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Abstract. We prove triviality of the centre of arbitrary Hecke algebras of irreducible
non-finite non-affine type. This result is obtained as a consequence of the following
structure result for conjugacy classes of the underlying Coxeter groups. If W is any
infinite irreducible Coxeter group and w ∈ W is a nontrivial element that is assumed not
to be a translation in case W is affine, then there is an infinite sequence of conjugates of
w by Coxeter generators whose length is non-decreasing and tends to infinity.

1. Introduction

Hecke algebras are deformations of group algebras associated with a Coxeter system
and suitable deformation parameters. Particular attention has been paid to the class of
Hecke algebras associated to finite or affine Coxeter groups. These efforts were motivated
by representation theory of finite groups of Lie type and p-adic reductive groups. In the
spherical case, Tits’ deformation theorem shows that the complex Hecke algebra does not
depend on the deformation parameter [Bou68, Chapitre IV, Exercise 27], and in particular
provides a calculation of the centre’s dimension, which equals the number of irreducible
complex representations of the Coxeter group. In the affine case, a key structural theorem
proved by Bernstein and presented in [Lus89] shows that the centre of an affine Hecke
algebra is finitely generated and that the algebra itself is a finitely generated module over
its centre.

Due to a lack of established methods, for example from algebraic geometry and the
combinatorics of root systems, Hecke algebras associated with infinite non-affine Coxeter
groups have received less attention than their counterparts arising from finite and reduc-
tive groups. In particular, it remained an open problem to determine the centre of Hecke
algebras for such types. In this article, we completely resolve this question, proving trivi-
ality of the centre of Hecke algebras (in the sense that it equals the base ring) and hence
— combined with Tits’ and Bernstein’s theorems — establish a dichotomy between finite
and affine types on the one hand and arbitrary indefinite types (i.e. non-finite non-affine
types) on the other hand. This result can be viewed as a vast generalisation of the classical
fact, whose proof is based on the work of Jacques Tits, that infinite irreducible Coxeter
groups have trivial centre [Bou68, Section V.4, Exercise 3].

We refer the reader to Section 5 for the definition of a generic Hecke algebra.

Theorem A. Let (W,S) be a Coxeter system of irreducible indefinite type and let H =
H(W,S, (as, bs)s∈S) be a generic Hecke algebra of type (W,S). Then the centre of H is
trivial.

As an immediate corollary, we obtain the following result for the two most-studied
classes of Iwahori-Hecke algebras, for which precise definitions can again be found in
Section 5.

Corollary B. Let (W,S) be a Coxeter system of irreducible indefinite type.
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• If q = (qs)s∈S is a deformation multiparameter of positive real numbers, then the

centre of the Hecke algebra Cq[W ] = H(W,S, (q
1/2
s −q

−1/2
s , 1)s∈S) over C is trivial.

• If L : W → Z is a length function associated with (W,S), then the centre of the

Hecke algebra H(W,S, (vL(s), 1)s∈S) over Z[v, v−1] is trivial.

Efforts to understand possible decompositions of Hecke algebras of arbitrary indefinite
type and their associated von Neumann algebraic completions were started after the turn
of the millenium, motivated by L2-cohomology of buildings [Dym06, DDJO07]. For the
class of irreducible indefinite right-angled Coxeter systems this led in [Gar16, RS23] to a
description of Hecke von Neumann algebras as a direct sum of a simple von Neumann al-
gebra with finitely many copies of C intersecting the Hecke algebra trivially. In particular,
this covers the first part of Corollary B in the special case of right-angled Coxeter systems.
We consider the present work as an indication that a similar decomposition should exist
for arbitrary Hecke von Neumann algebras of indefinite type.

The reason that we can obtain Theorem A in the given generality is that we show a
structural result for conjugacy classes of the Coxeter groups under consideration. Indeed,
it is a consequence of the following Coxeter group-theoretic result of independent interest.

Given w,w′ ∈W and s ∈ S, write w
s← w′ if w′ = sws and ℓS(w) ≤ ℓS(w

′).

Theorem C. Let (W,S) be an infinite irreducible Coxeter system, and let w ∈ W \ {1}.
If W is of affine type, we moreover assume that w is not a translation. Then there is a
sequence

w = w0
s1← w1

s2← w2
s3← . . . for some si ∈ S

such that ℓS(wn)
n→∞→ ∞.

Theorem C for W of affine type is the main result of [Ros16] (the paper [Ros16] actually
deals with the more general setting of Iwahori-Weyl groups), and our arguments provide
an alternative shorter proof of that case. Another related paper is [PR04], whose main
result asserts that, if w ∈ W satisfies ℓS(rwr) ≤ ℓS(w) for any reflection r ∈ SW (which
is much stronger than only requiring it for elements of S), then all conjugates of w have
the same length (and this can only occur if W is of affine type and w is a translation, see
Lemma 4.6).

Note that the presence of translations in the affine case is precisely the reason why the
centre of the corresponding Hecke algebras is nontrivial, and why Theorem C does not
imply the conclusion of Theorem A in that case.

The proof of Theorem C is split in two cases: the case where W has an infinite proper
parabolic subgroup, which we explore in Section 3, and the complementary case (which
includes the affine, as well as the so-called compact hyperbolic types), which we explore in
Section 4. The proof for the former case is more of combinatorial nature, using properties
of double cosets of standard parabolic subgroups (as well as some properties of the Coxeter
complex Σ of (W,S)). The proof for the latter case is of geometric nature, using a CAT(0)
metric realisation of Σ, called the Davis complex of (W,S). The necessary preliminaries
for these proofs are exposed in Section 2.

