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Abstract

This paper presents a numerical study of a recent technique that consists
in modeling embedded geometries by a level-set representation in combi-
nation with local anisotropic mesh refinement. The local anisotropic mesh
procedure is suitable for various orders p of finite element approximations.
This method proves beneficial in simulations involving complex geometries,
as it suppresses the need for the tedious process of body-fitted mesh genera-
tion, without altering the finite element formulation nor the prescription of
boundary conditions. The first part of the study deals with a simple Laplace
problem featuring a planar interface on which a Dirichlet boundary condi-
tion is imposed. It is shown that the appropriate amount of local isotropic
refinement yields the optimal convergence rate for various finite element or-
ders p, unlike uniform refinement. Anisotropic refinement further ensures
geometric convergence and limits the growth of the number of unknowns.
Then, we explain how to use metric-based anisotropic adaptation to obtain
nearly body-fitted meshes with arbitrary geometries. The optimal rate of
convergence, both for the solution and the geometry, is demonstrated on 2D
and 3D academic Laplace problems involving curved boundaries. Finally,
applications in the field of fluid dynamics and material science are presented.
The results for these simulations successfully converge towards data from the
literature, analytical solutions or values obtained with body-fitted meshes.
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1. Introduction

In the context of computational fluid and solid mechanics, numerical
methods are applied to increasingly challenging problems that often involve
complex geometries. The usual strategy to handle such cases is to firstly gen-
erate an unstructured mesh which conforms to the geometry, and then solve
the physical problem with a numerical method that works with unstructured
meshes, such as the Finite Element Method (FEM). However, most mesh-
ing software packages rely on a high-quality CAD description of the domain
geometry, which is not readily available in the traditional workflow of profes-
sionals in sectors like architecture [11]. In the field of medicine, the quality
of the primary CAD models obtained through imaging techniques may not
be sufficient to allow direct meshing [24]. If the geometry evolves in time,
the mesh is usually modified during the simulation, either by deformation
techniques relying on elastic analogies, which sometimes lacks robustness, or
by complete remeshing, which is computationally expensive.

Similar issues, that arise in multi-physics problems involving moving in-
terfaces, have fostered research efforts to embed the description of the geom-
etry in the formulation of the numerical method. In this way, the meshing
work needed to take into account complex features such as cracks and mate-
rial interfaces can be dramatically reduced. Moreover, this removes the need
for high-quality CAD data, as no topological information on the geometry is
then required in the meshing process.

In the immersed boundary method [30], fluid-solid interfaces are modeled
from a Lagrangian point of view as a set of discrete force generators. Other
approaches retain an Eulerian description consistent with the underlying nu-
merical method by relying on the advection of interface-tracking quantities.
Among them, the Marker-and-Cell [27] and the Volume of Fluid methods [1]
make use of “marker” quantities that require a specific numerical treatment
because of their discontinuous character. A more convenient continuous rep-
resentation of the interface can be obtained through level-set functions [7, 26].
Level-set techniques have also been used recently to model fixed, but complex
boundaries in an immersed volume framework [20].

While level-set curves and other types of interface-tracking functions
are an efficient solution for representing geometries embedded in non-fitted
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meshes, they make it more difficult to impose boundary conditions. Indeed,
they prevent nodal collocation, which makes the prescription of Dirichlet con-
ditions particularly challenging. To deal with this problem, some approaches
based on penalty methods or Lagrange multipliers have been proposed in the
literature [13, 21]. The issue of Babuška-Brezzi stability has been addressed
using either stable [4] or stabilized [3, 14] approaches, that have drawbacks.
The stable method presented in [4] is relatively complex, as it requires the
definition of a specific set of Lagrange multipliers that depend on the topol-
ogy of the mesh. Stabilized methods are more standard with respect to the
finite element technology, but choosing appropriate values for the parameters
that control the stabilization may not be obvious. More importantly, both
approaches are intrusive in the sense that they require deep modifications in
finite element kernels, either by introducing new finite element unknowns [29]
or by modifying standard finite element formulations (or both).

In this paper, we follow another approach that relies on local anisotropic
mesh adaption [7, 2, 12] around the geometry to obtain nearly body-fitted
meshes, which combines the benefits of the aforementioned methods:

1. The Dirichlet boundary condition is imposed in a strong manner by
nodal collocation, just as with body-fitted meshes,

2. The standard finite element formulation is used as is, without resorting
to basis enrichment or Lagrange multipliers that alter its numerical
properties,

3. The mesh does not conform exactly to the embedded geometry, which
facilitates the meshing process and makes it possible to use level-set
functions instead of high-quality CAD data.

Because anisotropic mesh adaption procedures have gained in robustness
and availability in the last decade, this approach has become competitive
with respect to the modification of finite element formulations. The aim of
this paper is to show that optimal convergence rates can be easily obtained
using the standard finite element discretization of the variational weak form,
with barely the same number of degrees of freedom as in a conforming mesh
approach and without changing the finite element formulation. Both two-
and three-dimensional examples illustrate the new approach.

