (Todd, 2002), and continues to do so. In
the hope of achieving this goal, many pivoting rules have been proposed in
the literature. Unfortunately, a series of negative results followed a result
of Klee and Minty (1970) who showed that, despite its practical efficiency,
Dantzig’s original rule could lead to an exponential number of steps of the
method in the worst case. Building on this result, many other pivoting rules
suffered the same fate (see Amenta and Ziegler (1999), Avis and Chvátal
(1978), Goldfarb and Sit (1979) or Jeroslow (1973)). Only a few—especially
randomized rules—survived the attacks for many years. Until they were also
recently shown to run in super-polynomial time by Friedmann (2011) and
Friedmann et al. (2011). It should be noted that these breakthrough results
originated from the results on PI by Friedmann (2009) for Parity Games
and Fearnley (2010) for MDPs, as mentioned above. Despite the negative
results, the Simplex method was named one of the top 10 most influential
algorithms of the 20th century in a special issue of the renowned journal of
Computing in Science & Engineering (Cipra, 2000). Moreover, the question
of finding a strongly polynomial time algorithm to solve LP was included in
Smale’s list of great unsolved problems of the 21st century (Smale, 1998).

Good to know. The Simplex method jumps along the edges of a poly-
tope—from neighbor to neighbor—until it reaches an optimal solution.
It is of natural interest to investigate the minimum number of hops it
can ever hope for in the worst case. A simple lower bound to this quan-
tity is the diameter of the polytope, that is, the minimum number of
hops between any pair of vertices. It is well known that the diameter
of a polytope of dimension n with m facets can be at least m − n and
Hirsch (1957) conjectured that this bound was also an upper bound (See
Dantzig, 1963). Hirsch’s conjecture remained open for almost 50 years
until it was recently disproved by Santos (2012) using a counter-example
with m = 86, n = 43 and a diameter of 44. Santos thereby slightly
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improved the lower bound on the diameter, but the question of the up-
per bound remains still widely open and the true worst case behavior
could range from linear to subexponential (see Todd (2014) for a re-
cent improvement of the classical bound by Kalai and Kleitman (1992)).
Conversely, the Hirsch conjecture is true for Policy Iteration. Indeed, it
can be easily shown that an ideal switching scheme for PI would be able
to reach an optimal policy in at most n steps.

Policy Iteration is in many aspects the pendant of the Simplex method
for MDPs and this connection was of key importance to the results of Fried-
mann (2011) and Friedmann et al. (2011). The main difference between the
two algorithms is that “pivoting rules” for PI are allowed to perform mul-
tiple pivot steps in a single iteration. It is therefore more powerful in the
sense that it has more possibilities to allow a pivoting rule that would lead
to a polynomial number of steps. This is not surprising given that MDPs
are a particular case of LP. Below, we will compare more in details the in-
trinsic structure of both algorithms with the unified view of Unique Sink
Orientations. But before that, let us mention another well-known model to
which PI also applies.

Solving Turn-Based Stochastic Games with Policy Iter-
ation

Another generalization of MDPs is its two-player variant known as Two-
Player Turn-Based Stochastic Games (2TBSGs). The framework of Sto-
chastic Games was introduced by Shapley (1953) a few years before MDPs
were introduced by Bellman (1957). In 2TBSGs, we make the assumption
of perfect information, which is equivalent to requiring that players do not
play simultaneously. The resulting game can be interpreted as an MDP
in which the states are distributed among two players with opposite objec-
tives. Conversely, MDPs can be seen as a single-player variant of 2TBSGs.
More precisely in 2TBSGs, the states and their corresponding actions are
divided into two sets, one of which belongs to Player 1 who is the minimizer
(that is, he tries to minimize the value function), the other one belonging to
Player 2 who is the maximizer. Such a game can be seen as a zero-sum game
in which Player 1 would pay the perceived rewards to Player 2. The notion
of policy for MDPs naturally extends to 2TBSGs where it is usually called
a strategy for the players. The progress of the game then happens as in an
MDP, except that we can no longer talk about an optimal strategy for the
players. Instead, to solve a 2TBSG, the goal is to find a (Nash) equilibrium
strategy, that is, a strategy for which no player can benefit from deviating
alone by switching some of his actions. Because the game is zero-sum, this
equilibrium always exists and it corresponds to the minimax strategy.
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Despite the paradigm shift, it is still possible to solve a 2TBSG in finite
time using Strategy Iteration (SI), an algorithm inspired by PI (Hoffman and
Karp, 1966; Rao et al., 1973; Vöge and Jurdziński, 2000). The idea is the
following. Let us fix an initial strategy. Then, without loss of generality, let
us consider the game under the point of view of Player 2, the maximizer. If
we applied PI while keeping the strategy of Player 1 fixed, we would obtain
an optimal counter-strategy, or best-response, against Player 1. (Here notice
that a best-response against the other player can easily be found using PI.)
Instead, what we do is that after each PI step for Player 2, we change the
strategy of Player 1 to his best-response against Player 2 and keep repeating
this procedure. It is possible to show that the value of all the states must
increase at each iteration. As for PI, we therefore never encounter the same
strategy twice and the process terminates in finite time. The above process
basically corresponds to two imbricated PI algorithms. As a result, any
upper bound on the number of steps of PI easily extends to SI as well. This
is why in this thesis, we really focus on the former case. We give a more
precise definition of 2TBSGs and SI in Chapter 2, Section 2.1.3, and we
exhibit the equivalence between SI and PI in Chapter 3, Section 3.5.

The status of 2TBSGs in many aspects resembles that of LP forty years
ago. Unlike MDPs, we do not yet know of any polynomial time algo-
rithms to solve them, not even weakly polynomial time ones, unless using
a discounted-reward criterion with a fixed discount factor (Hansen et al.,
2013) or related special cases (Akian and Gaubert, 2013). Yet, PI and its
variants, a bit like the Simplex for LP, could possibly lead to a strongly
polynomial time algorithm. In the mean time, even exponential time algo-
rithms, and bounds on their complexity, are of interest.

Good to know. Since 2TBSGs are so hard to solve, several—hopefully
simpler—particular cases that appear in applications have been iden-
tified over the years. We mention for instance, in decreasing order
of generality, Simple Stochastic Games (Condon, 1992), Mean-Payoff
Games (Ehrenfeucht and Mycielski, 1979) or Parity Games (Emerson
and Jutla, 1991; Grädel et al., 2002) that often appear in the litera-
ture. These problems are in NP ∩ coNP as well as in PLS ∩ PPAD;
two reasons to believe that they are unlikely to be NP−complete (Con-
don, 1992; Daskalakis and Papadimitriou, 2011). However, even though
they are particular cases of 2TBSGs and thus presumably simpler, de-
signing a fully polynomial time algorithm to solve them is still a major
open problem (Hansen, 2012; Jurdzinski et al., 2008; Zwick and Pater-
son, 1996). Tellingly, recall that Parity Games are also the original
framework for which SI was first proved to run in exponential time by
Friedmann (2009).
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In order to design new switching rules for PI, SI and the Simplex method,
it is crucial to understand why existing ones fail to provide the polyno-
mial bounds we aim for. The answer is partly given by a recent line of
work showing that problems related to the complexity of these unsuccess-
ful algorithms are PSPACE-complete (Adler et al., 2014; Fearnley and
Savani, 2015a,b). For instance, considering Howard’s PI starting from
a given policy, it is PSPACE-complete to decide whether the algorithm
will ever switch an action in some state chosen in advance (Fearnley and
Savani, 2015a). PSPACE is the class of problems that can be solved us-
ing a polynomial amount of space. The PSPACE-complete problems are
the hardest among them because they can be used to solve any problem in
PSPACE, which also includes P and NP. The PSPACE-completeness of
the above-mentioned problems indicates that the corresponding switching
rules are capable of solving any problem in PSPACE which is why they
fail running in polynomial time. In that respect, unless P = NP, it is
for instance pointless to design a switching rule if the problem of decid-
ing whether or not there will be a switch in a given state is PSPACE-
complete.

Analyzing Policy Iteration with Acyclic Unique Sink
Orientations

At each iteration, PI looks for the appealing actions that exist. Doing so,
it actually compares the current policy πi with its neighbors, that is, with
the policies that differ from πi in exactly one state. This comparison is
done with respect to the value vectors of the policies. But vectors are not
always comparable, that is, there is not always a clear entry-wise domination.
Therefore, it is not always possible to claim that some policy is better than
another because the policies are only partially ordered.

It is well-known that the policies of an MDP can be embedded in a
(hyper-)grid where each state is assigned a dimension along which we orga-
nize the available actions. Each policy then corresponds to a vertex of the
grid. Neighboring policies (which are in fact always comparable in the par-
tial order) are then connected with an oriented edge, pointing towards the
better policy of the two. This construction yields an oriented graph with
the shape of a grid that has the particular properties of being acyclic and
unique sink (see Figure 1.1 for an example). The unique sink property re-
quires every subgrid to have a unique vertex with only incoming edges, that
is, a unique sink. As a simple consequence of this condition, each subgrid
must also have a unique source, that is, a unique vertex with only outgoing
links. We call the resulting orientation an Acyclic Unique Sink Orientation
of a grid (or Grid AUSO). Note that this grid reduces to a (hyper-)cube
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in the case of an MDP with two actions per state. We then talk about a
Cube AUSO. We often restrict ourselves to this simpler—yet rich—case to
simplify the analysis with a negligible loss of generality.

Finding the unique sink of a Grid AUSO that corresponds to an MDP
also means finding the solution of that MDP. The problem of finding an
optimal policy to an MDP can therefore be formulated in an abstract way
as the problem of finding the sink of a Grid AUSOs. Moreover, using a
similar construction, the problem of finding an equilibrium strategy for a
2TBSGs can also be formulated as such, see Chapter 3, Section 3.5.

The unique sink structure can also be found in other well known prob-
lems such as Linear Programming. Indeed, in the polytope defined by the
constraints of the problem, if we orient every edge towards the most reward-
ing objective values, we ensure that every facet of the polytope has a unique
sink, this time without the guarantee of acyclicity. Generally speaking, we
call the result a Unique Sink Orientation (USO).

Good to know. USOs were first introduced by Stickney and Watson
(1978) as digraph models for P-matrix Linear Complementarity Prob-
lems. They have then been disregarded for a number of years before they
were reintroduced by Szabó and Welzl (2001) and Morris Jr (2002b).

Interestingly, LP-type problems, introduced by Sharir and Welzl (1992)
as a generalization of LP, offer a unified abstract framework for 2TB-
SGs, MDPs, LP and USOs. They can be solved in subexponential time
using the Random-Facet algorithm from Matoušek et al. (1996). LP-type
problems can be even further generalized into the framework of Violator
Spaces introduced by Gärtner et al. (2008). Likewise, abstract objec-
tive functions introduced by Kalai (1997) particularize USOs while still
generalizing LP and AUSOs. The main motivation behind these formu-
lations is to provide a common framework and an alternative, abstract
view for the design of new algorithms to solve the aforementioned prob-
lems.

A major goal in the study of (A)USOs is to find a polynomial time algo-
rithm to find the sink or to show that any algorithm requires an exponential
number of queries. More precisely, such an algorithm should make no more
than a polynomial number of vertex evaluations in the dimension and the
number of facets of the (A)USO. By “vertex evaluation”, we mean a request
of the orientation of the edges adjacent to the vertex. (Note that Schurr

and Szabó (2004) showed that any algorithm requires at least Ω
(
n2

logn

)
such

evaluations.) In the case of LP, answering this question for Cube USOs
would imply the first, long awaited, strongly polynomial time algorithm
(this fact results from a technique of Gärtner and Schurr (2006) to cast
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any LP into a sink finding problem in a Cube USO). Regarding MDPs and
2TBSGs, it would be enough to find a polynomial time algorithm for Cube
AUSOs to obtain the same consequence. Note that an MDP can always
be formulated as an LP so it is not surprising that the problem at hand is
simpler. It is more surprising for 2TBSGs though, as today no polynomial
time algorithms are known to solve them in general.

Most algorithms to find the sink of a Cube or Grid (A)USO can be
categorized along two axes:

• they can be either deterministic or randomized when choosing the
next vertex to query;

• at two successive steps, they can perform local hops (like the Simplex
method for LP, from neighbor to neighbor) or multiple hops in the
cube.

A successful example of a multi-hop deterministic algorithm is the so-called
Fibonacci Seesaw from Szabó and Welzl (2001) that applies to Cube USOs,
and thus also to Cube AUSOs, and is guaranteed to converge in at most
O(1.61n) steps, n being the dimension of the cube and 1.61 being a slightly
smaller constant than the golden ratio. This is today the best known upper
bound for deterministic (A)USO algorithms. On the other hand, Random-
Facet for AUSOs from Gärtner (2002) is a local-hop randomized algorithm
that is currently the only known method to solve AUSOs in (expected) sub-
exponential time, namely in eO(

√
n) steps. However, this bound was shown

to be tight, up to a constant factor in the exponent, by Matoušek (1994)
who obtained an eΩ(

√
n) lower bound. Apart from these two, many other

methods have received a lot of attention, such as the Product Algorithm,
Random-Edge or Random-Jump to mention only a few (Gärtner et al., 1998;
Hansen et al., 2014; Mansour and Singh, 1999; Morris Jr, 2002b; Szabó and
Welzl, 2001).

Good to know. Random-Facet was originally proposed as a pivot-
ing rule for the Simplex method by Kalai (1992) and Matoušek et al.
(1996). For LP as for AUSOs, it used to be the fastest known combi-
natorial algorithm with its expected subexponential worst-case running
time. Interestingly, Random-Facet has recently been slightly improved by
Hansen and Zwick (2015).

Like Fibonacci Seesaw, Policy Iteration is a deterministic multi-hop al-
gorithm specialized for AUSOs. Despite the negative complexity results
cited earlier, it appears as an interesting competitor to the former al-
gorithm. Indeed, as we will see below, we have reasons to believe that
Fn+2

(
= O(1.62n)

)
, the (n + 2)nd Fibonacci number, is a possible upper
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000 100 200

010 110 210

001 101 201

011 111 211

Figure 1.1: A possible run of PI on an example Grid AUSO, starting from
the vertex/policy labeled 000. Here, 101 is the global sink that corresponds
to the optimal policy. The PI jumps are represented in red.

bound on the number of steps of PI. This bound is quasi-identical to the one
from Fibonacci Seesaw mentioned above. Moreover, there are many ways of
modifying PI’s update rule while maintaining the convergence guarantees.
It is thus a flexible scheme.

PI’s update rule can be interpreted in the grid as follows: let π be a
vertex of an AUSO (typically the current iterate of PI) and let us consider
the subgrid rooted in π and spanned by the outlinks of π. In the literature,
π is sometimes referred to as the bottom or the source of this subgrid. It can
be shown that there is always a directed path from π to any vertex µ in this
subgrid. Intuitively, because of the acyclicity of the orientation, this means
that any such vertex µ is “closer” to the sink than π. From π, choosing any
vertex µ 6= π in the subgrid as the next iterate therefore provides an update
rule that is guaranteed to converge to the global sink. PI’s choice is to jump
from π to an antipodal vertex µ in the subgrid, that is, a vertex that is as
far away from π as possible (in a grid, there can be several). From there, it
iterates until it finds the global sink, as illustrated in Figure 1.1. Because
of its dynamics, Howard’s PI is sometimes referred to as Bottom-Antipodal,
Jump or Switch-All. Note that Random-Jump mentioned above is based
on the same principle except that it chooses any vertex of the subgrid with
uniform probability (Mansour and Singh, 1999).

From the Grid AUSO structure, we can extract a number of useful prop-
erties to study the complexity of PI. For instance, we can show that every
subsequent iterates must be connected by a path in the grid. Or we can
use the fact that all vertices visited by PI must have a different outmap,
that is, a different “set of outgoing edges” (indexed by directions). Using
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these properties, Mansour and Singh (1999) derived a 13 · knn upper bound
on the number of steps of PI in the most general setting (that is, for the
three classical reward criteria), where k is the maximum number of actions
per state in the MDP.

In Chapter 3, we extend the set of properties to obtain a constant factor
improvement over Mansour and Singh’s bound, namely a k

k−1 · k
n

n + o
(
kn

n

)

upper bound. It is of natural interest to explore which of the properties
we use are likely to be further exploitable to improve the bound and which
ones are not. We show that all the properties we actually use are “fully
exploited” and thus cannot lead to further improvements to the bound.
Therefore, the bound is optimal for a relaxation of the complexity problem
of PI considered by Mansour and Singh where it is only allowed to use
some subset of properties. On the other hand, our bound remains far away
from the state of the art Ω

(√
2
n)

lower bound for PI on Cube AUSOs,
due to Schurr and Szabó (2005). These last two observations indicate that
some progress, either regarding the lower or the upper bounds, is still to
be achieved, but that we therefore need to develop new—possibly more
specific—properties on PI.

Good to know. When we decide which vertex to visit next in PI,
choosing an antipodal vertex to the current vertex π is usually con-
sidered a fair choice because it agrees with all the outgoing—and thus
improving—links at π. However, jumping directly to the local sink—
also denoted the top—of the subgrid rooted in π would appear to be an
even better idea. Schurr and Szabó (2005) called this fictional algorithm
Bottom-Top. It is fictional because it assumes access to an oracle that
reveals the local sink of the subgrid, which is not available in practice.
Nonetheless, Schurr and Szabó showed the same

√
2
n

lower bound for
Bottom-Top in Cube AUSOs as for Bottom-Antipodal (that is, Howard’s
PI). Legitimately, it may be asked whether a polynomial update rule for
PI is possible, even theoretically. As it happens, it can easily be shown
that from any vertex of an n-dimensional Cube AUSO, there always ex-
ists a directed path of length at most n leading to the global sink. There-
fore, there must theoretically exist an ideal switching scheme ensuring
no more than n iterations, although in that case, the design of an oracle
would probably require a global knowledge of the AUSO.

Analyzing Policy Iteration with Order-Regular matrices

Since improving the upper bound on PI requires exploring more proper-
ties specific to AUSOs, we investigate a new relaxation of the complexity
problem of PI in a Cube AUSO known as the Order-Regularity problem
(OR). First introduced by Hansen (2012), the idea of this formulation is
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Figure 1.2: The extremal example for Policy Iteration in a Cube AUSO of
dimension 3. The PI jumps are represented in red and the corresponding
OR matrix is represented on the right.

the following. Consider a sequence of vertices (or policies) π0, π1, ..., πm−1

explored by PI in a Cube AUSO. Since we are in an n-dimensional cube,
these vertices can be represented by n-dimensional binary (row) vectors. In
the OR formulation, we record all these vectors into an m×n binary matrix
so that each row corresponds to an iteration, as illustrated in Figure 1.2.
We then translate the AUSO property into a combinatorial condition on
this matrix: the OR condition, as defined in Section 4.1, Definition 4.1. We
say that an AUSO realizes an OR matrix if the matrix can be obtained by
a PI run on this AUSO. Note that any matrix realized by an AUSO satisfies
the OR condition but it is not necessarily true that any OR matrix can be
realized by some AUSO. The OR condition is therefore a relaxation of the
AUSO structure.

Using the OR formulation, Hansen and Zwick performed an exhaustive
search on all OR matrices with up to 6 columns and reported the maximum
number of rows (that is, iterations for PI) each time: 2, 3, 5, 8, 13, 21. Based
on these empirical observations, they conjectured that the maximum num-
ber of rows of an OR matrix should follow the Fibonacci sequence (Hansen,
2012). Confirming this conjecture for n = 7 was a hard computational chal-
lenge. It was introduced as January 2014’s IBM Ponder This Challenge.
Proving the conjecture in general would provide an O(1.618n) upper bound
on the number of iterations of PI, a quasi-identical bound as that of Fi-
bonacci Seesaw. Regarding lower bounds, nothing better than the one from
Schurr and Szabó for the AUSO framework was known prior to our work.

It should be noted that except for the above conjecture by Hansen and
Zwick, the OR condition is still uncharted territory: we are not aware of any
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related work other than ours1 and everything remains possible. Notably, the
study of this condition has proved surprisingly challenging. On the other
hand, it has led, in my eyes, to the most elegant contributions of this thesis.
We now report our findings regarding the OR condition.

In Chapter 4, our first contribution is to disprove Hansen and Zwick’s
conjecture by performing an exhaustive search for n = 7. We obtained a
maximum number of rows that is lower than the expected ninth Fibonacci
number, which does not rule out the hope for the O(1.618n) bound to be
a possible—loose—upper bound. Our second contribution is to (exponen-
tially) improve Schurr and Szabó’s Ω(1.414n) lower bound to Ω(1.427n), yet
only in the framework of OR matrices. The key ideas behind both our re-
sults rely on the construction of large matrices satisfying OR-like conditions,
which required substantial computational refinements.

Finding an AUSO that realizes a given OR matrix is not an obvious task
to undertake. In Chapter 5, we push the analysis of the OR condition a step
further and make the link back with AUSOs. More precisely, we identify the
Odd-and-Even-Free Order-Regular (or OEF-OR) condition, a restriction of

the OR condition that produces matrices allowing
√

2
n+2 − 1 = Θ(1.414n)

as a tight upper bound. Although this bound does not improve our lower
bound for OR matrices from Chapter 4, we show that it does extend to
AUSOs where it improves Schurr and Szabó’s

√
2
n

lower bound by a factor
of 2. In this last chapter, we also develop techniques to recover an AUSO
realizing a given OR matrix whenever possible.

Now that we have a better idea of which OR matrices can be realized
by an AUSO, an interesting perspective would be to investigate whether
these matrices can also be realized by an MDP or a 2TBSG. In particu-
lar, we would like to know whether our extremal OEF-OR matrices of size
Θ(1.414n) are realizable in order to extend the corresponding lower bound
on the complexity of PI to these frameworks as well.

Good to know. It is of natural interest to ask which (A)USOs are
realizable by an MDP, a 2TBSG or an LP. A first step in that direction
was to identify the Holt-Klee condition which is a necessary condition for
an (A)USO to be realizable by an LP or an MDP (Gärtner et al., 2005;
Holt and Klee, 1999). This condition requires that for any d-dimensional
subcube of an AUSO, there exist exactly d edge-disjoint paths between
the unique source and the unique sink of the subcube. This condition
was used to show that some AUSOs cannot be realized by an LP or an
MDP (Gärtner et al., 2005). The starting point was a family of AUSOs
defined by Matoušek (1994) on which he showed that the Random-Facet

1We should mention that we had a number of private communications with Thomas
Hansen and Uri Zwick who also worked on the topic on their own.
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algorithm may require a subexponential number of steps to converge.
Then, Gärtner (1998) showed a quadratic upper bound for Random-Facet
on the specific instances of Matoušek’s family that satisfy the Holt-Klee
condition. Therefore, there must exist some AUSO of that family—for
instance one on which Random-Facet behaves badly—that violates the
Holt-Klee condition and that is thus neither realizable by an LP, nor
by an MDP. However, the Holt-Klee condition is not sufficient either.
Indeed, Morris Jr (2002a) identified a 4-dimensional AUSO that is not
realizable by an LP but that still satisfies the Holt-Klee condition.

The figure below summarizes how the main problem classes that are
mentionned in this introduction relate to each other and what are the state
of the art bounds regarding PI’s complexity for each problem class that can
be solved using PI.

Discounted reward 

Total reward 

Average reward 

Markov Decision Processes 
2-Player Turn-Based 

 Stochastic Games 

Linear Programs 

Unique Sink Orientations 

Acyclic Unique Sink Orientations 

Fixed discount 

Result 1 
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Outline of the thesis

The flow of the thesis goes from more applied and linear views to more
abstract and combinatorial ones. The chapters are organized as follows.

• Chapter 2 is devoted to Markov Decision Processes and Two-Player
Turn-Based Stochastic Games. We first provide a precise definition
of the two frameworks and define Policy and Strategy Iteration to
solve them. Then we detail how we extended Fearnley’s example to
discounted-reward MDPs (Result 1).

Result 1 was published in the Proceedings of the 51st IEEE Conference
on Decision and Control (CDC) (Hollanders et al., 2012).

• In Chapter 3, we move to the Acyclic Unique Sink Orientations point
of view. We make the link with MDPs and extract a number of prop-
erties from AUSOs about the partial order of the policies. We then
improve Mansour and Singh’s upper bound and show that our bound
is tight for a relaxation of the complexity problem of PI (Result 2).

Result 2 was accepted for pulication to Operations Research Letters
(Hollanders et al., 2015).

• In Chapter 4, we introduce Order-Regular matrices and the Fibonacci
conjecture by Hansen and Zwick. We provide a computational refu-
tation of this conjecture (Result 3). We then improve the state of the
art lower bound on the size of OR matrices (Result 4). Both results
rely on computational methods that we also describe in the chapter.
We close by two approaches that we propose as perspective for further
analysis.

Results 3 and 4 were submitted to the Journal of Discrete Algorithms
(Gerencsér et al., 2015).

• Finally, Chapter 5 comes back to the AUSO framework. We first give
a precise definition of Cube AUSOs. Then, we describe the Odd-and-
Even-Free Order-Regular condition, a restriction of the OR condition
for which we provide tight bounds (Result 5). We next show that
any OEF-OR matrix can be realized by an AUSO and we provide an
algorithm to recover this AUSO. With this result in hands, we extend
the lower bound we had for OEF-OR matrices to AUSOs, thereby
slightly improving the state of the art lower bound (Result 6). A
general OR matrix can also often be realized by an AUSO. We end
the chapter with a technique that recovers such an AUSO whenever
possible and discuss its consequences (Result 7).

Each chapter comes with the necessary context, details and reminders to
allow them being read independently of one another.
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PI-sequences in AUSOs 

UB  =  

LB  =  

UB  =  LB  =  

Order-Regular matrices 

maximum # rows 

UB  =  

LB  =  

Odd-and-Even-Free OR matrices 

UB  =  LB  =  

Pseudo-PI-sequences 

Result 2 

Result 6 

Result 5 

Result 3 

Result 4 



Chapter 2

An exponential lower
bound for Policy Iteration

Markov Decision Processes were introduced by Bellman (1957) to model se-
quential decision problems under uncertainty. Many variants of MDPs have
been declined since then, with application in a wide range of areas, including
Operations Research, Control, Economics, Finance and many more.

It is well known that an optimal solution to an MDP can be found
in weakly polynomial time using Linear Programming. However, a more
efficient way to solve these problems in practice is to use an appropriate
iterative algorithm. Among them, Policy Iteration (PI) is one of the most
renowned. It usually converges in a few iterations and is guaranteed to find
the optimal solution in finite time. It can be viewed as a Simplex algorithm
in which several pivoting steps are performed simultaneously.

The study of PI has been an active topic of research since its introduc-
tion by Howard (1960). However, until recently, its algorithmic complexity
was not well understood. Things changed though with the recent negative
result of Fearnley (2010) that showed that PI may require an exponential
number of steps in the worst case for the total- and average-reward criteria.
Moreover, on the positive side, another recent result of Ye (2011) showed
that PI runs in strongly polynomial time in the case of discounted-reward
MDPs where the discount rate is fixed to a constant. This last assumption
is indeed often made in applications that make use of the discounted-reward
criterion.

In this chapter, we extend Fearnley’s result to the discounted-reward
case when the discount rate is part of the input, showing that PI may
also require an exponential number of steps in that case, provided that the
discount factor approaches one sufficiently fast. Our result combined with
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the ones of Ye (2011) and Fearnley (2010) completes the characterization
of the worst case complexity of PI for MDPs: it is strongly polynomial
for discounted-reward MDPs with a fixed discount rate but exponential for
total-reward, average-reward and discounted-reward MDPs in general.

The chapter is divided in two sections. In Section 2.1, we properly
define MDPs and PI. We also define Two-Player Turn-Based Stochastic
Games (2TBSGs), a natural two-player generalization of MDPs for which
our result also applies. Then, in Section 2.2, we apply perturbation analysis
to extend the result of Fearnley to general discounted-reward MDPs.

2.1 Markov Decision Processes, Stochastic Games
and algorithms

Markov Decision Processes (MDPs) model intrinsically dynamic decision
making in stochastic environments. Nevertheless, if we assume that the
system evolves for an infinite amount of time and that decisions are made
independently of the history of choices, MDPs can be formulated as static
optimization problems. In this section, we start by precisely defining MDPs.
We focus on the finite states and actions case with infinite horizon valuations
which is the case for which the theory is the most elegant and complete. We
then formulate Policy Iteration (PI), one of the most practical algorithms
to solve MDPs, and the focus of this thesis. After that, we extend the
MDP model to its natural two-player generalization known as Two-Player
Turn-Based Stochastic Games (2TBSGs). In this setting, we formulate the
Strategy Iteration algorithm (SI), the 2TBSG equivalent for PI. Since MDPs
are a particular case of 2TBSGs, many of our results on PI can be extended
to SI as well, including the lower bound from the next section.