Acknowledgement. We would like to thank the referee for their careful reading and
useful comments.

2. Preliminaries on Coxeter groups and the Davis complex

The general reference for this section is [AB08] (see also [MPW15, §21] for §2.3 and
[Mou88] for §2.5).

2.1. Coxeter groups. Let (W,S) be a Coxeter system with finite generating set S. We
denote by ℓ = ℓS : W → N the word length with respect to S.

The subgroups WI := ⟨I⟩ ⊆W (I ⊆ S) are called standard parabolic subgroups of
W , and their conjugates parabolic subgroups of W .
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A subset I ⊆ S (resp. WI) is irreducible if it does not decompose nontrivially as a
disjoint union I = I1⊔ I2 with s1s2 = s2s1 for all s1 ∈ I1 and s2 ∈ I2. We call I spherical
if WI is finite. We call I of finite type (resp. affine type) if it is irreducible and WI is
finite (resp. virtually abelian).

2.2. Coxeter complexes. The Coxeter complex Σ = Σ(W,S) of (W,S) is the sim-
plicial complex with simplices the cosets wWI (w ∈ W , I ⊆ S) and face relation ≤ the
opposite of the inclusion relation. In particular, the maximal simplices, called chambers,
correspond to cosets of the form wW∅ = {w}, that is, to elements of W . The chamber
{1W } is called the fundamental chamber, denoted C0; the map W → Ch(Σ) : w 7→ wC0

from W to the set Ch(Σ) of chambers is then a bijection.
Two chambers are adjacent if they are of the form {w} and {ws} for some w ∈ W

and s ∈ S (in this case, they are called s-adjacent). A gallery in Σ of length k ∈ N
is a sequence Γ = (D0, D1, . . . , Dk) such that Di−1 is adjacent to Di (say si-adjacent) for
each i = 1, . . . , k. If (s1, . . . , sk) ∈ Jk for some J ⊆ S, then Γ is called a J-gallery. The
chamber distance dCh(C,D) between the chambers C and D is the length of a minimal-
length gallery from C to D. Alternatively, dCh(vC0, wC0) = ℓ(v−1w) is the distance
between v and w in the Cayley graph Cay(W,S) of (W,S). A refinement of dCh is the
Weyl distance δ : Ch(Σ)× Ch(Σ)→W given by δ(vC0, wC0) = v−1w.

The group W acts (by left translation) by simplicial isometries on Σ. The elements of
S are called simple reflections and their conjugates reflections. Each reflection r ∈W
is uniquely determined by its fixed-point set m in Σ (called a wall), and we then write
r = rm. Each wall m determines two subcomplexes of Σ, called half-spaces: if we again
denote by m the fixed-point set of rm in Cay(W,S), then Cay(W,S)\m has two connected
components, whose vertex sets are (under the identification W ≈ Ch(Σ)) the underlying
chamber sets of these half-spaces. Two chambers C,D are separated by a wall m if they
lie in different half-spaces associated to m. Two adjacent chambers are separated by a
unique wall: wC0 and wsC0 are separated by the wall m with rm = wsw−1. The |S|
walls corresponding to wsw−1, s ∈ S, are called the walls of wC0. The number of walls
separating two chambers C,D coincides with dCh(C,D).

2.3. Residues. Given a chamber C ∈ Ch(Σ) and a subset J ⊆ S, the set RJ(C) of
chambers connected to C by a J-gallery is called a J-residue (or residue of type J ,
or just residue). If C = C0, we simply write RJ := RJ(C0) and call it the standard
J-residue. Under the identification W ≈ Ch(Σ), we have RJ(wC0) = wRJ ≈ wWJ ;
in particular, the stabilisers of residues are precisely the parabolic subgroups of W . A
J-residue is spherical if J is spherical. A wall m is called a wall of the residue R
if it separates two chambers of R. Alternatively, m is a wall of R if and only if rm ∈
StabW (R) := {w ∈W | wR = R}.

Given a chamber C and a residue R, there is a unique chamber of R minimising the
chamber distance from C to chambers of R; it is denoted projR(C) and called the pro-
jection of C on R. It enjoys the following gate property:

dCh(C,D) = dCh(C,projR(C)) + dCh(projR(C), D) for all D ∈ R.

Alternatively, projR(C) is the unique chamber D of R such that C,D are not separated
by any wall of R. The map projR : Ch(Σ) → R does not increase the chamber distance,
i.e.

dCh(projR(C),projR(D)) ≤ dCh(C,D) for all C,D ∈ Ch(Σ).

Note that projR is compatible with the W -action, in the sense that

w projR(C) = projwR(wC) for all w ∈W and C ∈ Ch(Σ).

Given two residues R,R′, the set projR(R
′) = {projR(C) | C ∈ R′} is again a residue,

called the projection of R on R′. If the restriction of projR to R′ is bijective, the residues
R,R′ are called parallel (and the inverse bijection is then given by the restriction of
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projR′ to R). Alternatively, R,R′ are parallel if and only if they have the same set
of walls if and only if StabW (R) = StabW (R′). If R,R′ are parallel, then the element
δ(C,projR′(C)) ∈ W is independent of C ∈ R and called the Weyl distance from R to
R′, denoted δ(R,R′) (note that δ(R′, R) = δ(R,R′)−1).

