
An efficient parallel implementation of explicit multirate

Runge-Kutta schemes for discontinuous Galerkin

computations

B. Senya,∗, J. Lambrechtsa, T. Toulorgea, V. Legata, J.-F. Remaclea

aInstitute of Mechanics, Materials and Civil Engineering, Université catholique de
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Abstract

Although explicit time integration schemes require small computational ef-
forts per time step, their efficiency is severely restricted by their stability
limits. Indeed, the multi-scale nature of some physical processes combined
with highly unstructured meshes can lead some elements to impose a severely
small stable time step for a global problem. Multirate methods offer a way
to increase the global efficiency by gathering grid cells in appropriate groups
under local stability conditions. These methods are well suited to the discon-
tinuous Galerkin framework. The parallelization of the multirate strategy is
challenging because grid cells have different workloads. The computational
cost is different for each sub-time step depending on the elements involved
and a classical partitioning strategy is not adequate any more. In this paper,
we propose a solution that makes use of multi-constraint mesh partitioning.
It tends to minimize the inter-processor communications, while ensuring that
the workload is almost equally shared by every computer core at every stage
of the algorithm. Particular attention is given to the simplicity of the paral-
lel multirate algorithm while minimizing computational and communication
overheads. Our implementation makes use of the MeTiS library for mesh
partitioning and the Message Passing Interface for inter-processor commu-
nication. Performance analyses for two and three dimensional practical ap-
plications confirm that multirate methods preserve important computational
advantages of explicit methods up to a significant number of processors.
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1. Introduction

Improving the efficiency of explicit time integration schemes, which are
often severely restricted by the highest allowable stable time step, constitutes
a key numerical challenge. Indeed, despite the numerous attractive properties
of explicit schemes, the Courant-Friedrichs-Lewy (CFL) condition imposes
that the stable time step must be kept under a certain critical value such that
the physical information may be captured across the space discretization.
For each cell, this value is proportional to the ratio between the grid size and
the maximum wave/advective velocity. The smallest ratio determines the
stable time step of the global problem. A structured grid with a constant
velocity field yields a constant stable time step per cell. In the case of an
unstructured grid with a large ratio between cell sizes and/or a highly varying
velocity field, there will be a significant difference between the smallest and
the largest stable time step. The computational cost of explicit methods may
therefore be prohibitively high with respect to the problem size.

Several ways have been investigated to tame the CFL condition. Uncon-
ditionally stable implicit time integration schemes are a widespread alter-
native as they allow for large time steps. But large (non)linear systems of
equations need to be solved. Warburton and Hagstrom proposed an algo-
rithm which has a CFL number independent of the spatial order of approxi-
mation, for discontinuous Galerkin (DG) methods on structured meshes [1].
Lately, Lörcher et al. developed DG schemes based on a space-time expan-
sion (STE-DG) for unsteady problems [2, 3]. Taylor expansions are used
in space and time at the barycenter of the mesh elements and retain high
order accuracy in time. Local time stepping methods of arbitrary high order
and using arbitrary ratios of time-step sizes have also been introduced in the
framework of the ADER schemes (arbitrary high order schemes using deriva-
tives) [4, 5] and, amongst others, for DG discretizations (ADER-DG) [6, 7, 8].
We also mention explicit Runge-Kutta methods with nonuniform time steps
(NUTS RK) [9] which have been developed for DG schemes in the field of
Computational Aeroacoustics (CAA). To ensure correct communication be-
tween meshes with different time step sizes and preserve high-order accuracy,
the intermediate solutions are coupled at the critical interfaces with minimum
dispersion and dissipation errors.
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The multirate approach focusses on reducing the overall computational
effort by gathering mesh elements into appropriate groups that satisfy local
stability conditions. The time step of a multirate group is an integer multiple
of the smallest time step so that all steps are synchronized for every largest
time step. The challenge, when developing multirate schemes, consists in
providing a coherent transition between the multirate groups so that the in-
formation circulates properly. In particular, convergence and conservation
properties need to be preserved. Several multirate approaches for conser-
vation laws have been proposed in the literature since the early 1980s [10,
11, 12, 13, 14]. Hundsdorfer et al. [15] analyzed many of these schemes in
terms of consistency and mass conservation. Constantinescu et al. [13] and
Schlegel et al. [14] proposed strategies that accommodate the transition be-
tween bulk groups, where a classic explicit Runge-Kutta (ERK) base method
is used, by means of buffer regions, where an adapted ERK method is used.
The first method is conservative and preserves the strong stability proper-
ties of the base method but is at most second order accurate due to interface
treatment between bulk and buffer groups. The second method reaches third
order accuracy by using an appropriate base method and may be conservative
if the partitioning is based on fluxes rather than on elements [14, 15].

This paper follows in the footsteps of the work accomplished in [16] where
we investigated the efficiency of these last two multirate methods in the
framework of DG finite elements. We have shown that they were especially
well suited for computations on unstructured meshes. Depending on the
distribution of the element sizes and the physical phenomena, significant
speedups have been observed compared to the equivalent singlerate schemes
for realistic geophysical flow problems. Here, we want to extend this multirate
approach to the parallel framework. It is challenging since the computational
load varies spatially and at the different sub-time steps of the ERK scheme.
Load-balancing as well as communication have to be considered carefully. In
this paper we focus on the parallelization of the class of multirate methods
introduced by Constantinescu with time steps which are fractional powers of
two of each other. Several issues are addressed from mesh partitioning strate-
gies to practical implementations aspects. Schlegel et al. already investigated
a multi-constraint balancing approach that employs three independent con-
straints correlated to the two highest temporal refinement levels and the
remaining levels for which they obtained acceptable scalings up to a small
number of processors, [17]. Here we develop a parallel multirate strategy
that shares the workload almost equitably between all processors at every
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multirate sub-time step for any number of temporal refinement levels and
any number of processors. Illustrations and notations have been chosen to
remain very close to the implementation. To the same end, the algorithms
described in this paper are fully detailed.

The remainder of this paper is organized as follows: in Section 2 we sum-
marize the DG and ERK methods; the multirate approach of Constantinescu
is described in Section 3 and a generic implementation is proposed for the DG
framework; Section 4, which constitutes the core of this work, addresses the
mesh partitioning issues and proposes a generic parallel multirate algorithm;
performance results are presented for three applications in Section 5.

2. The Runge-Kutta discontinuous Galerkin method

The Runge-Kutta discontinuous Galerkin (RKDG) methods were intro-
duced by Cockburn and Shu in [18, 19, 20, 21]. They may be decomposed
into two main steps: the DG spatial discretization of a conservation law
described by a system of partial differential equations (PDE’s) followed by
the time integration of the resulting semi-discrete form using a class of ERK
schemes.

2.1. The discontinuous Galerkin space discretization

For the sake of simplicity, let us assume a scalar hyperbolic conservation
equation defined on a domain Ω:

∂u

∂t
+∇ · f(u) = 0 , u(x, t0) = u0, (1)

where u is the conserved unknown quantity while f(u) is the vector flux
associated with u. For the sake of simplicity, the right-hand side is assumed
to be zero. An initial condition u0 is imposed for t = t0 on the entire
domain. Consider a spatial discretization of the domain, Ωh, consisting of N
non-overlapping elements Ωe:

Ωh =
N⋃
e=1

Ωe. (2)

By integrating by parts Eq. (1) multiplied by a sufficiently smooth test func-
tion û over each mesh element Ωe we obtain the standard weak formulation:∫

Ωe

∂u

∂t
ûdΩ−

∫
Ωe

f(u) · ∇ûdΩ +

∫
∂Ωe

f(u) · nûdΓ = 0 ∀e = 1, · · · N , (3)
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where n is the outward unit normal at the element boundaries. For the DG
discretization [22], we seek an approximation uh ∈ Uhp of the true solution
u and choose the test function û in the same space such that û = ûh ∈ Uhp .
The finite dimensional space Uhp denotes the space P p(Ωe) of polynomials of
degree at most p on element Ωe that are L2 integrable. The approximated
solution uh can be defined for each mesh element Ωe:

uhe =

Np∑
i=1

φiUe,i, (4)

where φi are the shape functions and Ue,i the nodal values on element e. The
number of degrees of freedom (DoF) corresponding to the integration order
p is Np. The DG weak formulation may be written for each mesh element:∫

Ωe

∂uh

∂t
ûhdΩ−

∫
Ωe

f(uh) · ∇ûhdΩ +

∫
∂Ωe

f(uh) · nûhdΓ = 0, (5)

where the interface flux term should be handled properly. Unlike for con-
tinuous finite element methods, the discrete solutions at element bound-
aries are multiply defined due to the discontinuity. The discrete normal flux
fn = f(uh) · n depends on values at both sides of the discontinuity (Ue and
Ue+1) and must be approximated by a numerical flux f̂n. To ensure the ro-
bustness and accuracy of the scheme, the numerical flux has to be defined
properly. The calculation of these interface fluxes becomes a Riemann prob-
lem for which exact [23] or approximate [24, 25] Riemann solvers are used.