The paper is organized as follows. The next section 2 gives an overview
of the adaptive strategy. Section 3 involves two-dimensional examples while
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numerical results for three-dimensional cases are discussed in section 4. We
show applications of this approach in section 5 and draw conclusions in sec-
tion 6.

2. Optimal nearly body-fitted meshes

Our technique for imposing Dirichlet boundary conditions on embedded
surfaces relies on the generation of an anisotropic adaptive mesh for which
the mesh size is carefully chosen in order to ensure the optimal convergence
of both the solution and the geometry of the interface.

2.1. General principle

Let M be a mesh of a domain Ω that is composed of ne elements ei, i =
1, . . . , ne and nv vertices xi, i = 1, . . . , nv. Consider an embedded interface
Γ (see Figure 1) that can be modeled by the iso-zero value of a level-set
function φ(x). The level-set function is then defined in all the domain as the
signed distance to the interface.

Γ∗

cj

Γ

Figure 1: A triangular mesh with the iso-zero of a levelset Γ. Stair-cased curve Γ∗ is the
discrete version of Γ. Round dots represent centroids of triangles.
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In practice, the level-set function φ(x) is evaluated at the center of grav-
ity ci of every element ei. The sign of φ(ci) determines whether element ei
is either on one side or on the other side of the levelset. On Figure 1, col-
ored elements correspond to φ(ci) > 0 and non-colored elements correspond
to φ(ci) < 0. Mesh edges that separate colored and non colored elements
constitute the discrete approximation Γ∗ of the continuous interface Γ.

This way of treating the interface has obvious advantages. No enrichment
is needed to account for intra-element features, as it is the case in X-FEM.
Standard finite element formulations can therefore be used as is for solving
a problem with an embedded interface. Yet, it is well known that this treat-
ment of interfaces leads to a poor first order of convergence in finite element
simulations [28]. In this paper, we address this issue using anisotropic mesh
adaptation near the interface Γ. The fact that mesh generators and finite
element solvers are independent software components makes this approach
appealing in practice.

2.2. Need for adaptive mesh refinement

Assume a mesh of elements with sizes hei , i = 1, . . . , ne and an associated
finite element solution at order p, uh, that is an approximation of the smooth
exact solution u. The L2 error on element ei is of order:

εi =

√∫
ei

‖u− uh‖2dx = O
(
hkei
)

(1)

with k = p+ 1 in smooth regions and k = 1 in the vicinity of the interface.
We first study the simple one-sided 2D Laplace problem [13]:

∆u = 0, in Ω+ : [0, 1]× [y∗, 1] (2)

u = sin (πx)v̂(y∗), at Γ : y = y∗ = 1/3 (3)

u = 0, at ΓD : y = 1 (4)

∇u · n = −πv̂(y), at ΓN : x = 0; x = 1 and y∗ < y < 1 (5)

The known analytical solution is u(x, y) = sin (πx)v̂(y) where v̂(y) = cosh (πy)−
coth (π) sinh (πy).

The embedded planar surface Γ splits the domain Ω = [0, 1]× [0, 1] into
two parts Ω+ and Ω−. As discussed, the Dirichlet boundary condition on Γ
is prescribed by imposing the value sin (πx)v̂(y∗) at the nodes defining the
discrete approximation Γ∗ to Γ.
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We perform a convergence study consisting in refining uniformly the mesh
and measuring the global L2 discretization error in the domain:

EL2(u) =

√∑
i

ε2i . (6)

Let us define a mesh refinement factor r > 1 and a refinement level l that
determine for a uniform mesh refinement the mesh element size h as:

hl =
h0

rl
, l = 1, ..., ln (7)

where h0 is an initial uniform mesh element size and ln is the number of
refinement levels. In this case, we solve Equation (2) using linear finite
elements (p = 1) on a sequence of five progressively uniform isotropic refined
meshes (ln = 5) with an initial mesh size of h0 = 0.1 and a refinement factor
of r(x) = 2 (see Figure 2). In this way, each linear triangular element is
divided into four congruent triangles of half size and the new vertices of new
elements lie exactly at the midpoint of the parent element’s edges.

(a) Initial isotropic mesh (b) Uniformly refined mesh

Figure 2: Coarsest isotropic mesh (h0 = 0.1) and isotropic uniform refined one (p = 1 and
r = 2) for the one-sided Problem (2).