We record the following result on parallel residues for future reference.

Lemma 2.1. Let R,R be parallel spherical residues of Σ, and let x := δ(R,R). Suppose
that R is of type J := {s ∈ S | ℓ(sx) = ℓ(x) + 1}. Then S is spherical.

Proof. This follows from [MPW15, Prop. 21.30] applied with w := x−1, K := J , T := R
and R := R. □

2.4. Cosets of standard parabolic subgroups. For I, J ⊆ S, set
IW = {w ∈W | ℓ(sw) > ℓ(w) ∀s ∈ I}

and
W J = {w ∈W | ℓ(ws) > ℓ(w) ∀s ∈ J}.

Set also IW J := IW ∩W J . Every coset wWI (resp. WIw) contains a unique element w0

of minimal length, which is the unique element w0 ∈ wWI ∩W I (resp. w0 ∈WIw ∩ IW ),
and we have ℓ(w0wI) = ℓ(w0) + ℓ(wI) (resp. ℓ(wIw0) = ℓ(wI) + ℓ(w0)) for all wI ∈ WI .
Geometrically, an element w ∈W belongs to W I if and only if projRI(wC0)(C0) = wC0, so
that the last equalities are reformulations of the gate property.

Similarly, every double coset WIwWJ contains a unique element of minimal length, or
equivalently, a unique element in IW J . The following lemma is well-known (we could not
find its proof in the literature, so we include it here for the benefit of the reader).

Lemma 2.2. Let I, J ⊆ S and w ∈ IW J . Set H := I ∩ wJw−1. Then for any x ∈ WI ,
we have xw ∈ W J if and only if x ∈ WH

I . In particular, every element of WIwWJ

can be uniquely written as uwv with u ∈ WH
I and v ∈ WJ , and in that case ℓ(uwv) =

ℓ(u) + ℓ(w) + ℓ(v).

Proof. Let x ∈ WI . If s ∈ H, then xsw = xwts with ts := w−1sw ∈ J , and ℓ(xsw) =
ℓ(xs) + ℓ(w) as w ∈ IW . Hence if xw ∈W J , then

ℓ(x) + ℓ(w) + 1 = ℓ(xw) + 1 = ℓ(xwts) = ℓ(xsw) = ℓ(xs) + ℓ(w) for all s ∈ H,

so that x ∈WH
I .

Conversely, let x ∈ WH
I and suppose for a contradiction that ℓ(xwt) < ℓ(xw) for some

t ∈ J . By [AB08, Lemma 2.24], we then have xwt = x1w for some x1 ∈ WI , so that
wtw−1 ∈ WI . But then ℓ(w) + 1 = ℓ(wt) = ℓ(wtw−1) + ℓ(w), so that ℓ(wtw−1) = 1 and
hence wtw−1 ∈ I. Therefore, s := wtw−1 ∈ H and

ℓ(xs) = ℓ(xsw)− ℓ(w) = ℓ(xwt)− ℓ(w) < ℓ(xw)− ℓ(w) = ℓ(x),

a contradiction.
For the uniqueness statement in the second part of the lemma, suppose that u1wv1 =

u2wv2 with ui ∈WH
I and vi ∈WJ . Then

ℓ(u2) = ℓ(u2w)− ℓ(w) = ℓ(u1wv1v
−1
2 )− ℓ(w) = ℓ(u1) + ℓ(v1v

−1
2 ),

and similarly ℓ(u1) = ℓ(u2) + ℓ(v2v
−1
1 ) = ℓ(u2) + ℓ(v1v

−1
2 ). Thus, ℓ(v1v

−1
2 ) = 0, that is,

v1 = v2 and hence u1 = u2. □

2.5. Davis complex. The Davis complex X of (W,S) is a metric realisation of Σ,
turning Σ into a complete CAT(0) cellular complex with piecewise Euclidean metric d (in
particular, it is an M0-polyhedral complex of curvature ≤ 0 in the sense of [BH99]), on
which W naturally acts by cellular isometries. It is constructed as follows.

If I is a spherical subset of S, then WI acts as a linear reflection group on some |I|-
dimensional Euclidean space VI , with the simple reflections s ∈ I acting as linear reflec-
tions. The walls ms fixed by s ∈ I delimit a simplicial cone CI in VI , and we let xI be
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Fig. 1. W = ⟨s, t, u⟩ of affine
type (3, 3, 3).

Fig. 2. W = ⟨s, t, u⟩ of com-
pact hyperbolic type (4, 4, 4).

the point in the interior of CI at distance 1 from each of these walls. The convex hull of
the orbit WIxI is then a convex polytope PI , which we equip with the induced Euclidean
metric from VI (the 1-skeleton of this polytope is the Cayley graph of (WI , I)).

The construction of the cellular complex X is now as follows. The 1-skeleton X(1) of X
is the Cayley graph of (W,S). Now, each spherical residue of Σ (say of type I) corresponds

to a subgraph of X(1) isomorphic to Cay(WI , I) (recall that chambers of Σ correspond to
elements of W ), and we glue to this subgraph the |I|-dimensional Coxeter cell PI (more
precisely, we perform this gluing process step by step, going from lower to top dimensional
cells, gluing each time along lower dimensional cells, so that if I ⊆ J are spherical, then PI

will be a face of the polytope PJ). The metric d on X is then obtained by gluing together
the Euclidean metrics on each of the cells PI (I ⊆ S spherical).