2.1.1 Markov Decision Processes

Markov Decision Processes (MDPs) describe the discrete-time behavior of
an agent evolving on a (finite) set of states. His evolution is determined by
the decisions of the controller (or decision maker, or player) that chooses an
action from some (finite) set of actions allowed in the current state. Each
possible action is associated with some transition probabilities that deter-
mine the state to be visited in the next time-step and yields some reward.
We assume that the controller has a perfect knowledge of the systems. Here
is a more precise definition.

Definition 2.1 (Markov Decision Process). A Markov Decision Process
(MDP) is a tuple M = (S,U ,P,R) where

• S = { 1, ..., n } is the finite set of states;
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• U is the finite set of all actions, and Us is the (non-empty) set of
actions available to the agent in state s;

• P = {Pus,s′ | s, s′ ∈ S, u ∈ Us } is the set of transition probabilities that
represents uncertainty. For any action u ∈ Us available in s, Pus,s′ is
the probability of going from state s to state s′ when the action u ∈ Us
is chosen;

• R = { rus | s ∈ S, u ∈ Us } is the set of rewards collected by the agent
at any state s when using action u ∈ Us.

An example is given in Figure 2.1.

Using the control actions u0, u1, ..., suppose that the agent visits a se-
quence of states s0, s1, .... Such a sequence is observed with probability∏
t≥0 P

ut
st,st+1

and it offers the agent a reward sequence { rutst }t≥0. The ex-
pected reward sequence is obtained from the index-wise sum of all possible
reward sequences weighted by their probability of occurrence. The goal of
the agent is to maximize the “utility” of this expected reward sequence by
choosing the right sequence of actions. (We will clarify below what we here
mean by the “utility” of a sequence.)

As a matter of fact, the dynamic nature of the above decision problem
makes it look challenging. However, if we assume that the agent evolves in
this system for an infinite amount of time and that the actions are chosen
independently of past decisions, there is no reason for the controller to
choose a different action when visiting the same state. This leads to the
idea of policy (or strategy).

Definition 2.2 (Policy). We say that the agent follows a deterministic
and stationary (or positional) policy π : S → U if every time he visits state
s ∈ S, he moves to the next state with respect to the same action π(s) ∈ Us.
In this context, the dynamics of the agent comes back to that of Markov
chain where we let Pπ be the (row-stochastic) transition probability matrix
and rπ be the reward vector corresponding to the policy π such that for any

pair of states s and s′, Pπs,s′ = P
π(s)
s,s′ and rπs = r

π(s)
s . An example policy is

indicated in red in Figure 2.1.

Once a policy π is chosen, the probability of being in the different states
after t time steps, starting from state s, is simply given by (es)>(Pπ)t, where
es is the s−th base vector (ess′ = 1 if s = s′, 0 otherwise). From there on, we
can compute the expected reward sequence received by the agent, starting
from s, as { (es)>(Pπ)t rπ }t≥0. The goal of the agent is to maximize the
“utility” of this sequence, which we call the value (or value vector) xπ of the
policy π. The entry xπs can be thought of as the overall gain of the agent
if he follows policy π starting from state s. However, we cannot simply
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Figure 2.1: An example Markov Decision Process with three states. The
thick edges represent the possible actions (the controller has the choice
between two actions in states 1 and 3, and three actions in state 2). The
red edges indicate the actions that are chosen by some policy. Removing
the gray edges leaves exactly a Markov chain.

sum up the obtained rewards since this generally leads to a divergent series.
Instead, we now present the three classical ways of defining the utility of an
infinite sequence of rewards. Which criterion one should use really depends
on the application.

Definition 2.3 (Discounted-reward). In the discounted-reward criterion,
we make a discounted sum of the rewards, that is, the reward perceived by
the agent at step t is weighted by a factor γt where 0 < γ < 1 is some fixed
constant that we call the discount factor. Then, the value vector is given
by

xπ =
∑

t≥0

(γPπ)t rπ.

Since Pπ is stochastic, the Perron-Frobenius theorem ensures that γPπ has
a spectral radius lower than 1 and therefore that (I − γPπ) is non-singular
and that

∑
t≥0(γPπ)t = (I − γPπ)−1, with I the identity matrix. As a

result, xπ can also be computed as the unique solution of the following
linear system:

(I − γPπ)xπ = rπ. (2.1)
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The discount factor can be interpreted in two ways. It can be seen as a
devaluation rate for future costs which are considered less valuable than
immediate ones (because we do not entirely trust our model for instance).
Or, 1− γ can be seen as a probability of stopping the process at any time,
hence γt is the probability that the process is still going on at time t.

Definition 2.4 (Total-reward). In the total-reward criterion, we define xπ

as the sum rewards perceived by the agent:

xπ =
∑

t≥0

(Pπ)t rπ.

Since the above sum does not converge in general, we make the additional
assumption that there exists some reward-free absorbing state τ such that
Puτ,τ = 1 and ruτ = 0 for all u ∈ Uτ . We then say that a policy π is proper if τ
is reachable from any starting state, that is, if for each starting state s, there

exists a sequence of states {s0 = s, s1, ..., sT = τ} such that P
π(st)
st,st+1 > 0 for

all t = 0, 1, ...,T−1, T <∞. Note that if such a sequence exists, then there
exists a sequence of length at most n + 1. We usually assume that every
policy is proper, but the problem can be solved under weaker assumptions
too.

In the total-reward framework, we assume that τ is given implicitly in
the formulation of the MDP. So, we do not consider it as part of the set S
and we let Pπ and rπ be respectively the transition probability matrix and
the reward vector corresponding to policy π where we removed the rows
and columns corresponding to τ . Thus, the matrix Pπ is row-substochastic,
that is, every entry is positive and every row sums to at most 1 with one
of them that sums to less than 1. From there, similarly to the discounted-
reward criterion, it is possible to show that if π is proper, then (I − Pπ) is
non-singular (see, e.g., Bertsekas (2007, Volume 2, Proposition 2.2.1) for a
proof). Therefore, we can compute xπ from the following linear system:

(I − Pπ)xπ = rπ. (2.2)

Note that, in a given state s, the probability of reaching τ in the next time-
step can be interpreted as a probability of stopping the process. In that
sense, in the discounted case, 1−γ can be seen as a probability of visiting τ
next in every state, while the other transition probabilities are being scaled
by γ. This is a natural way of viewing the discounted-reward criterion as a
particular case of the total-reward criterion.

We mention the following average-reward criterion for completeness,
even though we do not specifically analyze it in this thesis.
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Definition 2.5 (Average-reward). In the average-reward criterion, we aim
to maximize the long run average reward at each time-step, that is:

xπ = lim
T→∞

1

T

T∑

t=0

(Pπ)t rπ.

However, the value for a given starting state will be essentially determined
by the final recurrent class of states it ends up in. Therefore, we could have
many policies that share the same value, which may not be convenient. This
is why we usually define an additional variable hπ to represent the potential
of π for moving to better recurrence classes. Here hπ can be seen as the
expected reward accumulated before reaching the limit cycle, in a similar
fashion as with the total-reward criterion, with the absorbing reward-free
state being the limit cycle in that case. Policies are then compared using
xπ as a first criterion, then hπ in case of a tie. For more about the average-
reward criterion, we refer to Puterman (1994).

Remark 2.1. It should be noted that the three above criteria are closely
related. A discounted-reward MDP can always be formulated as a total-
reward one by allowing every state to go to the absorbing state with prob-
ability γ. Moreover, a total-reward MDP can be solved using the average-
reward criterion. This is because every starting state results in the same—
reward-free—limit cycle and therefore, the value is entirely determined by
the potentials, which in this case turn out to be equal to the total-reward
values. Finally, a total-reward MDP can also be solved using a discounted-
reward criterion if the chosen discount factor is close enough to 1. We will
develop this last fact in Section 2.2 to show that Fearnley’s example, which
is defined for the total-reward criterion, also holds for discounted-reward
MDPs. See Puterman (1994), in particular Section 10.4, for more about
these links.

Regardless of the chosen criterion, the goal of the controller is to find an
optimal policy π∗ such that xπ

∗

s ≥ xπs for all starting states s ∈ S and all
policies π. By solving an MDP, we mean finding such an optimal policy.

The trick here is that, since xπ is a vector, it is not always possible
to compare policies. This is why ordering the policies according to their
value yields a partial order. (This partial order will play an important
role in the analysis of the next chapters.) It is therefore unclear whether an
optimal policy should always exist. Fortunately, the following classical result
by Bellman (1957) saves the day. Proofs can be found, e.g., in Puterman
(1994).

Theorem 2.1. There always exists an optimal policy π∗ for the total-,
discounted- and average-reward criteria such that xπ

∗

s ≥ xπs for all states
s ∈ S and all policies π.
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We are now ready to formulate Policy Iteration, one of the most efficient
schemes to solve MDPs and the main focus of this thesis.

2.1.2 Policy Iteration

The idea of Policy Iteration (PI) is to jump from one policy to the next,
always going “forward” in the partial order of the policies, until converging
to the global optimum. The new iterate πi+1 is obtained from the current
policy πi by “switching” in every state to some locally “appealing” action,
based on the value of πi. In this section, we formulate the Policy Iteration
algorithm (PI) in a similar fashion as Fearnley (2010), to help relating the
results from this chapter to his analysis. In the next chapter, we will pro-
vide an alternative version in terms of improving switches. The following
definition formalizes the notions of switch and of appealing action.

Definition 2.6 (Appeal and improving switch). For every state s, follow-
ing Fearnley (2010), we define the appeal aπs→u of an action u ∈ Us with
respect to π as the value that the agent would gain if, starting from state
s, he used action u instead of π(s) once and then continued with the policy
π. For the discounted-reward criterion, it is defined as:

aπs→u , rus +
∑

s′∈S
γPus,s′ x

π
s′ , (2.3)

where xπ is solution of (2.1). Similarly for the total-reward criterion, it is
defined as:

aπs→u , rus +
∑

s′∈S
Pus,s′ x

π
s′ , (2.4)

where xπ is solution of (2.2). At some state s, an action u ∈ Us is said to
be appealing with respect to π if aπs→u > xπs . Changing the action π(s) to
an appealing action u is called making an improving switch to π.

Interestingly, making any non-empty subset of improving switches to a
policy π yields a strictly better policy π′, that is, xπ

′

s ≥ xπs for all states
s, with a strict inequality for at least one state. Of course, we also have
aπs→π(s) = xπs . Moreover, if there is no improving switch to π, then π is
optimal. We formalize these two facts in the following propositions. Proofs
can be found, e.g., in Puterman (1994); see Theorems 7.2.15 and 6.2.1.
Alternatively, we refer to Hansen (2012) for an analysis that is more in
line with the present work; see Theorems 2.2.12, 2.3.9 and 2.4.6 for the
discounted-, average- and total-reward respectively.
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Algorithm 1: Howard’s Policy Iteration

Input: An arbitrary policy π0, i = 0.
Output: The optimal policy π∗.

1 while πi 6= πi−1 do

2 πi+1(s) = argmax
u∈Us

aπis→u for all states s ∈ S.

3 i← i+ 1.

4 return πi.

Theorem 2.2. Let π and π′ be two policies such that aπs→π′(s) ≥ xπs for
every state s and such that this inequality is strict for some states. Then
xπ
′

s ≥ xπs for every state s ∈ S and this inequality is strict for at least one
state.

Theorem 2.3. For all sub-optimal π, there exists s ∈ S and u ∈ Us such
that aπs→u > xπs .

PI heavily relies on these two facts. Here is how it works: starting
from some initial policy, it simply makes some improving switches at each
step to obtain the next iterate until no more improving switch is available.
Since there is only a finite number of policies and since each new policy is
strictly better than the previous one, PI is guaranteed to converge in a finite
number of steps. However, Proposition 2.3 does not guarantee convergence
in polynomial time.

We can think of many variations to define a Policy Iteration algorithm,
depending on which rule we choose to select the improving switches to make
at each step. For instance, one could go for a Simplex-like rule that switches
only one action (typically the most appealing one) at each step. The most
classical update rule is the so-called Howard’s one (named after its original
author) in which the most appealing action in each state is switched at each
iteration.

We present Howard’s PI in Algorithm 1. Every iteration requires us to
compute the value of the current iterate xπi , which can be done in poly-
nomial time for the three criteria presented above. The main issue is the
number of iterations needed to converge which can be exponential in the
number of states n, as shown by Fearnley (2010). Nevertheless, there still
exists a huge gap between lower and upper bounds. Reducing this gap
will be the main focus of this thesis. As we will see, the simplicity of the
formulation of PI is inversely proportional to the complexity of its analysis.
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2.1.3 Two-Player Turn-Based Stochastic Games

A Two-Player Turn-Based Stochastic Game (2TBSGs) is the natural ex-
tension of MDPs to a setting where two players with opposite objectives
compete in a stochastic environment. In this context, we split the set of
states S into two disjoint sets S1 and S2. All the actions in S1 are con-
trolled by Player 1 whereas the actions in S2 are controlled by Player 2.
Player 1 aims to minimize the rewards while Player 2 tries to maximize
them, according to the discounted-, total- or average-reward criterion de-
scribed above. The resulting game is a zero-sum game: all rewards that are
being collected are actually paid by Player 1 to Player 2. The rest of the
dynamics (transition between the states, collection of reward, etc.) happens
exactly as in an MDP. Except that the solution we aim for is no longer the
most rewarding policy but rather an equilibrium policy, that is, a policy
that the players have no interest to deviate from. Note that in the 2TBSG
setting, we usually refer to strategies rather than policies.

It is convenient to split a strategy π into π1 and π2 that are respectively
controlled by Player 1 and Player 2. If we fix the strategy of one of the
players, e.g., π2, what remains is an MDP whose decision states are the
ones of S1 and where Player 1 aims to minimize the value vector xπ. (Note
that solving an MDP with a reward-minimization objective can be achieved
by solving the usual reward-maximization problem after negating the sign
of each reward.) We call a strategy of Player 1 that is a solution of this
MDP an optimal counter-strategy or best-response to Player 2’s strategy π2.
We let br1(π2) be such a strategy. Algorithmically speaking, this strategy
can be computed using for instance PI in the MDP where the actions of the
states in S2 have been frozen to π2. A best-response strategy br2(π1) can be
defined in the same way for player 2. Then, a strategy π = (π1, π2) is called
a (Nash) equilibrium iff the strategy of both players are a best-response
against each other, that is, π1 = br1(π2) and π2 = br2(π1).

Similar results as the ones from Propositions 2.1, 2.2 and 2.3 can be
stated for 2TBSGs. We refer to Hansen (2012) for proofs, see Theorems 3.1.7
and 3.2.51 and Corollary 3.2.3. First, we know that an equilibrium always
exists.

Theorem 2.4. There always exists an equilibrium strategy for the total-,
discounted- and average-reward criteria.

Suppose that Player 1 always chooses the best-response strategy against
Player 2’s strategy π2. Then, making improving switches to π2 can only
improve the value vector for Player 2. This fact generalizes Theorem 2.2 for

1Note that the proof of Theorem 3.2.5 in Hansen (2012) does not hold as such for the
average-reward criterion for 2TBSGs. To make it work, a more careful definition of the
criterion is needed, as developed in Akian et al. (2012).
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Algorithm 2: Howard’s Strategy Iteration

Input: An arbitrary policy π0 = (π1
0 , π

2
0), i = 0.

Output: An equilibrium policy π∗.

1 while πi 6= πi−1 do

2 π2
i+1(s)← argmax

u∈Us
aπis→u for all states s ∈ S2.

3 π1
i+1 ← br1(π2

i+1).
4 πi+1 ← (π1

i+1, π
2
i+1).

5 i← i+ 1.

6 return πi.

2TBSGs. A similar statement holds for Player 1 as well. Note that in that
case, an action u ∈ Us is appealing to Player 1 iff aπs→u < xπs .

Theorem 2.5. Let π = (br1(π2), π2) and π = (br1(π2), π2) be obtained
from π by making improving switches for Player 2 such that aπs→π(s) ≥ xπs
for every state s ∈ S2 and such that this inequality is strict for at least

one state. Then x
(br1(π2),π2)
s ≥ x

(br1(π2),π2)
s for every state s ∈ S and this

inequality is strict for at least one state.

As Theorem 2.3 did for MDPs, the next proposition makes the link
between the non-existence of any appealing action with respect to a strategy
π and the fact that π is an equilibrium.

Theorem 2.6. A strategy π is an equilibrium iff no player has an improving
switch, that is, for all states s ∈ S and all actions u ∈ Us, we have aπs→u ≥
xπs if s ∈ S1 and aπs→u ≤ xπs if s ∈ S2.

In Algorithm 2, we present the Strategy Iteration algorithm (SI) to solve
2TBSGs, using Howard’s switching rule. Step 2 is similar to step 2 in Algo-
rithm 1. Then, step 3 of the algorithm can be thought of as an inner loop
where we compute the best-response for Player 1 against Player 2. It can be
achieved in finite time using PI in the MDP where the actions of Player 2
are frozen to π2

i+1, or possibly by any other method. When counting the
iterations of SI, we only account for the outer loop. Theorem 2.5 guarantees
that the value vector strictly improves for Player 2 at each iteration, hence
we never encounter the same strategy twice and the algorithm terminates
in finite time. Theorem 2.6 provides the stopping criterion that ensures
finding an equilibrium strategy.

Interestingly, in the eyes of Player 2, SI is completely analogous to PI:
each step consists in switching to the most appealing actions in every state
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to obtain the next iterate, which always improves on the previous one. In
fact, it is not difficult to show that both algorithms are equivalent when ab-
stracted to Acyclic Unique Sink Orientation, as already discussed in Chap-
ter 1. Consequently, the bounds that we will derive on PI in the next chap-
ters will extend to SI as well. See Section 3.5 for a more detailed discussion
of this equivalence.

2.2 An exponential lower bound for discounted
Markov Decision Processes

A few years ago, based on a result from Friedmann (2009) on parity games,
Fearnley (2010) introduced a family of Markov Decision Processes (MDPs)
on which Policy Iteration (PI) requires an exponential number of steps to
converge for the total- and average-reward criteria. Roughly at the same
time, Ye (2011) showed that PI actually runs in strongly polynomial time for
the discounted-reward criterion provided that the discount factor is fixed to
a constant. These two results marked a milestone after more than 25 years
of research on the question of the complexity of Policy Iteration.

In this section, we complete the picture by showing that Fearnley’s result
also applies to discounted-reward MDPs if the discount factor is part of the
input. We also identify that choosing the discount rate γ to be 1− 2−Ω(n2),
where n is the number of states, is enough to observe the exponential growth
of the number of steps of PI with the family of MDPs defined by Fearnley.

Our starting point is the construction of Fearnley. Then, using pertur-
bation analysis, we provide an adequate value of the discount factor such
that adding discount to Fearnley’s family of examples does not change the
choices made by PI. Hence, it takes the same number of steps with or with-
out discount and therefore, it requires an exponential number of steps to
converge in both cases.

2.2.1 Fearnley’s exponential complexity example for the
total-cost criterion

Following the idea of Friedmann (2009), Fearnley (2010) provides a family
of examples for a total-reward MDP with n states on which PI requires
an exponential number of steps to converge. For that purpose, he imple-
ments an MDP in which some actions correspond to the bits of a binary
counter. The policies explored by PI then gradually increment this binary
counter until every configuration has been explored. Figure 2.2 illustrates
the construction for a binary counter with 2 bits.
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Figure 2.2: Fearnley’s construction with a two-bits binary counter. Here,
the actions a1 and a2 represent the bits of the binary counter. Except for
these two actions, notice that all actions are deterministic.
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Example 2.1 (Fearnley (2010)). Let Mexp be the MDP instance with n
states proposed by Fearnley (2010). There exists an initial policy π0 such
that Policy Iteration needs to explore the sequence of policies

{π0, π1, ..., πm−1 } (2.5)

to converge, with m ≥ 2b, where b is the number of bits of the binary counter
and where the number of states is n = 7b+ 4.

We now state three important properties of Example 2.1 that will be
useful to our analysis. These features all follow from the developments
made by Fearnley (2010).

Property 2.7. In Example 2.1, every step of Policy Iteration, starting at
π0, is made in a non-ambiguous way, that is, at every step i = 0, ...,m− 1
of sequence (2.5) and for every state s, argmax

u∈Us
aπis→u is unique.

Property 2.8. Every policy of Example 2.1 is proper, that is, whatever the
chosen policy π and the starting state s, there exists a positive-probability
path from s to the final state τ .

Property 2.9. In Example 2.1, Pπ ∈ Qn×n and rπ ∈ Zn×n for every policy
π and there exist values δ(n) ∈ N, δ(n) ≤ (10b+4)2b and κ(n) ∈ N, κ(n) ≤
(10b+ 4)2b, with n = 7b+ 4, such that δ(n) · Pπ ∈ Nn×n for all π and that
|rπs | ≤ κ(n) for all s, π2.

Property 2.8 makes sure that the value of the total-reward MDP from
Example 2.1 is finite for any policy and any starting state, i.e., that the
linear system (2.2) always has a unique solution (Bertsekas and Tsitsiklis,
1991). Property 2.9 guarantees that the considered MDP has reasonable
size.

Note that Properties 2.8 and 2.9 summarize the restrictive assumptions
that are made in our results at the next sections.

2.2.2 Elements of perturbation analysis

In this section, we study how a small perturbation of the total-reward MDP
instance affects the value of the states. We expect that a small enough
perturbation should not affect the behavior of Policy Iteration. This section
builds up the basis on which our main result will rely. It may be useful
to have a glance at Figure 2.3 at this point to have a better idea of the
procedure that leads towards Theorem 2.18.

2To keep notations simple, we will write δ and κ and temporarily forget about the
dependence in n.
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Let π be some policy in a total-reward MDP and let x be the value of
all states when using policy π, which can be computed by solving the linear
system (2.2). Our goal is to determine how much x is perturbed from a
perturbation of the system’s matrix.

Lemma 2.10. Let x be the solution of

Ax = b (2.6)

and x̃ be the solution of the perturbed system

Ã x̃ = b, (2.7)

where A is an invertible matrix and let ∆x , x̃−x and ∆A , Ã−A. Then
the following bound holds for any subordinate norm:

‖∆x‖
‖x‖ ≤

‖A−1‖ · ‖∆A‖
1− ‖A−1‖ · ‖∆A‖ , (2.8)

whenever

‖A−1‖ · ‖∆A‖ < 1. (2.9)

Proof. See, e.g., Higham (1996, Theorem 7.2).

Note that (2.6) can be identified to (2.2) by taking A = (I − Pπ) and
b = rπ. We now bound the different norms that appear in (2.8) to obtain
a usable bound on ‖∆x‖. For that purpose, we will use the norm ‖ · ‖∞.
Recall that for any matrix M , ‖M‖∞ = maxi

∑
j |Mi,j |. Our analysis will

make use of Hadamard’s determinant inequality.

Theorem 2.11 (Hadamard). Let M be an n×n matrix such that |Mi,j | ≤ β
for all i, j. Then:

|det(M)| ≤ βn nn/2.

The next lemma gives us an upper bound on ‖A−1‖∞.

Lemma 2.12. Let us assume that A ∈ Qn×n is an invertible matrix such
that |Ai,j | ≤ 1 and δ ·Ai,j ∈ Z for all i, j. Then:

‖A−1‖∞ ≤ δn n(n+1)/2.

Proof. Since A is invertible, we may use Cramer’s rule and express A−1 as:

A−1 = δ (δ ·A)−1 = δ
adj(δ ·A)

det(δ ·A)
(2.10)
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where adj(δ · A) is the adjugate matrix of δ · A in which every entry is the
determinant of an (n − 1) × (n − 1) sub-matrix of the integer matrix δ · A
(possibly with a minus sign). We know that every entry of |δ · A| is less
than δ and that |det(δ ·A)| ≥ 1. Hence, using (2.10) and Theorem 2.11, we
have:

‖A−1‖∞ ≤ δ · ‖adj(δ ·A)‖∞

≤ δ · max
1≤j≤n

n∑

i=1

δn−1 (n− 1)(n−1)/2

≤ δn n(n+1)/2.

It now remains to find an upper bound on ‖x‖∞.

Lemma 2.13. Let x be the solution of (2.6), and assume that A ∈ Qn×n
is an invertible matrix such that |Ai,j | ≤ 1 and δ · Ai,j ∈ N for all i, j and
that b ∈ Zn with |bi| ≤ κ for all i. Then:

‖x‖∞ ≤ κ δn n(n+1)/2.

Proof. Using Lemma 2.12, we have ‖x‖∞ ≤ ‖A−1‖∞ · ‖b‖∞ ≤ δn n(n+1)/2κ.

The next theorem uses the bounds from Lemmas 2.10 to 2.13 to obtain
an upper bound on ‖∆x‖∞.

Theorem 2.14. Let x be the solution of (2.6) and x̃ be the solution of the
perturbed system (2.7), and let ∆x = x̃−x and ∆A = Ã−A. Let us further
assume that A ∈ Qn×n is an invertible matrix such that |Ai,j | ≤ 1 and
δ ·Ai,j ∈ N for all i, j and that b ∈ Zn with |bi| ≤ κ for all i. Then, provided
that ‖∆A‖∞ satisfies:

‖∆A‖∞ ≤ 1/2 · δ−n n−(n+1)/2, (2.11)

we have:

‖∆x‖∞ ≤ 2κ δ2n nn+1 · ‖∆A‖∞.

Proof. We know from Lemma 2.12 that ‖A−1‖∞ ≤ δn n(n+1)/2. So if we
impose ‖∆A‖∞ to satisfy (2.11), then Assumption (2.9) from Lemma 2.10 is
satisfied and the denominator in (2.8) is at least 1/2. Substituting the other
available bounds from Lemmas 2.12 and 2.13 into (2.8) gives the result.
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2.2.3 Perturbing Fearnley’s example

In this section, we show that adding a discount factor γ , 1−ε close enough
to 1 to the originally discount-free total-reward MDP of Example 2.1 does
not change the behavior of Policy Iteration and thus that the latter requires
an exponential number of steps to converge on discounted-reward MDPs.
We show this by providing a value of ε such that the same choices are made
by Algorithm 1 on both problems at each improvement step. We proceed
in three steps:

1. first, we identify the minimum possible difference between the appeal
of the best action and the appeal of the other actions in a state;

2. then, we characterize the perturbation induced by adding a discount
factor γ;

3. finally, we provide a value for ε that induces a small enough perturba-
tion so that the action with the best appeal does not change in each
state, and this at every step of PI.

The minimum difference between the appeals of actions

First, let us observe that the value of the states of an MDP can be expressed
as a fraction with bounded denominator.

Lemma 2.15. Let x be the solution of (2.6) and let us assume that A ∈
Qn×n is an invertible matrix such that |Ai,j | ≤ 1 and δ ·Ai,j ∈ Z for all i, j.
Then the vector x can be expressed as:

x =
v

d

where v is an integer vector of the same dimension as x and d is a positive
integer satisfying d ≤ δn nn/2.

Proof. The linear system (2.6) can be rewritten as (δ · A)x = δ · b, where
both δ ·A and δ · b are integer valued. Hence, using Cramer’s rule for linear
systems, x can be expressed as:

x =
v

|det(δ ·A)|

where v is an integer vector with the same dimension as x and |det(δ · A)|
is a positive integer, say d. Since |δ · Ai,j | ≤ δ for every i, j, Theorem 2.11
enables us to conclude.

The following bound makes use of the fact that every step of PI is made
in a non-ambiguous way.
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Theorem 2.16. For any state s and any step i of Policy Iteration applied
to Example 2.1, let u∗ = argmax

u∈Us
aπis→u and let u′ 6= u∗ be any other action

in Us. Then:

aπis→u∗ − aπis→u′ ≥
1

δn+1 nn/2
.

Proof. From the definition of appeal (2.4) and from Property 2.7, we know
that

aπis→u∗ − aπis→u′ = (ru
∗

s − ru
′

s ) +
∑

s′∈S
(Pu

∗

s,s′ − Pu
′

s,s′)x
πi
s′ > 0.

Since Example 2.1 has Properties 2.8 and 2.9, δ · (Pu∗s,s′ −Pu
′

s,s′) is an integer
and we can use Lemma 2.15 and write:

aπis→u∗ − aπis→u′ =
w

δ · d ,

where w is an integer strictly greater than 0 and d is less than δn nn/2.

The perturbation induced by the discount

LetM be a total-reward MDP and letMγ be the corresponding discounted-
reward MDP, i.e., the MDP with same states- and actions space, transition
probabilities and rewards but with an additional discount factor γ = 1− ε.
For recall, the value x̃π of the states of Mγ under policy π is obtained by
solving the following linear system:

(I − γ Pπ) x̃π = rπ.