The results of the convergence study are shown in Figure 4, demonstrating
a linear rate of convergence with uniform refinement, while the finite element
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method should yield second-order convergence for smooth problems.
It is thus clear that the poor first order rate of convergence shown for

uniform refinement is due to the loss of accuracy at the interface. However,
it is possible to obtain the optimal convergence by setting the mesh refine-
ment factor r(x) differently depending on whether an element is close to the
embedded interface Γ or not. Indeed, as we have εi = O(hei) near the inter-
face and εi = O(hp+1

ei
) in the bulk region, a global convergence order of p+ 1

can only be obtained if the refinement factor close to the interface is chosen
as

rΓ = rp+1
b ⇒ hΓ =

h0

rΓ

. (8)

where rb denotes the refinement factor in the bulk region. This means that
the gap between the interface Γ and its nearly body-fitted version Γ∗ has
to decrease more rapidly than the bulk element size to ensure an optimal
global rate of convergence. An example of a mesh refined with isotropic
adaptation for the 2D Laplace problem is shown in Figure 3. In practice,

Figure 3: Isotropic adaptive refined mesh for the 2D Laplace problem (2) for linear finite
elements (p = 1, h0 = 0.1, r = rb = 2, l = 4, E = 0.1).

mesh adaptation is performed in the vicinity of the iso-zero of φ(x), i.e. in a
band {x s.t. |φ(x)| ≤ E} of thickness 2E around the interface. The mesh size
for isotropic adaptive mesh refinement is computed by linearly interpolating
between the minimal value hlΓ = h0/(rΓ)l at the interface Γ and a maximal
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value of hlb = h0/(rb)
l in the bulk region:

hl(x) = hlΓ +
hlb − hlΓ
E

|φ(x)|. (9)

Here, rb is a constant refinement factor in the bulk region.
Convergence results for the adaptive isotropic mesh refinement are shown

in Figure 4. It can be clearly seen that the optimal second-order convergence
rate is recovered when applying isotropic adaptive refinement technique.

isotropic uniform refine
isotropic adaptive refine
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1
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2

Figure 4: Convergence study for the 2D Laplace problem (2)-(5): comparison between
isotropic uniform and isotropic adaptive refinement techniques.

2.3. Need for anisotropic mesh refinement

Although the isotropic mesh refinement procedure provides the optimal
convergence rate for the solution, it suffers from two problems: it does not
enable geometrical convergence, and it still involves a significantly higher
number of elements than body-fitted meshes.

First, the discrete representation Γ∗ of the exact interface Γ is stair-cased
even when employing very fine elements (see Figure 3), so Γ∗ does not con-
verge uniformly towards Γ. More specifically, the measure of the interface
(length in 2D or surface in 3D) does not converge to its exact value. This
can be seen in Figure 5 where the L1 geometric error Egeo, which is defined

8



in Eq. 10 and is measured as the error in the length of the interface, remains
at a quasi constant level for isotropic adaptive refinement.

Egeo = ‖lΓ∗ − lΓ‖ (10)
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Figure 5: Geometric error for the interface Γ∗ of problem (2)-(5) analysis using high-order
elements and anisotropic adaptive refinement technique. Comparison with the isotropic
uniform refinement for p = 1.

Such methods are thus severely limited when quantities of interest are
integral values over the interface. In a CFD computation, for instance, it
would lead to a large error in the evaluation of the lift and drag forces ap-
plied to the geometry by the flow. In a crack propagation simulation, the
propagation path and velocity, that depend on quantities integrated along
the crack line, would be strongly mispredicted.

Moreover, the isotropic mesh refinement implies a rapid growth in the
number of elements in the band of thickness 2E around the interface. Even if
the band is narrow compared to the size of the entire computational domain,
this growth can lead to a significant increase in the global number of degrees
of freedom, which affects negatively the computational cost. A comparison
of the number of elements ne and the number of vertices nv between uniform
refined meshes and isotropic adaptive refined meshes for Problem 2 is shown
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l hl nuniform
e hlΓ nisoAdaptive

e ∆ne(%)

1 0.1 275 0.1 275 0

2 0.05 1057 0.025 1402 32.64

3 0.025 4227 0.00625 5890 39.34

4 0.0125 16767 0.00156 20967 25.05

5 0.00625 67725 0.00039 75277 11.15

Table 1: Mesh sizes and number of elements in refined meshes with isotropic uniform and
isotropic adaptive refinement techniques for Problem (2)-(5). We have h0 = 0.1, p = 1 and
r = rb = 2 so that rΓ = 4 and hl = hlb.

in Table 1. Both refinement techniques started from an initial uniform mesh
at the coarsest level corresponding to h0 = 0.1. The uniform refinement
factor and the bulk refinement factor are equal: r = rb = 2 so that the
refined meshes have the same mesh size hl = hlb in the bulk region for both
refinement techniques. An average overhead of ∆ne = 27.05% in the number
of elements ne is observed for adaptively refined meshes compared to their
uniformly refined counterparts.

A solution to both problems is to interpret rΓ in Formula (8) as a mesh
refinement factor that should be applied only in the orthogonal (or normal)
direction to the level-set, so that only the mesh edges that cross the interface
become very small. In the tangential direction, using a lower refinement
factor should still yield the optimal rate of global convergence, as the solution
along the interface is smooth.