Since W acts on Cay(W,S) and preserves spherical residues, the W -action on Σ indeed
induces a W -action on X by cellular isometries.

Example 2.3. If (W,S) is infinite irreducible and all proper parabolic subgroups of W
are finite (i.e. all proper subsets of S are spherical), then X is just the standard geometric
realisation of Σ (minus the empty simplex): it is either a tessellation of the Euclidean
space by congruent simplices (if W is of affine type — see Figure 1 for an example), or else
a tessellation of the hyperbolic space by congruent (compact) simplices (in that case, W
is said to be of compact hyperbolic type — see Figure 2 for an example). In the first
case, d is the usual Euclidean metric, whereas in the latter case, d is quasi-isometric to
the usual hyperbolic metric (which is of course not locally Euclidean). In both examples,
the maximal Coxeter cells are the convex regular 2n-gons (with n = 3 on Figure 1 and
n = 4 on Figure 2) whose vertices are the barycentres of the triangles containing a given
vertex of the tesselation.

Each chamber C of Σ is realised in X as a (closed) convex subset: if C = wC0, so

that xC := {w} is a vertex in X(1), then each spherical residue wRI (I ⊆ S spherical)
containing C yields a polytope PI in X for which xI = xC , and C is then realised as
the union over all such polytopes of the intersections PI ∩ CI . We call the vertex xC
the barycentre of C. We identify the chambers, walls and half-spaces of Σ with their
realisation in X. In particular, we will also write Ch(X) instead of Ch(Σ).

Alternatively, each wall m of Σ is realised as the fixed-point set of rm in X, and delimits
two connected components of X, whose closures are the realisations of the corresponding
half-spaces. The chamber C of Σ is the intersection of half-spaces associated to each of its
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walls, and its realisation in X is then the same intersection of (closed) half-spaces, viewed
as subsets of X.

The walls and half-spaces have strong convexity properties:

Lemma 2.4. Let r ⊆ X be a geodesic segment and m a wall.

(1) If r intersects m in at least two points, then r ⊆ m.
(2) The open half-spaces delimited by m are convex. In particular, if r intersects m

and is contained in one of the two closed half-spaces delimited by m, then r ⊆ m.

Proof. (1) is [Nos11, Lemma 2.2.6] and (2) is [Nos11, Lemma 2.3.1] (the second statement
of (2) follows from the first and (1)). □

Given two points x, y ∈ X, we denote by [x, y] the unique geodesic in X from x to y,
and we set ]x, y[:= [x, y] \ {x, y}, and similarly for [x, y[ and ]x, y]. In Section 4, we will
restrict our study of X to the case where all proper parabolic subgroups of W are finite. In
such cases, X has the additional property that all geodesic segments can be extended, and
this is the extra assumption we will need in order to establish the results of that section:

Lemma 2.5. Assume that W is infinite irreducible but all proper parabolic subgroups of
W are finite.

(1) Let x be the barycentre of a chamber C, let m1, . . . ,mk be the walls of C, and for
each i = 1, . . . , k, choose a point xi ∈ [x, rmi(x)] \ {x}. Then the convex hull of
{x1, . . . , xk} contains an open neighbourhood of x.

(2) Every geodesic segment in X can be extended to a geodesic line.

Proof. (1) Note that for each j = 1, . . . , k, the set {x, rmi(x) | i ̸= j} is a subset of the set
of vertices of a maximal (closed) Coxeter cell σj of X of dimension k − 1. In particular,
the convex hull of {x, xi | i ̸= j} contains an open neighbourhood Vj of x in σj . As x lies

in the convex hull of {rm1(x), . . . , rmk
(x)}, it lies in the interior of

⋃k
j=1 σj . The union⋃k

j=1 Vj then yields the desired neighbourhood of x in X.

(2) Note that for each non-maximal spherical subset J ⊆ S (so that |J | ≤ |S| − 2, say
s, t ∈ S \ J with s ̸= t), J is properly contained in at least two distinct spherical subsets
of S (namely, J ∪ {s} and J ∪ {t}). This implies that X has no free faces in the sense of
[BH99, II.5.9]. Hence the claim follows from [BH99, II.5.8 and 5.10]. □

Note that Lemma 2.5(2) in general fails for arbitrary infinite irreducible W .

3. Coxeter groups with an infinite proper parabolic subgroup

Let (W,S) be a Coxeter system and Σ its Coxeter complex.

Lemma 3.1. Let H ⊆ S be spherical, and let x ∈WH . Set J := {s ∈ S | ℓ(sx) = ℓ(x)+1}.
Suppose that sx /∈WH for all s ∈ J . Then S is spherical.

Proof. Let R := RJ be the standard J-residue, and R′ := xRH the H-residue containing
xC0. Since x ∈WH by assumption, xC0 = projR′(C0).

Let s ∈ J . Since sx /∈WH ,

sxC0 ̸= projsxRH
(C0) = s projR′(sC0),

and hence Ds := projR′(sC0) ̸= xC0 (see Figure 3). This implies that the wall ms

fixed by s (that is, the wall separating C0 from sC0) coincides with the wall separating
xC0 = projR′(C0) from Ds = projR′(sC0) (recall that projR′ does not increase dCh, so
that xC0 and Ds are adjacent): indeed, suppose for a contradiction that xC0 and Ds lie
on the same side of ms, say on the same side of ms as C0 (otherwise we exchange the roles
of C0 and sC0). Then the projection of Ds on the standard s-residue {C0, sC0} is C0, that
is, dCh(Ds, sC0) = dCh(Ds, C0) + 1. On the other hand, the gate property implies that

dCh(Ds, sC0) = dCh(xC0, sC0)− 1 ≤ dCh(xC0, C0) = dCh(Ds, C0)− 1,
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Fig. 3. Lemma 3.1

a contradiction. We have thus showed that Ds = sxC0. Let α(s) ∈ H be such that Ds

and xC0 are α(s)-adjacent, so that Ds = xα(s)C0. This defines a map α : J → H such
that α(s) = x−1sx for all s ∈ J .