We can identify this system to (2.7), where Ã = I − γ Pπ. Furthermore, if
we define A = I−Pπ as in (2.6), then Ã can be expressed as a perturbation
∆A of A, namely ∆A = Ã − A = ε Pπ. Hence, ‖∆A‖∞ ≤ ε. For recall,
given a state s of the discounted-reward MDP Mγ , we define the appeal
ãπs→u of an action u ∈ Us with respect to some policy π as:

ãπs→u , rus +
∑

s′∈S
γ Pus,s′ x̃

π
s′ ,

according to equation 2.3. Let us now quantify the perturbation on the
appeals incurred from the discount.

Theorem 2.17. For any state s, any action u ∈ Us and any step i of Policy
Iteration applied to Example 2.1, we have:

| aπis→u − ãπis→u | ≤ 4κ δ2n nn+2 ε,

where aπis→u and ãπis→u are defined by (2.4) and (2.3) respectively and γ = 1−ε
is the discount factor.
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Proof. In the definition (2.3) of ãπis→u, we may write x̃πi as a perturbation of
xπi using the same notation as in Lemma 2.10: x̃πi , xπi+∆xπi . From (2.4)
and (2.3), we have:

| aπis→u − ãπis→u | ≤
∑

s′∈S
Pus,s′ | ε xπis′ − (1− ε) ∆xπis′ |

Since Pus,s′ ≤ 1 and |vj | ≤ ‖v‖∞ for any j and any vector v, we have:

| aπis→u − ãπis→u | ≤ n · ( ε ‖xπi‖∞ + (1− ε) ‖∆xπi‖∞ ).

Using the fact that 1− ε < 1 and the bounds from Lemma 2.13 and Theo-
rem 2.14 with a perturbation ‖∆A‖∞ ≤ ε gives the result.

An exponential lower bound for discounted MDPs

Let us now combine the results from this section to show that the choices
made by PI at every improvement step do not change when applied to the
discounted or the undiscounted version of Example 2.1. This is the main
result from this chapter.

Theorem 2.18. There exists an infinite family of discounted-reward MDPs
with a particular starting policy and a discount factor γ = 1 − 2−Ω(n2) on
which the number of iterations that Policy Iteration takes is lower bounded
by Ω

(
7
√

2
n)

, an exponential function of the size n of the MDP.

Proof. Let M be the total-reward MDP from example 2.1 on which PI
explores the exponential size sequence of policies (2.5) and let Mγ be the
corresponding discounted-reward MDP with γ = 1 − ε defined above. We
show that PI also explores sequence (2.5) on Mγ , of size at least 2b =

2(n−4)/7 = Ω
(

7
√

2
n)

, provided ε is small enough. Figure 2.3 sketches the
idea of the proof.

aπis→u

ãπis→u

ãπis→u∗

aπis→u∗

≤ F (n, δ, κ) ε

≤ F (n, δ, κ) ε

≥ 1
G(n,δ)

Figure 2.3: The idea of the proof of Theorem 2.18 is to bound the parameter ε in order
to make sure that |aπis→u∗ − ã

πi
s→u∗ |+ |a

πi
s→u − ãπis→u| ≤ aπis→u∗ − a

πi
s→u.
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Let F (n, δ, κ) , 4κ δ2n nn+2 and G(n, δ) , δn+1 nn/2. Theorem 2.17
tells us that

| aπis→u − ãπis→u | ≤ F (n, δ, κ) · ε,
for every state s, action u ∈ Us and policy πi of sequence (2.5), where
aπis→u and ãπis→u are respectively defined by (2.4) and (2.3). Similarly, The-
orem 2.16 tells us that for every state s and policy πi from sequence (2.5),

aπis→u∗ − aπis→u ≥
1

G(n, δ)
,

where u∗ = argmaxu′∈Us a
πi
s→u′ and u is any action in Us different from u∗.

Since |y−x| ≥ y−x ≥ −|y−x| for any x, y ∈ R, the following relations are
true:

aπis→u − ãπis→u ≥ −|aπis→u − ãπis→u |
≥ −F (n, δ, κ) ε, (2.12)

aπis→u∗ − ãπis→u∗ ≤ |aπis→u∗ − ãπis→u∗ |
≤ F (n, δ, κ) ε. (2.13)

Subtracting (2.13) to (2.12), we obtain

ãπis→u∗ − ãπis→u ≥ aπis→u∗ − aπis→u − 2F (n, δ, κ) ε.

From Theorem 2.16, we know that

ãπis→u∗ − ãπis→u ≥
1

G(n, δ)
− 2F (n, δ, κ) ε.

If we take ε to satisfy

ε <
1

2F (n, δ, κ)G(n, δ)
=

1

8κ δ3n+1 n3/2n+2
, (2.14)

we have ãπis→u∗ > ãπis→u for every u 6= u∗ and hence, argmaxu∈Us ã
πi
s→u =

u∗ = argmaxu′∈Us a
πi
s→u′ . Therefore, by induction, PI makes the same choice

on bothM andMγ at every step i and sequence (2.5) is observed on both
problems.

Note that Mγ has the same size as M and recall that δ(n) = κ(n) =
(10b+4)2b, where n = 7b+4 > b. Hence, an ε that satisfies condition (2.14)
can be written with a polynomial number of bits since:

ε <
1

23+log2 κ+(3n+1) log2 δ+(1.5n+2) log2 n

=
1

23+b+(3n+1)n+(3n+2) log2(10n+4)+(1.5n+2) log2 n

<
1

2Ω(n2)
,
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Finally, observe that condition (2.14) implies condition (2.11) from Theo-
rem 2.14.

2.2.4 Conclusions on Fearnley’s example

In Theorem 2.18, we identified that it is enough to choose γ = 1−2−Ω(n2) to
observe Fearnley’s result with the discounted-reward criterion. In contrast,
we know from Ye (2011) that it is necessary to have γ approaching 1 as
n grows to observe the same phenomenon. The minimum rate of growth
of γ that allows to observe the exponential time behavior of PI is still
unknown at this point and it would be interesting to further explore the
question. Our guess is that Fearnley’s example still applies if we choose
γ = 1−2−Ω(n), which is what we observe using our practical implementation
of the construction. A possible way to show this could come from refining
the estimates in our proof.

Example 2.1 rules out hope for greedy Policy Iteration to be a strongly
polynomial time algorithm to solve Markov Decision Processes, even though
it was one of the best candidates. Nevertheless, this example is artificial
and it is unlikely to be encountered in practical applications. In Figure 2.4,
we attempt to challenge the robustness of Example 2.1 by adding a small
perturbation to PI; we therefore make all but one (instead of all) improving
switches at every step of the algorithm. We observe that the number of
iterations seems to grow at a polynomial rate in that case. This observation
supports the idea that applying smoothed analysis, developed by Spielman
and Teng (2004) for the Simplex method, to PI could help to explain its
practical efficiency. In such an event, we expect the multi-switch nature of
PI to be the main challenge in successfully applying these techniques.

Finally, we note that Fearnley’s example requires almost no random-
ization as only b actions are non-deterministic with transition probabilities
close to 0 or 1. It would be interesting to determine whether this random-
ization is actually required to observe the exponential time behavior. As a
comparison, Simplex PI—the single-switch variant of PI—has been shown
to run in strongly polynomial time on deterministic MDPs by Post and Ye
(2015), even when the discount factor is part of the input. However the
arguments leading to their result seem unlikely to apply to PI because of
its multi-switch nature and therefore, to the best of our knowledge, the
question remains widely open for PI.



2.2. An exponential lower bound for discounted MDPs 51

Figure 2.4: (Red) Policy Iteration run on instances of Example 2.1 of in-
creasing size. The exponential increase of the number of iterations is ob-
served. (Blue) At each step of the algorithm, instead of making every im-
proving switch, we choose one at random that is not switched. 200 trials
have been made for every problem size and the number of iterations achieved
has been recorded: the straight line is the average number of steps observed,
the blue shadow contains 2/3 of the points and the blue dots are the ex-
treme values for each problem size. The exponential behavior seems to have
disappeared.
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Chapter 3

A new upper bound for
Policy Iteration

In the previous chapter, we introduced the classical view of Markov Deci-
sion Processes (MDPs) and of Policy Iteration (PI) to solve them. On that
occasion, we saw the notion of policy which is fundamental to the latter
algorithm and we saw that policies were characterized by a value vector.
Because of the vector form, policies cannot always be compared with one
another with respect to their value since there is not always a clear domina-
tion. However, we have observed in Theorem 2.2 that switching any subset
of appealing actions from a policy leads to a strictly improved policy. This
leads to the idea of an underlying partial order among the policies. PI is
designed to jump from policies to policies in the partial order while always
going “forward”, that is, improving all the entries of the value vector at
each step, until it converges to the optimal policy.

In fact, the partial order hidden by an MDP has the well-known structure
of an Acyclic Unique Sink Orientation of a grid (or a cube if every state
of the MDP has at most two available actions). In this chapter, we take
advantage of this structure to extract as many relevant properties as possible
about the partial order. In the end, we use these properties to improve the
existing upper bound on the number of iterations of PI in the most general
setting, that is, for the three classical reward criteria.

Prior to our work, the best known upper bound on the number of iter-
ations of PI was given by Mansour and Singh (1999) with a 13 · knn bound,
where n is the number of states of the MDP and k is the maximum number
of actions per state. In this chapter, we modestly improve the constant
of this bound to k

k−1 . Our improvement also holds for the Strategy Itera-
tion algorithm described in Section 2.1.3 to solve Two-Player Turn-Based

53
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Stochastic Games for which no polynomial time algorithm is known.
To obtain our bound, we use a number of properties of the PI-sequence,

that is, of the sequence of policies actually evaluated by PI. In order to
investigate the tightness of the bound, it is of natural interest to explore
which of these properties could be further exploited to improve the bound
and which ones cannot. It turns out that the properties we actually use
cannot lead to further improvements, that is, they are “fully exploited”. To
formally prove this fact, we introduce the notion of pseudo-PI-sequence in
Section 3.1 to describe any sequence of policies satisfying only the properties
that we use to obtain our bound from Theorem 3.9. We then show in
Theorem 3.12, Section 3.3, that there always exists a pseudo-PI-sequence
whose size matches the upper bound of Theorem 3.9. This confirms that the
bound is sharp for pseudo-PI-sequences. Therefore, obtaining new bounds
on the number of steps of PI would require exploiting stronger properties,
like the Order-Regularity condition that we explore in the next chapters.

This chapter is organized as follows. First in Section 3.1 we reintroduce
PI under the perspective of the underlying partial order of the policies,
and we formulate a number of important properties about the latter. In
Section 3.2, we prove our new upper bound for PI-sequences. Then in
Section 3.3, we show that the upper bound is tight for pseudo-PI-sequences.
In Section 3.4, we put the whole analysis of this chapter in perspective by
linking it with the structure of Acyclic Unique Sink Orientations of grids.
In Section 3.5 we argue that our upper bound also holds for the number
of steps of Strategy Iteration to solve Two-Player Turn-Based Stochastic
Games. Finally in Section 3.6, we mention some aspects of the analysis
that become significantly simpler when we restrict ourselves to the case
where each state of the considered MDPs has at most two available actions.
In the next chapters, we will focus exclusively on that case.

3.1 Policy Iteration revisited

For recall, a Markov Decision Process is made of four elements: a (finite)
set of states S = {1, . . . , n}, a (finite) set of actions U where Us is the set of
actions available in state s, a set of transition probabilities for the next state
to visit and a set of rewards associated with each action. For simplicity, we
use a common numbering for the actions, that is, Us , U = {1, . . . , k} for
all s ∈ S. With this notation, for every pair (s, u) ∈ S × U , the transition
probability and reward functions are uniquely defined. We call a policy
π ∈ {1, . . . , k}n the stationary choice of one action for every state. Every
policy induces a given transition probability matrix Pπ and a reward vector
rπ corresponding to some Markov chain.

We may ask how rewarding a policy π is in the long run. This is rep-
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resented by its value vector xπ ∈ Rn whose s − th entry corresponds to
the long term expected reward obtained from starting in state s and fol-
lowing the policy π thereafter. It can be computed by solving a system
whose definition depends on the problem studied. See Section 2.1.1 for a
discussion about the three classical reward criteria that are usually used to
define the value of a policy. In this chapter, the bounds that we derive do
not depend on the chosen reward criterion. By solving an MDP, we mean
finding the optimal policy π∗ such that for any other policy π, xπ

∗ ≥ xπ,
that is, xπ

∗
(s) ≥ xπ(s) for all states s. The existence of such a policy is

guaranteed, see Theorem 2.1.
In this section, we propose an alternative view of MDPs compared to

the previous chapter, focused on the policies and how they relate to each
other through a partial order. Thereby, we are going to build a deeper
understanding of how the policies of an MDP are structured, which is a key
step to better understand Policy Iteration.

Definition 3.1 (Domination). Given two policies π and π′, if xπ
′
(s) ≥

xπ(s) for all states s ∈ S, then we say that π′ dominates π and we write π′ �
π. If moreover xπ

′
(s) > xπ(s) for at least one state, then the domination is

strict and we write π′ � π.

Definition 3.2 (Switching). Let U be a collection of state-action pairs
(s, u). We say that U is well-defined if it contains every state s ∈ S at most
once. In that case, we define π′ = π ⊕ U to be the policy obtained from π
by switching the action π(s) to u for each (s, u)-pair in U . In the case of
MDPs with exactly two actions per state, we allow U to contain only the
switching states, the action to switch to in each state being implicit.

Definition 3.3 (Improvement set). We define the improvement set of a
policy π as:

Tπ =
{

(s, u) | π ⊕ {(s, u)} � π
}
,

and the set of improvement states Sπ of π as the set of states that appear
in Tπ.

Using the above definitions, the Theorems 2.2 and 2.3 from Chapter 2
allow the following, simpler, expression. Proofs can be found, e.g., in Hansen
(2012); see Theorems 2.2.12, 2.3.9 and 2.4.6 for the discounted-, average-
and total-reward criteria respectively. Alternate statements can also be
found in Puterman (1994).

Proposition 3.1. Let π be a policy and U 6= ∅ be any well-defined subset
of its improvement set Tπ. Then π ⊕ U � π.

Proposition 3.2. For a given policy π, if Tπ = ∅, then π is optimal.
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Algorithm 3: Policy Iteration

1 Initialization: π0, i = 0
2 while Tπi 6= ∅ do
3 Select a non-empty and well-defined Ui ⊆ Tπi
4 πi+1 = πi ⊕ Ui
5 i← i+ 1

6 end
7 return πi

We may also propose an alternative formulation for Policy Iteration
compared to the previous chapter, in terms of improving switches. The rest
of our analysis in this chapter relies solely on these two results which thus
holds for the three classical reward criteria.

Definition 3.4 (Policy Iteration). Algorithm 7 describes Policy Iteration
(PI). The standard way of choosing Ui ⊆ Tπi is the greedy update rule,
namely choose any Ui with maximal cardinality |Sπi |, which yields Howard’s
PI algorithm of the previous chapter. Howard’s PI remains the main focus
of this thesis.

Definition 3.5 (Comparable). We say that two policies π and π′ are com-
parable if either π � π′ or π � π′. We call two policies neighbors if they
differ in only one state. Neighbors are always comparable (Mansour and
Singh, 1999, Lemma 3).

Definition 3.6 (Partial order). For a given MDP, we consider the partial
order PO of the policies defined by the domination relation. A set of policies
π(1), . . . , π(k) is called a sequence if π(1) � · · · � π(k).

Definition 3.7 (PI-sequence). We refer to the sequence of policies π0, . . . , πm−1

explored by greedy PI as a PI-sequence of length m.

Problem 3.1. Find the longest possible PI-sequence.

Lemma 3.3 (Mansour and Singh (1999, Lemma 4)). For any two policies
π, π′ such that π′(s) = π(s) for all improvement states s ∈ Sπ, we have
π′ � π.

Proof. Consider an MDP M ′ where the only action that is available in the
states s ∈ Sπ is π(s). Clearly π and π′ are valid policies for M ′ and their
value does not change. On the other hand, the improvement set of π is
empty in M ′, so by Proposition 3.2, π is optimal for M ′ and we must have
π′ � π.



3.1. Policy Iteration revisited 57

The next property indicates how the improvement set of a policy is
constrained by the dominated policies and by their own improvement sets.

Proposition 3.4 (Extended from Lemma 12 in (Mansour and Singh, 1999)).
For any two policies π ≺ π′, there exists an improvement state s ∈ Sπ such
that π(s) 6= π′(s) and (s, π(s)) /∈ Tπ′ .

Proof. Suppose on the contrary that it is not the case. Then for all states
s ∈ Sπ, either π(s) = π′(s) or (s, π(s)) ∈ Tπ′ . Let U ,

{
(s, π(s)) : s ∈ Sπ∩

Sπ
′

and π(s) 6= π′(s)
}

, then we have U ⊆ Tπ
′
. Therefore, Proposition 3.1

tells us that π′′ , π′ ⊕ U � π′.
Now, let us consider any s ∈ Sπ. If π′(s) = π(s), then for any u ∈ U ,

we have (s, u) /∈ U and π′′(s) = π(s). On the other hand, if π′(s) 6= π(s),
then s ∈ Sπ

′
, hence (s, π(s)) ∈ U and π′′(s) = π(s) again. Therefore

π′′(s) = π(s) for all s ∈ Sπ and from Lemma 3.3, π′′ � π (≺ π′) which is a
contradiction.

Note that for k = 2, the statement of Proposition 3.4 can be simplified
and implies that for any two policies π ≺ π′, it holds that Sπ 6⊆ Sπ′ .

When performing a PI step, we jump from the current policy to some
policy that can be quite different (in terms of number of different entries).
However, we now show that there always exists a path of small steps in the
partial order connecting the two, that is, from neighbor to neighbor.

Proposition 3.5 (Extended from Lemma 6 in (Mansour and Singh, 1999)).
Let π and π′ be two policies such that π′ = π ⊕ U for some well-defined
U ⊆ Tπ of cardinality d. Then there exist at least d policies π(1), . . . , π(d)

such that π ≺ π(1) � · · · � π(d) = π′ and such that π(i) and π(i+1) are
neighbors for all 1 ≤ i < d.

Proof. If d = 1, simply take π(d) = π′. Suppose that the result is true for
d−1 ≥ 1 and let us show it for d. From Proposition 3.4, there exists a state
s ∈ Sπ such that (s, π(s)) /∈ Tπ′ , that is, such that π′⊕ (s, π(s)) 6� π′. Since
neighbors are always comparable, it means that π′′ , π′⊕(s, π(s)) � π′. By
definition of π′, we have (s, π′(s)) ∈ U and U ′ , U \ (s, π′(s)) ⊆ U ⊆ Tπ.
We can then recursively apply the statement of Proposition 3.5 with:

π′ 7−→ π′′ = π′ ⊕ (s, π(s)),

U 7−→ U ′ = U \ (s, π′(s)),

since π′′ = π ⊕ U ′ and |U ′| = d− 1. In that case, π(d−1) = π′′, and we can
choose π(d) = π′ which is indeed a neighbor of π(d−1).

Note that the above proof simplifies Mansour and Singh’s original argu-
ment.
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Definition 3.8 (Subsequence and supersequence). Let O be a sequence.
We call subsequence of O any ordered subset of elements of O. We call
supersequence of O any sequence that contains O as a subsequence.

The following property is perhaps the most important consequence of
Proposition 3.5.

Corollary 3.6 (Jumping). Let πi be a policy of a PI-sequence. Then the
partial order of policies contains a supersequence of the PI-sequence with at
least |Sπi | different policies between πi and πi+1, that is, |Sπi | policies π
such that πi ≺ π � πi+1. When we step from πi to πi+1, we say that we
jump |Sπi | policies of the supersequence.

Proof. The result is a direct consequence of Proposition 3.5. Recall that
with Howard’s PI, |Ui| always equals |Sπi |.

We now introduce an object that is similar to a PI-sequence in that it
describes a sequence of policies embedded into a partial order. However, we
will forget about some of the structure that originates from MDPs and only
require Proposition 3.4 and Corollary 3.6 to be ensured by the sequence and
the partial order. This will allow us to show that these two properties—that
will be the two milestones in the proof of our upper bound in Theorem 3.9—
can actually not help to further improve the bound.

Definition 3.9 (Pseudo-PI-sequence). We call pseudo-PI-sequence of size
m a triple (Π, O, T ) where:

• Π = π0, π1, . . . , πm−1 is a sequence of policies. We define the abstract
ordering ≺ on the elements of the sequence Π by the ordering of their
indices.

• O is a sequence of policies of {1, . . . , k}n that is a supersequence of Π.

• T is a collection of abstract improvement sets Tπ for every policy π
appearing in O.

We require the claim from Proposition 3.4 to hold for O and we require Π
to satisfy Corollary 3.6 as a subsequence of O.

Definition 3.9 leads to a relaxation of Problem 3.1, and therefore any
upper bound on the size of pseudo-PI-sequences also holds for PI-sequences.
Note that there is a natural way of constructing a pseudo-PI-sequence from
any PI-sequence. Of course, Proposition 3.4 and Corollary 3.6, that are the
key results towards our upper bound in Theorem 3.9, still hold for pseudo-
PI-sequences by design. Furthermore, as we will show in Theorem 3.12, our
upper bound is tight for the relaxation.
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Problem 3.2. Find the longest possible pseudo-PI-sequence.

To close this section, we propose a simple consequence of Proposition 3.1
that was not expressed by Mansour and Singh (1999). Although we were
not able to exploit this consequence to improve the upper bound on PI’s
complexity, we will see in Chapter 4 how it leads to the Order-Regularity
condition—a powerful tool for the analysis of PI that we will develop in the
next chapters. The remainder of this section is not mandatory for readers
only interested with the results of the present chapter.

To obtain this last condition, we first need to extend the notion of im-
provement sets and generalize Proposition 3.1

Definition 3.10 (Generalized improvement sets). We define the generalized
improvement set of a policy π as:

Tπ
�

=
{

(s, u) | π ⊕ {(s, u)} � π
}
,

where � ∈ {�,�,≺,�}, and let Sπ
�

be the set of states that appear in Tπ
�

.
In particular, with this notation, Tπ = Tπ� and Sπ = Sπ�.

Using this notation, we can generalize Proposition 3.1 in a natural way.

Corollary 3.7 (Generalized version of Proposition 3.1). Let π be a policy
and U 6= ∅ be any well-defined subset of its generalized improvement set Tπ

�
,

with � ∈ {�,�,≺,�}. Then π ⊕ U � π.

Proof. Proposition 3.1 proves the case where � is �. To show the case
where � is �, we consider the MDP M′ which is identical to the original
MDP M except in the states s ∈ Sπ≺ (that is, the states s /∈ Sπ�) where
the action is fixed to π(s). Clearly, Tπ� remains unchanged in this MDP, as
do the value vectors of the policies in M′ compared to their counterparts
in M. This new MDP ensures that for any policy π′ in M′, we have that
π′(s) = π(s) for all s ∈ Sπ≺. It follows from a variant of Lemma 3.3 with a
reversed objective function of the MDP (that is, where rewards are turned
into costs) that we must have π′ � π. In particular, for any well-defined
subset U ⊆ Tπ�, we must have π ⊕ U � π, both in M′ and in M. Finally,
the cases where � is ≺ and � are easily solved from the ones where � is �
and � respectively, by reversing the objective function of the MDP.

We now state the desired condition on the partial order of the policies.

Theorem 3.8. Let π ≺ π′ be two policies. Then for all U ⊆ Tπ� and all

U ′ ⊆ Tπ′� , it holds that π ⊕ U 6= π′ ⊕ U ′.
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Proof. For all U ⊆ Tπ� and all U ′ ⊆ Tπ′� , we have:

π ⊕ U � π ≺ π′ � π′ ⊕ U ′,

where the first and last relations come from Corollary 3.7. This implies that
π ⊕ U cannot be equal to π′ ⊕ U ′.

Note that Theorem 3.8 remains true if we replace Tπ� by Tπ≺ or Tπ� by
Tπ�.

3.2 A new upper bound for Policy Iteration

In order to precisely solve Problem 3.2, we need to both provide a lower and
an upper bound on the length of pseudo-PI-sequences. We start by showing
the upper bound, which also holds for Problem 3.1 and therefore provides
a new upper bound on the complexity of Policy Iteration in general.

Theorem 3.9. The number of iterations of Policy Iteration is bounded
above by k

k−1 · k
n

n + o
(
kn

n

)
.

Before we proceed to the proof of Theorem 3.9, we need to formulate
two additional properties. First, we derive the following lemma from Propo-
sition 3.4.

Lemma 3.10 (Adapted from Lemma 4 in Mansour and Singh (1999)). Let
(Π, O, T ) be a pseudo-PI-sequence. Then for any two policies π ≺ π′ of O
and any U ⊆ Tπ′ , we have π 6= π′ ⊕ U .

Proof. Let s ∈ Sπ such that π′(s) 6= π(s) and (s, π(s)) /∈ Tπ′ whose exis-
tence is guaranteed by Proposition 3.4. It is impossible to switch from π′(s)
to π(s) hence the result.

When k = 2, it is easy to see using Proposition 3.4 that two policies with
exactly the same improvement states cannot exist. When k > 2, this is no
longer the case. However, using Lemma 3.3, Mansour and Singh showed
that there cannot be more than kd policies with the same d improvement
states in a PI-sequence (see Mansour and Singh (1999, Corollary 13)). In
the following proposition, we use Proposition 3.4 to improve this bound
to (k − 1)d. Note that this improvement is a crucial step to achieve tight
bounds for Problem 3.2.

Proposition 3.11. Given a pseudo-PI-sequence (Π, O, T ) and a set of
states S ⊆ S of cardinality d, it holds that O contains at most (k − 1)d

policies π with Sπ = S .
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= {s1, s2}S

= {ai, bi, ci}Ui
= c1π(s1) = b2π(s2)

= c2Tπ(s2)= a1Tπ(s1)

fa(a1)

fa(b1)

fa(c1) = fa(π(s1))

−fa(T π(s1))

fa(π(s1))− fa(T π(s1))

s1

⊗
fa(a2)

fa(c2)

fa(c2)

=

fa(π(s2)) −fa(T π(s2))

fa(π(s2))

−fa(T π(s2))
s2

Figure 3.1: We illustrate the proof of Proposition 3.11 using an example
MDP with d = 2 states in S and k = 3 actions per state. The actions at both
states can be represented in a k-dimensional space V of which fa : Ui → Rk
defines the base vectors. Likewise, the policies can be represented in the
(Kronecker) product of these spaces W = V ⊗ V of dimension kn. Observe
that the blue vectors fa(π(si)) − fa(Tπ(si)) uniquely represent the pairs
(π(si), T

π(si)) since Tπ(si) is always distinct from π(si).

Proof. Given the supersequence O of the pseudo-PI-sequence, we consider

its subsequence π(1) � · · · � π(K) such that Sπ
(i)

= S , {s1, . . . , sd} for all
1 ≤ i ≤ K. We show that if the subsequence satisfies Proposition 3.4, then
K ≤ (k − 1)d. To this end, we first claim that the improvement sets of the
policies of the subsequence can be assumed to be all well-defined. Indeed,
for any policy π(i) of the subsequence, we can simplify its improvement set

Tπ
(i)

by keeping only a single (s, u) pair for every s ∈ Sπ(i)

. This does not

modify Sπ
(i)

(that is, π(i) remains in the subsequence), nor does it imply
the violation of Proposition 3.4.

Therefore, given a policy π(i) of the subsequence and a state s ∈ S , we

can assume that there is exactly one action u such that (s, u) ∈ Tπ(i)

, which

we refer to as Tπ
(i)

(s).
We represent an action i ∈ U as a k-dimensional base vector fa(i) , ei

of V = Rk, where ei(j) = 1 if i = j, 0 otherwise. Similarly, we represent
policies as base vectors of the space W = V ⊗d of dimension kd through the
application:

fp : π 7−→ fa(π(s1))⊗ · · · ⊗ fa(π(sd)),
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Figure 3.2: The light-blue plane intersects every blue dot and the origin.
More precisely, in the k-dimensional space V (here represented with k = 3),
all the vectors fa(π(si)) − fa(Tπ(si))—the blue dots—that represent the
possible pairs (π(si), T

π(si)) lie in the same (k − 1)-dimensional subspace
V0—the light-blue plane.

where ⊗ stands for the Kronecker product. Finally, we represent pairs of
policies and their improvement sets in a similar way in W through the
application:

fc : (π, Tπ) 7−→
[
fa(π(s1))− fa(Tπ(s1))

]
⊗ · · · ⊗

[
fa(π(sd))− fa(Tπ(sd))

]
,

= fp(π) +
∑

U ⊆ Tπ

U 6= ∅

(−1)|U | · fp(π ⊕ U).