In the case of the planar interface of Problem 2, the refinement factor in
the tangential direction can be the same as in the bulk region. However, in
the more general case of a curved boundary, the error on the solution in the
vicinity of the interface results both from the finite element approximation
and from the approximate representation of the geometry. Elements that are
used in mesh generation are geometrically linear (i.e. straight sided), so the
geometrical approximation, measured by the “gap” between the approximate
and exact interfaces, converges at a second-order rate. Here, we assume
that the part of the error in the solution that is due to the geometrical
approximation decreases at the same rate as the geometrical error. The
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mesh refinement factor tangential to the interface is then computed as:

rt = r
(p+1)/2
b . (11)

Tangential mesh sizes are then also interpolated linearly in the band of thick-
ness E.

In this manner, the geometry of the numerical approximation Γ∗ of the
interface Γ converges to the exact one. As seen in Figure 6, the elements
in the vicinity of the interface become increasingly stretched along Γ, which
effectively controls the measure of Γ∗, preventing it from becoming “fractal-
like” in the refinement process. We analyze the error in the 2D Laplace
problem (2), using the proposed approach, with elements of different poly-
nomial orders (p = 1, 2, 3). All the cases start with the same isotropic initial
mesh (h0 = 0.1). The refinement factors are rb = 2 in the bulk region away
from the interface and rΓ = 2p+1 in the fine region close to the interface.
While the geometric error using isotropic mesh refinement does not decrease
at all, the results of adaptive anisotropic refinement plotted in Figure 5 show
the advantage of this technique in terms of geometric convergence.

  

Figure 6: Anisotropic adaptive refined mesh for the 2D Laplace problem (2)-(5): p =
1, r = 2 so that rΓ = 4 and rt = 2.

Moreover, the growth of the number of nodes in the mesh remains limited.
The first 2D example presented in Section 3 (see Figure 11) shows that
an increase of only 17.8% in number of vertices with respect to uniformly
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refined meshes is sufficient for obtaining optimal convergence, even though
the interface is much longer than in Problem 2.

2.4. Mesh metric field construction in anisotropic adaptivity technique

  

hb

hb

ht

hn

E

E

Figure 7: Illustration for mesh size definition (hn, ht and hb) in 2D anisotropic adaptive
mesh

There exist open source mesh generators that allow to generate anisotrop-
ically adapted meshes based on metric maps, e.g. BAMG [22] in 2D and
MMG3D [10] in 3D. Mesh adaptation in BAMG is based on a global con-
strained Delaunay kernel, while local mesh modifications are applied in MMG3D.

The aim of metric-based anisotropic mesh adaptation is to generate a
uniform unit mesh [16] in a prescribed Riemannian metric space, in order
to obtain an anisotropic adapted mesh in the Euclidean space. Anisotropic
mesh adaptation is performed in the vicinity of the interface Γ described by
the level-set function φ(x), i.e. in a band {x s.t. |φ(x)| ≤ E} of thickness 2E
around Γ.

With a linear discretization, the approximation error on the level-set func-
tion φ(x) is of second order. An appropriate metric field M can thus be
constructed from the gradient vector ∇φ(x) = (φx φy φz)

T and the Hessian
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matrix H(φ(x)) of φ(x):

H (φ(x)) =

 φxx φxy φxz
φyx φyy φyz
φzx φzy φzz

 (12)

Let us define an orthogonal basis R3 = {n, t1, t2} at any point of the interface
Γ, with n the unit normal vector to the interface and t1, t2 two unit tangent
vectors in the principal directions of curvature of the surface defined by the
iso-zero of the levelset. At any point in the band of thickness 2E around Γ,
the Hessian matrix can undergo an eigenvalue decomposition:

H (φ(x)) = RT

 λn 0 0
0 λt1 0
0 0 λt2

R. (13)

If φ(x) is a distance function, the eigenvectors corresponding to the eigenval-
ues λn, λt1 and λt2 are proportional to n, t1 and t2 respectively. Assuming
that hn(x), ht1(x) and ht2(x) denote the element edge lengths in three prin-
cipal directions (see in Figure 7 for a detail illustration of notations), λn, λt1
and λt2 shall be inversely proportional to h2

n(x), h2
t1

(x) and h2
t2

(x), respec-
tively.

In practice, the construction of the metric M at a given point of the
band of thickness 2E around Γ requires thus the definition of the element
edge lengths and the determination of the corresponding directions.

The normal direction n is obtained directly from the gradient∇φ(x). The
associated element size hn is computed by linearly interpolating between the
minimal value hnΓ of elements located on the interface Γ and the maximal
value hb of isotropic elements in the bulk region:

hn(x) = hnΓ +
hb − hnΓ

E
|φ(x)| . (14)

In the tangential directions ti (i = 1, 2 for a general 3D case), the mesh
size hti is determined as:

hti =
2π

κiNp

, (15)

where Np is a user-specified parameter that represents the number of mesh
points needed to discretize a whole circle and κi are principal curvatures
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corresponding to two directions ti. For two dimensional cases, the unique
tangential direction is directly obtained as t = (−φy φx)T , and the curvature
formula for implicit planar curves is given by [19]:

κ =

∣∣tT H t
∣∣

|∇φ(x)|3
(16)

For 3D cases, the gradient ∇n of the unit normal vector n to the implicit
embedded surface φ(x) = 0 is given by [5]:

∇n = − 1

|∇φ(x)|
(
I − n · nT

)
H(φ(x)) (17)

where I is the identity matrix. The two non-zero eigenvalues of ∇n give the
two principal curvatures κi, and the corresponding directions ti are the asso-
ciated eigenvectors [5]. The formula can further be simplified for a distance
function φ(x), as then |∇φ(x)| = 1.