Among the numerous vices and virtues of the DG method, we will only
emphasize here that a high number of DoF are needed, but they are not
shared between elements. Many operations are thus local which allow, among
other things, a straightforward parallelization and h- and p-refinement.

2.2. The singlerate explicit Runge-Kutta time discretization

The aim of this section is to introduce some mathematical and algorith-
mic notations for the ERK methods that will be used all along the paper.
Consider that a general multi-dimensional conservation law, described by a
system of PDE’s, has been discretized spatially by means of the DG method.
The whole set of nodal unknowns U can be viewed as the concatenation of
the set of unknowns Ue associated to each element Ωe:

U = {U1,U2, · · · ,UN}. (6)
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0

c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

Table 1: Butcher tableau for an s-stage explicit Runge-Kutta method.

Following the method of lines we can write the next semi-discrete form for
every mesh element:

Me
dUe

dt
= F(Ue,Un, t) = FV (Ue, t) + FI(Ue,Un, t), (7)

where Me is the element-wise mass matrix, Un are the unknowns associated
with the neighboring elements of e, and F is the steady-state residual (SSR)
resulting from the DG formulation. FV (respectively FI) stands for the
volume (respectively interface) part of the SSR. Within this framework an s-
stage ERK method computes the next step solution for an element e, UN+1

e ,
at time tN+1 by using the actual solution UN

e available at time tN . Butcher
tableaus [26] are a convenient way to represent the coefficients aij, bi and ci
of an ERK scheme, see Table 1. The explicitness of the method requires that
the matrix aij is strictly lower triangular.

A possible generic implementation of these methods is given by Algo-
rithm 1, in which we distinguish three main operations: compute the current
solution (C); compute the estimate of the time derivatives (K); compute the
next step solution (U). Operations C and K are performed at each stage i
of the the method and for every mesh element e. The element-wise current
solutions V

(i)
e are obtained by summing the actual solution Ue with a linear

combination of the time derivative estimates Ki
e. The latter is obtained by

the multiplication of the inverse of the element-wise mass matrix Me with
the flux function Fe which depends on the current solution on the actual
element, V

(i)
e , and its neighboring elements, V

(i)
n . The update operation U

is realized at the end of the s stages by summing the actual solution with a
linear combination of the time derivatives.
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Algorithm 1 Implementation of explicit Runge-Kutta methods

Require: UN , N , s, ∆t
U← UN

for i = 1 to s do

// Compute the current input (C)
for e = 1 to N do
V

(i)
e ← Ue + ∆t

∑i−1
j=1 aijK

j
e

end for

// Compute the SSR (K)
for e = 1 to N do
Fe ← FV (V

(i)
e , tN + ci∆t) + FI(V

(i)
e ,V

(i)
n , tN + ci∆t)

Ki
e ←M−1

e Fe

end for

end for

// Update the solution (U)
for e = 1 to N do
Ue ← Ue + ∆t

∑s
j=1 bjK

j
e

end for

UN+1 ← U
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3. Second order explicit multirate Runge-Kutta schemes

Constantinescu and Sandu [13] constructed a family of second order multi-
rate partitioned Runge-Kutta (MPRK) schemes that use different time steps
that are integer multiples of the smallest time step. Here, we will only con-
sider the case where the time steps are fractional powers of two of each other,
which is a reasonable compromise between simplicity and efficiency. The key
idea consists in organizing mesh elements in multirate groups. Buffer groups
accommodate the transition between two successive bulk groups which use a
base ERK method with time steps ∆t/2n and ∆t/2n+1. An adapted method
is used for the buffer elements obtained by repeating twice the base ERK
method with the largest time step ∆t/2n. The adapted method performs
the same number of stages as its neighboring bulk group with smallest time
step and communication is thus possible. The Butcher tableaus of the RK2a
method and the adapted version are represented in Table 2a and 2b. Two
bulk groups must be separated by at least s connected buffer elements. In-
deed, at this distance the adapted method reduces to the base method. This
multirate approach is conservative for conservative laws since the b vectors
of two adjacent Butcher tableaus are identical. The convergence of the
method is limited to second order due to the treatment of the critical in-
terface between a buffer and a bulk group. The pure temporal error of a
multirate scheme will be of the same magnitude as the error associated with
the largest time step used after a significant number of time steps. The error
propagates through elements at the same rate as the information. A detailed
mathematical development of the method and its characteristics are available
in [16] and [13].

For large scale applications on unstructured meshes it is essential to man-
age multiple levels of refinement. This method can be extended to any num-
ber of temporal refinement levels and multirate groups therefore need to be
defined properly. A generic way to construct the multirate groups is a crucial
requirement. The approach adopted, defined in [16], is briefly summarized
in the next section.

3.1. Multirate Groups

A first step when building multirate groups is to determine a reference
time step, ∆t∗, that will be the largest time step used. It needs to be be-
tween ∆tm and ∆tM , that are the maximum stable time step on the most
restrictive and the least restrictive element respectively. For simplicity, we
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0

1 1

1/2 1/2

(a)

0

1 1

0 0 0

1 0 0 1

1/4 1/4 1/4 1/4

(b)

Table 2: Butcher tableaus for the base (a) and adapted (b) method, based on RK2a, with

coefficients {a(0)i,j , b
(0)
j , c

(0)
i } and {a(1)i,j , b

(1)
j , c

(1)
i }, respectively.

assume multirate setups where ∆t∗ is a power of two of ∆tm. In this context,
we define the maximum multirate exponent:

z∗ = log2

∆t∗
∆tm

. (8)

Accordingly, the number of temporal refinements is z∗+ 1. It is now possible
to allocate each mesh element according to its own stable time step to a
subset of time steps:

[∆tm, 2−(z∗−1)∆t∗[ ∪ [2−(z∗−1)∆t∗, 2−(z∗−2)∆t∗[ ∪ · · · ∪ [∆t∗, ∆tM ]. (9)

As an illustrative example, let us consider a simple triangular mesh with
element-wise stable time steps. In Fig. 1a, we define the local stable time
steps such that ∆tm = 1

4
∆t, ∆tM = ∆t and z∗ = 2 for ∆t∗ = ∆t.
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(a) Local stable time steps
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(b) Multirate groups

Figure 1: Illustrative example: the multirate method based on RK2a.

Next, the buffer groups need to be introduced. To distinguish between
the multirate groups, we use a similar notation as introduced in [16]:

θ = 2(z∗ − z) + σ, (10)
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where σ = 0 for bulk groups and σ = 1 for buffer groups. The multirate
exponent, z, determines the effective time step of a group, i.e. ∆t∗/2

z. The
parameters z and σ may also be obtained directly from the multirate tag θ:

σ = (θ mod 2) , z = z∗ − dθ/2e. (11)

The mesh elements are thus distributed among z∗ + 1 bulk groups and z∗

buffer groups. Two neighboring mesh elements have either the same multirate
tag either two successive multirate tags. The mesh is decomposed as follows:

2z∗⋃
θ=0

Ωh
θ = Ωh, (12)

where Ωh
θ is the set of elements that belong to multirate group θ. The mul-

tirate load (estimated as the number of evaluations of the SSR for a ∆t∗
multirate time step) of an element belonging to a multirate group θ is:

λθ = 2d(2z
∗−θ)/2e = 2z+σ. (13)

Fig. 1b represents the multirate groups for the multirate method based on
RK2a . Three bulk groups, Ωh

0,2,4, are separated by two buffer groups, Ωh
1,3,

of size two. For this example half of the elements are in buffer groups and
the theoretical speedup would be 1.6.

The theoretical speedup, compared to the equivalent singlerate method, is
evaluated as follows:

Sth(z∗) =
2z

∗|Ωh|(
2z∗∑
θ=0

|Ωh
θ |λθ

) , (14)

where |Ωh
θ | stands for the number of elements present in a multirate group θ.

In practice, the effective speedup is evaluated as the following ratio

Sef(z
∗) =

WT (0)

WT (z∗)
, (15)

where WT (z∗) and WT (0) are the wall clock times taken by the multirate
and the singlerate methods, respectively, to achieve a fixed physical time.
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3.2. Serial implementation of the explicit multirate method

Once the multirate groups are built, they need to be integrated with
their own time step and Butcher tableau (buffer or bulk). Moreover, they
need to communicate properly with each other. A generic implementation of
the multirate method of Constantinescu for any ERK base method and any
number of multirate groups must be proposed. Following the element-wise
decomposition given by Eq. (6), we define the subset Uθ of the discontinuous
unknowns corresponding to the variables associated to a multirate group θ:

Uθ = {Ut(1), · · · ,Ut(m)}, (16)

where m is the number of elements belonging to Ωh
θ and t(i) represents the

mapping of element i of multirate group θ to the general element numbering.
If a multirate group is empty then Uθ = {} and any operation on this

vector would be trivial. We define for each tag θ: Uθ (the actual solution),
Vθ (the current solution ) and Ki

θ (the SSR Fθ, multiplied by the inverse of
the mass matrix Mθ, for every stage i of an ERK method). The mass matrix
is block-diagonal where each block is the mass matrix associated with an
element of the multirate group θ:

Mθ = diag(Mt(1), ...,Mt(m)). (17)

Algorithm 2 gives the pseudo-code to compute UN+1 from UN . For the
sake of simplicity, the algorithm is given for an autonomous system. We
assume a multirate setup characterized by a reference time step, ∆t∗, and a
maximum multirate exponent, z∗. Henceforth, the total number of sub-time
steps performed by the multirate group with the smallest time step to reach
∆t∗ is s∗ = 2z

∗
s. Therefore, the multirate algorithm will have s∗ stages.