These applications are illustrated on Figure 3.1.

We claim that the vectors fc
(
π(i), Tπ

(i))
are linearly independent. As-

sume on the contrary that we have:

K∑

i=1

λi fc

(
π(i), Tπ

(i)
)

= 0, (3.1)

with not all λi being 0. Choose the first index i with non-zero λi. The
corresponding term gives a non-zero coefficient to the base vector fp

(
π(i)
)
.

But from Lemma 3.10, for all j > i and all U ⊆ Tπ(j)

, π(i) 6= π(j)⊕U . Thus
the base vector fp

(
π(i)
)

never appears later in the series in (3.1) which can
therefore not be null.
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Additionally, the coordinates of fa(π(si))− fa(Tπ(si)) ∈ V sum to 0 (in
the standard base) for all 1 ≤ i ≤ d which means they lie in a subspace V0

of V of dimension k − 1, as illustrated by Figure 3.2. As a result,

fc

(
π(i), Tπ

(i)
)
∈W0 = V ⊗d0 .

The dimension of W0 is (k − 1)d implying this is the maximum number of

linearly independent vectors fc
(
π(i), Tπ

(i))
. This translates to the desired

upper bound.

Note that the above result also holds for usual PI-sequences.

Proof of Theorem 3.9. The proof proceeds in two steps. First, we consider
“small” improvement sets and show that there are at most o

(
kn

n

)
of them.

Then we consider “large” improvement sets and show that PI explores at
most k

k−1 · k
n

n +o
(
kn

n

)
of them because they jump many policies on the way.

Small improvement sets. We consider the small improvement sets
Tπ such that |Sπ| ≤ k−1

k · n− f(n) with:

f(n) ,
√
n log n.

From Proposition 3.11, policies with the same set of improvement states S
of cardinality d can appear at most (k−1)d times in a (pseudo-)PI-sequence,
hence the number of small improvement sets can be expressed as follows:

b k−1
k ·n−f(n)c∑

d=0

(
n
d

)
(k − 1)d = kn

b k−1
k ·n−f(n)c∑

d=0

(
n
d

)(
k − 1

k

)d(
1

k

)n−d
,

= kn · P
[
X ≤ k − 1

k
· n− f(n)

]
,

where X ∼ Bin
(
n, k−1

k

)
follows a binomial distribution. Using Hoeffding’s

inequality (1963, Theorem 1), we have:

P

[
X ≤ n ·

(
k − 1

k
− f(n)

n

)]
≤ e−2·( f(n)

n )
2
·n =

1

n2
.

Therefore we have:

b k−1
k ·n−f(n)c∑

d=0

(
n
d

)
(k − 1)d ≤ kn · 1

n2
= o

(
kn

n

)
.

Large improvement sets. We now consider the improvement sets Tπ

with the set of improvement states satisfying |Sπ| > k−1
k · n − f(n). We
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show that these sets jump many policies on the way and hence we cannot
have many of them in the (pseudo-)PI-sequence. Suppose that we have K
such improvement sets in the sequence. Then, from Corollary 3.6, we jump
at least K ·

(
k−1
k · n − f(n)

)
distinct policies. Since we cannot jump more

that kn policies, we have the following condition on K:

K ≤ kn

k−1
k n− f(n)

=
k

k − 1
· k

n

n
· 1

1− k−1
k

√
logn
n

,

=
k

k − 1
· k

n

n
·
(

1 +O

(√
log n

n

))
,

hence K ≤ k
k−1 · kn

n + o
(
kn

n

)
.

To the best of our knowledge, the bound from Theorem 3.9 is the best
known upper bound on the number of steps of a general run of PI, including
the case where k = 2. An interesting perspective would be to extend the
bound to cases where every state of the MDP have a different number of
actions k1, ..., kn. Looking at our bound, we can guess that such a bound
should be close to

2 ·
∏n
i=1 ki
n

+ o

(∏n
i=1 ki
n

)
.

Note that the above developments have their counterpart in the frame-
work of Two-Player Turn-Based Stochastic Games (2TBSGs) defined in
Section 2.1.3. In fact, the policies explored by the main loop of the Strat-
egy Iteration algorithm described in Algorithm 2 can be interpreted as a
PI-sequence. All the properties about PI-sequences also hold in that case.
In particular, the bound of Theorem 3.9 also holds to bound the number of
steps of the main loop of Strategy Iteration.

3.3 The bound is tight for Problem 3.2

The following theorem shows that the upper bound from Theorem 3.9 is
tight for Problem 3.2.

Theorem 3.12. There exists a pseudo-PI-sequence of size k
k−1 · k

n

n +ω
(
kn

n

)
.

Proof. We first build a sequence containing all the kn policies that will play
the role of the supersequence O for the pseudo-PI-sequence. Preliminarily,
given any policy π of O, we define its (well-defined) improvement set Tπ
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π2 =
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π13 =
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T 3
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T 1

T 0

Figure 3.3: An example of a pseudo-PI-Sequence

of size k
k−1 · k

n

n + o
(
kn

n

)
with its supersequence

O for n = k = 3. Each gray box corresponds
to a policy of the supersequence. We represent
the improvement sets only through the prospec-
tive improving action for each state (action 3 for
state s if π(s) 6= 3 or nothing, according to the
construction). The red policies are the ones from
the sequence Π from Definition 3.9. It can be
checked that if some policy πi is in T d, then d
policies of the supersequence are jumped from πi
to πi+1 and it can be observed that the super-
sequence contains kn elements and satisfies the
claim of Proposition 3.4.
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such that (s, u) ∈ Tπ iff π(s) 6= k and u = k. Here action k can be thought of
as some special action. Let T d be the set of all policies π such that |Tπ| = d.
By definition, T d contains all policies π such that π(s) 6= k for exactly d
different states s, hence

(
n
d

)
·(k−1)d elements. We now order all kn policies

as a sequence by decreasing order of cardinality of their improvement sets,
hence the policies in T d-sets with a large d come first in the sequence. The
(total) ordering inside a given T d-set can be arbitrarily chosen. Given this
ordering, notice that for any π ≺ π′, if Sπ ⊆ Sπ′ , then Sπ = Sπ

′
.

The sequence O obtained with the above construction satisfies the claim
of Proposition 3.4. Indeed, let us choose any two policies of the sequence
π ≺ π′. First assume that Sπ \ Sπ′ 6= ∅ and let t ∈ Sπ \ Sπ′ . Then
by construction, π(t) 6= k = π′(t) and (t, π(t)) /∈ Tπ′ since t /∈ Sπ′ , hence
Proposition 3.4 is true in that case. If now Sπ \ Sπ′ = ∅, then the ordering
of the policies imposes that Sπ = Sπ

′
, as observed above. In that case, by

construction π(s) 6= k for all s ∈ Sπ and π(s) = π′(s) = k for all s /∈ Sπ.
Since π 6= π′, there must exist some state t ∈ Sπ such that π(t) 6= π′(t).
Furthermore by definition of Tπ

′
, (t, π(t)) /∈ Tπ′ because π(t) 6= k, and the

claim of Proposition 3.4 is true again.
At this point, we have built a supersequence for our PI-sequence that

satisfies the claim of Proposition 3.4. Let us now select a subsequence Π of
O while ensuring Corollary 3.6 as follows: we start from the first policy of
the supersequence π0, i = 0. Then at each step i, we jump |Tπi | elements in
the sequence to select πi+1. With this greedy procedure, we clearly ensure
Corollary 3.6 and we pick at least 1

d+1 |T d| policies from each T d-set, for a
total number of hypothetical PI-steps of at least:

n∑

d=0

1

d+ 1
|T d|,

=

n∑

d=0

1

d+ 1

(
n
d

)
(k − 1)d,

=
1

n+ 1
·
n∑

d=0

(
n+ 1
d+ 1

)
· (k − 1)d · 1n−d,

=
1

k − 1
· 1

n+ 1
·
[
n+1∑

d=0

(
n+ 1
d

)
· (k − 1)d · 1(n+1)−d

︸ ︷︷ ︸
=kn+1

− 1

]
,

=
k

k − 1
· k

n

n
·
(

1− 1

kn+1

)
·
(

1− 1

n+ 1

)
,

=
k

k − 1
· k

n

n
· (1 + ω(1)) ,



3.4. The Acyclic Unique Sink Orientation of grids representation 67

which corresponds to our claim and matches the upper bound from Theo-
rem 3.9. An example of a pseudo-PI-sequence constructed from the above
procedure with n = k = 3 is given in Figure 3.3.

Of course, the lower bound from Theorem 3.12 only holds for pseudo-
PI-sequences which are less constrained than usual PI-sequences. Indeed,
it can for instance be observed that the pseudo-PI-sequence constructed in
Figure 3.3 cannot correspond to a real PI-run since for instance its superse-
quence does not satisfy Proposition 3.1. Therefore, obtaining better bounds
than the one from Theorem 3.9 will require a more advanced analysis, as
attempted in the next chapter.

3.4 The Acyclic Unique Sink Orientation of
grids representation

Theorem 3.12 revealed that future improvements of our bound will require
to take into account more of the combinatorial structure of PI-sequences.
In this section, we describe how Problem 3.1 can be formulated in the
framework of Acyclic Unique Sink Orientations of grids.

The idea of this approach is to represent the partial order of the policies
of an MDP as an oriented graph whose nodes—the policies—are embed-
ded in an n-dimensional grid and whose directed edges—that translate the
domination relation—only connect neighboring policies (that is, that differ
in only one state). (We here assume that there is never a tie, so we either
have π ≺ π′ or π � π′. This can be ensured by making infinitesimal pertur-
bations in the initial problem or using a suitable tie-breaking rule.) It can
be shown that the obtained graph must be acyclic and unique sink, that
is, any sub-grid of dimension d ≤ n contains a unique vertex of maximum
in-degree d (Gärtner et al., 2005). This is why we call it an Acyclic Unique
Sink Orientation of a grid1 (or Grid AUSOs). Grid AUSOs were introduced
by Gärtner et al. (2005) as a generalization of Acyclic Unique Sink Orien-
tations of Cubes (Szabó and Welzl, 2001) when k > 2. They accurately
characterize the structure of the partial order of any MDP and essentially
all necessary conditions we know on PI-sequences can be derived from this
framework, including Propositions 3.1 and 3.2 and their consequences de-
scribed in this chapter.

More precisely, Grid AUSOs can be described as follows: take a Carte-
sian grid of dimension n, the number of states of the MDP. A policy can
be represented by its actions at each state as a vector in {1, ..., k}n and it

1One could strengthen the conditions on the graph even a bit further by requiring the
Holt-Klee condition as well (Gärtner et al., 2005; Holt and Klee, 1999).
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000 100 200

010 110 210

001 101 201

011 111 211

π0

π1

π2

π3

π4

Figure 3.4: (Left) An example of a Grid AUSO that we could obtain for
an MDP with 3 actions for the first state and 2 actions for the two other
states. Here, 101 is the global sink that corresponds to the optimal policy.
(Right) A possible run of PI on this Grid AUSO, starting from 000. The PI
jumps are represented in red. Proposition 3.5 guarantees that there exists
a directed path from πi−1 to πi in the grid for all 0 < i < m. This path is
here depicted in blue.

thereby corresponds to a vertex of the grid. For every neighboring policies
π, π′, we draw a directed edge from π to π′ if π ≺ π′ (recall that neighboring
policies are always comparable and that we assumed the absence of ties).
We refer to the set of outgoing edges of the vertices (or policies) as their
outmap. The obtained directed graph on the grid is guaranteed to be acyclic
and unique sink. An example of a Grid AUSO is given in Figure 3.4A.

With this structure, PI-steps can be viewed as jumps in the grid as
follows: from a policy πi of the PI-sequence, the outgoing links at the
corresponding vertex span a sub-grid. In general, the next vertex πi+1

chosen by PI can be any vertex of this sub-grid (except πi), but in Howard’s
version, some antipodal vertex to πi is chosen. A possible run of Howard’s
PI is illustrated on Figure 3.4B. This algorithm is also known as Bottom-
Antipodal in the AUSO framework. Note that it is possible to design Cube
AUSOs for which PI takes

√
2
n

steps (Schurr and Szabó, 2005) but to the
best of our knowledge, it is unknown if this lower bound can be adapted to
MDPs or 2TBSGs.

Interestingly, Propositions 3.5 and 3.4 allow a simple interpretation in
Grid AUSOs. Proposition 3.5 requires that there exists a directed path
in the grid connecting all pairs of policies πi−1 and πi of the PI-sequence.
Such a path is depicted in blue in Figure 3.4B. Regarding Proposition 3.4,
it requires that any two comparable policies (that is, vertices of the grid
that can be connected by a path) never share the same outmap. In fact, it
is even a bit stronger as it requires the outmap of the dominated policy not
to be “contained” in that of the dominating policy.
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3.5 The relationship between Policy and Strat-
egy Iteration

Recall that in Chapter 2, Section 2.1.3, we defined Two-Player Turn-Based
Stochastic Games (2TBSGs) as a two-player generalization of MDPs. Player 1
is the minimizer (he tries to minimize the value vector) and is granted con-
trol over the states in S1 ⊆ S, while Player 2 is the maximizer and controls
the remaining states S2 = S\S1. The dynamics of the game is the same
as an MDP except that the two players have opposite objectives regarding
their policy (that we usually call strategy). To solve the 2TBSG, we aim
to find an equilibrium strategy, that is, a strategy for which no player has
the ability to improve his value vector by changing some of his actions. To
find such an equilibrium, one can apply Strategy Iteration (SI), an algo-
rithm that generalizes PI to 2TBSGs. Each iteration of SI is composed of
two steps. First we apply a PI step to the strategy of Player 2 thereby
increasing his value vector. Then we update Player 1’s strategy to his best-
response against Player 2. The process is then repeated until convergence
to an equilibrium strategy. Theorem 2.5 guarantees that the value vector
of Player 2 strictly increases after each iteration so that the process always
terminates. Theorem 2.6 provides the stopping condition.

The solution of a 2TBSG can also be obtained by applying Policy It-
eration on some appropriately designed AUSO. The way to construct this
AUSO is based on how SI works. We label the vertices of the AUSO by
the strategies of Player 2. For each strategy, we consider that Player 1 is
playing his best-response. Therefore, to each vertex of the AUSO corre-
sponds a single strategy (br1(π2), π2) for the players, where br1(π2) is the
best-response of Player 1 against Player 2’s strategy π2. Adjacent vertices,
those for which the strategy of Player 2 differs by exactly one action, are
connected by an edge oriented towards the most rewarding strategy of the
two for Player 2. (We assume the absence of ties and otherwise make infin-
itesimal perturbations to the problem.) Theorem 2.5 guarantees that these
orientations are well-defined and satisfy a similar statement as the one of
Proposition 3.1. Theorem 2.6 ensures that a vertex is a sink iff it is an equi-
librium strategy of the 2TBSG. From there, it is not hard to see that the
resulting orientation must be AUSO. Moreover, PI applied to this AUSO
explores exactly the same strategies as SI would explore if applied to the
initial 2TBSG with the same starting strategy of Player 2, which can be
stated as follows:

Strategy Iteration applied on a 2TBSG explores the same strategies as
Policy Iteration does when applied on a Grid AUSO describing the partial
order of the strategies of Player 2 in the 2TBSG when Player 1 always
plays a best-response against him.
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A formal proof of this statement can be found, for instance, in Hunter
(2007, Theorem 3.4). As a consequence, the bound of Theorem 3.9 also
holds for SI.

Corollary 3.13. The number of iterations of the outer loop of Strategy
Iteration is bounded above by k

k−1 · k
n

n + o
(
kn

n

)
.

3.6 A simple case: MDPs with two actions
per state

Analyzing the case where an MDP has only two actions per state is simpler
than the general k-actions case in the same way that analyzing the structure
of a cube is simpler than analyzing that of a grid. In the next three chapters,
we restrict ourselves to that case where k = 2 and we sometimes reuse some
of the results developed above. Therefore, identifying which parts of the
above analysis become simpler is of interest.

The main simplification that comes with k = 2 is that there is only
one way to switch an action in a state. Therefore, there is no need to
specify to which action we switch, and we no longer need to distinguish the
improvement set Tπ of a policy π from its improvement states Sπ since they
both contain the same information. Moreover, subsets of Tπ can only ever
be well-defined since for every state s ∈ Sπ, there is only one action other
than π(s).

Thanks to these observations, we can restate Proposition 3.4 as a kind
of non-inclusion property of the improvement sets.

Proposition 3.4 (revisited with k = 2). If π ≺ π′, then Sπ 6⊆ Sπ′ .

In particular, this simplification implies that we cannot have comparable
policies that share the same improvement states. Therefore, for k = 2, the
statement of Proposition 3.11 becomes trivial. This means that without
Proposition 3.11, we would have been able to show the bound from Theo-
rem 3.9 for k = 2 but we would have obtained a higher constant factor for
k > 2. In that case, we would not have been able to match the upper bound
with the lower bound from Theorem 3.12.



Chapter 4

Order-Regular matrices:
a powerful tool for the
analysis of Policy Iteration

In the previous chapter, we explored the structure of the partial order of the
policies of a Markov Decision Process (MDP) and of the strategies of a Two-
Player Turn-Based Stochastic Game (2TBSG) through the angle of Acyclic
Unique Sink Orientations (AUSOs). This fairly general structure provides
an alternative framework to formulate and study a number of MDP and
2TBSG algorithms, including Policy Iteration (PI)1. In our quest for new
bounds on the number of steps of PI in the previous chapter, we extracted a
number of properties of AUSOs (in particular Propositions 3.4 and 3.5) and
saw that these properties alone were not enough to obtain new bounds. In
this chapter, we investigate the Order-Regularity condition (OR), a property
that is specific to the sequence of policies explored by PI—the so-called PI-
sequence—that disregards all the policies outside from this sequence. We
will see that this specificity opens new possibilities. Like AUSOs were an
abstraction of MDPs and 2TBSGs, the OR condition can be seen as an
abstraction of the progress of PI in AUSOs.

First introduced by Hansen (2012), the idea of the OR condition is the
following. Suppose we record the policies π0, π1, ..., πm−1 of a PI-sequence
as the rows of an m× n binary matrix. (If n is the number of states of the
MDP and there are two available actions in each state, we can always write
the policies as binary vectors of dimension n.) We can then translate the

1Because it is equivalent to PI, we also cover the Strategy Iteration algorithm for
2TBSGs, see Section 3.5.

71
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AUSO property into a necessary combinatorial condition on this matrix—
the OR condition—that we will precisely define in the next section. Since
matrices that originate from AUSOs are guaranteedly OR, upper bounds on
the maximum number of rows of an n-columns OR matrix directly extend
to the number of steps of PI in an n-dimensional AUSO (and thus also in
an n-states MDP or 2TBSG).

Using the OR formulation, Hansen and Zwick performed an exhaustive
search on all OR matrices with up to n = 6 columns and reported the
maximum number of rows (that is, the number of abstract iterations for
PI) each time: 2, 3, 5, 8, 13, 21. Based on these empirical observation, they
conjectured that the maximum number of steps of PI should follow the Fi-
bonacci sequence (Hansen, 2012). Confirming this conjecture for n = 7 has
been claimed to be a hard computational challenge. It was introduced as
January 2014’s IBM Ponder This Challenge. Proving the conjecture in gen-
eral would provide an O(1.618n) upper bound on the number of iterations
of PI, a quasi-identical bound as that of the Fibonacci Seesaw algorithm
introduced by Szabó and Welzl (2001). Regarding lower bounds, nothing
better than the Ω(1.4142n) bound from Schurr and Szabó (2005) originating
from AUSOs was known prior to our work.

In this chapter, our first contribution is to disprove Hansen and Zwick’s
conjecture by performing an exhaustive search for n = 7. We obtained a
maximum number of rows that is lower than the expected Fibonacci num-
ber, which still allows the Fibonacci sequence as a possible upper bound.
Our second contribution is to (exponentially) improve Schurr and Szabó’s
Ω(1.4142n) lower bound to Ω(1.4269n), yet only in the framework of OR
matrices, thereby raising the question whether this bound also holds for
AUSOs. Finally, the key ideas behind our two results relied on our ability
to build large matrices satisfying OR-like conditions, which required sub-
stantial computational refinements.

The chapter is organized as follows. In Section 4.1 we formulate the OR
condition together with some key elements for its analysis. In Section 4.2,
we discuss Hansen and Zwick’s conjecture as well as an upper bound on
the size of OR matrices. Section 4.3 establishes step by step our new lower
bound on the number of rows of OR matrices, starting from Schurr and
Szabó’s construction. Then, since our results heavily rely on our ability to
build large matrices, we describe in Section 4.4 the different ideas that we
combined in order to speed up the existing computational methods. We
close this chapter in Section 4.5 with two intriguing approaches that could
inspire new techniques for the analysis.

In the two last chapters, we will investigate how we can extend our lower
bounds to Acyclic Unique Sink Orientations as well.
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4.1 Definitions and preliminaries

Let {π0, π1, ..., πm−1} be a PI-sequence generated by an n-dimensional Cube
AUSO (which includes MDPs and 2TBSGs with n states and two actions
per state). We can write πi as a vector of {0, 1}n. Let A ∈ {0, 1}m×n be the
matrix whose rows correspond to the ordered policies of the PI-sequence.
From Theorem 3.8 that regulates the structure of the PI-sequence, or using
Hansen’s original argument (2012), we can extract the following necessary
condition on A.

Definition 4.1 (Order-Regularity). We say that A ∈ {0, 1}m×n is Order-
Regular (OR) whenever for every pair of rows i, j of A with 1 ≤ i < j ≤ m,
there exists a column k such that

Ai,k 6= Ai+1,k = Aj,k = Aj+1,k. (4.1)

We may have j + 1 = m + 1. In that case, we use the convention that
Am+1,k = Am,k.

With other words, for all pairs (i, j), there exists a column k in A such
that at the entries i, i + 1, j, j + 1 in this column we see either 0, 1, 1, 1 or
1, 0, 0, 0. Another possible reading of the OR condition in terms of Policy
Iteration is as follows: at any iteration, some changes are made to the entries
of the current vertex. It must always be assumed in future iterations that
at least one of these changes was “right”. Note that a variant of the OR
condition was already formulated by Madani in his Ph.D. thesis, see Madani
(2000, Section 4.6).

Using Theorem 3.8, we now show that any matrix A that corresponds to
a PI-sequence must satisfy the OR condition, and therefore that an upper
bound on its number of rows yields an upper bound on the number of steps
of PI.

Theorem 4.1. Let A ∈ {0, 1}m×n be a matrix whose rows correspond to
the ordered policies π0, π1, ..., πm−1 of a PI-sequence generated by an n-
dimensional Cube AUSO. Then A must be Order-Regular.

Proof. We use an appropriate variation2 of Theorem 3.8 that can be stated
as follows. Let π ≺ π′. Then for all U ∈ Sπ� and all U ′ ∈ Sπ′� , it holds that
π ⊕ U 6= π′ ⊕ U ′.

2It is a variation regarding two aspects. First we use the improvement states instead
of the improvement sets that contain state-action pairs. This is allowed for MDPs with
two actions per state because the action to switch to in a state is implicitly defined as
the other available action. Therefore, the switching operator “⊕” remains well-defined.

The other variation is that we use Sπ
′
� instead of Sπ

′
� for which Theorem 3.8 still applies.
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Let 1 ≤ i ≤ m be a row index of A. By definition of PI and the matrix A,
we can write the sets S

πi−1

� and S
πi−1

� as:

S
πi−1

� = {k : πi−1(k) 6= πi(k)} = {k : Ai,k 6= Ai+1,k}
S
πi−1

� = {k : πi−1(k) = πi(k)} = {k : Ai,k = Ai+1,k}.

(Here note that the i-th row of A corresponds to the policy with index i−1
in the PI-sequence. Also note that we now use k to designate states.)

Let us choose any row indices i and j satisfying 1 ≤ i < j ≤ m. The-
orem 3.1 ensures that πi−1 ≺ πj−1. Now suppose by contradiction that
πi−1(k) = πj−1(k) for all k /∈ (S

πi−1

� ∪ Sπj−1

� ). Let K = {k : πi−1(k) 6=
πj−1(k)}. With our assumption, we must have K ⊆ (S

πi−1

� ∪ Sπj−1

� ). Let

U and U ′ form a partition of K such that U ⊆ S
πi−1

� and U ′ ⊆ S
πj−1

� . In
that case, πi−1 ⊕ U = πj−1 ⊕ U ′, which violates Theorem 3.8. Therefore,
there must exist a state k for which (1) k /∈ Sπi−1

� , (2) k /∈ Sπj−1

� and (3)
πi−1(k) 6= πj−1(k). In terms of the matrix A, this implies that there exists a
column k such that (1) Ai,k 6= Ai+1,k, (2) Aj,k = Aj+1,k and (3) Ai,k 6= Aj,k.
These three conditions yield the Order-Regularity condition.

Note that the OR condition is invariant under permutation or negation
of matrix columns. By negating a column, we mean changing all 0 entries
to 1 and vice versa. Also observe that each pair (i, j) can be considered as a
constraint to be satisfied by some column of the matrix. We will say that A
satisfies a constraint (i, j) if it satisfies condition (4.1) for some column k.

Our aim is to find bounds on the number of rows of Order-Regular
matrices. It can easily be seen that all the rows must be different, leading
to a trivial 2n upper bound. The following tool will help us reach better
bounds.

Definition 4.2 (Constraint space). We introduce the constraint space as a
visualization tool to relate a binary matrix with the Order-Regularity con-
dition. To any pair (i, j) for which condition (4.1) is required (i.e. for all i, j
such that 1 ≤ i < j ≤ m), we associate a unit square of the Cartesian grid
centered at coordinate (i, j). Whenever we want to emphasize which part
of the matrix satisfies which part of the constraint space, we use a match-
ing coloring on some subset of entries of the matrix and the corresponding
squares of the constraint space.

The constraint space can be used in several ways. When considering a
matrix that is not Order-Regular, it allows us to visualize which constraints
(i, j) are satisfied by the matrix and which ones are not, and possibly detect
patterns. It also allows to visualize how each column of a matrix (or even
any given part of it) contributes in achieving Order-Regularity as illustrated
by Figure 4.1.
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Figure 4.1: (Left) Each column of the matrix and the constraints it satisfies are
associated with a color. (Right) The contribution of the red and blue blocks are
indicated while the unfilled part of the matrix is disregarded.

Most binary vectors encountered in our constructions are repetitions of
simple patterns, for which we introduce a compact notation.

Definition 4.3 (Patterns). A pattern
{
A
B

}
M

is a matrix composed of M
copies of A or B put below each other in alternation, starting from A. Here
M is called the size of the pattern. The matrices A and B are assumed to

have the same number of columns. For example,
{

0
1

}
5

=
[
0 1 0 1 0

]T
.

We sometimes omit the size of the pattern if it is clear from the context.

The following operation is also frequently used in our constructions.

Definition 4.4 (Extension). Let A be a binary matrix and let Ã be ob-
tained from A by negating some of its columns such that the first row of
Ã is identical to the last row of A. We call “the M -extension of A” the
construction of a matrix A′ composed of M alternating copies of A and Ã
such that:

A′ =

{
A

Ã

}

M

=




A

Ã
...
A

Ã
A



.

Notice that if A is OR, then Ã is OR too. Furthermore, the first row of A is
also identical to the last row of Ã. The effect of an extension is illustrated
in Figure 4.2 with A an OR matrix.

The following straightforward lemma will be of key importance for our
constructions.

Lemma 4.2. Let A′ be the M -extension of an OR matrix A with m rows.
Then any constraint (i, j) such that (s − 1) ·m < i < j ≤ s ·m for some
integer 1 ≤ s ≤M (that is, i and j are within one block) is satisfied by A′.
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Figure 4.2: An illustration of the effect of a 2-extension with a 4-rows matrix A.
If the last row of A had been different from the first row of Ã, then the row of
j = 4 of the constraint space would not have been completely colored.

Notice that if the appropriate columns of A ∈ {0, 1}m×n had not been

negated to obtain Ã, then Lemma 4.2 would not have been guaranteed
when j = s · m for any 1 ≤ s < M . This is because the convention
A′s·m,k = A′s·m+1,k from Definition 4.1 must be ensured for all columns at

the connection between the different A and Ã blocks.

4.2 Upper bounds and the Fibonacci conjec-
ture

In their works, Hansen and Zwick have performed an exhaustive search on
every possible Order-Regular matrix with up to n = 6 columns and proposed
the following conjecture that matches their observations perfectly.

