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Abstract. We define relative regular Mal’tsev categories and give an overview of
conditions which are equivalent to the relative Mal’tsev axiom. These include conditions
on relations as well as conditions on simplicial objects. We also give various examples
and counterexamples.

1. Introduction

In the paper [8], the concept of higher-dimensional extension and its relationship to sim-
plicial resolutions is studied in an axiomatic setting. One of the main results [8, Theorem
3.13] relates the so-called relative Mal’tsev axiom to a relative Kan-property of simplicial
objects. A. Carboni, G. M. Kelly and M. C. Pedicchio showed in [5] that in a regular
category A every simplicial object being Kan is equivalent to A being a Mal’tsev category.
Therefore this relative Mal’tsev axiom suggests the study of relative Mal’tsev categories.
To fit into the framework of relative semi-abelian [26], relative homological [24] and rel-
ative Goursat categories [13], we now slightly alter the axioms from [8] and review some
of the results of that paper in this new context. We also make a connection to proper-
ties on relative relations studied in [25], copying the ideas of [5] in this relative setting.
This leads to a definition of relative Mal’tsev categories. Many properties of such relative
Mal’tsev categories were already studied in [25], but the name did not appear there. The
papers [12], [13] and [15] also mention or use this setting of relative Mal’tsev categories.

2. Axioms for extensions

The axioms we work with in this paper revolve around the concept of higher-dimensional
extension [11, 6, 7, 8]. These higher-dimensional extensions are a particular kind of
higher-dimensional arrows, which we define first.
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2.1. Definition. The category ArrnpAq consists of n-dimensional arrows (or n-fold
arrows) in the category A: Arr0pAq “ A, Arr1pAq “ ArrpAq is the category of arrows
Funp2op,Aq “ A2op , and Arrn`1pAq “ ArrpArrnpAqq.

2.2. Example. A zero-fold arrow is an object of A, a one-fold arrow is given by an
arrow in A, while a two-fold arrow is a commutative square in A (a priori with a specified
direction):

A1
,2

��
ñ

B1

��
A0

,2 B0.

Similarly, an n-fold arrow is a commutative n-cube in A (with specified directions). By
definition a morphism (a natural transformation) between n-fold arrows is also an pn`1q-
fold arrow. (For more details on higher-dimensional arrows see for instance [11, 8].)

We now work with a particular class of arrows in A to obtain (axiomatically defined)
classes of higher extensions. For this let E be a class of morphisms in A satisfying the
following axioms:

(E1) E contains all isomorphisms;

(E2) pullbacks of morphisms in E exist in A and are in E ;

(E3) E is closed under composition.

2.3. Definition. If E satisfies (E1)–(E3), then a morphism in E is called an extension.
We write ExtpAq for the full subcategory of ArrpAq determined by the extensions.

Given E , we now define the class E1 of double extensions in A as those morphisms
pf1, f0q : aÑ b

A1

ñ

f1 ,2

a

��

B1

b
��

A0 f0
,2 B0

in ArrpAq for which all arrows in the induced diagram

A1
f1

�(
a

�"

�%
P ,2

��

B1

b
��

A0 f0
,2 B0

are in E .
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The main point here is that if the pair pA, Eq satisfies axioms (E1)–(E3), then so does
pExtpAq, E1q (by [8, Proposition 1.6]; see also [11]). This allows us to iterate the definition
to obtain:

2.4. Definition. Given pA, Eq satisfying (E1)–(E3), an n-dimensional extension is
an n-dimensional arrow

a1

ñ

f1 ,2

a

��

b1

b
��

a0 f0
,2 b0

for which the pn´1q-dimensional arrows a, b, f1 and f0 as well as the induced arrow to the
pullback of b and f0 (in Arrn´2pAq) are pn´ 1q-dimensional extensions. We write En´1 for
the so obtained class of n-dimensional extensions, and ExtnpAq for the full subcategory of
ArrnpAq determined by the elements of En´1.

The leading example for a class of extensions is the class of all regular epimorphisms
in a regular category. Defining such classes of extensions axiomatically does not only give
new examples, but also allows the treatment of higher extensions and extensions at the
same time, without needing to remember which “level” is needed at any given moment—
see, for instance, [8, Proposition 3.11]. Some examples of such classes of extensions can
be found in [8] and also at the end of this paper.

As follows from Proposition 1.16 of [8], higher extensions can be regarded as n-cubes
with certain properties (see also Remark 1.7 and Theorem 2.17 in [8]). This viewpoint
ignores the specified directions which a higher arrow carries, since those are irrelevant for
the extension property. Another point made in [8] is that in a precise sense, truncated
simplicial resolutions are higher-dimensional extensions.