The three main operations C, K and U are performed in the multirate al-
gorithm but don’t involve all multirate groups at each intermediate stage. To
manage these variable sets of multirate groups, two vectors are introduced.
The vector Θ, of size s∗, gives the maximum multirate tag up to which op-
eration (K) has to be executed at each stage of the algorithm. This vector
is determined by the multirate setup and is fixed for the whole algorithm.
When evaluating the interface part of the SSR, operation (K) requires the
current solution of the actual multirate group and its two neighboring multi-
rate groups. So, at stage i, the operation of type (C) must be executed up to
multirate tag Θ[i] + 1. The vector Π, of size 2z∗ + 1, gives the current stage
of the internal ERK method (bulk or buffer) for each multirate group and is
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Algorithm 2 Serial implementation of the explicit multirate method

Require: UN , s, ∆t∗, z
∗

s∗ ← 2z
∗
s, compute Θ, Π← 0, U← UN

for i = 1 to s∗ do

// Compute the current input (C)
for θ = 0 to Θ[i] + 1 do
h← ∆t∗/2

z, Π[θ]←
(
Π[θ] mod (σ + 1)s

)
+ 1

Vθ ← Uθ + h
∑Π[θ]

j=1 a
(σ)
Π[θ],jK

j
θ

end for

// Compute the SSR (K)
for θ = 0 to Θ[i] do
Fθ ← FV (Vθ) + FI(Vθ,Vθ) + FI(Vθ,Vθ+1) + FI(Vθ,Vθ−1)

K
Π[θ]
θ ←M−1

θ Fθ

end for

// Update the solution when needed (U)
for θ = 0 to Θ[i] do
h← ∆t∗/2

z

if Π[θ] = (σ + 1)s then

Uθ ← Uθ + h
∑Π[θ]

j=1 b
(σ)
j Kj

θ

end if
end for

end for
UN+1 ← U

12



updated at every stage of the algorithm. It allows us to determine which co-
efficients of the Butcher tableau are needed for operation (C) and whether the
solution should be updated (U). Every multirate group is integrated with its
proper time step h. The parameter σ allows us to distinguish between bulk
and buffer groups, see Eq. (10), as well as their associated Butcher tableaus,

{a(σ)
i,j , b

(σ)
j , c

(σ)
i }. Table 3 shows some aspects of the multirate algorithm based

on the RK2a method for the illustrative example.
For each multirate group, the SSR Fθ is evaluated as the sum of four terms

depending on the current solution, V: FV (Vθ) (the volume term of group θ),
FI(Vθ,Vθ) (the interface term for interior faces of group θ), FI(Vθ,Vθ+1)
(the interface term for faces between group θ and θ + 1) and FI(Vθ,Vθ−1)
(the interface term for faces between group θ and θ − 1). The interface
terms between two multirate groups are computed when the group with the
smallest multirate tag is treated.

i
θ = 0 θ = 1 θ = 2 θ = 3 θ = 4

Π[0] C K U Π[1] C K U Π[2] C K U Π[3] C K U Π[4] C K U

1 1 1 1 1 1

2 2 2 2

3 1 3 1

4 2 4 2 2 2

5 1 1 1 3 1

6 2 2 2

7 1 3 1

8 2 4 2 4 2

Table 3: Illustration of the multirate algorithm (RK2a) for the illustrative example for
which s∗ = 8 and Θ = [4 1 1 3 3 1 1 4]. The current value of the vector Π[θ] and
the operations (C, K, U) that need to be performed are specified at each stage i of the
algorithm and for every multirate group θ.

In this multirate algorithm, the memory storage requirements are higher
compared to the equivalent singlerate algorithm. The buffer elements require
the storage of twice as many time derivatives, K, compared to the bulk
elements. The fraction of buffer elements in a multirate setup will thus
determine the memory overhead. However, the ratio between buffer and
bulk elements is generally not too significant.
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4. Parallelization of the explicit multirate Runge-Kutta method

The parallelization of an algorithm consists in dividing the work over mul-
tiple processors such that the wall clock time is ideally inversely proportional
to the number of processors. In practice however, the unavoidable sequential
fraction of a program, according to Amdahl’s law [27], the idle times due to
an imperfect sharing of the workload between processors and the communi-
cation to computation ratio can affect the parallel performance. Moreover,
the computer architecture and in particular the latency and bandwidth of
the inter-processor communications and memory fetches may influence the
global efficiency. Explicit singlerate time integration for space-DG formula-
tions has the advantage of robust scalability properties on parallel computer
platforms [28]. The reason is twofold: the inherent properties of an explicit
time integration and the spatial locality of the DG discretization.

For explicit schemes, the succession of several simple instructions is easily
handled on parallel computers as is the dependence of the solution on the sole
previous time steps. The parallelization of implicit schemes is challenging due
to the highly coupled nature of the problem. This is why scalable and robust
implicit solvers are hard to develop. For transient computations, explicit
solvers are often preferred, especially in ocean modeling because those are
generally able to provide scalable and efficient parallel solutions. For DG for-
mulations, the weak coupling at inter-element boundaries, realized through
a numerical flux formulation, ensures a high parallel efficiency. Although ad-
ditional DoF are involved due to the discontinuities at element boundaries,
their local nature compensates somewhat for this overhead.

A classic strategy, which combines a message passing programming model
and mesh partitioning, is generally used to parallelize these explicit schemes.
An optimal domain decomposition is obtained if the same number of ele-
ments are allocated to each processor whilst the number of faces at the inter-
processor boundaries are minimized. Indeed, the computational cost may
be assumed constant per element and per time step. The extension of these
parallel assets to explicit multirate methods is far from being straightforward
because all elements do not require the same number of iterations. Elements
belonging to a multirate group θ require λθ substantial operations (evalua-
tions of the SSR). Moreover, the number of potential messages exchanged
between two elements (if their common interface is on an inter-processor
boundary) depends on their respective multirate groups. The computational
load and the communication volume are variable spatially and for each sub-
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time step of the multirate algorithm. The synchronization of all the multirate
groups plays an important role to minimize the idle times. A classical bal-
ancing is therefore inefficient because it only allocates the same number of
elements per processor.

4.1. Mesh partitioning for explicit multirate schemes

The selection of a partitioning is critical to achieve a good efficiency. To
this end, let us analyze different domain decompositions for the illustrative
example of Fig. 1a and 1b with the RK2a multirate method and for two
partitions. In Fig. 2a we show the computational cost of each element which
can be approximated by the number of SSR evaluations required to reach
∆t∗. The total workload of the problem is 80 SSR evaluations.
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Figure 2: Illustration of the three different partitioning strategies for the illustrative ex-
ample. Multirate loads, λθ, are associated with each mesh element (a). The two resulting
optimal partitions P1 (green) and P2 (blue) are shown for the classical (b), single-constraint
(c) and multi-constraint (d) partitioning. The inter-partition faces are highlighted in red.

In classical partitionings, the aim is to ensure that the the total amount
of elements is equally distributed on each processor. Among all the possible
domain decompositions, the one that yields the fewest inter-processor faces
is selected, see Fig. 2b. The multirate workload of P1 (resp. P2) is 56
(resp. 24). The processor designated for partition P2 will wait 32 work units
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while partition P1 will work continuously, see Table 4a. There are two inter-
processor faces and every processor has to send and receive four messages of
size two, see Table 4b.

P1 P2

stage wait work work wait

1 0 8 8 0

2 0 6 0 6

3 0 6 0 6

4 0 8 4 4

5 0 8 4 4

6 0 6 0 6

7 0 6 0 6

8 0 8 8 0

total 0 56 24 32

(a)

P1 P2

stage receive send send receive

1 2 2 2 2

2 0 0 0 0

3 0 0 0 0

4 2 2 2 2

5 2 2 2 2

6 0 0 0 0

7 0 0 0 0

8 2 2 2 2

total 8 8 8 8

(b)

Table 4: Classical partitioning: estimation for each processor at each stage of the global
algorithm of the (a) work and wait times and (b) sizes of sent and received messages.

In single-constraint partitionings, the aim is to ensure that each proces-
sor supports the same workload, a single weight is assigned to each mesh
element based on its own cost. Afterwards, it is required that the sum of the
element weights is equal on each processor. The weight of an inter-element
face is evaluated as the sum of the weights of its two neighboring elements.
Among all the possible solutions, the one that minimizes the total amount of
communications is picked, see Fig. 2c. Partitions P1 and P2 have both a total
weight of 40 and their inter-processor boundary has a weight of 28. Yet, this
partitioning is far from being optimal for multirate because both processors
have idle times, see Table 5a. Both processors finish their task after 56 work
units (40 working, 16 waiting). The communication consists of 8 different
messages that have either a size 1 or 2 for both processors, see Table 5b.

