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First	problem: homology
Theorem	[Everaert, Gran	&	VdL,	2008]

In	a	semi-abelian	monadic	category A, for	any n-presentation F of Z,

Hn+1(Z,Ab(A)) �
[Fn, Fn]^

�
iPn Ker(fi)

Ln[F]
.

Here Fn is	the	initial	object	of F and	the fi are	the	initial	arrows.

A =
�

iPn Ker(fi) is	called	the direction of F.

Problem

The	denominator	is	not	explicit!

Ln[F] is	the	smallest	normal	subobject	of Fn which, when	divided	out,
makes F central.

In	the	examples	it	is	a	join	of	binary	commutators.

Solution

Characterise	higher	central	extensions	in	terms	of	binary	commutators.



A three-fold	(central)	extension	of Z by A
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The	commutator	condition	(CC)

Definition

An n-fold	extension F is H-central when[©
iPI

Ker(fi),
©
iPnzI

Ker(fi)
]
= 0

for	all I � n. Ô Huq	or	Higgins	commutators

Definition

A semi-abelian	category	satisfies	the commutator	condition	(CC) when
H-centrality	is	equivalent	to	centrality.

Degree-wise:
a	semi-abelian	category	satisfies (CCn) when
an n-fold	extension	is	H-central	iff	it	is	central.

� This	means Ln[F] =
�

I�n

[�
iPI Ker(fi),

�
iPnzI Ker(fi)

]
.
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Second	problem: cohomology

Proposition	[Rodelo	&	VdL,	2011]

Let F be	an n-fold	extension. Then 1ñ 2ñ 3:

1 F is	central; Ð Galois	theory

2 F is	an n-torsor; Ð Duskin–Glenn	cohomology

3 F is	H-central.

(CC) says 3ñ 1, so:

Theorem	[Rodelo	&	VdL,	2011]

Let Z be	an	object, A an	abelian	object	in	a	semi-abelian	category A.
When A has	(CC),	there	is	an	isomorphism

Hn+1(Z,A) � Centrn(Z,A)

for	all n ¥ 1.

� When	does	(CC) hold?
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Two	commutators

Huq

For K, L� X, the Huq	commutator
[K, L] is	the	kernel	of q:
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Smith

For	equivalence	relations R, S on X

R
r1 ,2

r2
,2 X∆Rlr ∆S ,2 S,

s1
lr

s2lr

the Smith	commutator [R, S]S is	the
kernel	pair	of t:
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Two	commutators

K � ,2r2�ker(r1) ,2X L�lrs2�ker(s1)lr normalisations	of R
r1 ,2
r2

,2X S
s1

lr
s2lr

� [R, S]S = ∆X implies	always [K, L] = 0 [Bourn	&	Gran, 2002].

� The	converse	is	the Smith	is	Huq condition (SH).



The	situation	in	degree 1

X f � ,2Z extension, K = Ker(f) and R = R[f]

is	H-central	when [K, X] = 0

is	central	when [R,∇X]
S = ∆X [Gran, 2004]

� the	two	are	equivalent! [Gran	&	VdL,	2008]

� so	every	semi-abelian	category	satisfies	(CC1)
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The	situation	in	degree 2

X
c � ,2

d
_��

C

g
_��

D
f

� ,2 Z

double	extension,

#
K = Ker(c)

L = Ker(d)
and

#
R = R[c]

S = R[d]

is H-central	when [K, L] = 0 = [K^ L, X]

is	central	when [R, S]S = ∆X = [R^ S,∇X]
S [Rodelo	&	VdL,	2010]

� (SH) implies	(CC2)

� What	about	higher	degrees?
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Main	result

Question

Is	(CC) a	higher-dimensional	version	of	(SH)?

Answer

No!

Theorem

If	a	semi-abelian	category	has	(CC2)	then	it	has	(CC).
In	particular, (SH)ñ (CC).

� So	(CC) stays	within	bounds:
under	(SH) both	homology	and	cohomology	are	well-behaved!

� But: do	we need (SH)?	Or	perhaps	(CC) is always true?
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The	category Loop of	loops	and	loop	homomorphisms

� A loop is	a	quasigroup	with	a	neutral	element: an	algebraic
structure (X, �, z, /, 1) that	satisfies x � 1 = x = 1 � x and

y = x � (xzy) y = xz(x � y)

x = (x/y) � y x = (x � y)/y

� semi-abelian	variety: n = 1, t(x, y) = x � y, t1(x, y) = x/y

� associative	loop	=	group

� multiplication	table	of	a	loop	=	Latin	square	with	unit

� associator: vx, y, zw = ((x � y) � z)/(x � (y � z)) for x, y, z P X



A counterexample

.



A counterexample
X is	the	(commutative)	loop	given	by	the	Latin	square

.

� K = . and L = . are	normal	in X
� [K, L] = 0 = [K^ L, X] but [R, S]S is	non-trivial
� indeed 1 � vk, l, xw while (vk, l, xw, 1) P [R, S]S

1 = . and k = . l = . x = .
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In	fact, also CLoop does	not	satisfy	(CC) or	(SH)!



Conclusion

Theorem

If	a	semi-abelian	category	has	(CC2)	then	it	has	(CC).
In	particular, (SH)ñ (CC).

Then	homology	and	cohomology	are	well-behaved.

Example

The	semi-abelian	variety Loop does	not	satisfy	(CC).
In	fact, also CLoop does	not	satisfy	(CC) or	(SH)!



.



A counterexample

.

. � . . =

Ò

. . = . while . . � . = . . = .



A counterexample

.

. � . . =
Ò
. . = . while . . � . = . . = .



A counterexample

.

. � . . = . . =
Ò
. while . . � . = . . = .



A counterexample

.

. � . . =

Ò

. . = . while . . � . = . . = .



A counterexample

.

. � . . = . . = . while . . � . =
Ò
. . = .



A counterexample

.

. � . . = . . = . while . . � . = . . =
Ò
.



A counterexample

.

. � . . =

Ò

. . = . while . . � . = . . = .



A counterexample
X is	the	(commutative)	loop	given	by	the	Latin	square

.

� K = . and L = . are	normal	in X
� [K, L] = 0 = [K^ L, X] but [R, S]S is	non-trivial
� indeed 1 � vk, l, xw while (vk, l, xw, 1) P [R, S]S

1 = . and k = . l = . x = .



Two	commutators

Huq

For K, L� X, the Huq	commutator
[K, L] is	the	kernel	of q:

K
x1K, 0y

z���
��

��
��

��

k

�$?
??

??
??

?

K� L ,2 Q Xqlr

L
x0, 1Ly

Zd???????? l

:D���������

LR

Smith

For	equivalence	relations R, S on X

R
r1 ,2

r2
,2 X∆Rlr ∆S ,2 S,

s1
lr

s2lr

the Smith	commutator [R, S]S is	the
kernel	pair	of t:

R
x1R,∆S�r1y

z���
��

��
�

��

r2

�$?
??

??
??

R�X S ,2 T Xtlr

S
x∆R�s2, 1Sy

Zd??????? s1

:D�������

LR



A counterexample
X is	the	(commutative)	loop	given	by	the	Latin	square

.

� K = . and L = . are	normal	in X
� [K, L] = 0 = [K^ L, X] but [R, S]S is	non-trivial
� indeed 1 � vk, l, xw while (vk, l, xw, 1) P [R, S]S

1 = . and k = . l = . x = .



.