Let now R := xRα(J) ⊆ R′ be the α(J)-residue containing xC0. Then the residues

R and R have the same stabiliser WJ = xWα(J)x
−1 (as xα(J)x−1 = J), and are thus

parallel. Moreover, x = δ(R,R) as xC0 = projR′(C0) = projR(C0). Finally, as α(J) ⊆ H

and H is spherical by assumption, both residues R and R are spherical. Lemma 2.1 then
implies that S is spherical, as desired. □

Definition 3.2. Given w,w′ ∈W and s ∈ S, write w
s← w′ if w′ = sws and ℓ(w) ≤ ℓ(w′).

For I ⊆ S, write w
I← w′ if there is a sequence w = w0

s1← w1
s2← . . .

sk← wk = w′ for some
s1, . . . , sk ∈ I. We further set

U+
I (w) := {w′ ∈W | w I← w′}.

Lemma 3.3. Let w ∈ W . Suppose there exists a non-spherical subset I ⊆ S such that
H := I ∩ wIw−1 is spherical, where w ∈ IW I is the unique element of minimal length in
WIwWI . Then U+

I (w) is infinite.

Proof. Suppose for a contradiction that U+
I (w) is finite. Up to modifying w inside U+

I (w),

we may then assume w to be of maximal length in U+
I (w) — note that U+

I (w) ⊆WIwWI =
WIwWI . By Lemma 2.2, we have a unique decomposition w = xhwy with h ∈ WH ,

x ∈ WH
I and y ∈ HW I , where H := w−1Iw ∩ I = w−1Hw, and we have ℓ(w) = ℓ(x) +

ℓ(h) + ℓ(w) + ℓ(y). Up to further modifying w inside U+
I (w), we may assume that ℓ(y) is

minimal, and then that ℓ(x) is maximal (among elements of U+
I (w) with minimal ℓ(y)).

Since I is not spherical by assumption, Lemma 3.1 yields some s ∈ I with ℓ(sx) =
ℓ(x) + 1 such that sx ∈ WH

I . Thus ℓ(sxh) = ℓ(sx) + ℓ(h) = ℓ(x) + ℓ(h) + 1. Moreover,
ℓ(sw) = ℓ(sxh) + ℓ(w) + ℓ(y) = ℓ(w) + 1 by Lemma 2.2, so that ℓ(sws) ≥ ℓ(w) and
sws ∈ U+

I (w).

Note that ℓ(ys) = ℓ(y) + 1, for otherwise sws = sxhwys with ys ∈ HW I of length
ℓ(ys) < ℓ(y), contradicting the minimality assumption on ℓ(y).

This implies that ys /∈ HW I , for otherwise ℓ(sws) = ℓ(sxhwys) = ℓ(sxh) + ℓ(w) +
ℓ(ys) = ℓ(w) + 2 again by Lemma 2.2, contradicting the maximality assumption on ℓ(w).

Write ys = sHy′ for some sH ∈ H and y′ ∈ WI with ℓ(y′) = ℓ(y). Then the deletion
condition (cf. [AB08, §2.3]) implies that one can get a reduced expression for y by deleting
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two letters in its non-reduced expression sHy′s, where y′ is a reduced expression for y′.
One of these letters must be s (because sHy′ is reduced) and the other must be sH (because

y ∈ HW I). Thus, y
′ = y. Set sH := wsHw−1 ∈ H. Then

sws = sxhwys = sxhwsHy = (sx)hsHwy

with hsH ∈ H, sx ∈ WH
I and y ∈ HW I , contradicting the maximality assumption on

ℓ(x). □

Lemma 3.4. Let w ∈ W . Suppose there exists a non-spherical subset I ⊆ S all whose
proper subsets are spherical, such that w does not normalise WI . Then U+

I (w) is infinite.

Proof. Note that if w is the minimal length element of WIwWI , then wIw−1 ̸= I for
otherwise w would normalise WI . Hence H := I ∩ wIw−1 is spherical. The conclusion
then follows from Lemma 3.3. □

Proposition 3.5. Let (W,S) be irreducible. Assume that not all proper subsets of S are
spherical. Then U+

S (w) is infinite for all w ∈W \ {1}.

Proof. By assumption, there is an irreducible non-spherical subset I ⊊ S. Without loss
of generality, we may further assume all proper subsets of I are spherical.

Let w ∈ W \ {1}. Note that if s /∈ supp(w) (where supp(w) denotes the support of w,
namely the letters from S appearing in any reduced decomposition of w), and if s does
not commute with every element of supp(w), then ℓ(sws) = ℓ(w) + 2 (see e.g. [AB08,
Lemma 2.37]). Up to modifying w inside U+

S (w), we may thus assume that supp(w) = S.