In multi-constraint partitionings, the aim is to minimize the waiting times.
The key idea is to have a perfect load balance at each sub-time step. In
other words, each processor should treat the same number of elements at
each stage of the multirate algorithm. Again, the solution that minimizes
the communication volume is selected, see Fig. 2d. Both partitions have 3
elements of load 8, 3 of load 4 and 2 of load 2. With this kind of strategy and
assuming zero communication costs, none of the two processors need to wait
at any stage of the algorithm, see Table 6a. By contrast, communication
costs are relatively high: both processors send and receive 8 messages of size
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P1 P2

stage wait work work wait

1 6 5 11 0

2 0 5 1 4

3 0 5 1 4

4 2 5 7 0

5 2 5 7 0

6 0 5 1 4

7 0 5 1 4

8 6 5 11 0

total 16 40 40 16

(a)

P1 P2

stage receive send send receive

1 2 2 2 2

2 2 1 2 1

3 2 1 2 1

4 2 2 2 2

5 2 2 2 2

6 2 1 2 1

7 2 1 2 1

8 2 2 2 2

total 16 12 16 12

(b)

Table 5: Single-constraint partitioning: estimation for each processor at each stage of the
global algorithm of the (a) work and wait times and (b) sizes of sent and received messages.

1 or 2. The total inter-processor communication volume is 36.

P1 P2

stage wait work work wait

1 0 8 8 0

2 0 3 3 0

3 0 3 3 0

4 0 6 6 0

5 0 6 6 0

6 0 3 3 0

7 0 3 3 0

8 0 8 8 0

total 0 40 40 0

(a)

P1 P2

stage receive send send receive

1 4 4 4 4

2 1 1 1 1

3 1 1 1 1

4 3 3 3 3

5 3 3 3 3

6 1 1 1 1

7 1 1 1 1

8 4 4 4 4

total 18 18 18 18

(b)

Table 6: Multi-constraint partitioning: estimation for each processor at each stage of the
global algorithm of the (a) work and wait times and (b) sizes of sent and received messages.

A dynamic load-balancing strategy could be more adequate since the
workload changes temporally. But this would mean that the partitioning
must be reevaluated at each sub-time step of the algorithm. Such a strategy
would bring serious implementation complications and could be very costly.
The key idea of this work is to compute a mesh partitioning that remains as
good as possible at all stages of the algorithm, assuming that the stability
conditions are never violated in time. Dynamic multirate strategies could be
an extension of this work, for problems with varying CFL conditions in both
space and time. From a computational point of view, the multi-constraint
partitioning turns out to be the most adequate strategy as it minimizes the
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idle times and provides the best static load-balancing. For practical applica-
tions with many multirate groups and partitions it is most often impossible
to have a perfect multi-constraint load balancing. This type of partitioning is
tantamount to consider as many partitioning subproblems as there are tem-
poral refinement levels. With such constraints it is also almost impossible
to build contiguous partitions. If the equal sharing of computational cost in
both time and space is essential to achieve an acceptable performance, the
number and size of communications may quickly become cumbersome. As
illustrated by previous examples, the communication volume increases with
the quantity and severity of constraints. It will also grow substantially with
the number of multirate groups as well as the number of required partitions.
In practice, various factors will determine the influence of communication on
global performance. In particular, the latency time and bandwidth speed as-
sociated with a parallel architecture are crucial. Special care should be taken
to minimize the number of messages and their size in the implementation of
the parallel multirate algorithm.

4.2. The multi-constraint partitioning strategy

When partitioning finite element meshes for scientific computations, it
is a common practice to partition the associated graph. A graph vertex is
assigned to each mesh element and an edge links two vertices if two mesh
elements share a common interface. Classical mesh partitioning focusses
on resolving an optimization problem with the objective of minimizing the
edge-cut under the constraint that vertices are equally distributed over all
partitions.

The software package MeTiS1 aims to partition large irregular graphs and
large meshes as well as to compute fill-reducing orderings of sparse matrices.
Partitioning is done by means of a multilevel graph partitioning algorithm: a
smaller graph, obtained by collapsing vertices and edges, is partitioned, and is
then uncoarsened to construct a partitioning of the original graph [29, 30, 31].
In the latest version of MeTiS, routines are included to partition a graph with
multiple balancing constraints. The multi-constraint partitioning algorithms
and their applications are described in detail in [32].

The functionalities of MeTiS meet our requirement for the parallel mul-
tirate partitioning problem. Consider a graph G = (V,E) where V is the set

1 http://glaros.dtc.umn.edu/gkhome/views/metis
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of vertices vi of size |V | and E the set of edges ej of size |E|. A vector of
binary weights αi of size m = z∗ + 1, corresponding to the number of mul-
tirate temporal refinements, is associated to each vertex vi. Each constraint
k represents a set of multirate groups for which the SSR needs to computed
together at the same stages of the algorithm. The binary value αki depends
on the belonging of a mesh element i (graph vertex vi) to one of these sets
of multirate groups. This vector may be expressed as follows:

αki =

 1 if element i ∈ ⋃2k−1
θ=0 Ωh

θ

0 otherwise
. (18)

The mesh elements that require an evaluation of the SSR at each stage of
the algorithm will be active for each constraint k. To minimize the total
communication volume, a single weight βj is assigned to each inter-element
face (graph edge ej) and is defined as the sum of the multirate loads of the
two elements that it separates. The associated weighted graph provided to
the MeTiS partitioner is shown in Fig. 3 for the illustrative example. A
vector of three constraints is associated to each graph vertex as well as a
single weight to each edge.

For an arbitrary number of partitions p, we define the load imbalance lk
associated to constraint k:

lk =

p maxq,vi

(∑
P[i]=q α

k
i

)
∑2k−1

θ=0 |Ωh
θ |

k = 1, . . . ,m. (19)

The theoretical global load imbalance is defined by:

L =
m∑
k=1

lkrk with rk =
max(1, 2z

∗−k)
∑2k−1

θ=0 |Ωh
θ |∑2z∗

θ=0 |Ωh
θ |λθ

, (20)

where rk is the relative computational weight associated to constraint k. The
sum of all these computational weights rk is equal to unity. A perfect load-
balancing is performed if L = 1. Without any communication overhead, it
means that each processor needs exactly the same time to perform the com-
putations. In practice, however, perfect load balancing is rarely achievable.
Some or all constraints can be relaxed by associating a tolerance ck to the
constraint k.
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Figure 3: Weighted graph for MeTiS partitioner. A vector of weights αi is associated to
each vertex i and every edge j has a single weight βj . The relative constraint weights are
r1 = r2 = 0.3 and r3 = 0.4

It is now possible to formulate the constrained minimization problem that
will be solved by MeTiS:

Find the p-way partitioning P of G
that minimizes C the total weighted edge-cut defined by:

C =
∑
ej∈E

βj, (21)

under the constraints:

lk ≤ ck k = 1, . . . ,m, (22)

E being the set of graph edges that are cut by a partitioning P .

4.3. Estimation of the mesh partition quality

Defining relevant indicators of the quality of a mesh partitioning is chal-
lenging as it depends not only on the computational load balancing but also
on the ratio between communication and computation time. The volume
and number of communications have to be taken into account, but hardware
characteristics such as latency and bandwidth speed also come into play.
Moreover, in the multirate context, this ratio will vary both spatially and
temporally as the communication volumes are not identical at each stage
and for each partition. Despite this, we will try to define some simple indi-
cators.
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In order to take into account the number of multirate groups we define a
reference multirate setup which corresponds to the maximum possible tem-
poral refinement such that:

z+ =

⌈
log2

∆tM
∆tm

⌉
, ∆t+ = 2z

+

∆tm. (23)

We estimate the average communication volume sent or received per parti-
tion during a period ∆t+ for a multirate setup characterized by a maximum
multirate exponent z∗ as:

ε(p, z∗) =
(2z

+−z∗)

p
C, (24)

where C is the weighted edge-cut, defined by Eq. (21), which depends on the
partitioning strategy and z∗. We also introduce an indicator of the average
communication to computation ratio per partition and per unit time:

ζ(p, z∗) =
C

p
∑2z∗

θ=0 |Ωh
θ |λθ

. (25)

Both indicators are very rough, as their minimum and maximum values could
depend significantly on the partition and on the stage of the algorithm.