Conjecture 4.3 (Hansen and Zwick, (2012)). The maximum number of
rows of an n-column Order-Regular matrix is given by Fn+2, the (n+ 2)nd
Fibonacci number.

For recall, the Fibonacci numbers are related to the golden ratio ϕ =

(
√

5 + 1)/2 ≈ 1.618 in such a way that Fn =
[
ϕn√

5

]
, where [·] stands for “the

closest integer to”. Therefore, Fn ∼ ϕn ≈ 1.618n. Note that except for
n = 5, the extremal matrix found (that is, the matrix with the most rows)
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was always unique, up to symmetry3. In Table 4.1, we show these extremal
matrices for n = 3 and 4.

0 0 0

1 1 1

0 0 1

0 1 1

0 1 0

0 0 0 0

1 1 1 1

0 0 0 1

0 1 1 1

0 0 1 0

0 1 1 0

0 1 0 0

1 1 0 0

Table 4.1: The unique extremal Order-Regular matrices for 3 and 4 columns.

In Section 4.4, we develop an algorithm to search for large OR matrices,
with a special attention given to speed. Using this algorithm, we were able to
perform an exhaustive search on all OR matrices with n = 7 columns. The
largest matrices we found had only 33 rows, hence the following Theorem.

Theorem 4.4. For n = 7, there exist no Order-Regular matrix with 34 =
Fn+2 rows and therefore Conjecture 4.3 is false.

Theorem 4.4 indicates that the Fibonacci sequence provides at best an
upper bound on the number of rows of an OR matrix. Its proof is given
by the computer-aided exhaustive search for n = 7. Our implementation
of the algorithm described in Section 4.4 is available at http://sites.

uclouvain.be/ORsearch.
The proof of Theorem 4.4 relies on the ability of our code to actually

perform an exhaustive search in the space of all 7-columns OR matrices.
To allow verifying this statement, we provide in Section 4.4 a detailed de-
scription of the design of the code and of the underlying algorithms. Note
that, as a sanity check, we verified that our program correctly recovers all
the extremal OR matrices for n = 1 to 6. To go even further, it would be
interesting to find a correctness certificate for the code or, if not possible, to
use a formal proof language like Coq (Bertot and Castéran, 2013) to assess
its correctness.

Although Theorem 4.4 denies the Fibonacci sequence as an exact fit on
the number of rows of extremal OR matrices, it still suggests Fn+2 = O(ϕn)
as a possible upper bound. Note that for small values of n, this bound is
surprisingly close to our (2 + o(1)) · 2n

n upper bound from Theorem 3.9 with
k = 24, although it is asymptotically much lower. Moreover, such a bound
would be a significant improvement over the best proven upper bound on the
number of rows of OR matrices which is given by the following proposition.

3Symmetric matrices can be obtained through column permutations and/or the nega-
tion of some columns.

4For n = 1, ..., 7, compare 2, 3, 5, 8, 13, 21, 34 with 4, 4, 5.3, 8, 12.8, 21.3, 36.6.

http://sites.uclouvain.be/ORsearch
http://sites.uclouvain.be/ORsearch
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Proposition 4.5. Let A ∈ {0, 1}m×n be an Order-Regular matrix. Then
m ≤ 2n−1 + 1.

To derive the bound of Proposition 4.5, let us relax the OR condition.

Definition 4.5. We say that a matrix A ∈ {0, 1}m×n is Order-Regular
w.r.t. the relaxed Condition (4.2) whenever for every pair of rows i, j of A
with 1 ≤ i < j ≤ m, there exists a column k such that

Ai,k 6= Ai+1,k = Aj,k. (4.2)

Of course, an OR matrix must also be OR w.r.t. the relaxed Condi-
tion (4.2). Let us now prove Proposition 4.5.

Proof of Proposition 4.5. First observe that further relaxing Condition 4.2
to Ai,k 6= Aj,k expresses the fact that every row of A must be distinct.
Furthermore, from Condition 4.2, it follows that for every pair of rows i, j
with 2 ≤ i < j ≤ m, we can never have Ai,k 6= Aj,k for all columns k.
This means that, except for the first row, any row r excludes some other
potential row r̄ to be in the matrix. Therefore, A can at most contain its
first row and 2n

2 other rows.

Interestingly, we will now see for the rest of this section that the bound
from Proposition 4.5 can be attained for matrices that are OR w.r.t. the
relaxed Condition (4.2). Even though insightful, the reading of the following
developments is not required to follow the rest of this chapter.

Definition 4.6 (Fused extension). Let A be a binary matrix and let Ã be
obtained from A by negating (that is, “switching all entries from 0 to 1 or

vice versa”) some of its columns such that the first row of Ã is identical to
the last row of A. We call “the fused extension of A” a matrix A′ defined
as:

A′ =

[
A
−Ã

]

where −Ã is the matrix Ã without its first row. We can understand a fused
extension as a usual extension where the last row of A is somehow fused
with the first row of Ã. The effect of a fused extension is illustrated in
Figure 4.3 with A an OR matrix w.r.t. Condition (4.2).

Fused extensions are the natural way of transposing the concept of ex-
tensions to OR matrices w.r.t. Condition (4.2). The result of Lemma 4.2
becomes the following.



4.2. Upper bounds and the Fibonacci conjecture 79

A′ =

A

−Ã
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j

Figure 4.3: An illustration of the effect of a fused extension with a 5-rows matrix
A that is OR w.r.t. Condition (4.2).

Lemma 4.6. Let A′ be the fused extension of an OR matrix A with m rows,
w.r.t. Condition (4.2). Then any constraint (i, j) such that 1 ≤ i < j ≤ m
or m ≤ i < j ≤ 2m− 1 is satisfied by A′.

The following construction describes a family of matrices that attains
the bound from Proposition 4.5.

Construction 4.1. Let A(1) = [ 0
1 ] and A(2) =

[
0 0
1 1
0 1

]
. We inductively build

a matrix A(n) ∈ {0, 1}mn×n, n ≥ 3, as follows:

A(n) =




A(n−1) .
{

0
1

}
mn−1

−Ã(n−1) .
{

0
1

}
mn−1−1




The first n− 1 columns of A(n) correspond to a fused extension of A(n−1).
Note that for n ≥ 2, mn is always odd.

Example 4.1. We illustrate Construction 4.1 for n = 4. We start from the
matrix A(3) ∈ {0, 1}m3×3, with m3 = 23−1 +1 = 5, which can be checked to

be OR w.r.t. Condition (4.2) and we define Ã(3) to be A(3) where the last
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Figure 4.4: (Left) To build the three first columns of A(4), we make a fused exten-
sion of A(3). We then add a fourth column to fill the constraints that remained to
be satisfied. (Right) The constraint space of A(4). The blue squares are satisfied
by the first three columns of A(4) and the green squares are satisfied by its last
column.

column has been negated so that the first row of Ã(3) equals the last row of
A(3).
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Ã(3) =

We then build A(4) as shown in Figure 4.4. Using the constraint space
on the right of the figure, it is easy to check that A(4) is indeed OR w.r.t.
Condition (4.2).

Interestingly, even if we do not add the fourth column, we already cover
almost the whole constraint space, as Figure 4.5 illustrates. The only con-
straints that remain unfilled are the ones such that i + j = m4 + 1. This
fact remains true for other values of n.

We now give a proof that the matrices defined in Construction 4.1 are
indeed Order-Regular.

Lemma 4.7. The matrices A(n) obtained from Construction 4.1 are OR
w.r.t. Condition (4.2).
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Figure 4.5: The first three columns of A(4) almost cover the whole constraint
space by themselves.

Proof. A(1) and A(2) can easily be checked to be OR w.r.t. Condition (4.2).
Let us show that A(n) is also OR w.r.t. Condition (4.2), assuming that
A(n−1) is so. We decompose the set of constraints that must be satisfied in
three cases.

Claim 1. The first n− 1 columns of A(n) satisfy every constraint (i, j)
where 1 ≤ i < j ≤ mn−1 or mn−1 ≤ i < j ≤ 2mn−1 − 1.

Claim 1 is a direct consequence from Lemma 4.6 since the first n − 1
columns of A(n) are simply a fused extension of the matrix A(n−1) which
has mn−1 rows by definition.

Claim 2. The first column of A(n) satisfies every constraint (i, j) where
1 ≤ i < mn−1 < j ≤ 2mn−1 − 1 such that i+ j is an odd number.

First, we show that the first column of A(n) is the simple pattern
{

0
1

}
mn

.
It is indeed true for n = 1. Assume it is true for n − 1. From Construc-
tion 4.1, the first column of A(n) is the fused extension of the first column
of A(n−1), namely the fused extension of

{
0
1

}
mn−1

, that is
{

0
1

}
mn

.

Let (i, j) be one of the constraints of interest. From the pattern we

identified, we have A
(n)
i,1 6= A

(n)
i+1,1 and since i + j is odd, we also have

A
(n)
i+1,1 = A

(n)
j,1 which ensures Condition (4.2).

Claim 3. The last column of A(n) satisfies every constraint (i, j) where
1 ≤ i < mn−1 < j ≤ 2mn−1 − 1 such that i+ j is an even number.

The last column of A(n) is designed such that for all i, 1 ≤ i < mn−1,

we have A
(n)
i,n 6= A

(n)
i+1,n and such that for all i, j, 1 ≤ i < mn−1 < j ≤
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2mn−1 − 1, we have A
(n)
i,n = A

(n)
j,n whenever i + j is even. Therefore, under

the assumptions made in the claim, Condition (4.2) is satisfied.

With these three cases, we have covered all possible pairs (i, j) and
hence, A(n) is indeed OR w.r.t. Condition (4.2).

Proposition 4.8. For any number of columns n, there always exists a
matrix A with 2n−1 + 1 rows that is OR w.r.t. Condition (4.2).

Proof. Such a matrix is given for instance by A(n) in Construction 4.1.
Indeed, from Lemma 4.7, A(n) is OR w.r.t. Condition (4.2) and its number
of rows satisfies mn = 2mn−1 − 1 and m1 = 2 which yields mn = 2n−1 +
1.

Remark 4.1. Using the same model as the relaxation from Definition 4.5,
we may think of two other meaningful relaxations where we replace Condi-
tion (4.2) by Ai,k 6= Aj,k = Aj+1,k or by Ai,k 6= Ai+1,k and Aj,k = Aj+1,k.
Interestingly, the second case is equivalent to requiring Proposition 3.4 as
only constraint on the PI-sequence. In both cases it is possible to show that
2n stands as a tight upper bound.

4.3 A new lower bound

This section is organized as follows. First, we show a simple construction
that allows to build OR matrices with n columns and Ω(

√
2
n
) rows. Then

we detail our construction to beat this bound as follows:

1. we introduce Strongly Order-Regular matrices, a refinement of OR
matrices that we will need for our construction and improve on the√

2 growth rate of the number of rows from the simple construction;

2. we describe and prove the heart of our construction and obtain a first
improvement over Schurr and Szabó’s bound in the setting of OR
matrices;

3. we finally add an additional refinement to our construction that allows
us to improve our bound even a bit further to our final bound.

4.3.1 A family of Order-Regular matrices with Ω(
√

2
n
)

rows

The following construction provides Order-Regular matrices for arbitrarily
large n with m = Ω

(√
2
n)

.
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Construction 4.2. We recursively build a matrix A(`) as follows:

A(`) =




A(`−1) .
{

0
1

} {
0
1

}

Ã(`−1) .
{

1
1

} {
0
0

}




where A(1) = [ 0
1 ] and where Ã(`−1) is obtained from A(`−1) by negating

some of its columns such that the first row of Ã(`−1) is identical to the
last row of A(`−1). The size of all the patterns used in the construction is
2`−1 and the resulting matrix A(`) has n` = 2` − 1 columns and m` = 2`

rows. A matching construction is given by Schurr and Szabó (2005) in the
framework of Acyclic Unique Sink Orientations.

Lemma 4.9. Matrices obtained from Construction 4.2 are Order-Regular
and satisfy m = Ω

(√
2
n)

with m and n its number of rows and columns
respectively.

Proof. We prove the lemma by induction on `. Clearly A(1) is OR (only one
(i, j) pair to check). We show that if A(`−1) is OR, then Order-Regularity
follows for A(`).

First, observe that the left part of A(`) is a 2-extension of A(`−1). Using
Lemma 4.2, we get all constraints (i, j) satisfied when either 1 ≤ i < j ≤
2`−1 or 2`−1 + 1 ≤ i < j ≤ 2`. The remaining constraints, i.e. those such
that 1 ≤ i ≤ 2`−1 and 2`−1+1 ≤ j ≤ 2`, are satisfied by the two last columns
of A(`). Indeed, if i is odd, then choosing k to be the first of the two extra
columns ensures condition (4.1) for all 2`−1 + 1 ≤ j ≤ 2`. The same goes
with even i’s and the second of the two columns. This reasoning is illustrated

by Figure 4.6. Furthermore, the matrix A(`) satisfies m` =
√

2
n`+1

.

Using Construction 4.2, we have a way of building OR matrices satisfying
m = Ω

(√
2
n)

. In the next subsections, we show how we can improve this
bound.

4.3.2 Building blocks

Similarly to the above Construction 4.2, our construction starts with a
building block that we will use to trigger the recursion. We require the
following Strong Order-Regularity condition on the building block which is
a restriction of the Order-Regularity condition.

Definition 4.7 (Strong Order-Regularity). We say that B ∈ {0, 1}m×n is
Strongly Order-Regular (SOR) whenever
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Figure 4.6: One step from Construction 4.2 is illustrated. The green matrices are
glued together and ensure the top and right constraints in the constraint space.
The two additional blue columns take care of the remaining square.

(1) for every pair of rows i, j of B with 1 ≤ i < j ≤ m, there exists a
column k1 such that:

Bi,k1 6= Bi+1,k1 = Bj,k1 = Bj+1,k1 (4.3)

(the original Order-Regularity condition);

(2) for every pair of rows i, j of B with 1 ≤ i and i + 1 < j ≤ m, there
exists a column k2 (necessarily different from k1) such that:

Bi,k2 6= Bi+1,k2 6= Bj,k2 = Bj+1,k2 . (4.4)

Again, we choose the convention that Bm+1,k = Bm,k.

In other words, at the entries i, i+ 1, j, j + 1 we now ask for one column
k1 at which we observe either 0, 1, 1, 1 or 1, 0, 0, 0 and for another column k2

at which we observe either 0, 1, 0, 0 or 1, 0, 1, 1. Clearly, this second column
cannot exist when j = i + 1, hence we do not ask for its existence in that
case. We say that a matrix doubly-satisfies a constraint (i, j) if there exists
a column k1 that verifies (4.3) and a column k2 that verifies (4.4) for that
constraint. (For an SOR matrix, every constraints such that 1 ≤ i and
i+ 1 < j ≤ m is doubly-satisfied.) An SOR matrix with 8 columns and 33
rows is given in Figure 4.7.
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B = B(1) =

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1

0 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

0 0 0 0 0 1 0 0

1 0 0 1 1 1 1 1

0 1 0 0 1 0 0 0

1 0 0 1 1 1 1 0

0 0 1 0 1 0 0 0

1 0 0 1 1 0 1 0

0 1 1 1 1 0 0 0

1 0 0 1 0 0 0 1

0 1 0 1 1 1 0 0

1 0 0 1 0 0 0 0

0 1 0 1 1 0 0 0

1 0 0 1 1 0 0 1

0 0 0 0 1 1 0 0

0 0 0 1 1 0 1 1

0 0 1 1 0 1 0 0

0 0 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 1 1 0 0 1

0 0 0 1 0 1 0 0

0 0 0 1 1 1 1 1

0 0 0 0 0 1 0 1

0 1 0 1 0 1 1 1

0 0 1 0 0 1 1 1

0 1 0 0 0 1 1 1

1 1 1 0 0 1 1 1

0 1 1 0 0 0 1 1

0 1 1 0 0 1 1 1

Figure 4.7: The 33 × 8 Strongly Order-Regular building block that we use to
obtain our first improvement to the Ω

(√
2
n)

lower bound.

4.3.3 Blowing up

We now provide our main construction that enables us to improve the
bound. We start by describing the components of each iterate of the con-
struction. Then we show that it indeed generates Order-Regular matrices
and conclude with the resulting new lower bound.

Construction 4.3. Let B = B(1) ∈ {0, 1}M×N be the building block for
the construction. We inductively build a matrix B(`) ∈ {0, 1}m`×n` as the
merging of three blocks:

B(`) =
[
C(`) D(`) E(`)

]
.
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The blocks C(`), D(`) and E(`), ` ≥ 2, are defined as follows.

• The C(`) block is composed of M copies of the previous iterate glued
together:

C(`) ,

{
B(`−1)

B̃(`−1)

}

M

=




B(`−1)

B̃(`−1)

...
B(`−1)

B̃(`−1)

B(`−1)



.

• The D(`) block expands the building block B in the following way:

D(`) ,




d1,1 d1,2 . . . d1,N

d2,1 d2,2 . . . d2,N

...
...

. . .
...

dM,1 dM,2 . . . dM,N




with:

di,k ,

{
Bi,k
Bi+1,k

}

m`−1

=





{
0
0

}
m`−1

if Bi,k = 0 and Bi+1,k = 0
{

0
1

}
m`−1

if Bi,k = 0 and Bi+1,k = 1
{

1
0

}
m`−1

if Bi,k = 1 and Bi+1,k = 0
{

1
1

}
m`−1

if Bi,k = 1 and Bi+1,k = 1

again with the convention that BM+1,k = BM,k for all k.

• The E(`) block is composed of two extra columns that will ensure the
Order-Regularity of the whole:

E(`) ,

[{{
0
1

}
m`−1{

0
0

}
m`−1

}

M

{{
0
0

}
m`−1{

0
1

}
m`−1

}

M

]
=




{
0
1

}
m`−1

{
0
0

}
m`−1{

0
0

}
m`−1

{
0
1

}
m`−1

... .
... .{

0
1

}
m`−1

{
0
0

}
m`−1{

0
0

}
m`−1

{
0
1

}
m`−1{

0
1

}
m`−1

{
0
0

}
m`−1




.

We call ei,k the i − th pattern encountered in the k − th columns of
E(`).
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Figure 4.8: An example of two blowup steps of Construction 4.3 with a 3×2 SOR
building block. Notice how each part of the construction contributes in filling the
constraint space. The C blocks (green) fill in triangles of the size of the previous
iterate along the diagonal. The D blocks (blue) almost fill in the rest of the space.
The two last columns (violet) of each step of the construction aim to fill in the
remaining holes.

Given this construction, it follows that m` = M · m`−1 = M ` and that
n` = n`−1 +N + 2 = ` ·N + 2(`− 1). Figure 4.8 helps visualizing the role
of each block.

Definition 4.8 (Slices). All three blocks C(`), D(`) and E(`) from construc-
tion 4.3 are divided into M slices (that is, blocks of consecutive rows) of
size m`−1 each. We say that a row index i belongs to a slice s, 1 ≤ s ≤M ,
if (s − 1) ·m`−1 < i ≤ s ·m`−1. We also say that i corresponds to an odd
(or even) index of s if its relative index within s is odd (or even).

We now prove the central lemma of this section.

Lemma 4.10. Matrices B(`), ` = 1, 2, ..., obtained from Construction 4.3
using a Strongly Order-Regular matrix B with an odd number of rows as
building block are Order-Regular.

Proof. Clearly, B(1) = B is OR because it is also Strongly OR. Assuming
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that B(`−1) is OR, let us show that B(`) is also OR. Therefore, we show that
each block of the construction is designed to satisfy complementary subsets
of the constraints space. Figure 4.8 graphically illustrates on a particular
case how each block contributes in filling in the constraint space.

Claim 1. The C(`) block satisfies every constraint (i, j) where i and j
belong to the same slice s of B(`).

Claim 1 follows directly from Lemma 4.2 since C(`) is simply an M -
extension of B(`−1) which has m`−1 rows by definition.

Claim 2. The D(`) block satisfies every constraint (i, j) where i and j
belong to two different and non-adjacent slices si and sj.

Let (i, j) be such a constraint for some integers si and sj . From the
Strong Order-Regularity of B and the fact that si and sj are non adjacent
(that is, si+1 < sj), we know that B doubly-satisfies the constraint (si, sj).
Therefore, from the definition of D(`), we know that there exist two columns
k1 and k2 of D(`) such that the patterns that appear in the slices si and sj
for these columns are of the form:

dsi,k1 =
{
α
α

}
dsi,k2 =

{ β
β

}

dsj ,k1 =
{
α
α

}
dsj ,k2 =

{ β
β

}

for some α, β ∈ {0, 1} where α = 1 − α and β = 1 − β. Let I(i, j) ,[
i i+ 1 j j + 1

]
be the vector of row indices needed when checking

the OR condition (4.1) for the constraint (i, j). Then, using Matlab-like
notations, two cases are possible depending on parity:

• either D
(`)
I(i,j),k1

=
[
α α α α

]
and D

(`)
I(i,j),k2

=
[
β β β β

]
;

• or D
(`)
I(i,j),k1

=
[
α α α α

]
and D

(`)
I(i,j),k2

=
[
β β β β

]
.

In one or the other case there will always be a column k, either k1 or k2, such
that condition (4.1) is verified. This will be true even if i+1 or j+1 belong
to the next slice (respectively si+1 or sj+1) thanks to the assumption that
the building block B, and therefore also every iterate of Construction 4.3,
have an odd number of rows. Indeed, because of this parity, any pattern
di,k, of the form

{ α
β

}
, ends with an α and the next pattern below it starts

over with a β, thereby continuing the alternation of α and β for one more
row.

Claim 3. The D(`) block also satisfies every constraint (i, j) where i
and j belong to two adjacent slices s and s+ 1 and i corresponds to an odd
index of s.

In the case of adjacent slices, condition (4.4) is no longer ensured for B.
However, the original Order-Regularity still holds and there exists a column
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k of D(`) such that ds,k =
{
α
α

}
and ds+1,k =

{
α
α

}
for some α ∈ {0, 1}. Since

i corresponds to an odd index of s, we must have D
(`)
i,k = α and therefore

we have D
(`)
I(i,j),k =

[
α α α α

]
which confirms Claim 3.

Claim 4. The E(`) block satisfies every constraint (i, j) where i and j
belong to two adjacent slices s and s+ 1 and i corresponds to an even index
of s.

From the definition of E(`), we know that there is always one of the
two columns, say k, such that es,k =

{
0
1

}
and es+1,k =

{
0
0

}
, where ei,k

is the i-th pattern encountered in the k − th columns of E(`). Since i

corresponds to an even index of s, it means that E
(`)
i,k = 1 and therefore we

have E
(`)
I(i,j),k =

[
1 0 0 0

]
which confirms Claim 4.

Summary. Given any constraint (i, j):

• if i and j belong to the same slice, then the Order-Regularity condition
holds for the constraint from Claim 1;

• if they belong to different slices that are non-adjacent to each other,
then the condition holds from Claim 2;

• if they belong to adjacent slices, then the condition holds from Claims 3
and 4 together;

Therefore, all constraints are satisfied by B(`).

Proposition 4.11 (A first improvement on the lower bound). For all n

there exists an n-column Order-Regular matrix with at least m =
(

10
√

33
)n−7

=
Ω(1.4186n) rows.

Proof. We use Construction 4.3 with the 33 × 8 building block from Fig-
ure 4.7. After ` steps of the construction, we get a matrix B(`) with m = 33`

rows and n = 10` − 2 columns and therefore m = 33(n+2)/10 = Ω( 10
√

33
n
)

when n = 8, 18, 28, . . . From Lemma 4.10, this matrix is Order-Regular. For
a value of n such that 10`−2 < n < 10(`+1)−2 for some integer `, the same
construction as for n = 10`−2 applies (simply add up to 9 dummy columns
to the construction to match the required number of columns). Clearly this
does not change the rate of growth.

4.3.4 One step further: modified building block con-
straints

Definition 4.9 (Partially-Strong Order-Regularity). We say that B ∈
{0, 1}m×n is Partially-Strongly Order-Regular (PSOR) whenever
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(1) for every pair of rows i, j of B with 1 ≤ i < j ≤ m, there exists a
column k1 such that:

Bi,k1 6= Bi+1,k1 = Bj,k1 = Bj+1,k1

(the original Order-Regularity condition);

(2) for every pair of rows i, j of B with 1 < i < j < m and for which j− i
is even, there exists a column k2 (necessarily different from k1) such
that:

Bi,k2 6= Bi+1,k2 6= Bj,k2 = Bj+1,k2 .

Once again, we choose the convention that Bm+1,k = Bm,k.

The difference with the Strong Order-Regularity lies in the second con-
dition. We now no longer require the existence of the column k2 when i = 1,
when j = m or when j − i is an odd number, hence the constraints that
are doubly-satisfied by a PSOR matrix are those such that 1 < i < j < m
and j − i is even. As illustrated by Figure 4.10, we are allowed to do this
relaxation because the E(`) block from Construction 4.3 actually satisfies
more constraints than the sole ones it was designed to satisfy initially (as
referred to in Claim 4 of the proof of Lemma 4.10) making it possible to
reduce the set of constraints that the D(`) block has to satisfy and hence to
soften the SOR condition. The softened condition allows us to find a larger
building block which in turn results in an improved lower bound.

Before we show why using PSOR building blocks results in OR matrices,
we need to slightly adapt Construction 4.3, and more precisely the definition
of the E(`) block.

Construction 4.3∗. Let B̂ = B̂(1) ∈ {0, 1}M×N be a PSOR building block
matrix. In the same spirit as Construction 4.3, we inductively build a matrix
B̂(`) ∈ {0, 1}m`×n` as the merging of three blocks:

B̂(`) =
[
Ĉ(`) D̂(`) Ê(`)

]
,

where the definitions of Ĉ(`) and D̂(`) are the same as those of C(`) and
D(`) in Construction 4.3 with B̂(`) and B̂ taking the role of B(`) and B
respectively and where

Ê(`) =




ê1,1 ê1,2

ê2,1 ê2,2

...
...

êM,1 êM,2
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B̂ = B̂(1) =

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1

0 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0

1 0 1 1 1 1 1 1

1 0 0 0 0 1 0 0

0 1 0 1 1 1 1 1

1 1 0 0 0 0 0 1

1 1 0 1 1 1 1 0

1 0 0 0 1 0 0 1

0 1 1 0 1 1 1 0

1 0 0 0 1 0 0 0

0 1 1 1 1 1 0 0

0 0 0 0 1 0 0 0

0 1 1 1 1 0 0 1

1 1 0 1 0 0 0 0

0 0 1 1 1 0 1 0

0 1 1 0 0 0 0 0

1 1 1 1 1 0 1 0

0 1 1 0 1 0 0 0

1 1 0 0 1 0 1 0

1 1 1 0 1 0 0 1

1 0 1 0 1 1 1 0

1 1 1 0 1 0 0 0

1 1 1 0 0 1 1 0

1 1 1 0 1 0 1 1

1 0 1 0 0 0 1 0

0 1 1 0 1 0 1 0

0 1 1 1 0 0 1 0

0 0 1 0 0 0 1 1

0 1 0 0 0 0 1 1

1 1 1 0 0 0 1 1

0 1 1 0 0 0 1 0

0 1 1 0 0 0 1 1

Figure 4.9: The 35× 8 Partially-Strongly Order-Regular building block that we
use to obtain our final lower bound.

is a slight modification of E(`) such that:

êi,k =





{
0
1

}
if i = 1 and k = 2,{

0
0

}
if i = M and k = 1,

ei,k otherwise.

The only changes compared to Construction 4.3 is that the second col-
umn of Ê(`) now starts with

{
0
1

}
instead of

{
0
0

}
and its first column now

ends with
{

0
0

}
instead of

{
0
1

}
. Clearly, the modification can only help to

satisfy more constraints.



92 Chapter 4. Order-Regular matrices

0

1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

Figure 4.10: If we only used the C(`) and D(`) blocks (respectively in green and
blue) in Construction 4.3 with an SOR building block, there would remain a few
holes in the constraint space (top). The E(`) block is designed to fill these holes.
But a slightly improved version of the E(`) block (violet) actually fills much more
than just the required holes (bottom). This fact can be exploited to soften the
constraints on the building block and further improve the lower bound to obtain
our final bound.
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Lemma 4.12. Matrices obtained from Construction 4.3 ∗ using Partially-
Strongly Order-Regular building blocks with an odd number of rows are
Order-Regular.

Proof. The proof is inductive, in the same flavor as the proof of Lemma 4.10.
Knowing that B̂(1) is OR and assuming that B̂(`−1) is OR too, we show that
B̂(`) must also be OR.

Claim 1. The Ĉ(`) block satisfies every constraint (i, j) where i and j
belong to the same slice s of B̂(`).

The argument is the same as for Claim 1 in the proof of Lemma 4.10.