On the other hand, NW (WI) = WI ×WI⊥ = WI∪I⊥ , where I⊥ := {s ∈ S | st = ts ∀t ∈
I} (see e.g. [CM13, Lemma 2.1]). As I ∪ I⊥ ̸= S (because S is irreducible), we conclude
that w /∈ NW (WI). The conclusion then follows from Lemma 3.4. □

4. The affine and compact hyperbolic cases

Let (W,S) be an infinite irreducible Coxeter system, and let X be its Davis complex.

Definition 4.1. Let w ∈ W . To each chamber C = vC0 ∈ Ch(X) (v ∈ W ), we associate
the conjugate πw(C) := v−1wv of w. We call a gallery Γ = (D0, D1, . . . , Dk) in X w-
non-decreasing if ℓ(πw(Di)) ≤ ℓ(πw(Di+1)) for all i. We call Γ w-flat if ℓ(πw(Di)) =
ℓ(πw(Di+1)) for all i. Finally, we call C ∈ Ch(X) a w-bad chamber if every w-non-
decreasing gallery from C is w-flat.

Lemma 4.2. Let w ∈W and Γ = (D0, D1, . . . , Dk) be a gallery in X of type (s1, . . . , sk).
Then:

(1) Γ is w-non-decreasing if and only if πw(Di−1)
si← πw(Di) for each i = 1, . . . , k.

(2) If no chamber of X is a w-bad chamber, then U+
S (w′) is infinite for all conjugates

w′ ∈W of w.

Proof. For (1), note that two chambers C,D are s-adjacent (s ∈ S) if and only if C = vC0

and D = vsC0 for some v ∈W if and only if πw(D) = sπw(C)s.
For (2), suppose U+

S (w′) is finite for some conjugate w′ ∈ W of w. Without loss of

generality, we may assume w′ to be of maximal length inside U+
S (w′). Then by definition

and in view of (1), if C ∈ Ch(X) is such that πw(C) = w′, every w-non-decreasing gallery
from C is flat, i.e. C is a bad chamber. □

Definition 4.3. For w ∈W , define the function

dw : X → R : x 7→ d(x,wx).

Note that dw is a convex function (see [BH99, II,6.2(3)]), that is, for each geodesic γ : I →
X defined on the interval I ⊆ R, the function dw ◦γ : I → R is convex.

Given a subset C of X, we write int(C) for its interior.
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Fig. 4. Proposition 4.4

Proposition 4.4. Let w ∈W . Let C be a chamber, m a wall of C, and set D := rm(C).
Assume that dCh(C,wC) < dCh(D,wD). Let x ∈ int(C) and set y := rm(x) ∈ int(D). Set
also z := [x, y] ∩m. Then dw is strictly increasing on [z, y].

Proof. Let σ := int(C ∩D). As int(C) ∪ int(D) ∪ σ is convex (i.e. it is an intersection of
open half-spaces), [x, y] intersects σ, at z. Note that

(4.1) wm ̸= m,

for otherwise rm = wrmw−1 and hence dCh(D,wD) = dCh(C, rmwrm(C)) = dCh(C,wC),
a contradiction. In particular, ]z, wz[ does not intersect σ, for otherwise [z, wz] would be
entirely contained in m by Lemma 2.4(1), contradicting the fact that wm is the only wall
containing wz. Thus ]z, wz[ intersects either int(C) or int(D). But the latter case is not
possible, for in that case D would lie in the same half-space delimited by m as wz and
hence (since wz /∈ m) as wD, contradicting the fact that m separates D from wD (because
dCh(C,wC) < dCh(D,wD) by assumption). Thus ]z, wz[ intersects int(C).

In particular, if we move a bit z along [x, y] towards y, say at x′ ∈ int(D), the geodesic
[x′, wx′] still passes through int(C), and hence intersects σ, say at a. For the same reasons,
up to choosing x′ closer to z (and arguing with (w−1, wC,wm) instead of (w,C,m)), the
geodesic [x′, wx′] also intersects wσ, say at b (see Figure 4). Set x′′ := rm(x′). Then

dw(x
′′) = d(x′′, wx′′) ≤ d(x′′, a) + d(a, b) + d(b, wx′′)

= d(x′, a) + d(a, b) + d(b, wx′) = d(x′, wx′) = dw(x
′).

In fact, the above inequality is even strict, since the concatenation of [x′′, a] and [a, b]
cannot be a geodesic by Lemma 2.4(2). Thus dw(x

′′) < dw(x
′). Since the above argument

can be repeated if we replace x′ by any point on [x′, z[, the convexity of dw then implies
that dw is strictly increasing on [z, y], as desired. □

Theorem 4.5. Assume that every proper parabolic subgroup of W is finite. Let w ∈ W .
Suppose that there exists a w-bad chamber C ∈ Ch(X). Then all the conjugates of w have
the same length.

Proof. Let C be a w-bad chamber and let C= denote the set of chambers on a w-flat
gallery from C (in particular, all chambers of C= are w-bad). For each chamber D, write
xD ∈ int(D) for its barycentre.
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Note that {dw(xD) | D ∈ C=} is finite. Indeed, since ℓ(πw(D)) = ℓ(πw(C)) for all
D ∈ C=, the set {πw(D) | D ∈ C=} is finite. On the other hand, for two chambers
D1, D2, we have πw(D1) = πw(D2) if and only if D1, D2 are in the same ZW (w)-orbit
(where ZW (w) denotes the centraliser of w in W ). Hence C= is covered by finitely many
ZW (w)-orbits of chambers. As dw is constant on ZW (w)-orbits, the claim follows.