4.4. Parallel multirate algorithm

Once the mesh is decomposed, each processor is responsible for one parti-
tion. At the inter-processor boundaries, data has to be exchanged to compute
the fluxes through the interfaces between elements. Therefore, a distinction
must be made between local and remote connections. The former allow
communication between two elements processed by the same CPU, while
the latter allow communication between two elements processed by different
CPU cores. Whilst the local connections are treated as in the sequential
case, the remote connections must be handled properly. Ghost elements are
introduced at each inter-processor boundary and their purpose is twofold: to
act as a receive buffer for the incoming data and to allow the computation
of inter-processor interface fluxes. For DG discretizations, there are at most
twice as many ghost elements as there are inter-processor faces. The data
for the ghost elements must be scattered by the adjacent partitions where
the corresponding elements reside. It is important to minimize the number
of messages as well as their volume.
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The introduction of ghost elements results in the addition of new DoF. For
this, we assume that X̃ represents a vector with the ghost element variables
associated to the non-ghost vector X. In the same way, X̃θ gives the ghost
DoF corresponding to multirate group θ. By considering the set of interfaces
I in a mesh, a distinction is made between inter-processor interfaces, I∗, and
intra-processor interfaces, I\I∗. To handle inter-pocessor communications,
two functions are defined, that take as argument a list of multirate tags:

START_COMM(θ0, · · · , θn)
END_COMM(θ0, · · · , θn)

The first one initializes communication between the boundary elements of
a partition and the corresponding ghost elements of the adjacent partitions
from tag θ0 to θn. The second one waits for those communications to finish.
By doing so, it is possible that at each stage of the algorithm at most one
message is sent and received by each processor. In practice, the non-blocking
communications will be handled with MPI2 routines.

Algorithm 3 gives a parallel implementation for the multirate methods
of Constantinescu, which is quite similar to the sequential algorithm but
with communications between the different processors now included. An
illustration of the parallel multirate algorithm for the illustrative example is
given in Fig. 4. At each stage of the algorithm, the current solutions, Vθ, are
evaluated for all relevant multirate groups (C). Next, the current solutions at
inter-processor boundaries are transmitted to the neighboring partitions (S).
While the data is sent, the volume and intra-processor interface residuals are
computed (K[V, I\I∗]). The processors then receive the current solutions of
the relevant partitions and multirate groups (R) to compute the interface
SSR at inter-processor boundaries (K[I∗]). Finally, the solution is updated
when required (U). For this implementation, some extra computations have
to be performed since the SSR is computed twice at all inter-processor faces.

In such an implementation we perform all the computations that do not
require information from the ghost elements while data is in transit. If the
communication to computation ratio is not significant, the communication
should be hidden by computation. However, the multi-constraint partitioning
objective is to minimize the total weighted edge-cut, and it is not possible,

2 http://www.mpi-forum.org/
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Algorithm 3 Parallel implementation of the explicit multirate method

Require: UN , s, ∆t∗, z
∗

s∗ ← 2z
∗
s, compute Θ, compute P , Π← 0, U← UN

for i = 1 to s∗ do in parallel

// Compute the current input (C)
for θ = 0 to Θ[i] + 1 do
h← ∆t∗/2

z, Π[θ]←
(
Π[θ] mod (σ + 1)s

)
+ 1

Vθ ← Uθ + h
∑Π[θ]

j=1 a
(σ)
Π[θ],jK

j
θ

end for

START_COMM(0, · · · ,Θ[i] + 1)

// Compute the volume and intra-processor interface SSR (K[V, I\I∗])
for θ = 0 to Θ[i] do
Fθ ← FV (Vθ) + FI\I∗(Vθ,Vθ) + FI\I∗(Vθ,Vθ+1) + FI\I∗(Vθ,Vθ−1)

end for

END_COMM(0, · · · ,Θ[i] + 1)

// Compute the inter-processor interface SSR (K[I∗])
for θ = 0 to Θ[i] do
Fθ ← Fθ + FI∗(Vθ, Ṽθ) + FI∗(Vθ, Ṽθ+1) + FI∗(Vθ, Ṽθ−1)

K
Π[θ]
θ ←M−1

θ Fθ

end for

// Update the solution when needed (U)
for θ = 0 to Θ[i] do
h← ∆t∗/2

z

if Π[θ] = (σ + 1)s then

Uθ ← Uθ + h
∑Π[θ]

j=1 b
(σ)
j Kj

θ

end if
end for

end for
UN+1 ← U
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Figure 4: Illustration of the parallel multirate algorithm for the illustrative example.
At every stage of the algorithm the main operations are highlighted and divided into four
columns: (1) the nodes for which the current input have to be computed are marked in blue;
(2) the volumes and inter-processor interfaces for which the steady-state residuals have to
be computed are colored in red, and cyan arrows indicate that the data is in transfer; (3)
the intra-processor steady-state residuals that have to be computed are colored in red; (4)
the nodes for which the solutions have to be updated are marked in green. Stages 6 and
7 are omitted since they are equivalent to stages 2 and 3.

to our knowledge, to equitably share the edge-cut weight over all partitions.
Accordingly, even if the workload is perfectly shared by all the partitions at
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each stage of the algorithm, the communication to computation ratio and the
number of extra interface SSR can vary strongly from one partition to the
other and from one sub-time step to the other. These factors can affect the
parallel efficiency, especially when the problem is subject to a combination of
a large number of multirate groups with small workloads per partition. This
is because communication may become cumbersome for computer clusters
with an important latency and small bandwidth speed. Furthermore, while
for large problems the amount of extra interface residuals may be negligible
compared to the rest of the computational work, it may not be the case for a
small number of elements per processor, a high number of multirate groups
and a significant weighted edge-cut.

4.5. Evaluation of parallel efficiency

The parallel efficiency of our algorithm will be evaluated by measuring
the strong scalability of the applications. The problem size stays fixed whilst
the number of processors is increased. The theoretical speedup of the parallel
multirate method, is estimated as:

Sth(z∗, p) = Sth(z∗)p, (26)

where Sth(z∗) is the sequential theoretical multirate speedup. The effective
efficiency of the parallel multirate algorithm will be evaluated by measuring
wall clock time (sum of the CPU time, I/O time and the communication
overhead) for different numbers of processors. For each experiment we con-
sider the reference wall clock time as the maximum of the measured times
amongst all the processors involved. The effective speedup of the overall
parallel multirate algorithm can be estimated with the following ratio:

Sef(z
∗, p) =

WT (0, 1)

WT (z∗, p)
, (27)

where WT (0, 1) represents the wall clock time of the singlerate method on a
single processor and WT (z∗, p) the wall clock time of the multirate method
on p processors. The intrinsic parallel speedup of a multirate algorithm is
computed as follows:

Ref(z
∗, p) =

WT (z∗, 1)

WT (z∗, p)
, (28)

The theoretical value of this speedup is Rth(z∗, p) = p.
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5. Numerical Results

Three applications have been selected to validate the parallel multirate
strategy and evaluate its efficiency compared to the equivalent singlerate
strategy. The first two deal with two-dimensional ocean modeling. The
numerical simulations are performed with the Second-generation Louvain-
la-Neuve Ice-ocean Model (SLIM3) [33, 34, 35, 36] developed by our team.
This model makes use of DG finite elements on unstructured meshes. Firstly,
the three different partitioning strategies will be compared in terms of parallel
efficiency and partitioning quality for an academic benchmark, the Stommel
Gyre. Likewise, the influence of the number of multirate groups will be
examined. Secondly, the parallel performance will be evaluated for a realistic
application, a tsunami wave. Finally, the parallel multirate algorithm will be
applied to a three-dimensional case of acoustic propagation in an idealized
turbofan engine intake. For all applications, DG elements are used for the
spatial discretization whilst the two stage, second order multirate scheme
(RK2aC) is used for the temporal integration. The unstructured meshes
are built by means of the open source software GMSH4 [37]. For the mesh
partitioning, a tolerance of 1.03 (minimum advised by MeTIS) is imposed for
each constraint for all experiments

The parallel code will be tested for parallel efficiency by analyzing the
strong scaling results on both the “ace50”5 and the “Lemâıtre 2”6 clusters.
Whilst all the nodes are exploited on the “ace50” cluster, only a fraction of
the nodes are used on the “Lemâıtre 2” cluster. When a node is exploited,
it is used in an exclusive mode, meaning that no other job is running on it.

In our code, the major part of the operations use highly optimized BLAS7

(Basic Linear Algebra Subprograms) level 3 (BLAS3) routines to perform
matrix-matrix multiplications which represent a substantial fraction of the
total wall clock time (see for example [38]). The BLAS implementation is

3 http://www.climate.be/SLIM
4 http://www.geuz.org/gmsh/
516 computing nodes with 2 processor of 4 cores each, Intel Xeon(R)L5420 at 2.50GHz

(total of 128 cores). They are interconnected by Gigabit ethernet. For each node the
memory is 16 GB and the cache sizes are L1=64K, L2=6144K, L3=0K.

6112 computing nodes with 2 processors of 6 cores each, Intel Xeon(R) E5649 at 2.53
GHz (total of 1344 cores). They are interconnected by Infiniband QDR. For each node
the memory is 48 GB and the cache sizes are L1=64K, L2=256K, L3=12288K.

7http://www.netlib.org/blas/
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the one of the Intel(R) Math Kernel Library8 (MKL). The multiple levels
of caches in the memory hierarchy of modern processors are managed in
an efficient way for these operations. For most of the experiments in this
section, we will observe strong scalings that are close to the expected parallel
speedups. The scalability results show even slightly super-linear speedups
for a reasonable number of processors per computer node. This effect is
basically due to increased total cache capacity and less contention for memory
bandwidth.