Claim 2. The D̂(`) block satisfies every constraint (i, j) where i and j
belong to two different slices si and sj such that si 6= 1, sj 6= M and sj − si
is even.

From the Partially-Strong Order-Regularity of the building block B̂ and
the conditions on si and sj , we know that the constraints (si, sj) is doubly-

satisfied by B̂. Therefore, the same reasoning as the one of Claim 2 in the
proof of Lemma 4.10 applies.

Claim 3. The D̂(`) block also satisfies every constraint (i, j) where i
and j belong to two different slices si and sj such that si = 1, sj = M or
sj − si is odd and such that i corresponds to an odd index of si.

Here, the constraint (si, sj) is not doubly-satisfied by B̂ but i corre-
sponds to an odd index of si. Again, the same argument as for Claim 3 in
the proof of Lemma 4.10 applies here.

Claim 4. The Ê(`) block satisfies every constraint (i, j) where i and j
belong to two different slices si and sj such that si = 1, sj = M or sj − si
is odd and such that i corresponds to an even index of si.

We evaluate the three possible cases when i corresponds to an even index
of si.

(1) If si = 1, we have Ê
(`)
[ i i+1 ],k =

[
1 0

]
for both columns k = 1 and 2

(since i corresponds to an even index of si), and we have Ê
(`)
[ j j+1 ],k =[

0 0
]

for either k = 1 or k = 2.

(2) When sj = M , we have Ê
(`)
[ j j+1 ],k =

[
0 0

]
for both k = 1 and 2, and

we have Ê
(`)
[ i i+1 ],k =

[
1 0

]
for either k = 1 or k = 2.

(3) If si 6= 1, sj 6= M and sj − si is an odd number, then êsi,k1 =
{

0
0

}

and êsi,k2 =
{

0
1

}
or vice versa. Furthermore, êsi,k and êsj ,k are

different patterns for both k = 1 and 2 (either
{

0
0

}
and

{
0
1

}
or vice

versa). Therefore, there will always be one of the two columns, say
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k′, such that êsi,k
′

=
{

0
1

}
and êsj ,k

′
=
{

0
0

}
and hence such that

Ê
(`)
I(i,j),k′ =

[
1 0 0 0

]
.

Summary. A constraint (i, j) such that i and j belong to the slices si
and sj is satisfied by:

• the Ĉ(`) block if si = sj ;

• the D̂(`) block if si 6= sj and the constraint (si, sj) is doubly-satisfied
by B;

• either the D̂(`) block or the Ê(`) block if si 6= sj and the constraint
(si, sj) is not doubly-satisfied by B (which is the case when si = 1,
sj = M or sj − si is odd).

Theorem 4.13. Given a number of columns n, there exists an Order-

Regular matrix with at least m =
(

10
√

35
)n−7

= Ω(1.4269n) rows.

Proof. The proof is analog to the one of Proposition 4.11 with the PSOR
building block from Figure 4.9 and using Lemma 4.12 to guarantee that the
construction indeed provides OR matrices.

4.4 The art of building large matrices

Our results heavily rely on our ability to work with large (PS)OR matrices
efficiently. First, to disprove Conjecture 4.3, we performed an exhaustive
search on the massive set of OR matrices with n = 7 and found no matrix
with 34 = Fn+2 rows. Then, to obtain our lower bounds in Proposition 4.11
and Theorem 4.13, we searched for large enough matrices in the even huger
set of (P)SOR matrices with n = 8.

In this section, we describe the elements that make the algorithms effi-
cient while also assessing their correctness. This is especially important for
Theorem 4.4 where we need to ensure that the search for OR matrices was
indeed exhaustive.

To emphasize why the efficiency of the algorithms matters, let us illus-
trate the size of the search space. First regarding the exhaustive search,
3× 1011 is a conservative lower bound on the total number of OR matrices
with n = 7, excluding symmetrical cases5. Therefore, we cannot afford to
examine each of these matrices individually and performing an exhaustive
search requires to come up with some additional tricks. Furthermore, the
size of the search space grows doubly exponentially with n hence stepping

5We extrapolate the exact number to be around 3× 1016 using a doubly exponential
regression from the number of branches for n = 1 to 6.
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from n to n+ 1 columns makes a big difference. Including all the tricks and
optimization described below, we were able to reduce the execution time to
1 month for n = 7 (using 10 Intel R© Xeon R© X5670 cores). As a comparison,
the final code took less than 10 seconds for n = 6. This time increase when
incrementing n by one suggests that the exhaustive search for n = 8 is very
challenging. Regarding the search for building blocks, the total number of
(P)SOR matrices with n = 8 is significantly larger than that of OR matrices
with n = 7. However in that case, we only need to find one matrix that
is as large as possible, which we achieve through the design of an efficient
search strategy.

In the rest of this section, we present the techniques that we used to
search the space of OR matrices without having to scan every candidate
matrix and provide a pseudo-code of our algorithm. We also present the
specific ideas that we used to perform an exhaustive search on the space
and describe our search strategy to look for large matrices when an ex-
haustive search is neither within reach, nor necessary. The source code
for our algorithm is written in Go language and is available at http:

//sites.uclouvain.be/ORsearch. A help file explaining how to use the
program and tune the parameters is also available there.

4.4.1 General principles

The steps below focus on OR matrices but an equivalent procedure applies
for (P)SOR matrices as well.

Symmetry. OR matrices stay OR when a permutation or a negation
is applied to some of their columns. Therefore we always assume that the
columns follow each other in a lexicographical order and that the first row
is composed of all 0 entries. We can also assume that the second row is
composed of all 1 entries since starting a column with, e.g., 00, can only
satisfy less constraints than the same (negated) column that would start
with 01 instead. This way we remove redundancy in the search space.

Branching. If the first block of d rows of a matrix is infeasible itself
there is no need to check the rest of the matrix. On the other hand, if the
first d rows of several matrices are the same, it is unnecessary to recheck
this part every time. We exploit these observations by using a depth first
search on the matrices. If we have an initial block of d rows that is feasible,
we try every extension to d+ 1 rows and only continue with those that do
not violate the OR condition. We are thus exploring a huge search tree
whose root is by default the empty matrix and for which any node at depth
d, that is at distance d from the root, corresponds to an OR matrix of size
d× n.

Remark 4.2 (Order-Regularity∗). In this section, we use a variation of the

http://sites.uclouvain.be/ORsearch
http://sites.uclouvain.be/ORsearch
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OR condition which we refer to as OR∗: we require that there exists a
column k such that identity (4.1) is verified for all 1 ≤ i < j < m but
not for j = m. We thereby allow the last two rows to be equal. Yet, both
conditions are equivalent. Indeed, from an OR∗ matrix, remove the last row
and it becomes OR. On the other hand, take an OR matrix and copy its
last row to obtain an OR∗ matrix. Therefore, there exists an OR matrix
with m rows iff there also exists an OR∗ matrix with m+ 1 rows. Similarly,
we refer to the same variation of the (P)SOR condition by (P)SOR∗.

Filtering. During the branch search, we aim to avoid checking infeasible
possibilities over and over again. We try to filter them out as soon as they
become infeasible. Assume we are investigating a branch with the first d
rows fixed. The order-regularity condition deals with rows by pairs, and in
any extension, any pair of rows that we encounter later has to be compatible
with the same first d rows. We can see these pairs as the rows labeled j
and j + 1 in the order-regularity condition, to be compared with the pairs
labeled i and i+1 with i < d. Adding row d+1 causes new conditions to be
imposed on the future pairs, thereby reducing the set of feasible ones. Since
these conditions must hold as long as the same d + 1 rows are there, this
allows to filter the set of pairs to be considered for all the branches below. In
the end, we record pairs of rows because of the nature of the OR condition
and this allows to extend the matrix row by row without ever checking the
same OR condition twice in the same branch. We now formalize how this
filtering happens.

Definition 4.10 (Compatible pairs). Let A be some d×n Order-Regular∗

matrix. We define PA, the set of compatible pairs of A, as:

PA =
{

(r, q) : r, q ∈ {0, 1}n and ∀ i, 1 ≤ i < d,∃ k, 1 ≤ k ≤ n (4.5)

such that Ai,k 6= Ai+1,k = rk = qk

}
.

We also define RA and QA, the projections of PA on the set of rows that
respectively appear as the first and second entry of a pair:

RA =
{
r ∈ {0, 1}n : ∃ q ∈ {0, 1}n for which (r, q) ∈ PA

}
, (4.6)

QA(r) =
{
q ∈ {0, 1}n : (r, q) ∈ PA

}
. (4.7)

Figure 4.11 illustrates how PA, RA and QA relate to each other on an
example matrix.

Given an OR∗ matrix A, the set of possible extension rows q such that[
A
q

]
is OR∗ can be easily identified using PA. Indeed, if r is the last row of

A, then the set of rows q that are allowed to extend A are exactly the ones
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A =
000
111
101

⇒ PA =

RA

101

100

001

QA(101)

QA(100)QA(001)

001 100 101

100 101

001 101

Figure 4.11: For this example matrix A, any pair of rows (r, q) /∈ PA will never
allow a valid extension of A. We encode the set of compatible pairs PA as the set
RA where each entry r relates to a set QA(r). In this example, notice that even
though A is OR∗, it does not satisfy the symmetry rules.

such that (r, q) ∈ PA. Moreover, the PA set can only shrink as we add rows
to A hence the following lemma.

Lemma 4.14. Let A be some d × n Order-Regular∗ matrix of the form[
A−

r

]
and let A+ =

[
A
q

]
for some row q. Then A+ is Order-Regular∗ iff

q ∈ QA(r). Furthermore for any r, q, it holds that (r, q) ∈ PA+ iff both
(r, q) ∈ PA and there exists a column k such that A+

d,k 6= A+
d+1,k = rk = qk.

Therefore PA+ ⊆ PA .

Proof. First we observe that:

q ∈ QA(r)⇔ (r, q) ∈ PA,
⇔ ∀ i, 1 ≤ i < d,∃ k : Ai,k 6= Ai+1,k = rk = qk,

⇔ ∀ i, 1 ≤ i < j = d,∃ k :A+
i,k 6= A+

i+1,k = A+
j,k = A+

j+1,k,

since Ai,k = A+
i,k for all i, 1 ≤ i ≤ d. Furthermore, using the fact that A

is OR∗, we also have that for all i, j, 1 ≤ i < j < d, there exists a column
k such that A+

i,k 6= A+
i+1,k = A+

j,k = A+
j+1,k. Therefore, condition (4.1) is

verified for all i, j, 1 ≤ i < j < d + 1 and we have that q ∈ QA(r) iff A+ is
OR∗.

The fact that (r, q) ∈ PA+ iff both (r, q) ∈ PA and there exists a column
k such that A+

d,k 6= A+
d+1,k = rk = qk follows directly from the definitions of

PA and PA+ .

Direct cutting. Storing and maintaining the sets of compatible pairs of
rows during the search has an additional advantage. Assume we are looking
at a branch corresponding to a d×n matrix A. Then we have |RA| distinct
rows appearing as r in the set of compatible pairs of rows PA. There is
clearly no way of getting more than d + |RA| + 1 rows by extending this
particular branch. Consequently, when searching for an (m∗ + 1)× n OR∗

matrix, if d+ |RA|+ 1 < m∗ + 1, then we discard the node right away and
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make a step back in the search tree. This idea is formalized by the following
lemma.

Lemma 4.15. Let A be some d×n Order-Regular∗ matrix, let RA be defined
by equation (4.6) and let m∗ = d+|RA|. Then there exists no Order-Regular∗

matrix with more than m∗ + 1 rows such that the first d rows equal A.

Proof. First we observe that QA(r) ⊆ RA for all r. Indeed:

q ∈ QA(r)⇒ (r, q) ∈ PA (by definition of QA(r)),

⇒ (q, q) ∈ PA (because if the condition in the definition of PA

holds for some r, it must also hold when r = q),

⇒ q ∈ RA (by definition of RA).

Therefore, any row we may want to add to A at any point must come from
RA.

Moreover, an OR∗ matrix cannot contain twice the same row (except
possibly its two last rows). Indeed, assume an m×n matrix A has its i− th
and j − th rows identical, 1 ≤ i < j < m, then this matrix cannot satisfy
the OR∗ constraint (i, j) since Ai,k = Aj,k for all k. Furthermore, any row
that we would add below A must come from RA. Therefore, we cannot add
more than |RA| different rows to A. Any extension of A must thus have at
most m∗ + 1 rows (the +1 comes from the fact that the two last rows of an
OR∗ matrix are allowed to be the same).

Using this trick, we are able to spot poor branches early on and hence
to significantly reduce the size of the search tree without missing any OR∗

matrix with 34 + 1 rows or more. To have a better idea of the amount of
computations saved from direct cutting, we compared the total number of
n-column OR matrices explored by our algorithm with or without cutting,
for small values of n. We observed that the algorithm with direct cutting
actually explores 8.3%, 46.6%, 81.3% and 94.3% less matrices than the one
without direct cutting for n = 3, 4, 5 and 6 respectively. Extrapolating from
these ratios, we estimate that the direct cutting trick allows to reduce the
search space by a factor of around 60 for n = 7.

4.4.2 General implementation

Combining the ideas from Section 4.4.1, we sketch the branch search strat-
egy in Algorithm 4. Notice that the starting branch needs not necessarily
be the empty matrix. Though, choosing a d×n OR∗ matrix A as the root in
Algorithm 4 will result in an OR∗ matrix whose first d rows correspond to
the rows of A. As we will see, this option will be useful later, but then this
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also means Algorithm 4 only performs an exhaustive search on a restricted
portion of the tree.

Observe that in Algorithm 4, A∗ always corresponds to the best matrix
found so far. Indeed, step 3 is the only step where the current A∗ is replaced
by another, better, matrix. Therefore, at step 14, we always overwrite A∗

with a matrix with at least as many rows.
Complexity issues. The steps 6 and 7 can be performed efficiently

using, e.g., a two dimensional array to encode the PA(`) sets. Moreover,
the step 8 encodes the direct cutting according to Lemma 4.15. Regarding
step 10, the rows q can be taken in any order. By adding randomness
in the order, we allow the algorithm to randomly return any matrix with
the target size. Finally, Lemma 4.14 ensures that step 13 requires at most
|PA(`) | OR∗-checks which is still the most expensive operation of each step
of the recursion. Observe that since QA(r) ⊆ RA (as shown in the proof of
Lemma 4.15), it holds that |PA| ≤ |RA|2 and hence that the cardinality of
both sets decrease together when ` increases.

4.4.3 For extremal matrices: we need exhaustive search

To further speed up our code in order to perform an exhaustive search on
all OR∗ matrices with 7 columns, we develop a code capable of parallel
processing.

Parallelization. In Algorithm 4, it is possible to perform the search
in parallel on different branches of the tree. For this purpose, we first
fix a depth d and precompute every possible non-symmetrical d × 7 OR∗

matrix. These matrices act as the roots of several independent subtrees
that together span the complete search tree. We then launch Algorithm 4
in parallel each time with a different root matrix as input. It finishes with
the answer whenever every subtree has been completely searched.

In our case, we chose d = 9 which resulted in 106 million distinct subtrees
of variable size. We obtained 35 subtrees that ended up with an OR∗ matrix
of 33 + 1 rows but none with an OR∗ matrix of 34 + 1 rows, leading to the
statement of Theorem 4.4 in Section 4.2.

4.4.4 For building blocks: we need an efficient search
strategy

To search for (P)SOR building blocks with 8 columns, the strategy described
in Section 4.4.1 still applies but the size of the search space does not allow
to perform an exhaustive search. However, in this case, we only need to
find a large matrix but not to prove that it is the largest (we found an
SOR block with 33 rows and a PSOR block with 35 rows in our case, see
Figures 4.7 and 4.9). To this end, based on the special structure of (P)SOR
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Algorithm 4: Branch search

Input: A, the (PS)OR∗ matrix of size d× n at the root of the search
tree (optional, [ ] by default).
mtarget, the target number of rows for the solution A∗

(optional, ∞ by default).

Initialization: Precompute PA using equation (4.5).

Output: A∗ = branchsearch(d,A, PA, A), a (PS)OR∗ matrix with n
columns and the maximum (or the target) number of rows
such that the first d rows of A∗ are given by A.

1 Function branchsearch(`, A(`), P (`), A∗)
2 if ` > #rows(A∗) then
3 A∗ := A(`).

4 if #rows(A∗) = mtarget then
5 return A∗.

6 Extract R(`) := RA(`) from P (`) using equation (4.6).

7 Extract Q(`) := QA(`)(r) from P (`) using equation (4.7) with r

being the last row of A(`).

8 if `+ |R(`)| < mtarget then
9 return A∗.

10 for q ∈ Q(`) do

11 A(`+1) :=
[
A(`)

q

]
.

12 if A(`+1) satisfies the symmetry rules then
13 Compute P (`+1) := PA(`+1) using equation (4.5).

14 A∗ := branchsearch(`+ 1, A(`+1), P (`+1), A∗)

15 return A∗.

Symmetry rules: the columns of the matrix must be lexicographically
sorted and the first and second rows must be respectively all zeros
and all ones.
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matrices, we designed an efficient search strategy to quickly find these large
instances. We now develop this strategy for SOR matrices. An equivalent
strategy exists for PSOR matrices as well but it requires us to introduce
some nonessential details. As in Section 4.4.1, we here use the variation of
the (P)SOR condition denoted by (P)SOR∗ and defined in Remark 4.2.

The search strategy is based on the reversing operation that reverses the
order of the rows and negates the even rows.

Definition 4.11 (Reversing). Let A ∈ {0, 1}m×n. We define Arev, the
reverse of A, where for all 1 ≤ i ≤ m, we have:

Arev
i,k =

{
Am+1−i,k if i is odd,

1−Am+1−i,k if i is even,

for all columns k.

The key observation is that reversing an SOR∗ matrix preserves its
Strong Order-Regularity∗.

Lemma 4.16. If A ∈ {0, 1}m×n is SOR∗, then its reverse is also SOR∗.

Proof. For all i, j, 1 ≤ i < j < m, let i′ = m − j and j′ = m − i so that
1 ≤ i′ < j′ < m. Let also I(i, j) ,

[
i i+ 1 j j + 1

]
and I ′(i, j) ,

m + 1 − I =
[
j′ + 1 j′ i′ + 1 i′

]
using Matlab notations. From the

Strong Order-Regularity∗ of A, there exist two columns k1 and k2 such
that:

AI′(i,j),k1 =
[
α α α α

]
and AI′(i,j),k2 =

[
β β β β

]

for some α, β ∈ {0, 1}. Then for Arev, the reverse of A, we have:





Arev
I(i,j),k1

= [ α α α α ] and Arev
I(i,j),k2

= [ β β β β ] if i is odd and j is odd,

Arev
I(i,j),k1

= [ α α α α ] and Arev
I(i,j),k2

= [ β β β β ] if i is odd and j is even,

Arev
I(i,j),k1

= [ α α α α ] and Arev
I(i,j),k2

= [ β β β β ] if i is even and j is odd,

Arev
I(i,j),k1

= [ α α α α ] and Arev
I(i,j),k2

= [ β β β β ] if i is even and j is even.

In every case, the Strong Order-Regularity∗ of Arev is ensured.

Based on Lemma 4.16, we can now formulate our back-and-forth search
strategy to find large SOR∗ matrices as described by Algorithm 5. For
that, we use an adapted version of Algorithm 4 to generate SOR∗ instead
of OR∗ matrices. This is achieved by modifying the definition of the set of
compatible pairs PA in Definition 4.10 with respect to the SOR∗ condition.
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Algorithm 5: Back-and-forth search

Input: d, T .
Output: An SOR∗ matrix.

Initialization: A(0), a random SOR∗ matrix with d rows obtained
from Algorithm 4 using input mtarget = d.
t = 0.

1 while stopping criterion do
2 Compute B(t+1) as the result of Algorithm 4 using input A = A(t).

3 Compute Brev, the reverse of B(t+1).

4 A(t+1) , Brev
1:d,:, the first d rows of Brev.

5 t← t+ 1.

6 return B(t).

Stopping criterion: after at least T steps, stop whenever B(t−T+1)

and B(t) have the same number of rows (stagnation in the last T
steps).

In Algorithm 5, the parameter d is typically chosen so that applying
Algorithm 4 at step 2 finishes in a reasonable time (so d should be large
enough to ensure a manageable size of the search trees) while leaving as
much room as possible for the optimization process (so d should not be too
large either). When looking for SOR∗ matrices with 8 columns, we typically
used d = 14. Also note that in Algorithm 5, it is important to avoid getting
the same A over and over again. We rely on the randomness introduced at
step 10 of Algorithm 4 to always get a random instance of the possible B
matrices. Interestingly, Algorithm 5 is guaranteed to not make the solution
worse at each iteration, as stated by the following proposition. However, we
cannot guarantee that it will find a globally optimal solution. Therefore it
may be useful to restart it until finding a matrix with a suitable number of
rows.

Proposition 4.17. In Algorithm 5, the number of rows of B(t+1) is always
at least as large as that of B(t) for all t ≥ 1.

Proof. At step 2 of Algorithm 5, applying Algorithm 4 with A(t) as the root
means performing a search in a subtree of the whole tree where the first d
rows are fixed. In this subtree, the matrix Brev computed at the step t is a
feasible solution since from Lemma 4.16, it is SOR∗ and since from step 4
its first d rows match those of A(t). Therefore, the best SOR∗ matrix B(t+1)

that can be found in the subtree must be at least as good (in terms of its
number of rows) as B(t).
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4.5 Two approaches to be further explored

As it is often the case in research worth undertaking, there are many ap-
proaches to attack the same problem. Some of them succeed, others fail
and most are left open. In this section, we briefly relate two approaches of
the latter type. We believe that these approaches could inspire new ideas
to attack the problem from a different angle.

Both approaches share the same premise, namely they look at a dual
version of the OR problem. In the OR problem, we try to insert as many
rows as possible in a matrix whose number of columns n is fixed while
maintaining the OR condition. In its dual version though, we fix the number
of rows m and try to satisfy every OR constraint (there is one for every pair
(i, j), 1 ≤ i < j ≤ m) with as few columns as possible. The problem
at hands is thus a constraint satisfaction problem and we are looking for
a lower bound in terms of m on the number of columns needed to solve
it. Then, upper bounds on the number of rows of an OR matrix can be
recovered by inverting the relation between m and n of this lower bound.

4.5.1 A balanced weighted constraint space

Suppose that every OR constraint of the constraint space is given a weight
wi,j , with 1 ≤ i < j ≤ m. Any column ξ of an OR matrix satisfies a subset
of these constraints. To ξ, we associate a value xξ defined as the sum of
the weights of the constraints it satisfies. Let ξ∗ be the column vector of
size m with the highest value and let s =

∑
i<j wi,j be the total sum of the

weights. Clearly, we need to satisfy every constraint at least once so the
sum of the values of the columns must be at least s. Therefore, we need
at least d s

xξ∗
e columns to achieve the Order-Regularity of the whole, which

yields a lower bound on the number of columns as we aimed for.

In the above approach, there are no constraints put on the weights them-
selves. Indeed, they are part of the variables of the problem: the better the
weights, the better the lower bound one can expect. In fact, to obtain good
lower bounds, one should intuitively give more weight to the constraints
that are “difficult” to satisfy.6 In the ideal scenario, it should be possible to
find weights for which even the best possible column can only satisfy a small
fraction (a fraction

xξ∗

s no larger than 1/ logϕm with ϕ being the golden
ratio would be great). This is what we could call a balanced weight function:
it would monitor the hard constraints by giving them more weight.

When looking at the constructions of Section 4.3, we observe that con-
straints in the bottom-left corner of the constraint space seem to be satisfi-

6We think of the difficult constraints as the ones that are incompatible with many
other constraints, especially if these other constraints are difficult themselves.
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Figure 4.12: If we weighted each constraint of the constraint space according
to the figure, what would be the amount of weight that is covered by each
column of an OR matrix? In particular, would it be possible to force a
balance between the contribution of each column? This is the question we
tried to answer with the weighted constraint space approach, hoping for the
existence of a suitable weight function, possibly the one represented above.
Unfortunately, it seems that it is always possible to cover around 1

8 th of the
total weight with a single column—thus a quite unbalanced situation.

able with few columns, so they should somehow receive less weight. Addi-
tionally, having in mind the Fibonacci conjecture from Hansen and Zwick
(Section 4.2), it may be tempting to propose a weight function in the spirit
of the one suggested in Figure 4.12, in the hope of finding a bound of the
kind n ≥ d s

xξ∗
e ≥ logϕm. However, even with variations on how we design

the weights, we did not manage to obtain any interesting bound. In fact, we
even tried to optimize the weight function in general for growing values of m
and what we observed was disappointing: the lower bound on the number
of columns of the OR matrix seemed to be converging to... 8?! While we
were not able to confirm this fact in general, we conjecture that it is always
possible to cover at least 1

8 th of the total weight with a single column. In
particular, this would mean that it is not possible to design a truly balanced
weight function.
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Conjecture 4.18. For any possible weight function w, it is possible to build
a column ξ such that xξ ≥ s

8 .

Nevertheless, we still believe that a more sophisticated study of the
above idea, with another definition of the value of a column for instance,
could lead to interesting results.

4.5.2 A graph coloring problem for the constraint space

Consider the set of constraints (i, j), 1 ≤ i < j ≤ m, that need to be
satisfied. Let us create a graph G whose nodes correspond to the pairs (i, j).
Then, let us add an edge between two nodes whenever the corresponding
constraints are mutually exclusive, so for instance, a column will not satisfy
both (1, 4) and (4, 6) because the first constraint implies entries 4 and 5 to be
identical and the second constraint requires them to be different. Following
this idea, we create a link between (i1, j1) and (i2, j2) whenever at least one
of the following conditions is satisfied:

1. i2 = j1,

2. i2 = i1 + 1 and j2 = j1 − 1,

3. i2 = i1 + 1 and j2 = j1,

4. i2 = i1 + 1 and j2 = j1 + 1.

An example of the corresponding graph for m = 5 is given in Figure 4.13.
A column of an OR matrix cannot possibly satisfy two constraints that are
neighbors in G. Suppose we assigned a color to each column of an OR
matrix and reported these colors on the nodes of the graph according to the
constraints they solve (if a constraint is satisfied by two columns, then it
does not matter which one we choose). Doing so, we obtain a proper coloring
of the graph (that is, two adjacent nodes never have the same color). For
a given number of rows m, a necessary condition for all the OR constraints
to be satisfiable with n columns is that there exists a proper coloring of
the corresponding graph with n colors. Therefore, the minimum number of
colors needed to color a graph properly, that is, the well-known chromatic
number χ(G), is a lower bound on the number of columns of an OR matrix
with m rows.

The above description leads to a relaxation of the OR problem where the
goal is to find the best possible lower bound on the chromatic number of G.
It is a relaxation because the definition of the graph only includes pairwise
mutual exclusion constraints, while there could also be triples of constraints
(or more) that are mutually exclusive even though they are compatible two
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Figure 4.13: A proper coloring of the graph G for m = 5 with 3 colors.
Notice how the coloring corresponds to the extremal OR matrix for n = 3,
as shown in Figure 4.1

by two. These constraints would not be edges anymore but rather hyper-
edges of the graph. However, we can neglect the information contained
in these hyper-edges and hope that the simplification does not affect the
chromatic number too heavily.

Ideally, we would like to find a lower bound on χ(G) that is explicit in
m and as tight as possible. Unfortunately, this is not an easy task: lower
bounds on the chromatic number of a graph are still an active topic of
research today. Here are a few possibilities that we explored.

• The chromatic number satisfies χ(G) ≥ ω(G) where ω(G) is the size
of the largest clique of G (that is, the largest subgraph of nodes that
are all connected together). Unfortunately, we can easily see that
ω(G) ≤ 3 in our case which only yields a trivial bound.

• Another well-known bound is given by χ(G) ≥ N
α(G) where N is the

number of nodes of the graph and α(G) is the independence number
of G, that is, the maximum number of mutually non-adjacent vertices
of G. Again, one can check that in our case, α(G) is of the order
of N/8 which again yields a trivial bound, possibly to be related to
Conjecture 4.18 in the first approach of this section.

• Other bounds exist as well, typically involving Lovász’s θ-function
(1979). Moreover, a number of possible bounds are described by Ma-
toušek and Ziegler (2004) and could be applied to the above graph.
Computing these lower bounds may be a challenge in themselves. We
see this approach as a valid perspective to the upper bound problem
of PI.