In practice, it is necessary to truncate the small and the large eigenvalues
by imposing the maximal size as hb and the minimal size as hnΓ in order to
avoid singular metric case and to limit the local density of the adapted mesh
[2]. Modified eigenvalues are then defined by:

λ′n = min

(
max

(
λn,

1

h2
b

)
,

1

h2
nΓ

)
(18)

λ′ti = min

(
max

(
λti ,

1

h2
b

)
,

1

h2
nΓ

)
(19)

The anisotropic mesh metric can finally be computed as:

M(x) = R′T

 λ′n 0 0
0 λ′t1 0
0 0 λ′t2

R′, (20)

where the matrix R′ is made up of n, t1 and t2. It is clear that the three
unit vectors in the basis R3 prescribe the orientation while the λ′n, λ′t1 and
λ′t2 control the size of the mesh elements along these directions. The meshing
procedure gets the directional information of element shape and size from the
metric tensor fieldM(x) and generates an adapted mesh. In the bulk region
outside the transition band, the isotropic mesh is generated by prescribing
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an isotropic metric corresponding to a uniform mesh size hb.
In the next sections, series of refined meshes will be generated for different

cases using the proposed technique. Three parameters are given as input of
the mesh adaptation procedure: the width E of the transition band, the
mesh size hnΓ in the normal direction at the interface, and the mesh size hb
in the bulk region. For all cases, the relations between the given mesh sizes
for each each refinement level l and the initial mesh (l = 0) are given by:

hlb =
h0
b

rlb
and hnΓ =

h0
nΓ

rlnΓ

, rnΓ = rp+1
b . (21)

3. Curved interface embedded in square domain

A complex two-dimensional curved interface of flower-like shape with high
curvature is embedded in a square domain Ω = [−1, 1] × [−1, 1]. This kind
of geometry is a typical of irregular interfaces. It is therefore appropriate
for evaluating the accuracy of methods designed to solve elliptic problems,
see e.g. [14, 23, 18]. The level-set defining the curved interface in polar
coordinates is:

φ(r, θ) = r − 0.3− 0.05 sin (6θ), with θ ∈ [0, 2π] (22)

and the Poisson equation ∆u = 4 with the exact solution u = x2 + y2

(Figure 8) is taken into consideration.
The only boundary of the computational domain is the embedded inter-

face. The Dirichlet boundary condition imposed at each point P ∗(r∗, θ∗) on
Γ∗ is determined based on the exact solution, i.e. u = r2 taken at the
corresponding point P (r, θ) on the exact surface Γ. In this case P can
be determined simply as the intersection point of OP ∗ and the exact sur-
face Γ; therefore, P and P ∗ have the same coordinate θ = θ∗ while the
second polar coordinate r can be calculated from the level-set equation as
r = 0.3 + 0.05 sin (6θ∗).

We first solve the problem using linear finite elements (p = 1) on two
sequences of five progressively refined meshes (l = 1, . . . , 5). In both cases,
we start from the same initial isotropic mesh h0 = h0

b = 0.1, and the bulk
refinement factor is set to rb = 2. The first sequence corresponds to the
isotropic uniform refinement governed by Equation (7). The other one (see
Figure 9) is obtained through anisotropic adaptive refinement, the mesh sizes
being given by Equation (21) with rnΓ = 4.
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Figure 8: Three-dimensional view of solution for flower-like interface problem

  

Figure 9: Computational domain and anisotropic elements in the vicinity of the level-set
for the flower-like embedded interface problem: p = 1, r = 2 so that rΓ = 4 and rt = 2.

The error obtained for each sequence of meshes is plotted in Figure 10,
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once again demonstrating the advantage of using anisotropic elements. The
rate of convergence using uniform meshes is 1:1, whereas an optimal rate
of convergence 1:2 is observed with anisotropic adaptive meshes. Besides
this, while using anisotropic adaptive mesh increases accuracy of solution
compared to isotropic mesh, the total number of mesh elements is nearly the
same, as can be seen in Figure 11.

isotropic uniform refine p=1
anisotropic adaptive refine p=1

0.0001

0.001

0.01

0.1

1

10 100 1000

E L
2
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)

√
ne

1

1
1

2

Figure 10: L2 error norm for linear finite elements on isotropic uniform refined meshes
and anisotropic adaptive refined meshes for the flower-like embedded interface problem
(p = 1, r = 2).

