The commutator condition for higher central extensions

Tim Van der Linden joint work with Diana Rodelo

Fonds de la Recherche Scientifique-FNRS Université catholique de Louvain

Peripatetic Seminar on Sheaves and Logic 93 Cambridge, 15th of April 2012

Initial remarks

- aim of the talk: explaining some (co)homological consequences of the Smith is Huq property
- main result based on unpublished work of Tomas Everaert's
- context: semi-abelian categories

Initial remarks

- aim of the talk: explaining some (co)homological consequences of the Smith is Huq property
- main result based on unpublished work of Tomas Everaert's
- context: semi-abelian categories

Initial remarks

- aim of the talk: explaining some (co)homological consequences of the Smith is Huq property
- main result based on unpublished work of Tomas Everaert's
- context: semi-abelian categories

Overview

1 Two problems, one solution

- Homology
- ► The commutator condition (CC)
- Cohomology
- 2 The commutator condition (CC)
 - Two commutators
 - Degree 1
 - ► Degree 2
 - Main result
- 3 A counterexample
- 4 Conclusion

Theorem [Everaert, Gran & VdL, 2008]

In a semi-abelian monadic category A, for any *n*-presentation F of Z,

$$\mathsf{H}_{n+1}(Z, \mathbf{Ab}(\mathcal{A})) \cong \frac{[F_n, F_n] \wedge \bigwedge_{i \in n} \operatorname{Ker}(f_i)}{L_n[F]}.$$

Here F_n is the initial object of F and the f_i are the initial arrows.

 $A = \bigwedge_{i \in n} \operatorname{Ker}(f_i)$ is called the **direction** of *F*.

A three-fold (central) extension of Z by A

Theorem [Everaert, Gran & VdL, 2008]

In a semi-abelian monadic category A, for any *n*-presentation *F* of *Z*,

$$\mathsf{H}_{n+1}(Z, \mathbf{Ab}(\mathcal{A})) \cong \frac{[F_n, F_n] \wedge \bigwedge_{i \in n} \operatorname{Ker}(f_i)}{L_n[F]}.$$

Here F_n is the initial object of F and the f_i are the initial arrows.

$$A = \bigwedge_{i \in n} \operatorname{Ker}(f_i)$$
 is called the **direction** of *F*.

Problem

The denominator is not explicit!

 $L_n[F]$ is the smallest normal subobject of F_n which, when divided out, makes F central.

In the examples it is a join of commutators.

Solution

Characterise higher central extensions in terms of commutators.

Theorem [Everaert, Gran & VdL, 2008]

In a semi-abelian monadic category A, for any *n*-presentation F of Z,

$$\mathsf{H}_{n+1}(Z, \mathbf{Ab}(\mathcal{A})) \cong \frac{[F_n, F_n] \wedge \bigwedge_{i \in n} \operatorname{Ker}(f_i)}{L_n[F]}.$$

Here F_n is the initial object of F and the f_i are the initial arrows.

$$A = \bigwedge_{i \in n} \operatorname{Ker}(f_i)$$
 is called the **direction** of *F*.

Problem

The denominator is not explicit!

 $L_n[F]$ is the smallest normal subobject of F_n which, when divided out, makes F central.

In the examples it is a join of commutators.

Solution

Characterise higher central extensions in terms of commutators.

Theorem [Everaert, Gran & VdL, 2008]

In a semi-abelian monadic category A, for any *n*-presentation F of Z,

$$\mathsf{H}_{n+1}(Z, \mathbf{Ab}(\mathcal{A})) \cong \frac{[F_n, F_n] \wedge \bigwedge_{i \in n} \operatorname{Ker}(f_i)}{L_n[F]}.$$

Here F_n is the initial object of F and the f_i are the initial arrows.

$$A = \bigwedge_{i \in n} \operatorname{Ker}(f_i)$$
 is called the **direction** of *F*.

Problem

The denominator is not explicit!

 $L_n[F]$ is the smallest normal subobject of F_n which, when divided out, makes F central.

In the examples it is a join of commutators.

Solution

Characterise higher central extensions in terms of commutators.

Definition

An *n*-fold extension *F* is **H-central** when

$$\left[\bigwedge_{i\in I} \operatorname{Ker}(f_i), \bigwedge_{i\in n\setminus I} \operatorname{Ker}(f_i)\right] = 0$$

for all $I \subseteq n$.