Chapter 5

Back from Order-Regular
matrices to Acyclic
Unique Sink Orientations

In the previous chapters, we introduced a number of tools to study the
complexity of Policy Iteration (PI). At the basis stand Acyclic Unique Sink
Orientations (AUSOs), a structure that nicely characterizes the partial order
of the policies of a Markov Decision Process (MDP). In Chapter 3, we
extracted a number of useful properties from this structure and used them to
refine the existing upper bound on the number of steps of PI. In an attempt
to improve this bound once more in the case of MDPs with two actions per
state, we formulated, in Chapter 4, the Order-Regularity condition (OR).
Here was the idea: when we apply PI on an AUSO, we explore a sequence of
policies (or vertices) that we can write as binary row-vectors and store into
an m × n binary matrix, where m is the number of explored policies (that
is, the number of PI steps) and n is the number of states of the MDP, or the
dimension of the AUSO. The OR condition can be seen as the translation
of the AUSO structure to this binary matrix, where it specifically regulates
the progress of PI. (See Section 4.1 for more details.)

OR matrices and AUSOs are closely linked together since the former is
a relaxation of the latter. But a natural question arises: is the relaxation
tight? Or in other words, is it always possible to find an AUSO that “re-
alizes” a given OR matrix? In this chapter, we show that the answer to
this question is positive if the OR matrix is Odd-and-Even-Free (OEF), a
special case that we introduce in Section 5.2, but negative for general OR
matrices. Moreover, we show that matrices with n columns that are both

107
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OEF and OR (or OEF-OR) allow
√

2
n+2 − 1 both as an upper and lower

bound on their maximum number of rows. Incidentally, since it is always
possible to design an AUSO that realizes a given OEF-OR matrix, the lower
bound also extends to bound the number of steps of PI in AUSOs where it
improves by a factor 2 over a bound by Schurr and Szabó (2005).

This chapter is divided into four sections. First in Section 5.1, we give a
formal definition of AUSOs. In Section 5.2, we introduce OEF-OR matrices
and provide tight bounds on their maximum number of rows. Then, in
Section 5.3, we show that there always exists an AUSO that realizes a given
OEF-OR matrix. Therefrom, we deduce a new lower bound for the number
of steps of PI in AUSOs. Finally, in Section 5.4, we propose an algorithm
to find a realizing AUSO to any OR matrix, whenever possible. We thereby
show, among other things, that such an AUSO does not always exist.

5.1 Acyclic Unique Sink Orientations of cubes

Definition 5.1 (Cube). Let N = {1, . . . , n}. We call cube of dimension n
or n-cube the tuple C = (V,E) where V = {α : α ⊆ N} is the set of vertices
and E = {(α, α ⊕ {k}) : α ∈ V, k ∈ N} is the set of edges. Here the “⊕”
operator can be seen as a symmetric difference or a XOR. Given α, β ∈ V ,
we define [α, β] as (the vertex set of) the subcube of (V,E) in which α and
β are antipodal, that is:

[α, β] = {γ ∈ V : (α ∩ β) ⊆ γ ⊆ (α ∪ β)}.

Given a subcube C = [α, β], we refer to α⊕β = (α∪β) \ (α∩β) as the free
dimensions of C, also denoted free(C), that is, the set of dimensions along
which we are allowed to move in C. We also define the distance between
any two vertices α and β as d(α, β) , |α⊕ β|.

Definition 5.1 is illustrated on Figure 5.1. We observe that [α, β] =
[α ∩ β, α ∪ β], where the latter representation can be thought of as the
canonical form of the subcube because it is independent of the chosen an-
tipodal vertices that describe it. Furthermore, given γ ∈ C, the definition of
free(C) indicates that modifying γ along any dimensions s ⊆ free(C) should
result in a vertex of C. Equivalently, the symmetric difference between two
vertices of C should belong to free(C). We state this simple fact without a
proof.

Lemma 5.1. Let C be a subcube and γ be any vertex of C. Then γ⊕s ∈ C
iff s ⊆ free(C).

In Definition 5.1, we also observe that [α, β] describes the smallest sub-
cube that contains α and β, who are thus antipodal to each other. It is
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C = [ 1 0 0 1, 0 1 0 1 ]

= [ 0 0 0 1, 1 1 0 1 ]

free dimensions of C
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Figure 5.1: Example of a 4-cube with a subcube C of dimension 2. Note
that C can be described through any of its pairs of antipodal vertices.

therefore clear that any other subcube containing α and β should also con-
tain [α, β], as the following lemma states.

Lemma 5.2. Let α and β be vertices of a subcube C. Then [α, β] ⊆ C.

Proof. Let C = [α′, β′] and let γ be any vertex of [α, β]. We can see that
the following inclusion relations hold:

(α′ ∩ β′) ⊆ (α ∩ β) ⊆ γ ⊆ (α ∪ β) ⊆ (α′ ∪ β′).

where the first and last inclusions come from the fact that (α′∩β′) ⊆ α, β ⊆
(α′ ∪ β′) and the second and third inclusions come from the definition of γ
being in [α, β]. Therefore [α, β] = [α ∩ β, α ∪ β] ⊆ [α′, β′] = C.

The following lemma also formulates some—more advanced—cube inclu-
sion property that will be useful in our future developments. Its statement
is also represented in a schematic way in Figure 5.2.

Lemma 5.3. Let α, β and ω be vertices of a subcube such that d(α, ω) ≥
d(γ, ω) for all γ ∈ [α, β]. Then [α, β] ⊆ [α, ω].

Proof. Let γ ∈ [α, β] and assume that γ /∈ [α, ω]. Let s = (γ⊕α) ⊆ (α⊕β),
where the inclusion comes from Lemma 5.1, and s 6= ∅ since γ must be
different from α. Then, still using Lemma 5.1, s 6⊆ (α ⊕ ω) and there
exists s′ ⊆ s such that s′ 6= ∅ and s′ ∩ (α ⊕ ω) = ∅. But then we have
γ′ , α⊕s′ ⊆ [α, β], yet d(γ′, ω) = d(α, ω)+ |s′| > d(α, ω) which contradicts
the assumptions.
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α

ω

β

γ

Figure 5.2: The idea of Lemma 5.3 represented schematically. The rectan-
gles can be thought of as a 2D projection of the cubes. If all the vertices in
[α, β] are “closer” from ω than α, then [α, β] ⊆ [α, ω].

Remark 5.1. Alternatively to Definition 5.1, a subcube C could also be
written as a word in {0, 1, ∗}n, where ∗ can be seen as a “wildcard” that
can be both 0 and 1 and that is used to represent the free dimensions of C.
For instance in Figure 5.1, we could represent the subcube C with the string
∗∗01. Although this representation allows a more intuitive interpretation
than the one of Definition 5.1, it often leads to longer proof mechanisms for
the results of this chapter, which is why we prefer the latter.

Before we formally define AUSOs, we need to define an orientation on
the edges of the cube.

Definition 5.2 (Orientation). We call O an orientation (of the edges) of
the n-cube iff for all γ ∈ V and all k ∈ N , O contains either (γ, γ ⊕ {k})
or (γ ⊕ {k}, γ) but not both. Such an orientation extends to any subcube
of the n-cube and, for all α, β ∈ V , we then talk about the orientation of
[α, β] as induced from O. Furthermore, given an orientation O, we refer to
a sink of a subcube [α, β] as any vertex σ ∈ [α, β] that has only incoming
edges in [α, β] (that is, a vertex for which there is no k ∈ α ⊕ β such that
(σ, σ ⊕ {k}) ∈ O).

Definition 5.3 (Acyclic Unique Sink Orientation). An orientation O of the
n-cube C is called a Unique Sink Orientation (USO) iff every subcube of
C has a unique sink. An orientation of C that is both USO and acyclic is
called an Acyclic Unique Sink Orientation (AUSO) of C.

Definition 5.4 (Outmap). Given an orientation O of the n-cube C, we
define the outmap T γ of a vertex γ ∈ V as the set {k ∈ N : (γ, γ⊕{k}) ∈ O},
that is, T γ is the set of dimensions spanned by the outgoing edges in γ. In
that respect, the outmap of a sink is the empty set.

Note that given γ ∈ [α, β], T γ ∩ (α⊕ β) is the restriction of the outmap
of γ to the subcube [α, β]. Interestingly, Szabó and Welzl (2001) show that
an orientation O of the n-cube is USO iff the corresponding outmaps satisfy
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Figure 5.3: The extremal example for Policy Iteration in an AUSO of dimen-
sion 3. The PI jumps are represented in red. Translating Proposition 3.5
into the AUSO framework, we can guarantee the existence of a path in the
cube (here represented in blue) going through each policy of the PI-sequence.

the following condition:

(Tα ⊕ T β) ∩ (α⊕ β) 6= ∅ for all α, β ∈ V .

This condition simply requires that no two vertices share the same outmap,
even when restricted to any subcube [α, β]. It can be seen as an alternative
definition of USOs in terms of their outmap.

Definition 5.5 (Policy Iteration). The Policy Iteration update rule can be
extended to AUSOs as follows. Given an AUSO, we start from an initial
vertex π0 at step i = 0, and then at any step i, we jump from πi to πi+1 =
πi⊕Tπi . The algorithm stops whenever Tπi = ∅, that is, when the (unique)
sink has been reached. As for MDPs, this algorithm always converges. As
in the previous chapters, we refer to the sequence of vertices π0, . . . , πm−1

as the PI-sequence. In matrix form, this PI-sequence always corresponds to
an OR matrix which we say was realized from the AUSO.

The policies of an MDP (with n states and two actions per state) now
correspond to vertices of a matching AUSO and the improvement set of a
policy corresponds to the outmap of the corresponding vertex in the AUSO.
Note that PI is also known as Bottom-Antipodal in the AUSO framework.
Figure 5.3 illustrates how it works on an example. Schurr and Szabó (2005)

showed that it may require
√

2
n

steps to converge on an AUSO. In what
follows, we improve this bound by a factor 2.

Remark 5.2. A vertex or an outmap can be represented by either a subset
of N or a binary vector (the k − th entry of the binary vector equals 1 iff
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k ∈ N). Indeed, both representations are equivalent and any operation on
sets has its counterpart in binary vectors and vice versa. Nevertheless, it
is often natural to think of a vertex (or a policy) as a binary vector (that
represents its “coordinates”) and of an outmap as a subset of N (because
it represents a set of (improving) “directions”).

The topic of (A)USOs has already been well studied. See, e.g., the works
of Gärtner, Schurr, Szabó and Welzl for more on the topic. In particular,
see Gärtner (2003) for comprehensive lecture notes introducing randomized
algorithms using the framework of AUSOs.

5.2 Odd-and-Even-Free matrices: a special class
of Order-Regular matrices

In this section, we consider a restricted class of OR matrices, that we call

Odd-and-Even-Free, and that allow
√

2
n+2 − 1 both as an upper and lower

bound on their maximum number of rows. Though it does not improve the
bound from Theorem 4.13, the lower bound also holds for OR matrices. In
the next section, we will show that these matrices are a special case for
which a corresponding AUSO always exists. This will allow us to extend
the lower bound to AUSOs as well, this time resulting in an (admittedly
modest) improvement of a factor 2 over the state of the art bound.

We organize this section in three parts. First, we define the class of
matrices of interest and formulate some simple properties. Then, we state
the key contraction property that leads, in the last part, to the announced
bounds. In this section, we assume that the reader is confortable with the
notions developed in Chapter 4, Section 4.1, even though we give a short
reminder.

5.2.1 Odd-and-Even-Free matrices

As we saw in the previous chapter, Section 4.1, the OR problem consists in
bounding the maximum number of rows of an OR matrix with n columns, for
any given value of n. Let us recall that we defined any matrix A ∈ {0, 1}m×n
to be Order-Regular (OR) whenever for every pair of rows 1 ≤ i < j ≤ m,
there exists a column k such that

Ai,k 6= Ai+1,k = Aj,k = Aj+1,k. (5.1)

We added the convention that Am+1,k = Am,k to cover the cases where
j + 1 = m+ 1 in the above condition. In other words, an OR matrix needs
to satisfy the combinatorial condition (5.1) for every pair of rows (i, j),
1 ≤ i < j ≤ m, which we call the constraints of the problem. The number
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of constraints naturally grows with the number of rows m and we seek for
the smallest value of m for which it is no longer possible to satisfy all the
constraints (minus 1).

In the dual version of the OR problem, we rather fix the number of rows
m and try to satisfy every constraint with as few columns as possible. With
that view, the problem at hand becomes a constraint satisfaction problem
in which each column contributes in satisfying a subset of the constraints.
The contribution of each column can be conveniently visualized using the
constraint space introduced in the previous chapter (see Definition 4.2). It
can be observed that it is often efficient to satisfy the constraints (i, j) where
the index i is odd using different columns than to satisfy the constraints
where the index i is even. In the constraint space, this means to color the
columns of the space with an odd index i separately from (that is, with
different colors than) the columns of the space with an even index i, as
illustrated in Figure 5.4. We now formalize this type of construction by
introducing Odd-and-Even-Free matrices.

Definition 5.6 (Odd-and-Even-Free matrices). We say that a matrix Ao ∈
{0, 1}m×n is Odd-Free (OF) iff for any row i and column k of Ao, it holds
that

Aoi,k = 0 ⇒ i is an odd number.

Alternatively, Ao is OF iff Aoi,k = 1 for all even row indices i and all columns
k. (The rows of Ao with an even index are fixed to only 1’s so only the rows
with an odd index are “free” to be composed of both 0’s or 1’s, hence the
name). We define an Even-Free (EF) matrix Ae ∈ {0, 1}m×n analogously
with the zeros appearing only on rows with an even index. We call Odd-
and-Even-Free (OEF) any matrix A that can be written as [Ao|Ae] (after a
possible permutation of its columns) where Ao is OF and Ae is EF.

By definition, an OF (resp. EF) matrix cannot be OR but it can possi-
bly satisfy all the constraints (i, j) for which i is odd (resp. even). Following
this idea, we say that a matrix A is Odd-Order-Regular (OOR) (resp. Even-
Order-Regular (EOR)) whenever for any rows 1 ≤ i < j < m with i odd
(resp. even), there exists a column k such that the Condition (5.1) is satis-
fied, with the usual convention that Aj,k = Aj+1,k when j = m. A is OR
iff it is both OOR and EOR.

In terms of the constraint space, an OF matrix Ao covers the columns
corresponding to odd values of i whereas an EF matrix Ae covers the col-
umns for even values of i.

Remarks 5.3. The following observations can be made.

1. When searching for large OF matrices that are OOR, we may assume
that the matrices have an odd number of rows. Indeed, if an OF
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Figure 5.4: From an OOR matrix Ao, we can build an OR matrix A with twice
as many columns and the same number of rows.

matrix with an even number of rows is OOR, then we may add a row
of ones at the end of it without altering the OOR nor the OF property.
An analogous observation can be made for EF matrices that are EOR.

2. If there exists an OOR (resp. EOR) matrix with n columns and m
rows, then it is not hard to see that there must also exist such a matrix
that is OF (resp. EF). Therefore, when searching for the largest OOR
or EOR matrices with a fixed number of columns, it is enough to
explore only the OF and EF matrices.

The following lemma is also a straightforward property of OOR and
EOR matrices.

Lemma 5.4. For any odd k, removing the first k rows of an EOR (resp.
OOR) matrix yields an OOR (resp. EOR) matrix.

Interestingly, if one finds an OOR matrix, then it is easy to find an EOR
matrix with one more row, as the following construction shows.

Construction 5.1. From an OOR matrix Ao ∈ {0, 1}m×n, one can build
an EOR matrix Ae ∈ {0, 1}(m+1)×n as follows:

Ae =

[
r
Ao

]

where r is a row of ones1. It is easy to check that Ae is EOR. Using this
construction, one can also use Ao to build an OR matrix A ∈ {0, 1}m×2n as
Figure 5.4 illustrates.

Of course, a converse construction exists to obtain an OOR matrix from
an EOR matrix. Construction 5.1 suggests the following lemma.

1Choosing r to be a row of ones ensures that if Ao is OF on top of being OOR, then
the constructed matrix Ae is EF.
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Lemma 5.5. There exists an OOR matrix with m rows and n columns iff
there exists an EOR matrix with m+ 1 rows and n columns.

Proof. From an m × n OOR matrix, Construction 5.1 shows how to build
an (m + 1) × n EOR matrix. Moreover, take an (m + 1) × n EOR matrix
Ae of the form [ r

Ao ] where r is the first row of Ae. Then from Lemma 5.4,
Ao is OOR.

5.2.2 The contraction matrix

When studying OF matrices, it is striking that OR constraints are always
satisfied by pairs so that if some pair (i, j) is satisfied with j even, then
the pair (i, j + 1) is also satisfied. Furthermore, we should not care about
constraints (i, j) for which i is even because OF matrices are unable to
satisfy them anyway. These observations motivate the following contraction
of OF matrices.

Definition 5.7 (Contraction matrix). Given an OF matrix Ao ∈ {0, 1}m×n
(with m odd according to Remark 5.3), we build its related contraction

matrix C(Ao) ∈ {0, 1}m+1
2 ×n as follows: for all i, 1 ≤ i ≤ m+1

2 and k, 1 ≤
k ≤ n:

Ci,k(Ao) =

{
0 if Ao2i−1,k = 0

1 if Ao2i−1,k = 1.

In the definition, the even row indices play no role since they correspond to
entries that are always equal to 1.

Note that the matrix Ao can be uniquely recovered from its contraction
matrix: simply apply the inverse transformation. Furthermore, the OOR
property of an OF matrix Ao can be checked looking only at its contraction
matrix, as the following lemma states.

Lemma 5.6. An OF matrix Ao ∈ {0, 1}m×n with m odd satisfies a pair of
constraints (2i− 1, 2j− 2) and (2i− 1, 2j− 1) for 1 ≤ i < j ≤ m+1

2 iff there
exists a column k of Ao such that:

Ci,k(Ao) · Cj,k(Ao) = 1, (5.2)

where C(Ao) = 1− C(Ao) and 1 is a matrix of 1’s.

Proof. Ao satisfies the constraints (2i − 1, 2j − 2) and (2i − 1, 2j − 1) iff
there exists a column k such that Ao2i−1,k = 0 and Ao2i,k = Ao2j−2,k =
Ao2j−1,k = Ao2j,k = 1. Since Ao2i,k, A

o
2j−2,k and Ao2j,k are forced to be equal

to 1, this is equivalent to requiring the existence of k where Ao2i−1,k = 0 and
Ao2j−1,k = 1. But by definition of the contraction matrix, this is the case iff
Ci,k(Ao) = 0 and Cj,k(Ao) = 1 which yields the result.



116 Chapter 5. Back from OR matrices to AUSOs

0

1

0

1

1

1

1

1

0

1

1

Ao =

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

11

i

j

⇔ = C(Ao)

1

0

1

1

0

0

C
>
(Ao) = 1 1 0 0 1 0

1 2 3 4 5

2

3

4

5

6

i

j

Figure 5.5: The contribution in the constraint space of an OF column-matrix Ao

can be represented by its contraction matrix C(Ao) that is half as long. Indeed,
constraints of the constraint space are always satisfied by pairs. The simplified
constraint space on the right shows how a pair of constraints (2i− 1, 2j − 2) and
(2i−1, 2j−1) is satisfied iff the corresponding product C.i(A

o) ·Cj(Ao) = 1. Note
that the first and last rows of the contraction matrix have been drawn in gray
because a column of an OF matrix that aims to contribute as much as possible to
the constraint space should always start with a “0” and end with a “1”.

Example 5.1. Figure 5.5 shows how an OF column-matrix Ao contributes
to the constraint space and how the contribution of Ao can be represented
through its contraction matrix C(Ao) in a simplified constraint space that
is four times as small and that is devoted only to the odd columns of the
constraint space. Note that Ao can be uniquely recovered from C(Ao).

The following corollary adapts the OOR condition of Ao to its contrac-
tion matrix.

Corollary 5.7. An OF matrix Ao ∈ {0, 1}m×n with m odd is OOR iff for
all i, j with 1 ≤ i < j ≤ m+1

2 , there exists a column k that verifies (5.2).

In Corollary 5.7, the simplified constraint (i, j) can be mapped on the
pair of constraints (2i−1, 2j−2) and (2i−1, 2j−1) in the original constraint
space. We will sometimes abuse of terminology by saying that a contraction
matrix C(Ao) is OOR if it verifies every simplified constraint (i, j), 1 ≤ i <
j ≤ m+1

2 , thereby meaning that the corresponding OF matrix Ao is OOR.

5.2.3 Tight bounds

Before we state the main result of this section, we formulate an upper bound
for the number of rows of OF matrices.

Proposition 5.8. Let Ao ∈ {0, 1}m×n be an OF matrix that is OOR. Then
m ≤ 2n+1 − 1.
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Figure 5.6: An example on which the contraction matrix C(Ao) has two identical
rows. Here we see that a hole necessarily appears in the simplified constraint space
and hence Ao cannot be OOR.

Proof. First, using Remark 5.3, we may assume that m is odd. Let C(Ao)
be the contraction matrix of Ao. We shall prove that C(Ao) cannot contain
twice the same row. The idea is illustrated by Figure 5.6. Suppose that
there exist i and j, 1 ≤ i < j ≤ m+1

2 , such that r(i) and r(j), respectively
the i− th and j − th rows of C(Ao), are identical. From Lemma 5.6, if we
want the constraints (2i − 1, 2j − 2) and (2i − 1, 2j − 1) to be satisfied by

Ao, we must have r̄
(i)
k · r

(j)
k = 1 for some k. But since we assumed that

r(i) = r(j) , r, we have instead r̄
(i)
k · r

(j)
k = (1 − rk) · rk = 0 for all k.

Therefore, if C(Ao) did contain twice the same row, it would not be OOR.
Therefore, C(Ao) can have at most 2n rows and from it, we can recover

Ao using the reverse contraction transformation from Definition 5.7 and Ao

can thus have at most 2n+1 − 1 rows.

We now state the main result of this section.

Theorem 5.9. Let A ∈ {0, 1}m×n be an OEF matrix that is OR. Then

m ≤
√

2
n+2 − 1 whenever n > 1.

Proof. First, we decompose A into its OF and EF parts Ao and Ae that
we assume to have k and n− k columns respectively. From Proposition 5.8
and with the help of Lemma 5.5, we know that the number of rows of Ao

and Ae are bounded by 2k+1 − 1 and 2n−k+1 respectively, and that m is
bounded by the minimum of the two, that is:

m ≤ max
k

min{2k+1 − 1, 2n−k+1}.
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Working out the inequality, we find that k should be equal to dn2 e and hence
that:

m ≤
{

2
n
2 +1 − 1 if n is even,

2
n−1
2 +1 if n is odd.

The fact that 2
n
2 +1 − 1 ≥ 2

n−1
2 +1 except when n = 1 gives the result.

We will now show that the bound of Theorem 5.9 can be attained for
even values of n.

Construction 5.2. Let C(1) = [ 0
1 ] and C(`) ∈ {0, 1}2`×`, ` > 1, be defined

as follows:

0
...
0

1
...
1

C(`) =

C(`−1)

C(`−1)

.

Consequently, the rows of C(`) are arranged lexicographically and form a
binary counter. Then, we build an OF matrix Ao ∈ {0, 1}m×n from the
reverse contraction transformation of Definition 5.7 with the contraction
matrix C(Ao) = C(n). The resulting number of rows of Ao is m = 2n+1−1.

Lemma 5.10. The matrices Ao ∈ {0, 1}m×n obtained from Construc-
tion 5.2 are OOR.

Proof. We show that C(Ao) is OOR by induction on C(`). Clearly C(1) is
OOR. Now let us assume that C(`−1) is OOR. In that case, by definition of
C(`), for every i, j with 1 ≤ i < j ≤ 2`−1 or 2`−1 < i < j ≤ 2`, there exists

a column k of C(`) such that C
(`)

i,k · C(`)
j,k = 1. Furthermore, for every i, j

with 1 ≤ i ≤ 2`−1 < j ≤ 2`, we have C
(`)

i,1 · C(`)
j,1 = 1 using the first column

of C(`). Therefore, C(`) is OOR for all ` ≥ 1, and in particular for ` = n,
hence Ao is OOR as well.

Theorem 5.11. For even values of n, it is possible to build an OEF matrix

A ∈ {0, 1}m×n with m =
√

2
n+2 − 1 rows that is OR.

Proof. Using Construction 5.2, we can build an OF matrix Ao with n
2 col-

umns and
√

2
n+2 − 1 rows. From Lemma 5.10, Ao is OOR. Then, we can

use Construction 5.1 with Ao to build an OEF matrix A that is OR and
that has twice as many columns as Ao and the same number of rows.
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Figure 5.7: The simplified constraint space on the left can be completely covered
by a contraction matrix C(Ao) with 3 columns and 23 rows. The rows of C(Ao)
correspond to all the possible binary vectors with 3 bits, ordered lexicographically.
From the definition of C(Ao), one can easily recover Ao by applying the inverse
transformation. Corollary 5.7 guarantees that Ao is OOR. Then Construction 5.1
can be used to build an EOR matrix Ae with the same dimensions as Ao and both
matrices can be assembled to create an OR matrix A.

Example 5.2. Figure 5.7 illustrates how to build an OEF matrix with

6 columns and
√

2
6+2 − 1 = 15 rows that is OR using Constructions 5.2

and 5.1.

Remark 5.4. Using a similar analysis as above, it is also possible to derive√
2
n+1

as a tight upper bound on the number of rows of Order-Regular OEF
matrices with an odd number of columns. However, except when n = 1,
this bound is overruled by the bound of Theorem 5.9.

5.3 From Odd-and-Even-Free matrices to AU-
SOs

The rows of an n-columns Odd-and-Even-Free Order-Regular (OEF-OR)
matrix, described in the previous section, can be seen as the policies of a
PI-sequence and represented as vertices of the n-cube. In this section, we
show that to any OEF-OR matrix A corresponds an AUSO and a starting
vertex such that applying PI from that vertex yields a sequence of policies
corresponding to the original matrix A. Therefore, we show that the lower
bound from Theorem 5.11 also holds to bound the number of steps of PI
on AUSOs. In order to get there, we will first translate some properties of
OEF-OR matrices into the AUSO framework. Then we will formulate an
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algorithm to develop any OEF-OR matrix into an orientation of a cube. We
will then show that this orientation is AUSO and that applying PI on this
AUSO indeed allows to recover the original OEF-OR matrix.

5.3.1 Odd-and-Even-Free Order-Regular matrices in the
cube

Let A be an n-column OEF-OR matrix whose rows π0, . . . , πm−1 are binary
vectors that correspond to vertices of the n-cube. We would like to find an
AUSO that realizes A. For that to happen, we need the outmaps of the
vertices to match Tπi−1 = πi−1 ⊕ πi for all 0 < i < m.

Let Ci = [πi−1, πi]. The fact that the πi’s originate from an OR matrix
implies the following lemma.

Lemma 5.12. If π0, . . . , πm−1 come from an OR matrix, then for all j > i,
it holds that πi−1 /∈ Cj.

Proof. It is easy to see that πi−1 /∈ Cj = [πj−1, πj ] if (and only if) there
exists a k /∈ (πj−1 ⊕ πj) such that πi−1(k) 6= πj−1(k) (= πj(k)). This is
ensured by the OR condition. Indeed, remember that A being OR means
that for all 1 ≤ i < j ≤ m, there exists a column k such that Ai,k 6=
Ai+1,k = Aj,k = Aj+1,k, and therefore such that πi−1(k) 6= πj−1(k) = πj(k)
(because πi−1 corresponds to the i − th row of A). Since πj−1(k) 6= πj(k)
for all k ∈ (πj−1 ⊕ πj), there must exist a k /∈ (πj−1 ⊕ πj) such that
πi−1(k) 6= πj−1(k) (= πj(k)).

Lemma 5.12 can be seen as the translation of Proposition 3.4 into the
framework of cubes. Regarding OEF matrices now, they share the following
important property.

Lemma 5.13. Let ω ∈ V be the vertex corresponding to the binary vector
of all ones. If π0, . . . , πm−1 come from an OEF matrix, then ω ∈ Ci for all
0 < i < m.

Proof. It suffices to see that ω = πi−1 ∪ πi ∈ Ci for all i.

Lemma 5.13 expresses the fact that all cubes Ci share a common vertex
ω. This property will be a crucial point towards our result2.

2In fact, Lemma 5.13 is the only property we need to require about the matrix A in
addition to its Order-Regularity for the below AUSO reconstruction algorithm to work.
This allows to build AUSOs from a wider class of matrices than the OEF-OR matrices
alone. However, we do not believe that matrices within that class allow for a better lower
bound than the one from Theorem 5.11.
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5.3.2 A greedy AUSO reconstruction algorithm

The goal of the following algorithm is to construct an AUSO from an OEF-
OR matrix and ensure at the same time that applying PI on the recon-
structed AUSO allows recovering the original OEF-OR matrix. For that
purpose, we constructively give an orientation to all edges one by one, in
agreement with the OEF-OR matrix, such that in the end, we obtain an
AUSO. This algorithm is greedy because it never reconsiders a chosen ori-
entation. The main contribution of this chapter is to show that with an
OEF-OR matrix as input, this procedure actually leads to an AUSO.