Then, we use the anisotropic mesh sequence to solve the problem with
finite elements of higher order p = 2 and p = 3. It can be seen from Equa-
tions (8) and (11) that the ratio rnΓ/rt increases with p, so that the anisotropy
of the mesh in the vicinity of the interface increases faster at higher order,
while the elements remain isotropic in the bulk region. This allows the error
to decrease uniformly in the domain with the optimal rate of convergence,
i.e. third order for p = 2 and fourth order for p = 3, as shown in Figure 12.
Figure 13 also presents optimal rate of convergence for solution error in L∞
norm.
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anisotropic adaptive refinement
isotropic uniform refinement
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Figure 11: Total number of elements ne against mesh size hb in isotropic uniform refined
and anisotropic adaptive refined meshes for the flower-like interface problem (p = 1, r = 2).

4. Spherical interface embedded in a cubic domain

In the previous section, we show the ability of our technique for a 2D
problem. However, a broad range of industrial problems, such as the appli-
cation in composite material science presented in Section 5, are inherently
three dimensional.

In this section, we present a 3D example consisting of a spherical interface
embedded in a cubic domain. A sphere Γ with radius R = 0.41 and center
(xc, yc, zc) = (0.5, 0.5, 0.5) is described by the level-set function:

φ(x, y, z) =
√

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.41 (23)

The interface is embedded in the cube Ω = [0, 1] × [0, 1] × [0, 1] (see Fig-
ure 14(a)), where a Poisson problem outside the sphere is considered [21]:

∆u = 1/r2, in Ω (24)

u = log(R), on Γ (25)

u = log(r), on ∂Ω (26)
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anisotropic adaptive refine p=2
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Figure 12: L2 error norm for high-order finite element on anisotropic adaptive meshes
(p = 2, 3), confirming optimal rate of convergence O(hp+1) up to 4th order in flower-like
interface case.
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Figure 13: Solution error in L∞ on isotropic uniform refined meshes (p = 1) and anisotropic
adaptive refined meshes (p = 1, 2) for the flower-like interface problem.
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(a) Embedded sphere (b) Computational mesh (c) View of solution

Figure 14: Spherical embedded interface, computational anisotropic adaptive mesh and
view of solution.

where r =
√
x2 + y2 + z2, and is solved by a finite element method. The

exact solution, that is symmetric about the center of the cube, is u = log(r).
Dirichlet boundary condition imposed on the embedded interface Γ∗ is de-
termined by the exact solution, which is a constant function of sphere radius
u = log(R).

Figure 14(a) shows the quasi smooth embedded sphere created by highly
anisotropic adaptive mesh mesh elements which stretch along and capture
well the interface as can be seen in Figure 14(b). Three dimensional view
of finite element based solution is presented in Figure 14(c). L2 errors of
numerical solution and geometry obtained on four refined meshes are plotted
in Figure 15. Geometry error in this case is defined as the distance of the
embedded sphere Γ∗ to the exact one Γ. Plot of convergence proves the
second order of accuracy O(h2) for the three dimensional case.

5. Applications

This part attempts to indicate possible applications of the proposed strat-
egy in the field of fluid dynamics and material science.

5.1. Flow over cylinder

We first study laminar incompressible flow over a circular cylinder at low
Reynolds number (Re = 20) using linear (p = 1) finite elements. We analyze
two cases in which the embedded surface of the cylinder is approximated by
locally isotropic and anisotropic adaptive mesh generation. The error in drag
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Figure 15: L2 error norm was plotted for four anisotropic adaptive refined meshes, showing
optimal rate of convergence O(h2) in 3D spherical interface.

coefficient, as well as the geometry error defined as the difference between
the length of the resulting embedded interface and the circumference of the
exact circle, are calculated. Reference value for the drag coefficient is taken
as Cd = 2.13 which is in the range listed in the literature [8, 9, 15, 31, 32, 33].

In order to investigate the influence of the geometry error on integral
quantities computed over the approximated interface Γ∗ (e.g. the drag coeffi-
cient), the uniform mesh size in the bulk region remains constant (i.e. rb = 1)
with hb = 0.16, while mesh size in the vicinity of the interface undergoes
adaptive refinement according to Eq. (21) with rnΓ = 2 and h0

nΓ = 0.0016.
It is clear that the isotropic adaptive refinement fails to predict the drag

coefficient because of the large error in the approximation of the geometry.
In addition, using very fine isotropic elements in the vicinity of Γ results in a
very high number of elements, as can be seen in Tab. 2 and in Fig. 16. The
convergence plot in Fig. 17 also shows that an appropriate local anisotropic
mesh refinement leads the interface to converge towards the exact geometry,
which decreases the resulting error in drag. Fig. 18 presents the solution
obtained on the finest anisotropic adaptive mesh (l = 3).
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l hb hnΓ nanisoe nisoe

0 0.16 0.0016 38067 56866

1 0.16 0.0004 40365 87171

2 0.16 0.0001 43897 138199

3 0.16 2.5e-05 45109 168907

Table 2: Flow over the cylinder at Re = 20. Mesh statistic for isotropic and anisotropic
adaptive refinement.

Figure 16: Flow over the cylinder at Re = 20. Isotropic and anisotropic adaptive mesh
(hb = 0.16, hnΓ = 2.5e-05).