Huq or Higgins commutators

Definition

A semi-abelian category satisfies the **commutator condition (CC**) when H-centrality is equivalent to centrality.

Degree-wise:

a semi-abelian category satisfies (**CC**n) when an *n*-fold extension is H-central iff it is central

• This means
$$L_n[F] = \bigvee_{I \subseteq n} \left[\bigwedge_{i \in I} \operatorname{Ker}(f_i), \bigwedge_{i \in n \setminus I} \operatorname{Ker}(f_i) \right].$$

Definition

An *n*-fold extension *F* is **H**-central when

$$\left[\bigwedge_{i\in I} \operatorname{Ker}(f_i), \bigwedge_{i\in n\setminus I} \operatorname{Ker}(f_i)\right] = 0$$
for all $I \subseteq n$.
Huq or Higgins commutators

Definition

A semi-abelian category satisfies the **commutator condition (CC**) when H-centrality is equivalent to centrality.

Degree-wise:

a semi-abelian category satisfies (**CC**n) when an *n*-fold extension is H-central iff it is central

• This means
$$L_n[F] = \bigvee_{I \subseteq n} \left[\bigwedge_{i \in I} \operatorname{Ker}(f_i), \bigwedge_{i \in n \setminus I} \operatorname{Ker}(f_i) \right].$$

Definition

An *n*-fold extension *F* is **H-central** when

for all
$$I \subseteq n$$
.
$$\left[\bigwedge_{i \in I} \operatorname{Ker}(f_i), \bigwedge_{i \in n \setminus I} \operatorname{Ker}(f_i)\right] = 0$$
Huq or Higgins commutators

Definition

A semi-abelian category satisfies the **commutator condition (CC)** when H-centrality is equivalent to centrality.

Degree-wise: a semi-abelian category satisfies (**CC***n*) when an *n*-fold extension is H-central iff it is central.

• This means
$$L_n[F] = \bigvee_{I \subseteq n} \left[\bigwedge_{i \in I} \operatorname{Ker}(f_i), \bigwedge_{i \in n \setminus I} \operatorname{Ker}(f_i) \right].$$

Definition

An *n*-fold extension *F* is **H-central** when

for all
$$I \subseteq n$$
.
$$\left[\bigwedge_{i \in I} \operatorname{Ker}(f_i), \bigwedge_{i \in n \setminus I} \operatorname{Ker}(f_i)\right] = 0$$
Huq or Higgins commutators

Definition

A semi-abelian category satisfies the **commutator condition (CC)** when H-centrality is equivalent to centrality.

Degree-wise:

a semi-abelian category satisfies (**CC***n*) when an *n*-fold extension is H-central iff it is central.

• This means
$$L_n[F] = \bigvee_{I \subseteq n} \left[\bigwedge_{i \in I} \operatorname{Ker}(f_i), \bigwedge_{i \in n \setminus I} \operatorname{Ker}(f_i) \right].$$

Proposition [Rodelo & VdL, 2011]

Let *F* be an *n*-fold extension. Then $1 \Rightarrow 2 \Rightarrow 3$:

- 1 *F* is central; \leftarrow **Galois theory**
- 2 *F* is an *n*-torsor; ← **Duskin–Glenn cohomology**
- **3** *F* is H-central.

(CC) says $3 \Rightarrow 1$, so:

Theorem [Rodelo & VdL, 2011]

Let Z be an object, A an abelian object in a semi-abelian category A. When A has (CC), there is an isomorphism

$$\mathrm{H}^{n+1}(Z,A)\cong \mathrm{Centr}^n(Z,A)$$

for all $n \ge 1$.

• When does (CC) hold?

Proposition [Rodelo & VdL, 2011]

Let *F* be an *n*-fold extension. Then $1 \Rightarrow 2 \Rightarrow 3$:

- 1 *F* is central; ← **Galois theory**
- **2** *F* is an *n*-torsor; ← **Duskin–Glenn cohomology**
- **3** *F* is H-central.

(CC) says $3 \Rightarrow 1$, so:

Theorem [Rodelo & VdL, 2011]

Let Z be an object, A an abelian object in a semi-abelian category \mathcal{A} . When \mathcal{A} has (CC), there is an isomorphism

$$\mathrm{H}^{n+1}(Z,A)\cong \mathrm{Centr}^n(Z,A)$$

for all $n \ge 1$.

• When does (CC) hold?