5.1. Wind driven circulation in a square basin

The mean horizontal velocity vector u and the free-surface elevation η for
shallow waters are computed by means of a depth-averaged barotropic 2D
model. We consider the following non-conservative shallow water equations:

∂η

∂t
+ ∇ ·

(
(h+ η)u

)
= 0, (29)

∂u

∂t
+ u · (∇u) + fk× u + g∇η =

1

H
∇ ·

(
Hν(∇u)

)
+
τ s − τ b
ρH

, (30)

where f, g, ν and ρ are respectively the Coriolis parameter, the gravitational
acceleration, the horizontal eddy viscosity and the mean water density. The
actual water depth is H = h+ η, where h is the reference water depth below
the mean sea level. The bottom and wind stresses are parametrized as τ b

and τ s respectively. The equations are discretized in space with DG finite
elements for both elevation and velocity fields.

The Stommel Gyre test case [39] simulates a wind driven circulation in
a closed square basin defined on the domain [0, L]× [0, L] where L = 106 m
with a constant seabed defined by h(x, y) = 1000 m. The wind forcing is
defined by the following expression:

τ s = 0.1 sin
(
π
y

L

)
ex, (31)

while the bottom stress is a linear dissipation term defined as τ b = −ρhγu
which balances the forcing, with γ = 10−6s−1. For this test case, the viscosity
parameter, ν, is set to zero. A detailed description of this test case with the

8http://software.intel.com/en-us/intel-mkl

27



steady solution can be found in [33]. Since the source term is independent of
time the system is autonomous and Algorithm 3 may be used as it stands.

An unstructured mesh, composed of 647,100 triangles, was generated with
prescribed element sizes at the four corners of the square basin. The element
sizes vary linearly from the upper-left corner to the three others corners. Dis-
continuous elements of order 1 are used for the spatial discretization. Since
the bathymetry, h, is constant everywhere, the stable time steps associated
to the elements depend only on their characteristic size. The radius of the
inscribed circle of the triangle is used as element size measurement. The
smallest and largest stable time steps of the problem are ∆tm ≈ 0.0179s and
∆tM = 3.2159s, respectively. The resulting ratio is roughly 180.

Considering the RK2aC multirate method, this problem allows a max-
imum of 8 temporal refinement levels, meaning that z+ = 7 and ∆t+ ≈
2.2868s . The theoretical speedup corresponding to this multirate setup is
Sth(z

+) ≈ 6.8542 and there are 15 different multirate groups (8 bulk and 7
buffer). Table 7 gives some relevant information about the multirate groups.
The buffer elements cover about 9.37 % of the entire mesh. Multirate groups
are illustrated in Fig. 5a where buffer elements are colored in black and bulk
elements are colored depending on their effective multirate time step.

Table 7: Stommel Gyre: distribution of mesh elements in multirate groups with corre-
sponding multirate exponents and loads, for z∗ = z+.

θ 0 1 2 3 4 5 6 7

|Ωhθ | 15543 4187 51415 7702 72188 8646 84289 10465

z 7 6 6 5 5 4 4 3

λθ 128 128 64 64 32 32 16 16

θ 8 9 10 11 12 13 14

|Ωhθ | 95064 12260 108459 13728 158624 3631 899

z 3 2 2 1 1 0 0

λθ 8 8 4 4 2 2 1

The classical, single-constraint and multi-constraint partitioning strate-
gies are compared in terms of partitioning quality and resultant parallel per-
formance, for z∗ = z+. The average communication volume per partition
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Figure 5: Stommel Gyre: mesh made up of 647,100 triangles, multirate setup z∗ = z+.
Multirate tags with buffer elements in black (a). Distribution of mesh elements among
8 partitions resulting from (b) the classical, (c) the single-constraint and (d) the multi-
constraint partitioning strategies.

for a ∆t+ period is shown in Fig. 6a. It turns out that the multi-constraint
partitioning strategy yields an important weighted edge-cut, C, due to the
multiple constraints involved. The single-constraint partitioning strategy
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yields more inter-processor communications than the classical one because
many weighty interfaces are involved. However, the average communication
volume tends to decrease much faster with the number of partitions for the
multi-constraint partitioning strategy. As an example, consider the distri-
bution of the mesh elements among 8 partitions for the classical, Fig. 5b,
the single-constraint, Fig. 5c, and the multi-constraint, Fig. 5d, partition-
ing strategy. Observe that only the first two partitioning strategies yield
contiguous partitions. The average communication to computation ratio per
partition and per time unit, see Fig. 6b, becomes rapidly more significant
with the number of partitions for the multi-constraint partitioning strategy
than for the two others. Hiding communication by computations will become
increasingly difficult.
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Figure 6: Stommel Gyre: comparison of (a) the average communication volume per par-
tition for a ∆t+ period, see Eq. (24), and (b) the average communication to computation
ratio per partition and per time unit, see Eq. (25) for the three partitioning strategies.

The theoretical global load imbalance L, that depends on the number of
partitions p and the partitioning strategies, is illustrated in Fig. 7a. The
multi-constraint partitioning strategy yields global imbalances that stays be-
low the prescribed tolerance, 1.03 (the highest load imbalance is roughly 1.02
for 128 partitions). For the other two strategies, the global load imbalance
grows critically with p and could therefore be crippling for parallel perfor-
mance. The effective global load imbalances, measured for a 5∆t+ period,
confirm the general theoretical tendency for the classical and multi-constraint
partitioning strategies, see Fig. 7b. But the single-constraint partitioning
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strategy appears to behave significantly better than expected, especially for
a high number of processors. This phenomenon is due to the non-blocking
communications that allow processors to continue computations while some
other partitions are not yet at the same stage in the algorithm. We added
barriers (meaning that all processors have to wait until the slowest one fin-
ishes its work) at each stage of the global algorithm, when messages need to
be received. A better matching with the theoretical expectations is observed
for the single-constraint strategy, see dashed lines in Fig. 7b. The effective
imbalance for the multi-constraint partitioning strategy on 128 processors
is probably due to the high requirements in simultaneous memory access as
well as the high communication to computation ratio. For this configuration,
the full 128 cores of the “ace50” cluster are exploited.
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Figure 7: Stommel Gyre: comparison of (a) the theoretical and (b) the measured load
imbalances for the three partitioning strategies. The wall clock times are evaluated for a
5∆t+ period with and without a barrier when receiving the messages.

The strong scaling results computed with respect to the wall clock times
measured for the multirate setup on one processor are shown in Fig. 8a. The
multi-constraint partitioning strategy attains almost perfect scaling. Fig. 8b
shows the overall speedup of the parallel multirate algorithm compared to
the wall clock time measured for the equivalent singlerate method on one pro-
cessor. The multi-constraint partitioning strategy preserves the theoretical
multirate speedup with the increasing number of processors.

The acceleration of multirate versus singlerate depends on the number of
temporal refinement levels. Table 8 gives the theoretical multirate speedups

31



1 2 4 8 16 32 64 128

1

2

4

8

16

32

64

128

p

R
e
f(
z
+
,p
)

expected

classical

single-constraint

multi-constraint

(a)

1 2 4 8 16 32 64 128

8

16

32

64

128

256

512

1,024

p

S
e
f(
z
+
,p
)

expected

classical

single-constraint

multi-constraint

(b)

Figure 8: Stommel Gyre: comparison of the parallel performance, on the “ace50” cluster,
for the three parallel strategies in terms of (a) the intrinsic parallel multirate speedup,
see Eq. (28), and (b) the overall speedup of the parallel multirate algorithm compared to
the singlerate case, see Eq. (27). These experiments are based on the multirate setup for
which z = z+ and for a 5∆t+ period.

in function of the maximum multirate exponent, z∗. As expected, this
speedup reaches a threshold for a certain multirate exponent. Indeed, at
a certain point, the fraction of elements that could use a larger time step
becomes negligible.

Table 8: Stommel Gyre: theoretical multirate speedups depending on the maximum mul-
tirate exponent z∗.

z∗ 0 1 2 3 4 5 6 7

Sth 1.0000 1.9408 3.3817 4.9615 6.1115 6.6735 6.8537 6.8542

In Fig. 9a we compare the average communication volume per partition
for different z∗. Fewer and fewer computations need to be performed with an
increasing number of temporal refinements, but also the amount of commu-
nications for a fixed period decreases. Apart from the case where p = 2, the
general tendency is that the total communication volume, for a fixed period,
decreases significantly when the multirate speedup increases. By contrast,
Fig. 9b shows that the average communication to computation per partition
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and per time unit increases significantly when z∗ is increased. The total com-
munication volume decreases with the number of multirate groups and the
number of partitions but much more slowly than the computational load.
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Figure 9: Stommel Gyre: comparison of (a) the average communication volume per par-
tition for a ∆t+ period, see Eq. (24), and (b) the average communication to computation
ratio per partition and per time unit, see Eq. (25) for the eight different z∗.

The global imbalances resulting from the multi-constraint partitioning for
the different z∗ are depicted in Fig. 10. At least up to 128 partitions, the
global imbalance remains under the prescribed tolerance for each multirate
setup. If L tends to grow with p and z∗, the evolutions are far from being
smooth. The multi-constraint algorithm of MeTiS remains a heuristic that
tries to respect the prescribed tolerance while minimizing the weighted edge-
cut. It is thus difficult to predict the load imbalances.