5.2. Two-phase flows

We consider a canonical problem of two phase flows: a circular bubble in
static equilibrium. In this problem, the net surface force should be zero, since
at each point on the bubble the tension force is counteracted by an equal and
opposite force at a diametrically opposed point. We take as approach the
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Figure 17: Convergence of geometry error and drag coefficient with isotropic and
anisotropic adaptive mesh.

(a) Pressure field (b) u-component of the velocity field

Figure 18: View of solution using anisotropic adaptive mesh (hb = 0.16, hnΓ = 2.5e-05).

Continuum Surface Force (CSF) method of Brackbill et al. [6], in which the
surface tension force is given by:

f = γκnδεΓ,

where δεΓ is a smoothed delta function with support on the bubble interface
Γ, κ is the curvature of the bubble and γ is the surface tension coefficient
(see Ref. [25] for more details).
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The correct solution of the two-phase Navier-Stokes equations is a zero
velocity field and a pressure field that rises from a constant value pout outside
the bubble to a value pin = pout + γ/R, where R is the radius of the bubble.
The curvature κ can be computed exactly from the level set function of which
the iso-zero value represents the fixed bubble. We assume a square domain
of size L = 4 and a bubble of radius R = 1 centered at (0, 0). We set γ = 2,
the viscosity µ = 1 and assume a ratio of density of ρ1/ρ2 = 1000.

The interface is replaced by a continuous transition region of which the
thickness 2ε is of the order of mesh size. The width of the smeared region is
chosen as ε = 1.5hb for the isotropic mesh refinement and ε = 1.5hnΓ for the
anisotropic mesh refinement.

Figure 19: Illustration of transition region for mesh adaptivity and smoothed density in
the neighbourhood of the interface Γ for anisotropic adaptive mesh (l = 3).

The density varies smoothly across the bubble interface by using a smoothed
Heaviside function Hε(φ) of the signed distance φ to Γ:

Hε
Γ(φ) =


0 φ < −ε

1

2
+
φ

2ε
+

1

2π
sin

(
πφ

ε

)
−ε < φ < ε

1 φ > ε

(27)

24



and the corresponding Dirac delta function is:

δεΓ(φ) = ∇Hε
Γ(φ) =

 0 ‖φ‖ > ε
1

2ε
+

1

2ε
cos

(
πφ

ε

)
‖φ‖ ≤ ε

(28)

Solutions obtained on four consecutive isotropic uniform and anisotropic
adaptive refined meshes (l = 0, ..., 3) are taken into consideration with initial
mesh size (l = 0) set as h0

nΓ = h0
b = L/15. The relative error for the computed

pressure drop can be estimated using Formulas (29),(30) given in Brackbill
et al. [6] and Gerlach et al. [17], while the error in the spurious stream
is measured by the maximal velocity in the computational field following
Equation (31):

EL1(∆p) =

∣∣∣∣∣
∑nin

e
i=1 pi − γ/R
neine (γ/R)

∣∣∣∣∣ , (29)

EL2(∆p) =

[∑nin
e
i=1 (pi − γ/R)2

nine (γ/R)2

]1/2

, (30)

EL∞(‖u‖) = max(‖u‖), (31)

where nine is the number of mesh elements inside the bubble.
Figure 20 shows the plot of the pressure along the x-direction in the mid-

section of the bubble. The pressure jump across the interface, as well a the
constant pressure inside the bubble, can be observed. Convergence plots
for the L∞ norm of the spurious velocity ‖u‖) and the L1 and L2 norms
for the pressure error (after 250 physical time steps ∆tphys = dµ/γ) can be
seen in Figure 21. It is clear that the isotropic mesh refinement strategy
exhibits poor results for both velocity and pressure, whereas the anisotropic
mesh strategy presented in this paper yields less spurious flows as the mesh
is refined and successfuly recovers the rate of convergence for EL∞(‖u‖),
EL1(∆p) and EL2(∆p). As expected, the convergence rates with anisotropic
mesh refinement are always of one order higher than with isotropic meshes.

5.3. Composite material

A woven composite material in which the yarn surfaces are described by
a level-set is taken into consideration.
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Figure 20: Computed pressure along x-direction at the mid-section (y = 0) of the bubble
for different anisotropic adaptive refined mesh (l = 0, ..., 3).

The representative volume element of a woven composite is modeled. It
is composed of cylindrical fibers with a sinusoidal axis organized perpendic-
ularly with a phase difference to form a woven grid. Two layers of fibers
are represented in the cubic cell. The geometry is inspired from the one
studied in Reference [28] where XFEM is used to model complex geometries.
The cube sides are equal to 2, the radius of the fibers is 0.1 and the sinus
amplitude is 0.25.