Proposition [Rodelo & VdL, 2011]

Let *F* be an *n*-fold extension. Then $1 \Rightarrow 2 \Rightarrow 3$:

- 1 *F* is central; ← **Galois theory**
- **2** *F* is an *n*-torsor; ← **Duskin–Glenn cohomology**
- 3 F is H-central.

(CC) says $3 \Rightarrow 1$, so:

Theorem [Rodelo & VdL, 2011]

Let *Z* be an object, *A* an abelian object in a semi-abelian category A. When A has (CC), there is an isomorphism

$$\mathrm{H}^{n+1}(Z,A) \cong \mathrm{Centr}^n(Z,A)$$

for all $n \ge 1$.

▶ When does (CC) hold?

Proposition [Rodelo & VdL, 2011]

Let *F* be an *n*-fold extension. Then $1 \Rightarrow 2 \Rightarrow 3$:

- 1 *F* is central; \leftarrow **Galois theory**
- **2** *F* is an *n*-torsor; ← **Duskin–Glenn cohomology**
- **3** *F* is H-central.

(CC) says $3 \Rightarrow 1$, so:

Theorem [Rodelo & VdL, 2011]

Let *Z* be an object, *A* an abelian object in a semi-abelian category A. When A has (CC), there is an isomorphism

$$\mathrm{H}^{n+1}(Z,A) \cong \mathrm{Centr}^n(Z,A)$$

for all $n \ge 1$.

When does (CC) hold?

Overview

1 Two problems, one solution

- Homology
- ► The commutator condition (CC)
- Cohomology
- 2 The commutator condition (CC)
 - Two commutators
 - Degree 1
 - ► Degree 2
 - Main result
- 3 A counterexample
- 4 Conclusion

Two commutators

Smith

For equivalence relations R, S on X

$R \xrightarrow[r_2]{r_1} X \xleftarrow{s_2}{\leqslant \Delta_s \longrightarrow} S,$

the **Smith commutator** $[R, S]^S$ is the kernel pair of *t*:

Huq

For *K*, $L \lhd X$, the **Huq commutator** [*K*, *L*] is the kernel of *q*:

Two commutators

$$K \triangleright \xrightarrow{r_2 \circ \ker(r_1)} X \xleftarrow{s_2 \circ \ker(s_1)} L \text{ normalisations of } R \xrightarrow{r_1} X \xleftarrow{s_2} S$$

- $[R, S]^{S} = \Delta_{X}$ implies always [K, L] = 0 [Bourn & Gran, 2002].
- The converse is the **Smith is Huq** condition (**SH**).

$$X \xrightarrow{f} > Z$$
 extension, $K = \text{Ker}(f)$ and $R = \mathbb{R}[f$
is H-central when $[K, X] = 0$
is central when $[R, \nabla_X]^S = \Delta_X$ [Gran, 2004]

- the two are equivalent! [Gran & VdL, 2008]
- so every semi-abelian category satisfies (CC1)

I

$$X \xrightarrow{f} Z$$
 extension, $K = \text{Ker}(f)$ and $R = \mathbb{R}[f]$
s H-central when $[K, X] = 0$
s central when $[R, \nabla_X]^S = \Delta_X$ [Gran, 2004]

- ▶ the two are equivalent! [Gran & VdL, 2008]
- ▶ so every semi-abelian category satisfies (CC1)

is *H*-central when $[K, L] = 0 = [K \land L, X]$ is central when $[R, S]^{S} = \Delta_{X} = [R \land S, \nabla_{X}]^{S}$ [Rodelo & VdL, 2010]

- (SH) implies (CC2)
- What about higher degrees?

$$\begin{array}{c} X \xrightarrow{c} C \\ d \\ \nabla \\ D \xrightarrow{c} F \\ Z \end{array} \qquad \text{double extension,} \qquad \begin{cases} K = \operatorname{Ker}(c) \\ L = \operatorname{Ker}(d) \\ \end{cases} \qquad \text{and} \qquad \begin{cases} R = \operatorname{R}[c] \\ S = \operatorname{R}[d] \end{cases}$$

is *H*-central when $[K, L] = 0 = [K \land L, X]$ is central when $[R, S]^{S} = \Delta_{X} = [R \land S, \nabla_{X}]^{S}$ [Rodelo & VdL, 2010]

- (SH) implies (CC2)
- What about higher degrees?