The following parallel performance studies have been performed on the
“ace50” cluster. The multi-core computer nodes are filled progressively with
the same amount of processes per node. Fig. 11a gives the intrinsic multirate
strong scalings as a function of z∗ and p. Even if the scalings tend to decrease
for large z∗ and p they remain satisfactory. The overall multirate speedups
are globally preserved for increasing p, as illustrated by Fig. 11b. As an
example, for z∗ = 7 and p = 64 the global speedup is roughly 541.5, which
is much higher than the 438.6 expected theoretically.

From these experiments, it turns out that using a high number of mul-
tirate groups still yields generally the best overall speedup even though it
implies more constraints on the partitioning. The adverse effects of adding

33



1 2 4 8 16 32 64 128

1.00

1.01

1.02

p

L

z∗ = 0

z∗ = 1

z∗ = 2

z∗ = 3

z∗ = 4

z∗ = 5

z∗ = 6

z∗ = 7

Figure 10: Stommel Gyre: comparison of the global load imbalance resulting of the multi-
constraint partitioning strategy for the eight different z∗.
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Figure 11: Stommel Gyre: comparison of the parallel performance, on the “ace50” cluster,
for the eight different z∗ in terms of (a) the intrinsic parallel multirate speedup, see Eq. (28)
and (b) the overall parallel multirate speedup compared to the singlerate case, see Eq. (27).
Wall clock times have been measured for a 5∆t+ period.

multirate groups are mostly not sufficient to jeopardize the intrinsic mul-
tirate speedup of the problem. However, for significantly high numbers of
multirate groups and processors it is probably advisable to find a trade-off
between small variations in multirate speedup and the number of partitioning
constraints.

34



5.2. Propagation of a tsunami wave

Using the shallow water model defined by Equations (29) and (30), we
now consider the simulation of the tsunami that struck Japan on 11 March
2011. The water was put in motion due to a sudden vertical shift of the
water column. It was generated by an earthquake near the coast of Honshu.
A mesh of the world ocean made up of 1,757,467 triangles was generated using
GMSH [37]. Element sizes are prescribed in order to fit the topography of the
coastlines, take into account the bathymetry [40] and increase the resolution
in a region of interest (around Japan). The spatial discretization is carried
out with DG elements of polynomial order 2.

We solve the shallow water equations, Eq. (29), on the sphere using stere-
ographic coordinates [41]. The viscosity parameter ν is zero and there is no
wind forcing, i.e. τ s = 0. The bottom stress is parametrized with the
Chézy-Manning-Strickle formulation [42]:

τ b

ρ
= n2g

||u||u
H1/3

, (32)

where the Manning coefficient n is equal to 0.03 s/m1/3. Impermeable bound-
ary conditions are imposed on all coastlines. The initial condition is illus-
trated in Fig. 12b while the bathymetry is represented for the world ocean
in Fig. 12a. The bathymetry has been smoothed and cropped at 30 m water
depth.

The stable time steps are computed as a function of the mesh size and
actual water depth at the initial time (sum of bathymetry and initial condi-
tion). The minimum and maximum element-wise stable time steps are 0.116
s and 229.979 s, respectively. We selected a maximum multirate exponent
z∗ = 6 (corresponding to a reference time step ∆t∗ = 7.449 s), despite the
maximum number of possible temporal refinements being z+ = 10. The cor-
responding theoretical multirate speedup is roughly 9.32 and is only 0.17 %
lower than for the z∗ = 10 case, yet we omit four temporal refinement levels.
Consequently, fewer constraints are needed for the mesh partitioning. The
multirate groups for this multirate setup are depicted for the world ocean,
Fig. 13a, and a zoom around Japan, Fig. 13b. The distribution of the ele-
ments in the multirate groups with the corresponding multirate exponents
and loads is given in Table 9. The buffer elements cover roughly 14.69 % of
the entire mesh.
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Figure 12: Japanese tsunami: bathymetry (a) and initial condition (b).
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Figure 13: Japanese tsunami (z∗ = 6): multirate groups.

The multi-constraint partitioning strategy is used to partition the mesh
for the considered multirate setup. Fig. 14a compares the average commu-
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Table 9: Japanese tsunami ( z∗ = 6): distribution of mesh elements in multirate groups
with corresponding multirate exponents and loads.

θ 0 1 2 3 4 5 6

|Ωhθ | 882 1945 31885 25216 140929 39077 240338

z 6 5 5 4 4 3 3

λθ 64 64 32 32 16 16 8

θ 7 8 9 10 11 12

|Ωhθ | 150981 913257 28762 83076 12189 88930

z 2 2 1 1 0 0

λθ 8 4 4 2 2 1

nication volume per partition for a fixed period ∆t∗ for the singlerate and
multirate setups. The average communication to computation ratio per par-
tition and time unit are represented in Fig. 14b, for both multirate and
singlerate. Note that these indicators are normalized with respect to to the
effective multirate loads λθ despite the fact that we are dealing with a second
order spatial discretization. As for the Stommel Gyre test case, it turns out
that even if the total communication volume is lower in the multirate case
for a fixed period, the communication to computation ratio increases crit-
ically faster for the multirate strategy. The global load imbalances, L, for
the multirate case all remain below the prescribed tolerance (1.03) up to 128
partitions. For p = 256 we have L ≈ 1.04 .

An illustration of the distribution of the mesh elements among 16 parti-
tions, resulting from the multi-constraint strategy, is given in Fig. 15. The
mesh partitions are not contiguous, yet locally we can observe that the ele-
ments are well organized in compact patches.

The following parallel efficiency analyses were performed on the “Lemâıtre 2”
cluster. Remember that we are showing strong scaling results. Only 32
nodes of the cluster were exploited to perform the efficiency measurements.
For each experiment the processes are equally distributed among all nodes.
We performed tests up to 256 processors, which represents 8 processes per
node. The intrinsic strong scalings of multirate and singlerate are compared
in Fig. 16a, while the overall parallel speedups of both methods normalized
with respect to the wall clock time taken on one processor for the singler-
ate case are illustrated in Fig. 16b. In Table 10, we show the speedups and
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Figure 14: Japanese tsunami (z∗ = 6): (a) average communication volume per partition for
a period ∆t∗, see Eq. (24); (b) average communication to computation ratio per partition
and time unit, see Eq. (25).
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Figure 15: Japanese tsunami (z∗ = 6): distribution of the mesh elements among 16
partitions resulting of the multi-constraint partitioning strategy.

the associated parallel efficiencies expressed as percentages. A slightly bet-
ter scaling is observed for the multirate version. The theoretical multirate
speedup is preserved up to 128 processors. The scaling, for both approaches,
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starts to deflect slightly at around 128 processors. This is most likely due to
the high number of processors per node, which requires many simultaneous
memory accesses.
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Figure 16: Japanese tsunami (z∗ = 6): Comparison of the parallel performance, on the
“Lemâıtre 2” cluster, for singlerate and multirate in terms of (a) the intrinsic parallel
multirate speedup, see Eq. (28), and (b) the overall parallel multirate speedup, see Eq. (27).
The wall clock times have been measured for a ∆t∗ period.

Table 10: Parallel strong scaling for the Japanese tsunami application.

p 1 2 4 8 16 32 64 128 256

Ref(1, p) 1.00 2.00 4.05 8.14 16.40 33.44 72.91 124.03 228.96

% 100.00 100.08 101.18 101.72 102.50 104.49 113.92 96.90 89.44

Ref(6, p) 1.00 2.18 4.36 9.08 17.92 38.27 75.44 138.19 249.05

% 100.00 108.91 109.11 113.44 112.02 119.61 117.88 107.96 97.29

Sef(6, p) 8.82 19.20 38.48 80.01 158.02 337.43 665.11 1218.33 2195.71

% 94.59 103.02 103.21 107.31 105.97 113.14 111.51 102.13 92.03

Snapshots of the simulated sea surface elevation are shown in Fig. 17 for
both singlerate and multirate after two and four hours of physical time. These
simulations were performed on 64 processors on the “Lemâıtre 2” cluster. As
the spatial error is largely dominant compared to the temporal errors, the
solutions are quasi identical with singlerate and multirate time integrators.
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Figure 17: Japanese tsunami: sea surface elevation in meters at T=2h with singlerate (a)
and multirate (b); T=4h with singlerate (c) and multirate (d).

5.3. Acoustic propagation in a turbofan engine intake

The last application deals with the aeroacoustics of an idealized turbofan
engine intake [43]. The three-dimensional geometry, shown in Fig. 18a, is a

40



cylindrical duct of slowly-varying cross-section. The duct is annular on the
fan side, due to the conical part that represents the spinner, and becomes
hollow on the inlet side. We consider a compressible, isentropic and irrota-
tional mean flow with Mach number of 0.5 in the negative-x direction. The
aim of the simulation is to compute the propagation of acoustic perturbations
in this non-uniform mean flow, with an acoustic excitation in the fan plane
corresponding to the first radial mode, the azimuthal mode m = 10 and a
dimensionless angular frequency ω = 16. The case is extensively described
in [43].