Up to modifying C inside C=, we may now assume that dw(xC) is maximal among
the chambers of C=. Set for short x := xC . Let m1, . . . ,mk be the walls of C, and set
Di := rmi(C) for each i. By assumption, for each i, either Di ∈ C=, or dCh(C,wC) >
dCh(Di, wDi). In the second case, Proposition 4.4 implies that dw is strictly increasing
on [xi, x], where xi := mi ∩ [xDi , x]. In the first case, we have dw(xDi) ≤ dw(x) by the
maximality assumption on C. Since dw is convex, we then either have that dw is strictly
increasing on [xi, x] for some xi ∈ [xDi , x[, or else dw is constant on [xDi , x] (in which case
we set xi := xDi).

We have thus defined for each i = 1, . . . , k a point xi ∈ [xDi , x[ such that either dw is
strictly increasing on [xi, x], or xi = xDi and dw is constant on [xi, x] and Di ∈ C=. We
claim that only the second possibility can occur. Indeed, suppose for a contradiction that
dw is strictly increasing on [xj , x] for some j. By Lemma 2.5, we can extend [xj , x] to a
geodesic segment [xj , y] (with [xj , x] ⊊ [xj , y], so that dw(x) < dw(y) by convexity of dw)
such that y lies in the convex hull of {x1, . . . , xk}. Since dw(xi) ≤ dw(x) for all i, the
convexity of dw implies that dw(y) ≤ dw(x), a contradiction.

Thus, for any chamber D adjacent to C, we have D ∈ C= and dw(xD) = dw(xC)
(in particular, D also satisfies the maximality assumption satisfied by C). We may thus
repeat the above argument with C replaced by any of its adjacent chambers, and hence
also inductively to conclude that C= = Ch(X). In particular, dCh(D,wD) = ℓ(πw(D)) is
independent of D ∈ Ch(X), as desired. □

The following lemma is well-known; as we could not find it explicitely stated in the
literature, we include here a proof for the benefit of the reader.

Lemma 4.6. Suppose W is infinite irreducible, and let w ∈W \ {1}. Then the conjugacy
class of w is finite if and only if W is of affine type and w is a translation.

Proof. The implication ⇐ is clear. For the forward implication, suppose that the conju-
gacy class of w is finite. Then in fact all conjugates of w have the same length (see [PR04,
Theorem 1.3]). In particular, w has minimal length in its conjugacy class, and hence its
parabolic closure Pc(w) (the smallest parabolic subgroup containing w) is standard (see
e.g. [CF10, Proposition 4.2]). This implies that Pc(w) = W , for if w ∈WI for some I ⊊ S
then, as in the proof of Proposition 3.5, there is some s ∈ S \ I such that ℓ(w) < ℓ(sws).

Assume first that W is not of affine type. By assumption, ZW (w) has finite index in
W . Hence [Kra09, Corollary 6.3.10] implies that the subgroup ⟨w⟩ generated by w has
finite index in W , so that W is virtually abelian, a contradiction.

Assume now that W is of affine type, so that X is a Euclidean space. In that case, W
decomposes as a semidirect product W = Wx⋉T , where T is a group of translations of X
andWx is a finite parabolic subgroup (the fixer of a special vertex x ∈ X) — see e.g. [AB08,
§10.1.6]. Write w = ut accordingly, with u ∈ Wx and t ∈ T . Suppose for a contradiction
that w is not a translation, i.e. u ̸= 1. The first paragraph implies that the conjugacy

class of u in W is infinite. Let (vn)n∈N ⊆ W be such that ℓ(v−1
n uvn)

n→∞→ ∞. Write
vn = untn with un ∈ Wx and tn ∈ T . Up to extracting a subsequence, we may assume
that (un)n∈N is constant, say un = u0 for all n. Set u′ := u−1

0 uu0 ∈ Wx, t
′ := u−1

0 tu0 ∈ T

and w′ := u′t′ = u−1
0 wu0. As ℓ(t−1

n u′tn)
n→∞→ ∞ and t−1

n w′tn = t−1
n u′tn · t′, we also

have ℓ(t−1
n w′tn)

n→∞→ ∞, so that w′ (and hence w) has an infinite conjugacy class, a
contradiction. □

Corollary 4.7. Assume that every proper parabolic subgroup of W is finite. Let w ∈
W \{1}, and assume w is not a translation if W is of affine type. Then U+

S (w) is infinite.
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Proof. Lemma 4.6 implies that the conjugacy class of w is infinite. Theorem 4.5 then
implies that no chamber of X is w-bad. The conclusion thus follows from Lemma 4.2(2).

□

5. The centre of Hecke algebras

We follow Garrett’s presentation of generic Hecke algebras from [Gar97, Chapter 6.1].
Given a Coxeter system (W,S) and a commutative ring R, let (as, bs)s∈S be a family of
elements from R subject to the relation that (as, bs) = (at, bt) if s and t are conjugate inW .
Such tuples are termed deformation parameters. Denote by H = H(W,S, (as, bs)s∈S)
the generic Hecke algebra which is the free R-module with basis (Tw)w∈W equipped
with the unique R-algebra structure satisfying

TsTw = Tsw if ℓ(sw) > ℓ(w)

TsTw = asTw + bsTsw if ℓ(sw) < ℓ(w)

TwTs = Tws if ℓ(ws) > ℓ(w)

TwTs = asTw + bsTws if ℓ(ws) < ℓ(w).