Algorithm 6: Greedy AUSO Reconstruction

Input: An OEF-OR matrix A ∈ {0, 1}m×n with the rows π0, ..., πm−1,
i = m− 1.

Output: An Acyclic Unique Sink Orientation of the n-cube that
realizes A when applying PI from π0.

1 O = ∅, the already set orientations of the edges.
2 while i > 0 do
3 Ci = [πi−1, πi].

4 Fi = Ci
∖ ⋃

j>i

Cj .

5 for α ∈ Fi, k ∈ (πi−1 ⊕ πi) do

6 O ← O ∪





(α, α⊕ {k}) if d(α, πi−1) < d(α⊕ {k}, πi−1)

or if α⊕ {k} /∈ Fi,
(α⊕ {k}, α) otherwise.

7 i← i− 1.

8 return O.

Example 5.3. Algorithm 6 is best understood with an example. Figure 5.8
illustrates how it works on an OEF-OR matrix with 4 columns that achieves
the lower bound from Theorem 5.11.

The idea of Algorithm 6 follows the way PI works in AUSOs, that is,
jumping from πi−1 to πi in subcubes Ci = [πi−1, πi] such that the out-edges
of πi−1 exactly span Ci. In Algorithm 6, we visit every Ci, starting from the
last ones, and choose a “suitable” orientation for all their unbound edges
(that is, the edges that did not yet receive an orientation, represented in
green on Figure 5.8). This description yields two questions:

• What is a suitable orientation? The answer comes from Proposi-
tion 3.5: we know that there should exist some path from πi−1 to πi
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Figure 5.8: At every step i of Algorithm 6, the cube Ci = [πi−1, πi] is
depicted by the bold edges in the corresponding cube. The policies πi−1

and πi appear in blue (to identify them with the policies of the sequence,
note that the digits in the middle of a square correspond to the columns
3 and 4 while the digits in the corners correspond to the columns 1 and
2). The vertices and edges of the previous cubes Cj , j > i, appear in red
whereas the vertices of Fi and their adjacent edges in Ci (that we refer to
as “unbound”) appear in green. At every step, all the (green) edges of Ci
are given an orientation. Ci is guaranteed to be AUSO (Proposition 5.16).
Moreover, after the algorithm has finished, applying PI on the obtained
orientation with the starting vertex π0 yields back the original OEF-OR
matrix.
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in Ci, according to O. So we choose to orient every unbound edge, first
towards the previous subcubes Cj , j > i, if adjacent, to avoid creating
cycles, or towards πi, hoping that we at least create this path. (Note
that the green edges realizing this path appear in a darker green on
Figure 5.8.) Here, the unbound edges are the ones adjacent to the
vertices of Fi, that is, adjacent to the vertices of Ci that were not
contained in the previous subcubes Cj , j > i.

• Why do we start from the last subcubes? This is indicated by Lemma 5.12.
Indeed, this lemma guarantees that πi−1 ∈ Fi, hence all its adjacent
edges in Ci are still unbound. This is a property that we need if we
want to both match the outmap of πi−1 imposed by the OEF-OR
matrix, and start a path to connect πi−1 to πi.

Of course in general, the above greedy approach is not enough to guarantee
that the result will be AUSO. However, we will now show that it is indeed
enough when an OEF-OR matrix is taken as input.

Observe that at step 6 of Algorithm 6, the same edge can never be
considered more than once. Indeed, the edges considered at this step are all
in Ci but not in any Cj , j > i, since by definition of Fi, the vertex α is not
in any of these cubes. Algorithm 6 was designed to allow the two following
simple consequences whose proofs are omitted.

Lemma 5.14. For an orientation O obtained from Algorithm 6, we have
(πi−1, πi−1 ⊕ {k}) ∈ O iff k ∈ (πi−1 ⊕ πi).

Lemma 5.15. Let C ⊆ Ci. If C ⊆ Fi, then the vertex of C closest to πi is
the (unique) sink of C. Otherwise, Fi does not contain a sink of C.

Lemma 5.14 simply ensures that Tπi−1 = πi−1⊕πi which will ensure that
it is possible to recover the PI-sequence from applying PI on the recovered
AUSO. Lemma 5.15 translates the fact that the vertices of Fi are somehow
unstable in the sense that their incident edges in Ci always lead outside Fi if
possible. Therefore C ⊆ Ci can have a sink in Fi if and only if it is entirely
enclosed in Fi.

5.3.3 The greedy AUSO reconstruction algorithm is
correct

Proposition 5.16. Ci is an AUSO for every 0 < i < m according to the
orientation O obtained from Algorithm 6 with an OEF-OR matrix given as
input.

Proof. We first show the unique sink property of Ci. Then we will show
that it is acyclic.
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Ci is unique sink. By induction, let us assume that Cj is AUSO for
all j > i and let us show that Ci is AUSO. To achieve this, let C ⊆ Ci be
any subcube of Ci and let us show that C must have a unique sink. Three
cases are possible for C.

1. C ⊆ Fi. The vertex of C closest to πi is the unique sink, according
to Lemma 5.15.

2. C ⊆ Ci \Fi. We show that C ⊆ Cj for some j > i which implies
that C has a unique sink since Cj is USO. Let α be the vertex furthest
away from ω in C. Since C ∩ Fi = ∅, we know that α ∈ Cj for some
j > i. Furthermore, we know that ω ∈ Cj as well (Lemma 5.13).
Therefore we have C ⊆ [α, ω] ⊆ Cj , where the first inclusion comes
from Lemma 5.3 and the second comes from Lemma 5.2.

3. C 6⊆ Fi and C 6⊆ Ci \Fi. (Hence C ∩ Fi 6= ∅ and C ∩ Ci \Fi 6= ∅.)
First let us observe that C can be naturally decomposed as follows:

C =

{⋃

`>i

C(`)

}
∪ (C ∩ Fi),

where C(`) , C ∩C` is the subcube of C from stage ` of Algorithm 6.
We now make two claims about these subcubes. First we show that
all non-empty C(`)’s have a non-empty intersection. Then we show
that the “oldest” non-empty subcube attracts all its neighbors and
therefore creates a sink in C.

Claim 1. Let ω′ be the vertex of C closest to ω, that is, such that
ω′ = ω ⊕ t for t satisfying t ∩ free(C) = ∅. Then ω′ ∈ C(`) for all
non-empty C(`)’s.

Let α ∈ C ∩ C` = C(`). Since α and ω′ are in C, we know from
Lemma 5.1 that there exists s ⊆ free(C) such that α = ω′ ⊕ s =
ω ⊕ t ⊕ s, where s ∩ t = ∅ because t ∩ free(C) = ∅. Similarly
since α and ω are in C`, there exists s′ ⊆ free(C`) such that
α = ω ⊕ s′. Therefore, s′ = t ⊕ s. But since, s ∩ t = ∅, we also
have s ⊕ t = s ∪ t, hence we have t ⊆ s′ ⊆ free(C`). Therefore,
since from Lemma 5.13, ω ∈ C`, we can again apply Lemma 5.1
and obtain that ω ⊕ t = ω′ ∈ C`. Since ω′ is both in C and C`,
it is also in C(`).

Claim 2. Let α, β be neighbors in C and let m′ > i be the index
of the “oldest” stage where the subcube C(m′) is non-empty, that is,
such that C(m′) 6= ∅ and there is no ` > m′ for which C(`) 6= ∅. If
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α ∈ C(m′) and β /∈ C(m′), then (β, α) ∈ O. (That is, all edges between
C(m′) and C \C(m′) are directed towards the vertices of C(m′)).

Indeed, given α ∈ C(m′), it appears from step 6 of Algorithm 6
that any neighbor β of α that is not in C(m′) must be part of
some F`, i ≤ ` < m′ and therefore that the edge between the two
vertices must be oriented towards α, that is, (β, α) ∈ O.

From the induction hypothesis, C(m′) has a unique sink σ, and hence
from Claim 2, σ is also a sink of C.

We now show that the sink σ of C is unique. From Lemma 5.15, C
has no sink in C∩Fi. So any hypothetical other sink should belong to
some subcube C(`′), `

′ < m′, such that σ /∈ C(`′) (because C(`′) must
have a unique sink). We know that C(`′)∩C(m′) is non-empty (thanks
to Claim 1) and that it has a unique sink, say τ . But from Claim 2,
since τ ∈ C(m′), it must also be the (unique) sink of C(`′) which means
that the sink τ of C(`′) must be in C(m′). Since C(m′) has a unique
sink, τ cannot be a sink of C so the sink σ must be unique.

Ci is acyclic. Let Ui be the vertex set of the graph induced by
⋃
j≥i Cj .

We show inductively that this induced graph is acyclic according to O, which
implies that Ci is acyclic as well.

By definition, Ui = Ui+1 ∪ Fi and Ui+1 ∩ Fi = ∅. We now consider any
vertex α ∈ Fi and any k ∈ free(Ci) and make the following observations.

1. If α⊕{k} /∈ Fi, then from step 6 of Algorithm 6, (α, α⊕{k}) ∈ O, so
it is impossible to go from vertices of Ui+1 to vertices of Fi.

2. Otherwise if α⊕ {k} ∈ Fi, then (α, α⊕ {k}) ∈ O iff d(α, πi) > d(α⊕
{k}, πi), so edges of Fi always go towards πi. Therefore, we cannot
have a cycle in Fi since taking an edge always decreases the distance
to some fixed vertex.

Since Um−1 = Fm−1, it is acyclic. Moreover, we can see that Ui is acyclic
provided that Ui+1 also is. Indeed, Ui is the disjoint union of two acyclic
sets Ui+1 and Fi and all edges between the two are oriented towards Ui+1

only.

In case some edge (α, α ⊕ {k}) did not receive an orientation after Al-
gorithm 6 finishes (typically because C1 differs from the n-cube), then one
may choose to orient it towards the global sink πm−1 to ensure the AUSO
property of the whole. This can be seen as an additional step of Algorithm 6
with a cube C0 = [π0 ⊕ ω, π0], that is, the complete cube. With this last
observation, we can formulate the main theorem of this section.
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Theorem 5.17. To any OEF-OR matrix corresponds an AUSO together
with an initial vertex π0 such that applying PI on the AUSO starting from
π0 allows to recover the original OEF-OR matrix.

As we will see in the next section, OR matrices do not always come from
an AUSO. In that sense, they describe a more general structure. However,
Theorem 5.17 demonstrates that under some additional conditions, namely
the OEF condition, such an AUSO does exist (so OEF-OR matrices are
somehow a restriction of the AUSO condition). As a consequence, all lower
bounds that exist on the number of rows of OEF-OR matrices also extend
AUSOs. The following corollary consequently extends the lower bound from
Theorem 5.11.

Corollary 5.18. There exists an AUSO of dimension n on which PI re-

quires
√

2
n+2 − 1 steps to converge.

It is to be noted that this bound only improves by a factor 2 an existing
bound by Schurr and Szabó (2005) that invokes much shorter arguments.
However, to my eyes, the arguments that lead to the bound of Corollary 5.18
is among the most elegant contributions of this thesis.

5.4 From general OR matrices to AUSOs

To close this chapter, we answer two natural questions at this point: “Is it
always possible to reconstruct an AUSO from an OR matrix?” and “Has the
lower bound from Corollary 5.18 any chance of being optimal?” To answer
these questions, we develop an exact AUSO reconstruction algorithm whose
returned answer is either “There is an AUSO realizing this OR matrix and
here it is” or “There is no such AUSO.” Using this algorithm, we are able
to answer both the above questions with a negative answer.

In the next section, we provide more details about how we designed
our exact AUSO reconstruction algorithm using ideas from Constraint Pro-
gramming. Then, we discuss its results in Section 5.4.2.

5.4.1 An exact AUSO reconstruction algorithm inspired
from Constraint Programming

In this section, we present how we construct an AUSO that realizes a given
OR matrix using an approach inspired by Constraint Programming (Lecoutre,
2013; Rossi et al., 2006). Despite the strong combinatorial nature of the
problem at hand, the algorithm we propose is tractable for OR matrices
with up to 7 columns given as input. Moreover, it is exact in the sense that
if an AUSO that realizes the OR matrix exists, we will find it, and if it does
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not, we will find out. The outcome must be an orientation of a cube that
needs to satisfy two constraints, which are central for the method.

1. The orientation must be compatible with the outmaps imposed by the
OR matrix given as input. More precisely, the outmap of every vertex
πi of the cube, 0 ≤ i < m, appearing as the (i + 1)st row in the OR
matrix verifies Tπi = πi ⊕ πi+1 (with πm , πm−1). We refer to this
condition as the outmap constraint.

2. The orientation must be AUSO.

It turns out that an acyclic orientation of a cube is USO iff the orien-
tation of all the 2-dimensional subcubes (which we also call 2-faces) of the
cube are USO.

Lemma 5.19 (See, e.g., Gärtner (2003) for a proof). An acyclic orientation
of a cube is USO iff all its 2-faces are USO.

Thanks to Lemma 5.19, we know that an orientation is AUSO iff the
two following constraints are satisfied:

• all its 2-faces are AUSO (which we refer to as the 2D constraint) and,

• the orientation is (globally) acyclic (which we refer to as the acyclicity
constraint).

Note that in practice when the OR matrix given as input has many rows, we
observed that the AUSOs satisfying both the outmap and the 2D constraints
often satisfy the acyclicity constraint as well.

The idea of our method is to discard possible orientations of the edges
whenever they are not compatible with the above constraints and the al-
ready found orientations. It returns a solution if compatible orientations
have been found for all edges and it branches if no more orientations can
be discarded, possibly backtracking if a branch leads to a contradiction. It
stops if all branches led to contradictions.

More precisely, we think of the edges e as variables whose domain De

consists of the possible orientations they can take: either directed towards
ω (→ω) or away from it (←ω), with ω being the vertex corresponding to the
binary vector of all ones. Originally, the domain of the edges is full and we
will use the constraints to prune the domains, that is, remove incompatible
orientations. We say that an edge is bound if its domain contains exactly
one value left, unbound if it has more. We let D =×e∈E De and observe
that whenever all edges are bound, it is possible to recover an orientation
O(D) from D.

To prune the domains, we propagate the constraints. The way propaga-
tion happens differs depending on the constraint. Here is how we do it for
each of them.
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• The outmap constraint. This constraint only helps to launch the
search. It allows to bind straightaway all the edges that are adjacent
to some πi, in agreement with their outmaps. Figure 5.9 illustrates
this effect on the extremal 5×3 OR matrix. Note that given an m×n
OR matrix as input, the outmap constraint allows to bind up to3

mn edges among 2n−1n in total. Furthermore, the outmap constraint
cannot lead to trivial contradictions with the 2D nor the acyclicity
constraints.

{←ω}{→ω}

{←ω}

{→ω}

{→ω}

{→ω}

{→ω}
{←ω} {←ω}

{←ω}

π0 100

π4 110

π2 101

π3 π1 = ω

π0 :
π1 :
π2 :
π3 :
π4 :

?
{→ω,←ω}

? {→ω,←ω}




0 0 0
1 1 1
0 0 1
0 1 1
0 1 0




Figure 5.9: The edges that are adjacent to some πi are marked with a red
end. Their orientation can be found using the outmap constraint that is
extracted from the OR matrix on the left. After propagation, the remaining
edges appear in blue.

• The 2D constraint. Every edge is contained in exactly n−1 2-faces.
Let e be an unbound edge and F be a 2-face containing e. If the other
edges of F are bound, then there is a chance that some orientation of
De violates the 2D constraint (typically if it creates either a cycle or
two sinks, as Figure 5.10 illustrates) and can therefore be pruned.

To propagate the 2D constraint, we therefore need to make the above
test for every edge that is susceptible to lead to some pruning (that is,
typically, the unbound edges), and every 2-face containing those edges.
Moreover, it may be needed for the same edge to be tested multiple
times. Indeed, when two unbound edges e and e′ belong to the same 2-
face, it may be the case that pruning De is only possible after De′ has
been pruned, which we illustrate in Figure 5.11. Therefore, in practice,
we maintain a queue with the unbound edges that are still susceptible
to allow some pruning, while possibly adding elements to this queue

3Here, “up to” hides the fact that edges between adjacent vertices of the OR matrix
are counted twice.
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ω

e ∈ {→ω,←ω}
⇓

violates acyclicity

ω

e ∈ {→ω,←ω}
⇓

violates USO

Figure 5.10: Given an unbound edge e and a 2-face containing e as well as
three other bound edges, it is possible to prune De iff the edges adjacent to
e have opposite orientations. Applying this test to all 2-faces containing e
may lead to an empty domain De and hence a contradiction.

every time an orientation is removed from a domain. Propagation is
over whenever this queue is empty. Interestingly, among the 2-faces
that contain four bound edges at the end of this process, the validity
of the 2D constraint is guaranteed.

ω

e1 ∈ {→ω,←ω}

e2 ∈ {→ω,←ω}

No pruning for D(e1)

edges to check: {e1, e2}

ω

e1 ∈ {→ω,←ω}

e2 ∈ {→ω,←ω}

Pruning of D(e2) affects e1

edges to check: {e2} ← e1

ω

e1 ∈ {→ω,←ω}

Now we can prune D(e1)

edges to check: {e1}

ω

Propagation is over

edges to check: { }

Figure 5.11: The order in which we apply the 2D constraint on the edges
to prune their domain influences the speed of the propagation.

• The acyclicity constraint. Let e = (α\{k}, α∪{k}) be an unbound
edge. If there exists a directed path from α\{k} to α ∪ {k} in O(D),
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then we remove→ω from De, and the other way around if there exists
a directed path from α ∪ {k} to α\{k}. Being less frequently useful
and more costly than the others, we only use this constraint whenever
no more propagation of the 2D constraint is possible, relaunching the
propagation of the latter whenever the acyclicity allows to prune a
domain.

000 100

010 110

001 101

011 111 = ω

? {→ω,←ω}
⇒ compatible with 2D constraint

⇒
but violates acyclicity

Figure 5.12: One of the rare cases where the 2D constraint finished propa-
gation and the acyclicity still helps pruning a domain.

Using the above ingredients, we are now ready to formulate the exact
AUSO reconstruction algorithm in Algorithm 7.

Note that we can always use necessary conditions about the problem to
help pruning the domains even more. For instance, we could use Proposi-
tion 3.5 requiring that there exists a directed path from πi−1 to πi in the
cube, for all 0 < i < m. We call it the path constraint. Such redundant
constraint may help to achieve more pruning and less branching, which can
be beneficial when the orientation of many edges are unknown.

5.4.2 What the exact AUSO reconstruction algorithm
tells us

We used Algorithm 7 on several particular OR matrices with the following
observations.

1. There does not always exist an AUSO that realizes a given OR matrix.
We show this for instance by applying Algorithm 7 on the extremal
21× 6 OR matrix or on some 13× 5 OR matrices4.

4Up to symmetry and equivalences, there are respectively 1, 1, 1, 4 and 1 extremal
OR matrices for n = 2 to 6. Regarding n = 7, there are no matrices of 34 rows but more
than a hundred of them with 33 rows.
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Algorithm 7: Exact AUSO Reconstruction

Input: An OR matrix A ∈ {0, 1}m×n with the rows π0, ..., πm−1.

Initialization: Set D =×e∈E{→ω,←ω} to be the (originally full)
domain of the edges and propagate the outmap
constraint.

Output: AUSOsearch(D): displays an AUSO that realizes A when
applying PI from π0, if it exists.

1 Function AUSOsearch(D)

2 Propagate the 2D and the acyclicity constraints.

3 //If some edge has an empty domain: backtrack

4 if |De| = 0 for some e ∈ E then
5 return

6 //If all edges are bound: display the solution

7 else if |De| = 1 for all e ∈ E then
8 //It could be that O(D) is not acyclic so we make a

final check

9 if O(D) is acyclic then
10 Display O(D).

11 else
12 return

13 //Otherwise choose an unbound edge and branch on it

14 else
15 Let e be an unbound edge.
16 AUSOsearch(D with De = {→ω}).
17 AUSOsearch(D with De = {←ω}).

2. The 2
√

2
n − 1 lower bound from Corollary 5.18 for the number of

steps of PI in AUSOs is not optimal. Indeed, there exists a (single)
AUSO that realizes the extremal 8× 4 OR matrix, as shown by Fig-
ure 5.13. Note that the Greedy AUSO reconstruction algorithm from
Algorithm 6 applied on this matrix fails to recover this AUSO.

3. The Fibonacci sequence fits the maximal number of steps of PI in
AUSOs for n = 1 to 5, but already not for n = 6.

4. We designed a weaker version of Algorithm 7 in which we only use the
outmap and the path constraints for the propagation. We then applied
it on a 13 × 5 OR matrix for which we failed to recover a matching
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Figure 5.13: An AUSO that realizes the extremal 8 × 4 OR matrix. We
first propagated the outmap constraint to obtain the orientation of the red
edges, then the 2D constraint to obtain the orientation of the blue edges,
and converged without even needing to branch.

AUSO. Interestingly, we found that there is also no orientation of the
5-cube in which a path connects the 13 policies of the OR matrix.
This means that the condition from Proposition 3.5 does not apply to
OR matrices in general, although it was a key argument in the proof
of our 2 · 2nn +o

(
2n

n

)
upper bound from Theorem 3.9. This means that

this latter bound does not apply as such to OR matrices, for which
the 2n−1 + 1 upper bound from Proposition 4.5 remains the best one
we know.

These observations tend to indicate that there is still room to refine the
lower, upper and conjectured bounds that we know so far. We however
believe that the next improvement will not come without breaking a sweat.
At this stage, our analysis did not reveal any real opening towards new
results, except maybe for the ideas described in Section 4.5. It thus remains
a real challenge. Who will be up for it ?



Chapter 6

An unexpected journey:
conclusions and
perspectives

When we started looking at the complexity of Policy Iteration (PI), it was
only months before Fearnley (2010) and Ye’s (2011) results came out. At
that time, there were still good hopes that PI would prove to be a polynomial
time algorithm and of course, as many others, we were also trying to verify
this statement. We even found some interesting properties on the way that
we were trying to exploit.

When Fearnley’s exponential complexity result appeared in the litera-
ture, we managed to adapt it to another important case. Showing that PI
may run in exponential time on general discounted-reward Markov Decision
Processes (MDPs) and, to observe that, identifying a lower bound on the
rate at which the discount factor should tend to 1 when the problem size
grows was indeed our first published result. On the way, we left open the
question of improving the lower bound on this rate.

Despite Fearnley’s result, the gap between upper and lower bounds was
still enormous and had to be reduced. Shortly after we submitted our first
result, we met with Thomas Hansen and on that occasion, we realized that
the properties we had been studying were equivalent to his Order-Regularity
(OR) condition on binary matrices, still unpublished at the time. Moreover,
except for Hansen and Zwick’s “Fibonacci” conjecture, this condition had
never really been exploited before, and it was opening a wide range of
new possibilities. Showing or disproving the Fibonacci conjecture was an
ambitious and exciting goal that we decided to undertake.

133
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Doing so, it quickly appeared to us that the OR structure was more
intricated than anticipated and it took us some time and a number of un-
fruitful approaches to obtain our first results from it. In the end, the results
in question are not the ones we were expecting, even less the ones we were
secretly hoping for, but hopefully they are worth telling.

Eventually, we did achieve our goal of reducing the gap between the lower
and upper bounds on the complexity of PI when applied to Acyclic Unique
Sink Orientations (AUSOs). We indeed improved Schurr and Szabó’s

√
2
n

lower bound (2005) and Mansour and Singh’s 6 2n

n upper bound (1999) for
Cube AUSOs, yet only by a factor 2 and 3 respectively. We also extended the
upper bound for MDPs with up to k actions per state (and left open the case
where the number of actions would be distinct in each state). Even though
these improvements are admittedly modest, I believe that our proof showing
the limits of the classical tools to obtain upper bounds on PI is useful in that
it serves as a warning for the next researcher that would consider attacking
the problem from the same angle. Moreover, the sequence of ideas that
led to the improvement of the lower bound is personally my favorite of the
whole thesis.

Still, the lower and the upper bounds remain far apart from each other
and in between this gap stands the true worst case behavior we are looking
for. In that respect, Hansen and Zwick’s Fibonacci conjecture was suggest-
ing a nice trade-off between the two bounds. When we disproved Fn+2—the
(n+2)nd Fibonacci number—to be the true maximum number of rows of an
OR matrix, we provided a striking new example of a Fibonacci forgery, that
is, a sequence that does look like but is not the Fibonacci sequence (Stew-
art, 1995). It is indeed not common to observe a “wild” (or “not made up”)
sequence that matches the Fibonacci sequence up to the 8th number. On
the other hand, we do not rule out the Fibonacci sequence as a possible
upper bound on the number of steps of PI. In fact, since the maximum size
of an OR matrix with n = 7 columns is lower than the initially expected
Fibonacci number, I even believe that the true worst case behavior should
stand somewhere below O(1.618n), in the same spirit as the state of the
art upper bound on the complexity of Fibonacci Seesaw from Szabó and
Welzl (2001) which is also slightly lower than this bound. In that respect,
our Ω(1.427n) lower bound for OR matrices allows to restrict what can be
hoped for as an upper bound, at least using the OR framework.

Talking of which, I feel that we do not loose much generality consid-
ering OR matrices instead of AUSOs. Indeed, the AUSO reconstruction
algorithms that we have designed in the last chapter revealed that a re-
alizing AUSO exists for many OR matrices, even for some of the largest
ones. Moreover, OR matrices do present a novel approach to the complex-
ity problem of PI and I therefore believe that they offer the best starting
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point currently known to study the question.
However, best does not mean good. Indeed, despite a simple and ap-

pealing formulation, I feel that additional ideas are necessary in order to
make further progress with the OR condition. The approaches described in
Section 4.5 could be a good starting point to identify such ideas, especially
the graph coloring one. Alternatively, our analysis has left open a number
of questions. For instance, although it is probably hard, it would be inter-
esting to determine if our Ω(1.427n) lower bound for extremal OR matrices

can be extended to PI in AUSOs, or if our
√

2
n+2 − 1 lower bound for the

maximum number of steps of PI in AUSOs can be extended to MDPs.
Another interesting idea that I would have liked to explore more would be
to propose new multi-hop deterministic switching rules for PI and then try
to fit the OR formulation to these new algorithms in the hope of a more
tractable complexity analysis. Ultimately, even though many questions still
expect an answer, I would not recommend studying PI’s complexity as the
next thesis topic because results seem too uncertain.

To conclude, I would like to mention that in practice, a good combina-
torial algorithm like PI, even if known to be exponential in the worst case,
is often competitive against the best weakly polynomial time algorithms
such as the Interior Point method of Karmarkar (1984). And the fact that
PI exhibits competitive performance against his peers, also theoretically, is
interesting and even encouraging. The next step would be to assess these
performances, for instance by applying smoothed analysis to PI in a similar
fashion as what has been done for the Simplex method by Spielman and
Teng (2004). To our knowledge, such an analysis has not yet been under-
taken in the past. It may prove challenging because of the multi-switch
nature of PI1. Nevertheless, I believe that smoothed analysis could finally
shed some light on why PI is so efficient in practice.

1Likewise, this same multi-switch nature seems to prevent Post and Ye’s polynomial
time complexity arguments for Deterministic MDPs to be adapted to PI. Could this be
related to the fact that Fearnley’s example is also very close to be deterministic ? This
question could be another interesting one to explore.
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Gärtner, B., Henk, M., and Ziegler, G. M. 1998. Randomized simplex
algorithms on Klee-Minty cubes. Combinatorica, 18(3):349–372.
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Acronyms

MDP Markov Decision Process
PI Policy Iteration
2TBSG Two-Player Turn-Based Stochastic Game
SI Strategy Iteration
USO Unique Sink Orientation
AUSO Acyclic Unique Sink Orientation
OR Order-Regular
SOR Strongly Order-Regular

A restriction of the OR condition

PSOR Partially Strongly Order-Regular

A restriction of the OR condition and a relaxation of the PSOR
condition

OF Odd-Free

relates to binary matrices whose 0-entries only appear at odd row
indices

EF Even-Free

relates to binary matrices whose 0-entries only appear at even row
indices

OEF Odd-and-Even-Free

relates to binary matrices whose columns are either OF or EF

OOR Odd-Order-Regular

relates to binary matrices that satisfy all the OR constraints (i, j)
where i is an odd number

EOR Even-Order-Regular

relates to binary matrices that satisfy all the OR constraints (i, j)
where i is an even number

OEF-OR Odd-and-Even-Free and Order-Regular

relates to binary matrices that are both OEF and OR
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