The equations that govern the evolution of inviscid perturbations about
a non-uniform mean flow are the linearized Euler equations:

∂ρ

∂t
+ ∇ · (ρu0 + ρ0u) = 0, (33)

∂(ρ0u)

∂t
+ ∇ · (u0 ⊗ ρ0u+ Ip) = 0, (34)

∂p

∂t
+ ∇ · (c2

0ρ0u+ pu0) = 0, (35)

where the unknowns (ρ,u, p) are respectively the perturbations in density,
three-dimensional velocity vector and pressure, and (ρ0,u0, p0) are the corre-
sponding quantities for the mean flow; c0 is the local speed of sound. The cou-
pling between entropy, vorticity and acoustic modes due to the non-uniform
mean flow is neglected, because we are only interested in acoustic perturba-
tions of an irrotational mean flow [44].

Acoustically rigid wall boundary conditions are prescribed on the duct
and the spinner. Non-reflecting boundary conditions are imposed in the
inlet and fan planes, with a superposed acoustic excitation in the fan plane.
The analytical solutions derived in [43] are used to impose the mean flow and
the acoustic excitation.

Simulations are run with a DG spatial discretization of polynomial degree
of 3. The mesh, shown in Fig. 18, is composed of 49,281 tetrahedral elements.
The uniform element size enforced in most of the domain is determined by
the requirements on numerical dissipation (attenuation lower than 0.01 dB
per wavelength). However, the mesh has to be refined near the tip of the
spinner, in order to correctly represent the curvature of the geometry. This
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refinement yields an important gap between the smallest and largest stable
time steps associated with the tetrahedra (∆tm = 2.8 × 10−5 s and
∆tM = 1.459 × 10−3 s).

The multirate setup associated with the turbofan problem is illustrated
by Table 11 and Fig. 18. We chose to use the maximum number of temporal
refinements possible, meaning that z∗ = z+ = 5 and ∆t∗ = 8.9 × 10−4.
Buffer elements represent 13.43 % of the total number of mesh elements.
About 76 % of the elements belong to multirate group 8 which means that
a substantial theoretical multirate speedup is achieved, i.e. Sth(5) ≈ 10.932.
From this, it also follows that only few elements remain in the other mul-
tirate groups which will complicate the partitioning. As an example, 286
mesh elements belong to the bulk and buffer groups that have the maximum
multirate load (θ = 0 and θ = 1) meaning that, for 256 processing elements,
roughly 1.12 elements of these groups are required on each processor.

Table 11: Turbofan (z∗ = 5): distribution of elements among 13 multirate groups with
corresponding multirate exponents and loads.

θ 0 1 2 3 4 5 6 7 8 9 10

|Ωhθ | 116 170 684 519 1272 685 2500 2015 37595 3229 496

z 5 4 4 3 3 2 2 1 1 0 0

λθ 32 32 16 16 8 8 4 4 2 2 1

We analyze the quality of the mesh decompositions resulting from the
multi-constraint heuristic of MeTiS. The estimated communication volume
per partition for a ∆t∗ period are given for multirate and singlerate in
Fig. 19a. The average communication to computation ratio per partition
and per time unit are depicted for both methods in Fig. 19b.

The “Lemâıtre 2” cluster was used in the same manner as for the tsunami
application. The intrinsic parallel scaling is represented for multirate and sin-
glerate in Fig. 20a. The overall speedups compared to the wall clock time
for the singlerate method on a single processor are illustrated in Fig. 20b.
Table 12 contains the speedups and the associated parallel efficiencies ex-
pressed as percentages. Despite the small number of elements per partition
for some multirate groups for a high number of processors, the scalings show
that parallel multirate still yields important benefits compared to singlerate.
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Figure 18: Turbofan (z∗ = 5): distribution of the elements among 13 multirate groups for
the whole engine (a) and a zoom near the tip of the spinner.
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Figure 19: Turbofan (z∗ = 5): (a) average communication volume per partition for a
period ∆t∗, see Eq. (24); (b) average communication to computation ratio per partition
and time unit, see Eq. (25).

To illustrate the numerical results, the instantaneous pressure field is
shown in Fig. 21. Those simulations were performed on 32 processors and
the total wall clock times for singlerate and multirate were 1.133× 105 s and
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Figure 20: Turbofan (z∗ = 5): Comparison of the parallel performance on the “Lemâıtre 2”
cluster for singlerate and multirate in terms of (a) the intrinsic parallel multirate speedup,
see Eq. (28), and (b) the overall parallel multirate speedup, see Eq. (27). The wall clock
times have been measured for a ∆t∗ period

Table 12: Parallel strong scaling for the turbofan application.

p 1 2 4 8 16 32 64 128 256

Ref(1, p) 1.00 1.98 4.34 9.95 21.09 42.90 83.71 160.94 299.68

% 100.00 99.14 108.45 124.35 131.83 134.07 130.79 125.73 117.06

Ref(5, p) 1.00 2.12 4.53 9.76 19.66 37.86 65.58 115.76 189.76

% 100.00 105.94 113.27 122.01 122.86 118.32 102.47 90.44 74.13

Sef(5, p) 11.76 24.91 53.26 114.73 231.08 445.05 770.88 1360.73 2230.64

% 107.53 113.91 121.79 131.19 132.11 127.22 110.18 97.24 79.71

1.084 × 104 s, respectively. This represents a speedup of roughly 10.457 ,
which is close to the theoretical one.

6. Conclusion and discussion

In this paper, we have proposed a strategy to parallelize explicit multi-
rate schemes in the framework of DG methods. In particular, we have devel-
oped a generic parallel algorithm for the multirate ERK methods introduced
by Constantinescu and Sandu. The multi-constraint partitioning library of
MeTiS is used to distribute the mesh elements amongst the desired number
of processors in an adequate manner for the considered multirate setup. The
key idea is to ensure that at each stage of the multirate algorithm, the same
number of cells are active on each processor, while minimizing the number
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Figure 21: Turbofan: pressure field on two orthogonal planes after roughly 3.64 s for (a)
the singlerate, z∗ = 0, and (b) the multirate, z∗ = 5, case.

of inter-processor communications. In this way, we expect that the compu-
tational load is equally shared in space and time amongst the processors and
that the idle times due to synchronization are minimized.

We have evaluated the quality of the domain decompositions and the effec-
tive total parallel multirate speedup on several numerical applications. It was
shown that the multi-constraint partitioning strategy outperforms the classi-
cal and single-constraint partitioning, both theoretically and experimentally.
The experiments show that the effect of adding a temporal refinement level
has a positive influence on the global performance as long as the theoretical
multirate speedup is significantly higher even if it increases the number of
constraints for the partitioning.

The parallel performance studies reveal, however, that strong scalability
is usually achieved more easily with singlerate than with multirate, especially
for a high number of processors compared to the number of mesh elements.
Several factors may influence the global multirate parallel performance: crit-
ical communication to computation ratios, load imbalances due to imperfect
partitioning and small numbers of operations that have to be performed at
certain stages of the algorithm. Moreover, some features of modern com-
puter architectures, like the latency and bandwidth of memory access and
inter-processor communications, may also affect the efficiency.
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This approach is clearly limited when the number of elements per multi-
rate group and per processor is very low. Indeed, singlerate explicit methods
have proven high scalability down to a very small number of elements per
processor which is not achievable in the parallel multirate context. For high
order DG methods in particular, where less elements are used for a same
total number of DoF, it may be extremely difficult to obtain as good strong
parallel scaling as in the singlerate case, even if the communication to com-
putation ratio is lower than for low order DG. However, we believe that the
parallel multirate strategy can yield important speedups compared to the
classical explicit methods for many realistic applications combined with a
reasonable number of processors. Even in the worst-case scenarios, the par-
allel multirate strategy should be at least as efficient as in the singlerate
case. The limitations caused by a small number of elements per processor
are probably far less drastic than for the parallel implementation of implicit
and implicit-explicit schemes.

The parallel multirate algorithm can still be improved and optimized by
considering several challenging aspects of multi-core programming, which
shall be addressed in future work. As an example, we should consider the
issue of finding the best distribution of the processes among the different
computer nodes. Indeed, the intra-node contiguity could be improved by
gathering appropriate partitions onto the same nodes in order to minimize
inter-node communications, which are more expensive. Another perspective
consists in developing a dynamic version of this parallel multirate strategy
to address temporal changes of the element-wise stable time steps. The chal-
lenge will then be to find relevant indicators to determine whether or not it
is worth modifying the multirate groups and/or repartitioning the mesh to
achieve greater computational efficiency. Along the same line, the efficiency
and the validity of the parallel multirate strategy should also be evaluated
for strongly nonlinear problems where the local time steps are hard to esti-
mate and highly variable in space and time. In this context, dynamic load
balancing is imperative because the optimal multirate setup varies dramati-
cally during the simulation, which implies that the computational load shall
be evaluated and redistributed many times. The computational cost of these
operations could severely impact the global efficiency of the method.
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