Adapted meshes are created with the strategy presented in this paper, one
analytical level-set representing each fiber surface. Three adapted meshes are
produced, with varying elements size in the layer around the fibers surface.
The normal element size hnΓ on the fiber surface and bulk element size hb are
changed to obtain finer meshes. The characteristic lengths of the meshes, as
well as the resulting geometrical error Egeo on the surface of the fibers, are
listed in Table 3. As expected, the geometrical error decreases with increasing
mesh density (decreasing elements size around the surfaces). The finest mesh
is shown in Figure 22(a).

A conformal mesh of high density is also created with a CAD modeler in
order to compare the results of the adapted meshes (see Figure 22(b)). The
geometry of the representative volume has been created using Spline curves
to model the fibers. This conformal mesh is composed of 342078 tetrahedra.

The composite is submitted to loading test cases to determine its effective
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Figure 21: Errors in velocity and pressure for the static bubble with a density ratio of
ρ1/ρ2 = 1000.

hb hnΓ ne Egeo (%)

0.10 0.015 170588 10.60

0.08 0.010 273966 7.88

0.06 0.005 615564 3.70

Table 3: Mesh adaptation parameters and geometrical error for woven composite geometry.
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(a) Adapted mesh. (b) Conformal mesh.

Figure 22: Adapted and conformal meshes of woven composite.

stiffness. Boron fibers and an aluminum matrix are considered. The material
properties are: Ef = 400GPa, νf = 0.3, Em = 72GPa and νm = 0.33. Two
test cases are carried out. The first one is a tensile test case. The face y = 0
of the representative volume is fixed and a displacement of 1% of the side
length is imposed in the y-direction on the opposite face (y = 2). This test
enables to compute the effective elastic modulus of the composite in the y-
direction. In the second test case, the face y = 0 is fixed and a displacement
of 1% of the side length is imposed in the z-direction on the opposite face
(y = 2). This test enables to determine the effective shear modulus in the
yz-direction. First order finite elements are used to run these test cases.

The effective properties of the composite are obtained by integrating the
stresses and the strains over the whole representative volume. The elastic
modulus in the y-direction is obtained by the formula : Ey = σ̄yy

ε̄yy
, with σ̄yy

and ε̄yy being respectively the mean values of the stress and strain in the
y-direction from the first test case. The shear modulus in the yz-direction is
obtained by the formula µyz = σ̄yz

2ε̄yz
, with σ̄yz and ε̄yz being respectively the

mean values of the stress and strain in the yz-direction from the second test
case.

The conformal mesh gives an effective elasticity modulus of 82.2GPa.
It represents an increase of 14% compared to the matrix properties. The
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effective shear modulus is 29.8GPa, compared to 27.1GPa for the matrix.
Figure 23 represents the normal stress distribution in the tensile test case
along the y-axis with the finest adapted mesh. The relative error for the
elasticity modulus and the shear modulus are computed for the 3 adapted
meshes. The reference solution is calculated with a body-fitted mesh. The
results are shown in Figure 24. The errors decrease as the adapted meshes
contain more elements close to the surface of the fibers.

Figure 23: Tensile normal stresses in composite material with anisotropic adapted mesh.

This test case illustrates the effectiveness of the approach presented in
this paper. The geometry is complex to model with a CAD modeler, while
a level-set description is much simpler to set up. Moreover, the level-set
description allows fibers to intersect. The adaptation procedure only requires
the distance function resulting from the union of intersecting fibers. An
example of such a mesh is shown in Figure 25.

6. Conclusion

An adaptive approach for modeling embedded surfaces is proposed and
studied in detail in this paper. The geometry of the object under considera-
tion is described by a level-set in the computational domain and the solution
is calculated with a standard finite element method at various orders p. With
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Figure 24: Composite material with local anisotropic meshes to describe the fibers : errors
on effective moduli for tensile and shear test cases.

Figure 25: Adapted mesh of intersecting fibers composite.

uniform refinement, the large error that occurs on the embedded interface
dominates the global solution over the computational domain; therefore, a
faster local refinement near the interface is necessary to recover the optimal
convergence rate.
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The aim of this work is to propose a numerical approach that avoids
the construction of conforming meshes for solving some relevant engineering
analysis problems. We have demonstrated through the paper that the use of
well chosen “nearly body-fitted meshes” allows to retrieve the optimal finite
element convergence with barely the same number of degrees of freedom as
for the conforming case.

Numerical examples involving irregular geometries in both two and three
dimensions were performed, with excellent results. The geometrical error was
also analyzed in detail to prove the advantage of the method when employing
anisotropic elements to capture the complex geometrical features of the in-
terfaces. Although anisotropically refined meshes exhibit a slight increase in
the number of degree of freedoms (less than 20% in our proposed approach),
they yield an optimal rate of convergence, whereas only first order accuracy
is obtained from uniformly refined meshes.

The main advantage of our nearly body-fitted approach is that it does not
interfere with the finite element solver: the final computation is done using
standard finite element tools, without any change in the formulation. It is
true, yet, that not all the computational mechanics community is already
comfortable with the use of highly distorted/anisotropic meshes. Now that
those meshing techniques are readily available, we strongly believe that, in a
near future, anisotropic meshes will be used in a regular fashion.
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