Example 5.1. The most common specialisation of generic Hecke algebras are Iwahori-
Hecke algebras, either over the complex numbers or the ring Z[v, v−1]. The former is
the basis of operator algebraic considerations in [CKL21, RS23, Kli22] while the latter is
prominent in the study of finite groups of Lie type and p-adic reductive groups [KL79,
Lus03].

More precisely, if q = (qs)s∈S ∈ RS
>0 is a multiparameter satisfying qs = qt whenever s

and t are conjugate in W , then Cq[W ] is the generic Hecke algebra over C with parameters

(q
1/2
s − q

−1/2
s , 1)s∈S , that is

TsTw = Tsw if ℓ(sw) > ℓ(w)

TsTw = (q1/2s − q−1/2
s )Tw + Tsw if ℓ(sw) < ℓ(w).

The algebras Cq[W ] naturally appear in the study of representation theory of groups
acting on buildings and are the basis for the construction of Hecke operator algebras once
equipped with a suitable *-structure.

The Iwahori-Hecke algebras considered over Z[v, v−1] are associated with the Coxeter
system (W,S) equipped with an additional length function L : W → Z satisfying
L(w1w2) = L(w1) + L(w2) whenever ℓ(w1w2) = ℓ(w1) + ℓ(w2). The Hecke algebra over

Z[v, v−1] with parameters (vL(s), 1)s∈S is studied in representation theory of finite and
reductive groups.

LetH be a generic Hecke algebra. For x ∈ H we write x =
∑

w∈W xwTw for its expansion
in the standard basis of H. In order to describe the multiplication by Hecke operators on
the coefficients (xw)w, we consider the functionals δw ∈ HomR(H, R) satisfying δw(Tv) =
δv,w.

For s ∈ S we denote by λs, ρs ∈ EndR(H) the endomorphisms given by left and right
multiplication with Ts, respectively. We denote by λ′

s, ρ
′
s ∈ EndR(Hom(H, R)) the dual

endomorphisms satisfying

(λ′
sφ)(x) = φ(Tsx) and (ρ′sφ)(x) = φ(xTs) for all φ ∈ Hom(H, R) and x ∈ H.

Lemma 5.2. The following formulas describe the action of λ′
s and ρ′s on the dual basis

(δw)w∈W .

λ′
sδw =

{
bsδsw if ℓ(sw) > ℓ(w),

asδw + δsw if ℓ(sw) < ℓ(w).

ρ′sδw =

{
bsδws if ℓ(ws) > ℓ(w),

asδw + δws if ℓ(ws) < ℓ(w).
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Proof. Let v, w ∈W and s ∈ S. Then

λ′
sδw(Tv) = δw(TsTv)

=

{
δw(Tsv) if ℓ(sv) > ℓ(v)

δw(asTv + bsTsv) if ℓ(sv) < ℓ(v)

=


1 if ℓ(sv) > ℓ(v) and sv = w

as if ℓ(sv) < ℓ(v) and v = w

bs if ℓ(sv) < ℓ(v) and sv = w.

Since v ∈W was arbitrary, this can be summarised as

λ′
sδw =

{
bsδsw if ℓ(sw) > ℓ(w)

asδw + δsw if ℓ(sw) < ℓ(w).

The formula for ρ′sδw is obtained in a similar way. □

We are now ready to prove Theorem A (and hence also Corollary B).

Theorem 5.3. Assume that (W,S) is of irreducible indefinite type. Then the centre of
H = H(W,S, (as, bs)s∈S) is trivial.

Proof. Assume for a contradiction that x ∈ H is a central element that is nontrivial.
Since the set {w ∈ W | xw ̸= 0} is finite, it contains an element of maximal length, say
w ̸= 1. By Proposition 3.5 and Corollary 4.7, the set U+

S (w) is infinite. In particular, there

is a sequence w = w0
s1← w1

s2← . . .
sk← wk = w′ with ℓ(w0) = ℓ(w1) = · · · = ℓ(wk−1) < ℓ(w′),

which we may choose so that wi−1 ̸= wi for all i = 1, . . . , k.
By the exchange condition for Coxeter groups, for all i = 1, . . . , k we either have

ℓ(wi−1si) > ℓ(wi−1) or ℓ(siwi−1) > ℓ(wi−1). We claim that xwi = xwi−1 for all i =
1, . . . , k − 1. If ℓ(wi−1si) > ℓ(wi−1), so that xwi−1si = 0 by maximality of ℓ(wi−1) = ℓ(w),
comparing the wi−1si-coefficients of xTsi = Tsix using Lemma 5.2 yields

(xTsi)wi−1si = ρ′siδwi−1si(x) = asixwi−1si + xwi−1 = xwi−1

and

(Tsix)wi−1si = λ′
siδwi−1si(x) = asixwi−1si + xsiwi−1si = xwi ,

so that indeed xwi = xwi−1 . The case ℓ(siwi−1) > ℓ(wi−1) is similar.
It follows that xwk−1

= xw. Since ℓ(w′) > ℓ(wk−1), so that ℓ(skwk−1sk) > ℓ(wk−1sk) >
ℓ(wk−1), we compute as above using Lemma 5.2 that

(xTsk)wk−1sk = ρ′skδwk−1sk(x) = askxwk−1sk + xwk−1
= xwk−1

= xw

and

(Tskx)wk−1sk = λ′
sk
δwk−1sk(x) = bskxskwk−1sk = 0.

Hence xw = 0, contradicting the choice of w. □
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