When the pair pA, Eq satisfies additional axioms apart from (E1)–(E3) as defined
above, more connections can be drawn to simplicial objects and in particular to a relative
Kan property of simplicial objects. The axioms for a class of extensions E in a category A
used in [8] for this purpose are:

(E1) E contains all isomorphisms;

(E2) pullbacks of morphisms in E exist in A and are in E ;

(E3) E is closed under composition;

(E4) if g˝f P E then g P E (right cancellation);

(E5) the E-Mal’tsev axiom: any split epimorphism of extensions

A1

f1 ,2

a

��

B1

b
��

lr

A0

f0 ,2 B0lr
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in A is a double extension.

Some examples in a pointed category A also satisfy the stronger axiom

(E5+) given a commutative diagram

0 ,2 Kerpaq ,2

k
��

A1
a ,2

f

��

A0
,2 0

0 ,2 Kerpbq ,2 B
b
,2 A0

,2 0

in A with short exact rows and a and b in E , if k P E then also f P E .
2.5. Remark. Notice that (E1) and (E4) together imply that all split epimorphisms
are in E and that, in a pointed category, Axiom (E2) ensures the existence of kernels of
extensions. If, furthermore, E consists of normal epimorphisms, then Axiom (E5+) implies
(E5): consider a split epimorphism of extensions as in (E5). Take kernels of a and b to
obtain a split epimorphism of short exact sequences:

0 ,2 Kerpaq
kerpaq ,2

k
��

A1
a ,2

f1
��

A0

f0
��

,2 0

0 ,2 Kerpbq

LR

kerpbq
,2 B1

LR

b
,2 B0

LR

,2 0

Since k is a split epimorphism and thus an element of E , (E5+) implies that the right
hand square is a double extension.

This axiom (E5+) appears in definitions of relative homological and relative semi-
abelian categories (see, for instance, Condition 2(b) of Definition 1.13 of [26]).

3. Weakened axioms

As mentioned above, (E1) and (E4) imply that all split epimorphisms are in the class E .
However, most results of [8] can be adapted to hold in a slightly altered setting, where
we assume a weak cancellation property instead of (E4) and an additional factorisation
axiom.

We first give those axioms which change slightly:

(E4´) if f P E and g˝f P E then g P E ;

(E5´) any split epimorphism of extensions

A1

f1 ,2

a

��

B1

b
��

lr

A0

f0 ,2 B0lr

in A with f1 and f0 in E is a double extension.
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3.1. Proposition. Let pA, Eq satisfy (E1)–(E4´). Then E contains all split epimorph-
isms if and only if (E4) holds.

Proof. By (E1), one of the implications is obvious. To prove the other, let g˝f be in E .
Pulling back induces the following commutative diagram:

P
f ,2

π0
��

B ˆC B
π1
,2

π0
��

B

g

��

lr

A
f

,2

LR

B g
,2

LR

C.

The split epimorphism π0 is in E by assumption. Furthermore, the composite π1˝f is in E
by (E2). Now (E3) and (E4´) imply that g is in E .

Clearly, when E contains all split epimorphisms, (E5´) is equivalent to (E5).
These weaker axioms are satisfied, for example, by all relative homological cate-

gories as defined in [24]. These are pairs pA, Eq, where A is a pointed category with
finite limits and cokernels, and E is a class of normal epimorphisms in A satisfying ax-
ioms (E1)–(E3), (E4´) and (E5+), as well as the axiom

(F) if a morphism f in A factors as f “ e˝m with m a monomorphism and e P E , then it
also factors (essentially uniquely) as f “ m1

˝e1 with m1 a monomorphism and e1 P E .

Using (F), several results of [8] about higher extensions go through, and we obtain new
examples. In particular, we have the following lemma.

3.2. Lemma. If A has finite products, E is a class of epimorphisms in A and pA, Eq
satisfies (E1)–(E3) and (F), then given any split epimorphism of extensions

A1 ˆA0 A1

r

��

,2,2 A1
a ,2

f1
��

A0

f0
��

B1 ˆB0 B1
,2,2

LR

B1

LR

b
,2 B0

LR

with f1 and f0 in E, taking kernel pairs of a and b gives an extension r.

Proof. Consider a diagram as above and the composite morphism

A1 ˆA0 A1
xπ0,π1y,2A1 ˆ A1

f1ˆf1 ,2B1 ˆB1.

The product f1 ˆ f1 is an extension by (E2) and (E3), and xπ0, π1y is a monomorphism.
Hence by (F) the morphism pf1 ˆ f1q˝xπ0, π1y admits a factorisation xr0, r1y˝e, where
pR, r0, r1q is a relation on B1 and e is in E . Since e is an epimorphism by assumption,
we have b˝r0 “ b˝r1, and R is contained in B1 ˆB0 B1. Now r being a split epimorphism
implies that R “ B1 ˆB0 B1.
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In [8, Proposition 3.3] Axiom (E5) is shown to be equivalent to three other conditions
involving double extensions, namely Axiom (E4) holding for the class of double exten-
sions E1, every split epimorphism of split epimorphisms being a double extension and a
condition relating the comparison map between the kernel pairs of two morphisms in a
square to the property of the square being a double extension. In the present setting, the
axiom (E5´) is not quite equivalent to all the corresponding conditions. Instead we have:

3.3. Proposition. Let pA, Eq satisfy (E1)–(E3) and (E4´). Consider the following
statements:

(i) (E4´) holds for E1, that is, if g˝f P E1 and f P E1 then g P E1;

(ii) Axiom (E5´) holds;

(iii) every split epimorphism of split epimorphisms with a, b, f1 and f0 in E, i.e. every
diagram

A1
f1

,2

a

��

B1

b

��

f1lr

A0

a

LR

f0
,2 B0,

b

LR

f0lr

such that f0a “ bf1, f0b “ af1, bf0 “ f1a, af0 “ f1b and f0f0 “ 1B0, f1f1 “ 1B1,
aa “ 1A0, bb “ 1B0 and the four split epimorphisms are in E, is a double extension;

(iv) given a diagram

A1 ˆB1 A1

r

��

,2,2 A1
f1 ,2

a

��

B1

b
��

A0 ˆB0 A0
,2,2 A0 f0

,2 B0

in A with a, b, f1 and f0 in E, the arrow r is in E if and only if the right hand side
square is in E1.

Then (ii) ñ (iv) ñ (i) and (ii) ñ (iii). If pA, Eq also satisfies (F), then (iii) ñ (iv) ñ
(ii), resulting in the equivalence of (ii), (iii) and (iv).

Proof. Because of Lemma 3.2, the proofs of the implications (ii) ñ (iii) ñ (iv) ñ (i)
are very similar to those found in [8, Proposition 3.3]. For (ii) ñ (iv) a modified version
of the proof of [8, Lemma 3.2] may be used, and (iv) ñ (ii) is straightforward.

It can be seen that (E1)–(E4´) and (E5´) “go up to higher dimensions together”,
meaning:

3.4. Proposition. Let A be a category and E a class of arrows in A. If pA, Eq satis-
fies (E1)–(E4´) and (E5´), then pExtpAq, E1q satisfies the same conditions.

Proof. The proof of [8, Proposition 3.4] can easily be adapted to this weaker situation.
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4. The relative Mal’tsev axiom and relations

Classically, Mal’tsev categories are defined using properties of relations. Therefore we
now connect the relative Mal’tsev condition (E5´) to the conditions on E-relations studied
in [26, 25]. For this, we use a context given in Condition 2.1 in [26], that is, we assume
that A has finite products, E is a class of regular epimorphisms in A and pA, Eq satisfies
axioms (E1)–(E3), (E4´) and (F). In [13] such a pair pA, Eq is called a relative regular
category. For a more detailed explanation see [26] and [13].

4.1. Definition. Given two objects A and B in A, an E-relation from A to B is a
subobject of A ˆ B such that for any representing monomorphism xr0, r1y : RÑ AˆB,
the morphisms r0 : RÑ A and r1 : RÑ B are in E .

Using the axioms given, such E-relations can be composed and this composition is
associative. The usual definitions and calculations of relations apply. This setting allows
us to copy proofs and methods from [5] to a relative situation. Many of these results
were proved in [25, Theorem 2.3.6]; in particular, for a relative regular category pA, Eq,
we have:

4.2. Proposition. For any relative regular category pA, Eq, the following are equivalent:

(i) for equivalence E-relations R and S on an object A in A, the relation SR : AÑ A
is an equivalence E-relation;

(ii) any two equivalence E-relations R and S on an object A in A permute: SR “ RS;

(iii) any two E-effective equivalence relations R and S (i.e., kernel pairs of extensions)
on A in A permute;

(iv) every E-relation is difunctional;

(v) every reflexive E-relation is an equivalence E-relation;

(vi) every reflexive E-relation is symmetric;

(vii) every reflexive E-relation is transitive.

This suggests a definition of a relative regular Mal’tsev category to fit into the context
of relative homological and relative semi-abelian categories.

4.3. Definition. A relative regular category pA, Eq is relative Mal’tsev if it satisfies
any one of the conditions 4.2(i)–4.2(vii) above.

In their paper [15], M. Gran and D. Rodelo showed that the axiom (E5´) is also
equivalent to several other conditions, including a condition on relations and a diagram
lemma called the Relative Cuboid Lemma:
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4.4. Theorem. [15] If pA, Eq is a relative regular category, then the following are equi-
valent:

(i) Axiom (E5´);

(ii) any two E-effective equivalence relations R and S on A in A permute;

(iii) for any commutative cube

W ˆD C
??

��

v ,2

!)

Y ˆB A

��

 )
??

C

g

��

c ,2 A

f

��

W

LR

w
,2

!)

Y

LR

 )
D

LR

d
,2 B

LR

in A, where f and g are split epimorphisms in E, c, d, and w are in E, and the left
and right squares are pullbacks, the induced morphism v : W ˆD C Ñ Y ˆB A is an
extension;

(iv) the Relative Split Cuboid Lemma holds;

(v) the Relative Upper Cuboid Lemma holds.

Notice that any relative regular Mal’tsev category is relative Goursat in the sense
of [13]: for equivalence E-relations R and S on an object A, the equality RSR “ SRS
holds. Hence in any relative regular Mal’tsev category, also the Relative 3ˆ 3 Lemma is
valid—see [28, 16, 13].

We are now ready to extend a main result about the relative Mal’tsev axiom from [8]—
its characterisation in terms of the E-Kan property for E-simplicial objects—to the current
setting (Proposition 4.7).

4.5. Definition. Let A be a simplicial object and consider n ě 2 and 0 ď k ď n. The
object of pn, kq-horns in A is an object Apn, kq together with arrows ai : Apn, kq Ñ An´1
for i P t0, . . . , nuztku satisfying

Bi˝aj “ Bj´1˝ai for all i ă j with i, j ‰ k

which is universal with respect to this property. We also define Ap1, 0q “ Ap1, 1q “ A0.
A simplicial object is E-Kan when all Apn, kq exist and all comparison morphisms

An Ñ Apn, kq are in E . In particular, the comparison morphisms to the p1, kq-horns are
B0 : A1 Ñ Ap1, 0q and B1 : A1 Ñ Ap1, 1q.

In fact, we can still use the proof of Proposition 3.12 in [8], but we need to show that
certain split epimorphisms are in E . We shall again need:
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4.6. Proposition. In a relative regular category pA, Eq, an augmented E-simplicial ob-
ject A which is contractible and E-Kan is always an E-resolution: for all n ě ´1, the
factorisation An`1 Ñ Kn`1A to the simplicial kernel Kn`1A of B0, . . . , Bn : An Ñ An´1
(and K0A “ A´1) is in E.

Proof. The proof of Proposition 3.9 in [8] goes through, if we can show that the mor-
phism r in the diagram

An`2

B0

��

,2 Apn` 2, 0q
a1 ,2

an`2

... ,2

r

��

An`1

B1 ,2

Bn`1

... ,2

B0

��

An

B0

��
An`1

xB0,...,Bn`1y

,2 Kn`1A
k0 ,2

LR

kn`1

... ,2 An

B0 ,2

Bn

... ,2

σ´1

LR

An´1

σ´1

LR

is an extension. This is done as in the proof of Lemma 3.2. Note that the simplicial kernels
Kn`1A exist for this E-resolution, since [8, Lemma 3.8] uses only axioms (E1)–(E3).

4.7. Proposition. Let pA, Eq be a relative regular category such that A has simplicial
kernels. Then (E5´) holds if and only if every E-simplicial object in A is E-Kan.

Proof. The proofs of Propositions 3.11 and 3.12 from [8] may easily be adapted to this
setting, however for the implication ð some additional steps are needed.

When (E1)–(E4´) and (F) hold and every E-simplicial object is E-Kan, we wish to
show that every split epimorphism of split epimorphisms with all appropriate arrows in E
is a double extension. This then implies (E5´) by Proposition 3.3. We can first reduce
the situation to a (truncated) contractible augmented E-simplicial object

A1
B1 ,2
B0 ,2

A0
B0

,2σ0lr

σ´1

��

σ1

U_ A´1.

σ´1

x�
(A)

Given a split epimorphism of split epimorphisms

A
f

,2

a

��

B

b

��

flr

A1

a

LR

f 1
,2 B1

b

LR

f 1lr

with a, b, f and f 1 in E , we define A´1 “ B1, A0 “ A, B0 “ f 1˝a “ b˝f : A0 Ñ A´1 and
σ´1 “ a˝f 1 “ f ˝b : A´1 Ñ A0. The morphisms B0 and B1 : A1 Ñ A0 are defined by the



10

pullback

A1
p ,2

xB0,B1y

��

A0

xa,fy

��
A0 ˆA´1 A0 aˆ1

B1
f
,2 A1 ˆB1 B

(B)

where the morphism a ˆ1B1
f is an extension as the pullback of the double extensions

pf 1˝a, f 1q : aÑ 1B1 and pf 1˝a, bq : f Ñ 1B1 . The morphisms σ´1, σ0 : A0 Ñ A1 are univer-
sally induced by

paˆ1B1
fq˝x1A0 , 1A0y “ xa, fy˝1A0

and

paˆ1B1
fq˝x1A0 , a˝f

1˝f 1˝ay “ xa, fy˝pa˝aq

respectively. In contrast to the proof in [8], we also need σ1 : A0 Ñ A1 induced by

paˆ1B1
fq˝xf ˝b˝b˝f, 1A0y “ xa, fy˝pf ˝fq.

These morphisms then satisfy the simplicial identities; in particular, B1˝σ1 “ 1A0 and
B0˝σ1 “ σ´1˝B0. It remains to check that B0 and B1 are also extensions. We may decompose
the diagram defining, say, B0, as

A1
r ,2

xB0,B1y

��

Q ,2

xa,fy
��

A0

xa,fy

��
A0 ˆA´1 A0

r ,2

π0

��

P ,2

πA1

��

A1 ˆB1 B

πA1

��
A0 A0 a

,2 A1.

The induced morphism r is an extension (since the bottom rectangle is a double extension),
hence so is r. The composite πA1˝xa, fy is also an extension, as a pullback of a “ πA1˝xa, fy.
Hence B0 “ π0˝xB0, B1y is an extension by (E3). Similarly, so is B1.

A truncated E-simplicial object of the shape (A) can be extended to a contractible
augmented simplicial object A by constructing successive simplicial kernels. Using (F)
we now show that such a simplicial object is actually an E-simplicial object, so that it is
E-Kan by assumption. To see this, we write (A) in the form of a cube, where A2 is the
induced simplicial kernel. The simplicial identities ensure that all possible squares in it
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commute.
A2

B2

��

B0 ,2

B1

�%

A1

B1

��

B0
�&

A1

B1

��

B0

,2 A0

σ´1

[f

σ´1lr

B0

��

A1
B0

,2

B1
�%

A0

σ1

LR

B0

�&

σ´1lr

A0

σ1

LR

σ1

Ze

B0

,2 A´1

σ´1
[f σ´1

LR

σ´1lr

As explained in the proof of Theorem 2.17 in [8], the simplicial kernel property of A2

makes this cube a limit diagram. Taking pullbacks in the front and back faces of the cube
we obtain the induced square

A2
B1 ,2

xB2,B0y

��

A1

xB1,B0y

��
A1 ˆA0 A1

B1ˆB0B0

,2 A0 ˆA´1 A0

which is also a pullback by the limit property of A2. Using a similar argument as in
the proof of Lemma 3.2, we see that the morphism B1 ˆB0 B0 is an extension. Hence
B1 : A2 Ñ A1 is also in E . By symmetric arguments, so are B0 and B2 : A2 Ñ A1, making A
an E-simplicial object up to A2.

For the induction step, remember that the universal property of An induces degene-
racies/contractions σ´1 to σn : An´1 Ñ An satisfying the simplicial identities. Given a
simplicial kernel such as An`1 of n ` 1 given morphisms B0, . . . , Bn : An Ñ An´1 which
themselves form a simplicial kernel, the n ` 1 first morphisms B0, . . . , Bn : An`1 Ñ An
form a simplicial kernel of the morphisms B0, . . . , Bn´1 : An Ñ An´1. Hence, by induction,
all face maps of A are in E . Therefore, by Proposition 4.6, A is an E-resolution. In parti-
cular, the induced comparison morphism xB0, B1y : A1 Ñ A0ˆA´1 A0 in Diagram (B) is an
extension. Using (E4´) on Diagram (B), we conclude that the original split epimorphism
of split epimorphisms is a double extension.

Combining Theorem 4.4 with Proposition 4.7 gives us:

4.8. Theorem. If A has simplicial kernels, and pA, Eq is a relative regular category,
then the following conditions are equivalent:

¨ pA, Eq is relative Mal’tsev;
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¨ Axiom (E5´) holds;

¨ every E-simplicial object is E-Kan.

Theorem 4.8 tells us that a relative Mal’tsev category is exactly a pair pA, Eq satisfying
axioms (E1)–(E3), (E4´), (E5´) and (F).

5. On the axiom (F)

We explain under which conditions, in the absolute case, Axiom (F) goes up to higher
dimensions. Here E is the class of all regular epimorphisms in A.

5.1. Remark. Notice that a morphism f “ pf1, f0q : aÑ b between extensions a and b
is a monomorphism in ExtpAq if and only if f1 is a monomorphism. In particular, there are
no restrictions on f0. When A is regular, pushouts of regular epimorphisms are exactly
the regular epimorphisms in ExtpAq.

5.2. Proposition. Let A be a regular category and E the class of all regular epimorph-
isms in A. The following conditions are equivalent:

(i) A is exact Mal’tsev;

(ii) the pushout of an extension by an extension exists and is a double extension;

(iii) pExtpAq, E1q satisfies (F).

Proof. The equivalence of (i) and (ii) was proved by A. Carboni, G. M. Kelly and
M. C. Pedicchio in [5]. Assuming (ii), any morphism f : a Ñ b in ExtpAq factors as a
double extension followed by a monomorphism as follows.

A1

ñ

e ,2

a

��

I

ñ

��

m ,2 B1

b
��

A0
,2 P ,2 B0

Here f1 “ m˝e is the regular epi-mono factorisation of f1 and the left hand square is the
pushout of e by a. Note that the former exists because A is regular and the latter by
assumption. Hence, (ii) implies (iii). To see that (iii) implies (ii), consider extensions f
and g and the morphism of extensions

A

ñ

f ,2

g

��

B

��
C ,2 1
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where 1 is the terminal object. This square can be factored as a monomorphism (in the
category of extensions) followed by a double extension as follows.

A

g

��
ñ

A

ñ

f ,2

��

B

��
C ,2 1 1

The assumption implies that the square can also be factored as a double extension followed
by a monomorphism.

A

ñ

e ,2

g

��

I

ñ

m ,2

��

B

b
��

C ,2 I 1 ,2 1

But this means in particular that m is a monomorphism. Hence, it is an isomorphism,
since it is also a regular epimorphism (as f is). It follows that the pushout of f by g exists
(it is given by the left hand square) and is a double extension, as desired.

Let us now investigate under which circumstances (F) “goes up” to pExt2pAq, E2q.
Clearly, as soon as pExt2pAq, E2q satisfies (F), the same will be true for pExtpAq, E1q.
Hence, by Proposition 5.2, a necessary condition for pExt2pAq, E2q to satisfy (F) is that A
is exact Mal’tsev. Observe that, in this case, ExtpAq is regular: regular epimorphisms in
ExtpAq are double extensions, which we know are pullback-stable. Hence, we can apply
Proposition 5.2 to ExtpAq and find, in particular, that the pair pExt2pAq, E2q satisfies (F)
if and only if ExtpAq is exact Mal’tsev.

Now, recall from [29] that an exact Mal’tsev category is arithmetical if every internal
groupoid is an equivalence relation. Examples of arithmetical categories are the dual of
the category of pointed sets, more generally, the dual of the category of pointed objects
in any topos, and also the categories of von Neumann regular rings, Boolean rings and
Heyting semi-lattices. It was proved in [2] that an exact Mal’tsev category is arithmetical
if and only if the category EquivpAq of internal equivalence relations in A is exact. In
this case EquivpAq is in fact again arithmetical and, in particular, exact Mal’tsev. Since,
moreover, there is a category equivalence EquivpAq » ExtpAq because A is exact, we have:

5.3. Proposition. Let A be an exact Mal’tsev category and E the class of all regular
epimorphisms in A. The following are equivalent:

¨ A is arithmetical;

¨ ExtpAq is arithmetical;

¨ ExtpAq is exact Mal’tsev;

¨ any pushout of a double extension by a double extension exists (in the category
ExtpAq) and is a three-fold extension;

¨ pExt2pAq, E2q satisfies (F).
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5.4. Remark. Notice that Proposition 5.3 also implies that Axiom (F) is satisfied by
pExtnpAq, Enq for every n as soon as the category A is arithmetical. Conversely, the
category A is arithmetical as soon as there exists an n ě 2 such that (F) holds for
pExtnpAq, Enq.

Since being arithmetical is a rather restrictive property for a (Mal’tsev) category to
have, we can conclude this analysis by saying that Axiom (F) “hardly ever” goes up to
pExt2pAq, E2q or higher.

6. Examples

We end this article with several examples and counterexamples. Some of the examples
satisfy the stronger axiom (E5+), cf. [1, 6, 7, 24].

6.1. Example. [Relative homological categories] Under the axioms (E1)–(E4´) and (F),
Axiom (E5+) also implies (E5´) as soon as E is a class of epimorphisms. Hence relat-
ive homological and relative semi-abelian categories as defined in [24, 26] are relatively
Mal’tsev, but generally need not satisfy the stronger (E4) and (E5). An example of a rel-
ative semi-abelian category is a semi-abelian category A with E being the class of central
extensions in the sense of Huq, closed under composition [25, Proposition 5.3.2]; see also
Example 6.4. That is, any morphism in E is the composition of regular epimorphisms
f : AÑ B with rKerpfq, As “ 0, where rKerpfq, As is the commutator of Kerpfq and A
in the sense of Huq [18].

When E is a class of regular epimorphisms in a regular Mal’tsev category A satisfy-
ing (E1)–(E2), then it is easy to check that (E3), (E4´) and (E5´) hold as soon as the
following two out of three property is satisfied: given a composite g˝f of regular epi-
morphisms f : AÑ B and g : B Ñ C, if any two of g˝f , f and g lie in E , then so does the
third. We shall make use of this fact when considering the following two examples, which
are given by categorical Galois theory [19, 20]. Notice that this uses the regular Mal’tsev
property to show that, in the square given in (E5´), the comparison to the pullback is
already a regular epimorphism, and then the two out of three property shows that it is in
fact in E .

6.2. Example. [Trivial extensions] Let B be a full and replete reflective subcategory of a
regular Mal’tsev category A. Write H : B Ñ A for the inclusion functor and I : AÑ B for
its left adjoint. Assume that HI preserves regular epimorphisms and I is admissible [20]
with respect to regular epimorphisms. This means that I preserves all pullbacks of the
form

B ˆHIpBq HpXq ,2

��

HpXq

Hpϕq

��
B ηB

,2 HIpBq

(C)



15

where ϕ : X Ñ IpBq is a regular epimorphism. For instance, B could be a Birkhoff sub-
category of A (a full reflective subcategory closed under subobjects and regular quotients)
if A is also Barr-exact (see [21]).

Recall that a trivial covering or trivial extension (with respect to I) is a regular
epimorphism f such that the commutative square induced by the unit η : 1A ñ HI

A

f

��

ηA ,2 HIpAq

HIpfq

��
B ηB

,2 HIpBq

(D)

is a pullback. With E the class of all trivial extensions, pA, Eq satisfies conditions (E1)–
(E4´) and (E5´); see also [27]. (The stronger axiom (E4) need not hold as in general
not every split epimorphism is a trivial extension: for instance, when A is pointed, a
morphism AÑ 0 is a trivial extension if and only if A is in B.) Indeed, the validity
of (E1) is clear while (E2) follows from the admissibility of I (see Proposition 2.4 in [22]).
Hence, it suffices to prove the two out of three property, of which only one implication is
not immediate. To see that g : B Ñ C is a trivial extension as soon as f : AÑ B and g˝f
are, it suffices to note that, since HIpfq is a pullback-stable regular epimorphism, the
change of base functor pHIpfqq˚ : pA Ó HIpBqq Ñ pA Ó HIpAqq is conservative [23].

When A is Barr-exact and B is a Birkhoff subcategory of A, then pA, Eq also sat-
isfies (F). Indeed, condition (F) is easily inferred from the fact that in this case the
square (D) is a pushout, hence a regular pushout (a double extension) for any regular
epimorphism f [5, 21]. If moreover A is pointed with cokernels and B is protomodular,
then pA, Eq forms a relative homological category [27].

6.3. Example. [Torsion theories] Recall that p : E Ñ B is an effective descent mor-
phism if the change of base functor p˚ : pA Ó Bq Ñ pA Ó Eq is monadic. Let A be a
homological category in which every regular epimorphism is effective for descent (for in-
stance, A could be semi-abelian) and let B be a torsion-free subcategory of A (a full
regular epi-reflective subcategory of A such that the associated radical T : A Ñ A is
idempotent, see [4]). Then the reflector I : A Ñ B is semi-left exact: it preserves all
pullbacks of the form (C), now for all morphisms ϕ : X Ñ IpBq. In particular, the pre-
vious example applies. Thus we find that the pair pA, Eq satisfies conditions (E1)–(E4´)
and (E5´), for E the class of all trivial extensions.

Let us now write E˚ for the class of (regular epi)morphisms f : A Ñ B that are “lo-
cally in E”, in the sense that there exists an effective descent morphism p : E Ñ B in A
such that the pullback p˚pfq : E ˆB A Ñ E is in E . The morphisms in E˚ are usually
called coverings or central extensions. While the pair pA, E˚q satisfies conditions (E1)
and (E2) because pA, Eq does, E˚ is in general not closed under composition. However,
it was shown in [10] that E˚ is composition-closed as soon as the reflector I is protoad-
ditive [9, 10]: I preserves split short exact sequences. Let us briefly recall the argument.
First of all, it was shown in [10] that the central extensions with respect to I (which we
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shall, from now on, assume to be protoadditive) are exactly those regular epimorphisms
f : A Ñ B whose kernel Kerpfq is in B. Now, let f : A Ñ B and g : B Ñ C be regular
epimorphisms. Then we have a short exact sequence

0 ,2 Kerpfq ,2 Kerpg˝fq ,2 Kerpgq ,2 0

and we see that g˝f is a central extension as soon as f and g are, since the torsion-
free subcategory B is closed under extensions (which means that when Kerpfq P B and
Kerpgq P B then Kerpg˝fq P B) [4]. Furthermore, since B is a (regular epi)-reflective
subcategory of A, B is closed under subobjects, and so f is a central extension as soon
as g˝f is. If we assume that B is, moreover, closed under regular quotients (which is
equivalent to B being a Birkhoff subcategory of A) then g is a central extension as soon
as g˝f is, and we may conclude that E˚ satisfies the two out of three property. Once again
using that B is closed under subjects in A, it is easily verified that the pair pA, E˚q also
satisfies Axiom (F). (Note that the same two out of three property can be used to show
that pA, E˚q is, in fact, relatively homological.)

Examples of such an A and B are given, for instance, by taking A to be the category
of compact Hausdorff groups and B the subcategory of profinite groups [10], or A to be
the category of internal groupoids in a semi-abelian category and B the subcategory of
discrete groupoids [9]. Since a reflector into an epi-reflective subcategory of an abelian
category is necessarily (proto)additive, any cohereditary torsion theory (meaning that B is
closed under quotients) in an abelian category A provides an example as well. However,
there are no non-trivial examples in the categories of groups or of abelian groups, as
follows from Proposition 5.5 in [30].

6.4. Example. [Composites of central extensions] We use the context of Example 6.2,
assuming in addition that A is Barr-exact and B is a Birkhoff subcategory of A. In this
setting a regular epimorphism f : AÑ B is a central extension (with respect to I) if there
exists a regular epimorphism p : E Ñ B such that the pullback p˚pfq : E ˆB AÑ E of f
along p is a trivial extension. We take E to be the class of composites of such central
extensions. If now A is pointed and has cokernels and coproducts, and B is protomod-
ular, then pA, Eq forms a relative semi-abelian category [27]. When B is determined by
the abelian objects in A, we regain the example mentioned in 6.1: then the B-central
extensions in A are determined by the Smith commutator [3], while, via [17], extensions
are Smith-central if and only if they are Huq-central as in Example 6.1.

6.5. Example. [Internal groupoids] Let the pair pA, Eq satisfy axioms (E1)–(E4´),
(E5´) and (F). Denote by GpdEpAq the category of internal E-groupoids in A: group-
oids G in A with the property that all split epimorphisms occurring in the diagram of G
are in E . Write E for the class of degree-wise E-extensions. Then pGpdEpAq, Eq is relatively
Mal’tsev. Indeed, to see that axioms (E2) and (E5´) are satisfied, observe that pullbacks
along morphisms in E are degree-wise pullbacks in A. For Axiom (F) note that products
are computed degree-wise as well, and that GpdEpAq is closed in RGEpAq—the category of
“reflexive E-graphs” in A—under “E-quotients”, as a consequence of the relative Mal’tsev
condition for pA, Eq. See [14] for the absolute case.
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6.6. Example. [Regular pullback squares] This is an example of a pair pA, Eq which
satisfies (E1)–(E4´) and (E5´), but where not every split epimorphism is an extension, nor
does (F) hold. We take A to be the category ExtGptf of extensions (regular epimorphisms)
in the category of torsion-free groups. The class E consists of regular pullback squares,
i.e., pullbacks of regular epimorphisms. It is easy to find a split epimorphism of extensions
which is not a pullback, and it is also easy to see that (E1)–(E4´) and (E5´) hold using
that Gptf is regular Mal’tsev. We give a counterexample for Axiom (F); it is based on
the fact that pushouts in Gptf are different from pushouts in Gp and may not be regular
pushouts. They are constructed by reflecting the pushout in Gp into the subcategory Gptf .

An example of a pushout in Gptf which is not a pushout in Gp is the square

ZˆZ2 Z ,2

��

Z

��
Z ,2 0.

(G)

(Z2 is torsion while Z is torsion-free.) The diagram

ZˆZ2 Z ,2

��

Zˆ Z

��

,2 Z

��
Z Z ,2 0

now displays a monomorphism composed with an E-extension which cannot be written
as an E-extension composed with a monomorphism, as the square (G) is not in E .
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