$$\begin{array}{c} X \xrightarrow{c} C \\ d \\ \nabla \\ D \xrightarrow{c} f \\ D \xrightarrow{c} f \\ Z \end{array} \quad \text{double extension,} \quad \begin{cases} K = \operatorname{Ker}(c) \\ L = \operatorname{Ker}(d) \\ \end{cases} \quad \text{and} \quad \begin{cases} R = \operatorname{R}[c] \\ S = \operatorname{R}[d] \end{cases}$$

is *H*-central when $[K, L] = 0 = [K \land L, X]$ is central when $[R, S]^{S} = \Delta_{X} = [R \land S, \nabla_{X}]^{S}$ [Rodelo & VdL, 2010]

- ▶ (SH) implies (CC2)
- What about higher degrees?

Question

Is (CC) a higher-dimensional version of (SH)?

Answer

No!

Theorem

- So (CC) stays within bounds: under (SH) both homology and cohomology are well-behaved!
- But: do we need (SH)? Or perhaps (CC) is always true?

Question

Is (CC) a higher-dimensional version of (SH)?

Answer

No!

Theorem

- So (CC) stays within bounds: under (SH) both homology and cohomology are well-behaved!
- But: do we need (SH)? Or perhaps (CC) is always true?

Question

Is (CC) a higher-dimensional version of (SH)?

Answer

No!

Theorem

- So (CC) stays within bounds: under (SH) both homology and cohomology are well-behaved!
- But: do we need (SH)? Or perhaps (CC) is always true?

Question

Is (CC) a higher-dimensional version of (SH)?

Answer

No!

Theorem

- So (CC) stays within bounds: under (SH) both homology and cohomology are well-behaved!
- But: do we need (SH)? Or perhaps (CC) is always true?

Question

Is (CC) a higher-dimensional version of (SH)?

Answer

No!

Theorem

- So (CC) stays within bounds: under (SH) both homology and cohomology are well-behaved!
- ▶ But: do we need (SH)? Or perhaps (CC) is always true?

Overview

1 Two problems, one solution

- Homology
- ► The commutator condition (CC)
- Cohomology
- 2 The commutator condition (CC)
 - Two commutators
 - Degree 1
 - ► Degree 2
 - Main result
- 3 A counterexample
- 4 Conclusion

The category Loop of loops and loop homomorphisms

• A **loop** is a quasigroup with a neutral element: an algebraic structure $(X, \cdot, \backslash, /, 1)$ that satisfies $x \cdot 1 = x = 1 \cdot x$ and

$$y = x \cdot (x \setminus y) \qquad \qquad y = x \setminus (x \cdot y) x = (x/y) \cdot y \qquad \qquad x = (x \cdot y)/y$$

- ▶ semi-abelian variety: n = 1, $t(x, y) = x \cdot y$, $t_1(x, y) = x/y$
- associative loop = group
- multiplication table of a loop = Latin square with unit
- ► associator: $[x, y, z] = ((x \cdot y) \cdot z)/(x \cdot (y \cdot z))$ for $x, y, z \in X$

- K = and L = are normal in λ
- $[K, L] = 0 = [K \land L, X]$ but $[R, S]^{S}$ is non-trivial
- indeed $1 \neq \llbracket k, l, x \rrbracket$ while $(\llbracket k, l, x \rrbracket, 1) \in [R, S]^{\xi}$
 - 1 = and k = l = x =

Conclusion

Theorem

If a semi-abelian category has (CC2) then it has (CC). In particular, (SH) \Rightarrow (CC).

Then homology and cohomology are well-behaved.

Example

The semi-abelian variety **Loop** does not satisfy (CC). In fact, also **CLoop** does not satisfy (CC) or (SH)!

Conclusion

Theorem

If a semi-abelian category has (CC2) then it has (CC). In particular, (SH) \Rightarrow (CC).

Then homology and cohomology are well-behaved.

Example

The semi-abelian variety **Loop** does not satisfy (CC). In fact, also **CLoop** does not satisfy (CC) or (SH)!

Two commutators

Smith

For equivalence relations R, S on X

$R \xrightarrow[r_2]{r_1} X \xleftarrow{s_2}{\leqslant \Delta_s \longrightarrow} S,$

the **Smith commutator** $[R, S]^S$ is the kernel pair of *t*:

Huq

For *K*, $L \lhd X$, the **Huq commutator** [*K*, *L*] is the kernel of *q*:

