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AND RESIDUAL NILPOTENCE

PIERRE-EMMANUEL CAPRACE AND TIMOTHÉE MARQUIS

Abstract. We provide sufficient conditions for a free amalgamated product
of torsionfree nilpotent groups to be residually nilpotent. We also characterise
the residual nilpotence of certain higher-dimensional amalgams of unipotent
groups over the rationals (known as KMS groups) in terms of their defining
Cartan matrix. As an application, we give a normal form for the elements of a
minimal Kac–Moody group over the rationals.

. . . le monde naturel pénètre dans le spirituel,
lui sert de pâture et concourt ainsi à opérer cet
amalgame indéfinissable. . .

—C. Baudelaire, Œuvres complètes, 1931.

1. Introduction

1.1. Residual nilpotence of free amalgamated products. Following stan-
dard terminology introduced by K. Grünberg [Gru57], given a group property P,
we say that a group G is residually P if every non-trivial element of G has a
non-trivial image in some quotient of G that satisfies the property P. The study
of residual properties of graphs of groups has a long and rich history, originat-
ing from Magnus’ theorem that free groups are residually torsionfree nilpotent
[Mag35]. It has played an influential role in recent developments related to 3-
manifold groups, see [AFW15]. Fairly definitive results have been established
characterising the residual p-finitess of graphs of groups (see [Wil19]), drawing
inspiration from Higman’s foundational paper on amalgams of p-groups [Hig64].

Our understanding of residual nilpotence is not nearly as complete, probably
partly by virtue of the fact that, as opposed to finite p-groups, the class of nilpo-
tent groups is not stable under group extensions. Baumslag, who devoted a large
number of papers to this subject throughout his career, wrote in 2010 that “proving
that a given group is residually torsionfree nilpotent is usually hard” (see [Bau10]).
While we feel that Baumslag’s assertion remains true today, it is worth mention-
ing that an important breakthrough has recently been accomplished by Jaikin-
Zapirain (see [JZ22]). Concerning the residual nilpotence of graphs of groups, let
us merely recall here that the free product Cp ∗ Cq of cyclic groups of distinct
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prime order p and q is not residually nilpotent1, showing that residual nilpotence
is not stable under forming free products. By contrast, Mal’cev [Mal49] showed
that the free product of residually torsionfree nilpotent groups is itself residually
torsionfree nilpotent. On the other hand, a free amalgamated product of finitely
generated torsionfree nilpotent groups may fail to be residually nilpotent, or even
residually finite, as shown by a remarkable example due to Baumslag [Bau62]. To
the best of our knowledge, necessary and sufficient conditions on a free amalga-
mated product A ∗C B of torsionfree nilpotent groups to be residually nilpotent
(formulated intrinsically in terms of the underlying edge of groups, in the same
vein as in [Hig64]), are currently not known. The following result is a contribution
to this problem.

Theorem A. The free amalgamated product A∗C B is residually nilpotent as soon
as the following conditions hold:

(1) A and B are torsionfree nilpotent;
(2) C is a retract2 of both A and B;
(3) C is abelian.

The free product Cp∗Cq mentioned above shows that the torsionfreeness condition
in (1) cannot be discarded. Similarly, Baumslag’s example from [Bau62] shows
that the condition (2) cannot be removed either. It is likely that the hypothesis
(3) is redundant: indeed, this could follow by sharpening the commutator calculus
involved in the proof of Theorem A. We shall not pursue that goal here, as our
main purpose is to highlight the intriguing phenomena that one observes when
passing from edges of groups to higher dimensional amalgams.

Before doing so, let us mention that we will also provide sufficient conditions
for A ∗C B to be residually torsionfree nilpotent, see Remark 5.3 below. As a
consequence, we will see that if U1 ∼= U2 ∼= U3 are three copies of the additive
group of Q, then the group

U1 ∗ U2 ∗ U3/⟨⟨[U1, [U1, U2]], [U2, [U2, U1]], [U2, [U2, U3]], [U3, [U3, U2]]⟩⟩
is residually torsionfree nilpotent. Notice that the latter group is a free amal-
gamated product of two copies of the Heisenberg group over Q, since the group
U1 ∗ U2/⟨⟨[U1, [U1, U2]], [U2, [U2, U1]]⟩⟩ is isomorphic to the Heisenberg group over
Q (see Example 5.6).

1.2. A triangle of groups with rational Heisenberg vertex groups. Let us
now consider the group

U
Ã2

(Q) := U1 ∗ U2 ∗ U3/⟨⟨[Ui, [Ui, Uj]], i ̸= j ∈ {1, 2, 3}⟩⟩

1Indeed, finitely generated nilpotent groups are residually finite by [Hir46]. Hence a finitely gen-
erated residually nilpotent group is residually {finite nilpotent}, but the largest finite nilpotent
quotient of Cp ∗ Cq is Cp × Cq.
2A subgroup C of a group H is a retract if there is a homomorphism φ : H → C whose restriction
to C is the identity. In other words, H splits as the semi-direct product H ∼= Ker(φ) ⋊ C.
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where, as before, the groups U1, U2, U3 are copies of Q. The group U
Ã2

(Q) may
be viewed as the fundamental group of a triangle of groups whose edge groups
are U1, U2, U3, and whose vertex groups are three copies of the Heisenberg group
over Q (see Example 5.6).

For each i ∈ {1, 2, 3}, let us fix an isomorphism xi : Q → Ui. Let Q[t] be the
polynomial ring in the indeterminate t. One observes easily that the assignments

x1(a) 7→
( 1 a 0

0 1 0
0 0 1

)
, x2(a) 7→

( 1 0 0
0 1 a
0 0 1

)
and x3(a) 7→

( 1 0 0
0 1 0
at 0 1

)
for all a ∈ Q,

extend to a group homomorphism φ : U
Ã2

(Q) → SL3(Q[t]). The image of φ is
the subgroup of SL3(Q[t]) consisting of those matrices that are upper triangular
modulo t. The following result characterises the kernel of φ as the nilpotent
residual of U

Ã2
(Q), i.e. the intersection of all terms of its lower central series.

Theorem B. The kernel of φ : U
Ã2

(Q) → SL3(Q[t]) coincides with γ∞(U
Ã2

(Q)).

Moreover, the subgroup of U
Ã2

(Q) generated by [U1, U2] ∼= Q and [U2, U3] ∼= Q is
isomorphic to the free product Q ∗ Q, whereas its image under φ is isomorphic to
the Heisenberg group over Q.

In particular, γ∞(U
Ã2

(Q)) contains [[U1, U2], [[U1, U2], [U2, U3]]] ̸= {e}. Hence the
group U

Ã2
(Q) is not residually nilpotent.

The proof has two parts. The first part, namely the characterisation of Ker(φ)
as the nilpotent residual, relies on Lie ring techniques. In order to be more
precise, let us fix some notation. Given a group H, we write γ1(H) := H and
γn+1(H) := [H, γn(H)] (n ≥ 1) for its lower central series. The space L(H) :=⊕

n≥1 γn(H)/γn+1(H) is then naturally an N-graded Lie ring, with Lie bracket
defined by

[gγm+1(H), hγn+1(H)] := [g, h]γm+n+1(H) for all g ∈ γm(H) and h ∈ γn(H),
where [g, h] := g−1h−1gh is the group commutator bracket. We shall show that
the Lie ring L(U

Ã2
(Q)) is a Lie algebra over Q, which happens to be isomorphic

to the positive part of the affine Kac–Moody algebra of type Ã2 over Q.

For the second part, namely the description of the subgroup generated by [U1, U2] ∼=
Q and [U2, U3] ∼= Q, we use basic tools from CAT(0) geometry, that are available
in this context through the natural action of U

Ã2
(Q) on a CAT(0) triangle complex

(see the proof of Theorem 6.9).

Both parts can actually be developed in a more general context that we now
proceed to describe.

1.3. Amalgams of rational unipotent groups. The group U
Ã2

(Q) is a special
instance belonging to a family of amalgams of maximal unipotent subgroups of
rank 2 Chevalley groups over an arbitrary field K, known as Kac–Moody–Steinberg
(KMS) groups.
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A KMS group UA(K) over a field K is associated with a generalised Cartan matrix
(GCM) A = (aij)i,j∈I (see [Kac90, Chapter 1]) that is 2-spherical, that is, such
that each submatrix Aij =

( 2 aij

aij 2

)
with i ̸= j is a Cartan matrix (hence of one

of the types A1 × A1, A2, B2 or G2). It is an amalgamated product over all pairs
{i, j} of the unipotent radical Uij of the standard Borel subgroup of the Chevalley
group of type Aij over K (see §2 for a precise definition). A specific KMS group
over K = Fp appeared in [EJZ10, Prop. 7.4] and [Ers12, Thm. 12.1] as an example
of a Golod–Shafarevich group with property (T). More recently, KMS groups over
finite fields were also shown to be promising sources of high-dimensional expanders
(see [GdPVB23]).

Let gA,Q denote the (derived) Kac–Moody algebra of type A over Q (defined by
the same Serre presentation over Q as semisimple Lie algebras), with triangular
decomposition gA,Q = n−

A,Q ⊕ hQ ⊕ n+
A,Q and corresponding set of roots ∆, as

in [Kac90, Chapter 1]. Let also GA(Q) be the minimal Kac–Moody group of
type A over Q, and let U+

A(Q) be the subgroup of GA(Q) generated by all root
groups Uα(Q) associated to positive real roots α ∈ ∆, as in [Tit87] (see also
[Mar18, Definition 7.47]). Finally, let Uma+

A (Q) denote the completion of U+
A(Q)

in the maximal Kac–Moody group Gpma
A (Q) (see [Mar18, §8.5.1]). Then there are

canonical group morphisms (see §2)

UA(Q) → U+
A(Q) → Uma+

A (Q).

For instance, in the special case where the matrix A =
(

2 −1 −1
−1 2 −1
−1 −1 2

)
is of affine type

Ã2, the map UA(Q) → U+
A(Q) is the homomorphism φ appearing above, and the

groups U+
A(Q) and Uma+

A (Q) respectively coincide with the subgroup of matrices
in SL3(Q[t]) and SL3(Q[[t]]) that are upper triangular modulo t.

Our main theorem asserts that the Lie rings associated to UA(Q) and U+
A(Q) admit

natural Q-Lie algebra structures, and are canonically isomorphic to n+
A,Q as Q-Lie

algebras.

Theorem C. Let A be a 2-spherical GCM. Then the canonical group morphisms
UA(Q) → U+

A(Q) → Uma+
A (Q) induce isomorphisms of Q-Lie algebras

L(UA(Q))
∼=→ L(U+

A(Q))
∼=→ n+

A,Q.

Assume for the rest of this introduction that A is a 2-spherical GCM.

As a first immediate consequence of Theorem C, we can compute the pro-nilpotent
completions of UA(Q) and U+

A(Q). For a group H, denote by Ĥ its pro-nilpotent
completion, that is, its Hausdorff completion with respect to the filtration (γn(H))n∈N.
Observe that the nilpotent residual γ∞(H) := ⋂

n∈N γn(H) is the kernel of the
canonical map H → Ĥ.

Corollary D. The canonical maps ÛA(Q) → Û+
A(Q) → Uma+

A (Q) are isomor-
phisms of topological groups.
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By [AM97], the map UA(Q) → U+
A(Q) is always surjective. The main result of

[DM07] implies that UA(Q) → U+
A(Q) is also injective provided A is 3-spherical,

that is, such that each submatrix AJ = (aij)i,j∈J with J ⊆ I of order 3 is a Cartan
matrix. The following theorem shows that the converse statement also holds:

Theorem E. Let K be an integral domain. If the map UA(K) → U+
A(K) is

injective, then A is 3-spherical.

We refer to §2 for the definition of UA(K) and U+
A(K) over general rings K.

As a second consequence of Theorem C, we obtain the following characterisa-
tion of the residual nilpotence of UA(Q), which broadly generalises the first part
of Theorem B (note that U+

A(Q) is always residually nilpotent, see Remark 2.1
below).

Corollary F. The kernel of UA(Q) ↠ U+
A(Q) coincides with γ∞(UA(Q)).

In particular, the following conditions are equivalent:

(i) UA(Q) is residually nilpotent.
(ii) UA(Q) is residually torsionfree nilpotent.

(iii) A is 3-spherical.

As in Theorem B, we shall construct explicit elements of γ∞(UA(Q)), see Theo-
rem 6.9.

Finally, as a third consequence of Theorem C, we obtain normal forms for the ele-
ments of (2-spherical) minimal Kac–Moody groups over Q. Thanks to the Bruhat
decomposition of GA(Q), finding normal forms for the elements g of GA(Q) re-
duces to the case where g ∈ U+

A(Q). On the other hand, elements g of Uma+
A (Q) do

possess a normal form g = ∏
x∈B exp(λxx) as an infinite product parametrised by

an ordered Q-basis B of n+
A,Q consisting of homogeneous elements x, with uniquely

determined parameters λx ∈ Q (see [Mar18, (8.33) p.212 or Theorem 8.51]). Since
U+

A(Q) ⊆ Uma+
A (Q), this in principle also gives a normal form for the elements of

U+
A(Q). However, we would like to have a normal form that is “intrinsic” to U+

A(Q)
(in particular, the partial products of which the normal form is the limit should
belong to U+

A(Q)), and there should be an algorithm allowing to transform the
expression of an element of U+

A(Q) as a product of generators in {Uαi
(Q) | i ∈ I}

into its normal form. Theorem C allows to achieve this as follows.

Write ei (i ∈ I) for the Chevalley generators of gA,Q generating n+
A,Q. Fix a Q-basis

B of n+
A,Q consisting of elements of the form x := [ei1 , [ei2 , [. . . , ein ]]] (in which case

we set nx := n ∈ N), and for each λ ∈ Q set

ux(λ) := [xαi1
(λ), [xαi2

(1), [. . . , xαin
(1)]]] ∈ U+

A(Q)

accordingly, where xαi
: Q → Uαi

(Q) is the parametrisation of the root group
Uαi

(Q) associated with the simple root αi (i ∈ I). Fix a total order on B such
that nx < ny =⇒ x < y.
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Corollary G. Each g ∈ U+
A(Q) can be uniquely written in the form

g =
∏
x∈B

ux(λx) ∈ Û+
A(Q) for some λx ∈ Q

with ∏
nx≥n ux(λx) ∈ γn(U+

A(Q)) for all n ∈ N.

Note that Corollary G becomes false if A is not 2-spherical (see Corollary 5.12).

2. Preliminaries

2.1. Group commutators. Let H be a group. Given elements gi ∈ H, we write
[g1, g2] := [g1, g2]] := g−1

1 g−1
2 g1g2. We define, inductively, the iterated commutator

[g1, g2, . . . , gn]] := [g1, [g2, . . . , gn]]],

and we also set gh := h−1gh for g, h ∈ H.

For each n ∈ N, we define inductively the subgroups γn(H) of the lower cen-
tral series of H by γ1(H) := H and γn+1(H) = [H, γn(H)]. We also denote by
γ∞(H) := ⋂

n≥1 γn(H) the kernel of the canonical map H → Ĥ, where Ĥ is the
pro-nilpotent completion of H, that is, the Hausdorff completion of H with
respect to the filtration (γn(H))n∈N. The group H is residually nilpotent (resp.
residually torsionfree nilpotent) if every nontrivial element h ∈ H remains
nontrivial in some nilpotent (resp. torsionfree nilpotent) quotient of H. Thus, H
is residually nilpotent if and only if γ∞(H) = {1}.

Let (Hn)n≥1 be a sequence of normal subgroups of H with H1 = H, Hn ⊇ Hn+1
and [Hm, Hn] ⊆ Hm+n for all m, n ≥ 1 (for instance, one could take Hn = γn(H)
for all n). Note then that γn(H) ⊆ Hn for all n ≥ 1.

The space L(H; (Hn)n≥1) := ⊕
n≥1 Hn/Hn+1 is a Lie ring, with respect to the Lie

bracket

[xHn+1, yHm+1] := [x, y]Hm+n+1 for all x ∈ Hn and y ∈ Hm.

This follows from the usual commutator identities

[x, zy] = [x, y] · [x, z]y and [xz, y] = [x, y]z · [z, y] for all x, y, z ∈ H, (2.1)
[[x, y−1], z]y = [y, [z, x−1]]x · [x, [y, z−1]]z for all x, y, z ∈ H, (2.2)

which imply that for all x ∈ Hm, y ∈ Hn, z ∈ Hp and r ∈ Z,

[xr, y] ≡ [x, y]r ≡ [x, yr] mod Hm+n+1, (2.3)
[x, [y, z]] · [y, [z, x]] · [z, [x, y]] ≡ 1 mod Hm+n+p+1. (2.4)

We set for short L(H) := L(H; (γn(H))n≥1).

Note that any group morphism G → H induces a Lie ring morphism L(G) →
L(H; (Hn)n≥1) since γn(G) is mapped into γn(H) ⊆ Hn for all n.
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2.2. Kac–Moody algebras. Let A = (aij)i,j∈I be a generalised Cartan ma-
trix (hereafter abbreviated GCM), and let ∆ = ∆(A) be the corresponding
Kac–Moody root system, with set of simple roots Π = {αi | i ∈ I} (see [Kac90,
§1.1–1.3]). Set Q := ∑

i∈I Zαi and Q+ := ∑
i∈I Nαi. For α = ∑

i∈I niαi ∈ Q, we
let ht(α) := ∑

i∈I ni ∈ Z denote its height.

Let n+
Q = n+

A,Q denote the Q-Lie algebra defined by the presentation with genera-
tors ei (i ∈ I) and relations

(ad ei)1−aij ej = 0 for all i, j ∈ I with i ̸= j. (2.5)

Then n+
Q admits a Q+-grading

n+
Q =

⊕
α∈Q+

gα

defined by letting ei have degree αi for each i ∈ I. Moreover, gα ̸= {0} if and
only if α ∈ ∆+ := ∆ ∩ Q+. For a nonzero element x ∈ gα, we set deg(x) := α.

The Weyl group of A is the group W = WA of Z-linear automorphisms of Q
generated by the simple reflections

si : Q → Q : αj 7→ αj − aijαi for i, j ∈ I.

It is a Coxeter group with Coxeter generating set S = {si | i ∈ I}, where the order
of sisj for i ̸= j is given by mij = 2, 3, 4, 6 or ∞, according to whether aijaji =
0, 1, 2, 3 or ≥ 4 respectively (see [Kac90, Chapter 3]). The set ∆re := WΠ ⊆ Q of
real roots is contained in ∆, and we set ∆re+ := ∆re ∩ ∆+.

The GCM A is spherical if WA is finite (that is, if it is a Cartan matrix). For
J ⊆ I, set AJ := (aij)i,j∈J . For r ≥ 2, we call A r-spherical if AJ is spherical
for all J ⊆ I with |J | ≤ r. The cardinality of I is called the rank of A. If A is
spherical of rank 2, then ∆ is a rank 2 root system of type A1 × A1, A2, B2, or
G2, and we also say that A is of that type.

2.3. Minimal Kac–Moody groups. Let A = (aij)i,j∈I be a GCM and let K
be a (commutative, unital) ring. Let GA(K) be the constructive Tits functor of
(simply connected) type A over K, as in [Tit87] or [Mar18, Definition 7.47]. It is
a certain amalgamated product of the root groups Uα(K) ∼= (K, +) indexed by
the real roots α ∈ ∆re. We denote by xα : K → Uα(K) the group isomorphism
parametrising Uα(K). We also set

U+
A(K) := ⟨Uα(K) | α ∈ ∆re+⟩ ⊆ GA(K).

For i ∈ I, we set s̃i := xαi
(1)x−αi

(1)xαi
(1) ∈ GA(K). Then

s̃iUα(K)s̃−1
i = Usiα(K) for all α ∈ ∆re and i ∈ I. (2.6)

For i ∈ I and a ∈ K, we will also write for short xi(a) := xαi
(a) and xi := xi(1).



8 PIERRE-EMMANUEL CAPRACE AND TIMOTHÉE MARQUIS

2.4. Maximal Kac–Moody groups. Let A = (aij)i,j∈I be a GCM. Let Uma+
A

be the affine group scheme of type A defined in [Mar18, §8.5.1–8.5.2]. The
group Uma+

A (Q) can be described as follows. For each α ∈ ∆+, choose a Q-
basis Bα of gα, and set B = ⋃

α∈∆+ Bα. Choose a total order on B (say, such that
ht(deg(x)) < ht(deg(y)) =⇒ x < y). Consider the completion ÛQ(n+

Q) of the
universal enveloping algebra UQ(n+

Q) of n+
Q with respect to its natural N-gradation,

induced by the N-gradation n+
Q = ⊕

n∈N(⊕ht(α)=ngα) of n+
Q. Then Uma+

A (Q) is the
subgroup of the multiplicative group of invertible elements g of ÛQ(n+

Q) that can
be written as a (possibly infinite) product

g =
∏
x∈B

exp(λxx) ∈ ÛQ(n+
Q) for some λx ∈ Q. (2.7)

Moreover, each g ∈ Uma+
A (Q) has a unique expression in the form of such a product.

The group Uma+
A (Q) is a complete Hausdorff topological group for the topology

defined by the filtration (Uma
n (Q))n∈N, where Uma

n (Q) is the normal subgroup of
Uma+

A (Q) defined by

Uma
n (Q) :=

{ ∏
x∈B, ht(deg(x))≥n

exp(λxx)
∣∣∣∣ λx ∈ Q

}
⊆ Uma+

A (Q).

There is an injective group morphism
U+

A(Q) → Uma+
A (Q) (2.8)

mapping Uα(Q) to exp(gα) for each α ∈ ∆re+, and one chooses the basis Bα = {eα}
for α ∈ ∆re+ so that xα(r) is mapped to exp(reα) for all r ∈ Q. We then identify
U+

A(Q) with a subgroup of Uma+
A (Q); by [Mar18, Corollary 8.91], it is dense in

Uma+
A (Q).

Since [Uma
n (Q),Uma

m (Q)] ⊆ Uma
m+n(Q) for all m, n by [Mar18, Lemma 8.58(5)], the

space
L(Uma+

A (Q); (Uma
n (Q))n≥1) =

⊕
n≥1

Uma
n (Q)/Uma

n+1(Q)

is a Lie ring, and the map (2.8) induces a Lie ring morphism

L(U+
A(Q)) →

⊕
n≥1

Uma
n (Q)/Uma

n+1(Q).

Observe also that ⊕
n≥1 U

ma
n (Q)/Uma

n+1(Q) is naturally a Q-Lie algebra isomorphic
to n+

Q, where the isomorphism is given by the assignment

exp(λxx)Uma
n+1(Q) 7→ λxx ∈ n+

Q

for x ∈ B with ht(deg(x)) = n and λx ∈ Q (see [Mar18, Lemma 8.58(6)]). In
particular, the map (2.8) induces a Lie ring morphism

L(U+
A(Q)) → n+

Q : xi(r)γ2(U+
A(Q)) 7→ rei for all i ∈ I and r ∈ Q. (2.9)

Remark 2.1. Since γn(U+
A(Q)) ⊆ Uma

n (Q) for all n and ⋂
n≥1 U

ma
n (Q) = {1}, the

group U+
A(Q) is residually nilpotent
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2.5. Kac–Moody–Steinberg groups. Let A = (aij)i,j∈I be a GCM, and let K
be a ring. Assume that A is 2-spherical. Thus, for each i, j ∈ I with i ̸= j, the
rank 2 GCM Aij := A{i,j} is spherical, of one of the types A1 × A1, A2, B2, or G2.
For i ̸= j, we consider the subgroup

Uij := U+
Aij

(K) = ⟨Uγ(K) | γ ∈ ∆+
ij := ∆+ ∩ (Nαi + Nαj)⟩ (2.10)

of U+
A(K), as well as its subgroups Ui := Uαi

(K) and Uj := Uαj
(K). We define

the KMS group UA(K) of type A over K as the inductive limit of the inductive
system of groups {Ui, Uij | i, j ∈ I, i ̸= j} with respect to the inclusion maps
Ui → Uij and Uj → Uij.

There is a natural group morphism

UA(K) → U+
A(K) (2.11)

mapping Ui to Uαi
(K) and Uij to U+

Aij
(K). In particular, the subgroups Ui and Uij

inject in UA(K) (as they do in U+
A(K)), and for γ ∈ ∆+

ij, we again use the notation
xγ : K → UA(K) for the parametrisation of Uγ(K) ⊆ Uij ⊆ UA(K), as well as its
shorthands xi(a) := xαi

(a) and xi := xi(1) for i ∈ I and a ∈ K. Thus, the map
(2.11) is given by the assignment xγ(a) 7→ xγ(a) for all a ∈ K and γ ∈ ∆+

ij (i ̸= j).

When K is a field of order ≥ 4, both UA(K) and U+
A(K) are generated by the

simple root groups xi(K) (i ∈ I), and hence the map (2.11) is surjective (see
[AM97]). When K is a field of order ≥ 5 and A is 3-spherical, then the map (2.11)
is also injective, as follows from [DM07] (see also [GdPVB23, Prop. 3.7] for a more
explicit proof). In particular, if K = Q, then the map (2.11) is surjective, and an
isomorphism when A is 3-spherical.

2.6. Coset graphs. Let A = (aij)i,j∈I be a 2-spherical GCM and let K be a ring.
Let i, j ∈ I with i ̸= j. The coset graph Γ(Uij; Ui, Uj) is the bipartite graph
with vertex set Uij/Ui ⊔ Uij/Uj and edge set Uij, where the edge g ∈ Uij joins the
vertices gUi and gUj. In other words, two distinct edges g, h ∈ Uij are incident if
and only if g = hxk(a) for some k ∈ {i, j} and a ∈ K.

In particular, the distance in Γ(Uij; Ui, Uj) from an edge g ∈ Uij to the base edge
represented by the neutral element 1 is the smallest number n such that g can be
written as a word of length n in the elements of Ui ∪ Uj, i.e. such that g has the
form

g = xi′(a1)xj′(a2)xi′(a3)xj′(a4) . . . ,

where {i′, j′} = {i, j} and ar ∈ K for all r ∈ {1, . . . , n}.

Similarly, the girth (i.e. the length of a shortest cycle) of Γ(Uij; Ui, Uj) is the
smallest number n ≥ 1 such that

1 = xi′(a1)xj′(a2)xi′(a3)xj′(a4) . . . ,

where {i′, j′} = {i, j} and ar ∈ K \ {0} for all r ∈ {1, . . . , n}.
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2.7. Spherical rank 2 subgroups. We recall that if A =
(

2 a12
a21 2

)
is a spherical

GCM of rank 2 and K is a ring, and if ∆+ = {γ1, . . . , γn} is an enumeration of
∆+ = ∆re+, then any element g ∈ U+

A(K) = UA(K) has a unique expression as a
product

g =
n∏

i=1
xγi

(ai) with a1, . . . , an ∈ K. (2.12)

Moreover, UA(K) has a presentation with generators the subgroups Uγ(K) (γ ∈
∆+) and relations given by commutator relations of the form

[xα(a), xβ(b)] =
∏

γ=rα+sβ∈]α,β[
xγ(Cαβ

rs arbs) for all a, b ∈ K (2.13)

for each pair {α, β} ⊆ ∆+ of distinct roots, where
]α, β[:= {rα + sβ ∈ ∆+ | r, s ≥ 1}

and the Cαβ
rs are integers determined by A (see [SGA70, Exp. XXIII, §3]).

Finally, note that the commutation relations (2.13) imply that
[xi(K), . . . , xi(K), xj(K)]] ∈ γ|aij |+3(UA(K)) (|aij| + 1 terms “xi(K)”) (2.14)

for (i, j) ∈ {(1, 2), (2, 1)}.

3. Free amalgamated products

For subgroups C, H of a group G, define recursively the subgroups C(n)(H) of G
for n ∈ N by C(0)(H) := H and C(n+1)(H) := [C, C(n)(H)].

Lemma 3.1. Let C, H be subgroups of a group G. Assume that [C, H] ⊆ H and
that C(N)(H) ⊆ γ2(H) for some N ≥ 1. Then C(Nn−n+1)(γn(H)) ⊆ γn+1(H) for
all n ≥ 1.

Proof. By hypothesis, the group C normalises H. Therefore we have [C, γn(H)] ⊆
γn(H) for all n ∈ N. We prove the claim by induction on n ≥ 1. For n = 1, this
holds by assumption. Assume now that

C(Nn−n+1)(γn(H)) ⊆ γn+1(H) (3.1)
for some n ≥ 1.

It follows from the Hall–Witt identity (2.2) that for all i, j ∈ N,
[C, [C(i)(H), C(j)(γn(H))]] ⊆[C(i+1)(H), C(j)(γn(H))] · [C(i)(H), C(j+1)(γn(H))]·

[C, [C(i)(H), C(j+1)(γn(H))]] · γn+2(H).
Applying the above formula repeatedly to its right-hand side and using the fact
that C(r+1)(H) ⊆ C(r)(H) and C(r+1)(γn(H)) ⊆ C(r)(γn(H)) for all r ∈ N, we
deduce that for all i, j ∈ N,
[C, [C(i)(H), C(j)(γn(H))]] ⊆[C(i+1)(H), C(j)(γn(H))] · [C(i)(H), C(j+1)(γn(H))]·

[C, [C(i)(H), C(j+r)(γn(H))]] · γn+2(H)
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for all r ≥ 1. In view of (3.1), it follows that
[C, [C(i)(H), C(j)(γn(H))]] ⊆[C(i+1)(H), C(j)(γn(H))] · [C(i)(H), C(j+1)(γn(H))]·

γn+2(H)
for all i, j ∈ N. Using (2.1), we then get by induction on r ≥ 1 that

C(r)(γn+1(H)) ⊆
∏

i+j=r

[C(i)(H), C(j)(γn(H))] · γn+2(H). (3.2)

Since C(N)(H) ⊆ γ2(H) and in view of (3.1), we conclude that
C((Nn−n+1)+N−1)(γn+1(H)) ⊆ γn+2(H).

This completes the induction step. □

Lemma 3.2. Let G be a group, and let H, C be subgroups of G such that G =
H ⋊ C. Assume that C is abelian and that C(N)(H) ⊆ γ2(H) for some N ≥ 2.
Then

γrn(G) ⊆ γn+1(H) for all n ≥ 1,

where rn := 1 + n + (N − 1)n(n + 1)/2.

Proof. It follows from [GP20, Theorem 1.1] that γn(H ⋊ C) = Ln ⋊ γn(C) for all
n ≥ 1, where the subgroup Ln is defined inductively by L1 := H and, for n ≥ 2,

Ln = ⟨[γn−1(C), H], [C, Ln−1], [H, Ln−1]⟩ ⊆ H. (3.3)
Note that rn ≥ r1 = N + 1 > 2 for all n ≥ 1. In particular, γrn(G) = Lrn , and it
suffices to show that

Lrn ⊆ γn+1(H) for all n ≥ 1. (3.4)

We prove (3.4) by induction on n ≥ 1. For n = 1, we have to show that
LN+1 ⊆ γ2(H). By (3.3), we have L2 = [C, H] · γ2(H) and, since γ2(C) = {1} by
assumption,

Lr+1 ⊆ [C, Lr] · γ2(H) for all r ≥ 2.

Hence LN+1 ⊆ C(N)(H) · γ2(H), yielding the claim. Assume now that (3.4)
holds for some n ≥ 1. Since rn > 2 and γ2(C) = 1, it follows from (3.3) that
Lm = ⟨[C, Lm−1], [H, Lm−1]⟩ for all m ≥ rn, and hence by induction hypothesis

Lm ⊆ [C, Lm−1] · γn+2(H) for all m ≥ rn + 1.
In particular,

Lrn+1 ⊆ C(rn+1−rn)(Lrn) · γn+2(H) ⊆ C((N−1)(n+1)+1)(γn+1(H)) · γn+2(H),
where the second inclusion follows from the induction hypothesis. Since

C((N−1)(n+1)+1)(γn+1(H)) ⊆ γn+2(H)
by Lemma 3.1, this completes the induction step. □

Proposition 3.3. Let A, B be subgroups of a group G, and suppose that A =
A′ ⋊ C and B = B′ ⋊ C for some subgroups A′, B′, C. Assume that A′, B′ are
residually torsionfree nilpotent and that C is abelian. Assume, moreover, that
C(N)(A) = C(N)(B) = {1} for some N ≥ 1. Then the amalgamated product
A ∗C B is residually nilpotent.
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Proof. Note that A ∗C B ∼= (A′ ∗ B′) ⋊ C (since these two groups admit the same
presentation). Note also that C(N)(A′ ∗ B′) ⊆ γ2(A′ ∗ B′). The proposition then
follows from Lemma 3.2 and the fact that A′ ∗B′ is residually nilpotent by a result
of Mal’cev (see [Mal49] or [Bau99, Theorem 1.2]). □

Theorem A now follows as an immediate consequence.

4. Groups generated by copies of Q

Throughout this section, we fix a set I and we let K denote a (unital) subring
of Q. We also let H be a group generated by copies of (K, +) parametrised by
xi : K → H for i ∈ I, and we set Γm := γm(H) for all m ≥ 1. We again use the
shorthand xi := xi(1) for i ∈ I.

Lemma 4.1. Let i1, . . . , in ∈ I and a1, . . . , an ∈ K. Then
[xi1(a1), xi2(a2), . . . , xin(an)]]Γn+1 = [xi1(a1 . . . an), xi2 , . . . , xin ]]Γn+1.

Proof. Reasoning inductively, it is sufficient to prove that
[xi1(a1), xi2(a2 . . . an), xi3 , . . . , xin ]]Γn+1 = [xi1(a1 . . . an), xi2 , . . . , xin ]]Γn+1.

Write a2 . . . an = r/s with r, s ∈ Z \ {0}. Then using (2.3) repeatedly, we get
[xi1(a1), xi2(a2 . . . an), xi3 , . . . , xin ]] ≡ [xi1(a1/s)s, [xi2(1/s), xi3 , . . . , xin ]]r]

≡ [xi1(a1/s)r, [xi2(1/s), xi3 , . . . , xin ]]s]
≡ [xi1(a1 . . . an), xi2 , . . . , xin ]] mod Γn+1. □

Proposition 4.2. Assume that for each s ∈ N invertible in K, the assignment
xi(a) 7→ xi(a/s) for i ∈ I and a ∈ K extends to a group morphism H → H. Then
the Lie ring

L(H) =
⊕
n≥1

Γn/Γn+1

is a K-Lie algebra with respect to the scalar multiplication defined on generators
by

λ · [xi1(a1), . . . , xin(an)]]Γn+1 := [xi1(λa1), xi2(a2), . . . , xin(an)]]Γn+1 (4.1)
for all λ, a1, . . . , an ∈ K and i1, . . . , in ∈ I.

Proof. To check that the given scalar multiplication indeed yields a well-defined
K-module structure on L(H), we have to show that if λ ∈ K and ∏

i ui is a
product of elements ui = [xi1(a(i)

1 ), . . . , xin(a(i)
n )]] that belongs to Γn+1, then the

corresponding product of the elements [xi1(λa
(i)
1 ), . . . , xin(a(i)

n )]] also belongs to
Γn+1. Since

[xi1(ra1), . . . , xin(an)]] ≡ [xi1(a1), . . . , xin(an)]]r mod Γn+1

for all r ∈ Z by (2.3), it is sufficient to prove this claim for λ of the form λ = 1/s
with s ∈ N∗ invertible in K.
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By assumption, there is a group morphism πs : H → H such that πs(xi(a)) =
xi(a/s) for all i ∈ I and a ∈ K. Then πs(

∏
i ui) ∈ Γn+1, and hence by Lemma 4.1

and (2.3),∏
i

[xi1(a(i)
1 /s), . . . , xin(a(i)

n )]] ≡
∏

i

[xi1(sn−1a
(i)
1 /s), xi2(a(i)

2 /s), . . . , xin(a(i)
n /s)]]

≡
∏

i

[xi1(a(i)
1 /s), . . . , xin(a(i)

n /s)]]sn−1

≡ πs

( ∏
i

ui

)sn−1

≡ 1 mod Γn+1,

as desired.

The K-bilinearity of the Lie bracket on L(H) follows from Lemma 4.1. □

Corollary 4.3. Let I be a set and let H be a group generated by copies of (Q, +)
parametrised by xi : Q → H for i ∈ I. Assume that for each s ∈ N∗, the assign-
ment xi(a) 7→ xi(a/s) for i ∈ I and a ∈ Q extends to a group morphism H → H.
Then H/γn(H) is torsionfree for all n ≥ 1.

In particular, H is residually torsionfree nilpotent if and only if it is residually
nilpotent.

Proof. By Proposition 4.2, L(H) admits a Q-Lie algebra structure. In particular,
γn(H)/γn+1(H) is torsionfree for all n ≥ 1, yielding the claim. □

5. Pronilpotent completions

Let A = (aij)i,j∈I be a GCM. Unless otherwise stated, we assume A to be
2-spherical. In order to prove Theorem C, we first show that L(UA(Q)) and
L(U+

A(Q)) admit a natural Q-Lie algebra structure.
Lemma 5.1. Let K be a ring, and let λ ∈ K. Then there is a group morphism
πλ : UA(K) → UA(K) mapping xγ(a) to xγ(λht(γ)a) for all γ ∈ ∆+

ij, i, j ∈ I with
i ̸= j, and a ∈ K.

Proof. If A is of rank 2, this readily follows from the presentation of UA(K) (see
§2.7). For a general A, since πλ preserves each subgroup Ui and Uij and commutes
with the inclusion maps Ui → Uij and Uj → Uij, this follows from the definition
of UA(K). □

Proposition 5.2. The formulas (4.1) define a Q-Lie algebra structure on L(UA(Q)).

Proof. Recall from §2.5 that UA(Q) is generated by its subgroups xi(Q) for i ∈ I.
The claim thus follows from Proposition 4.2 and Lemma 5.1. □

Remark 5.3. In view of Corollary 4.3, Lemma 5.1 also implies that UA(Q) is
residually torsionfree nilpotent if and only if it is residually nilpotent. For similar
reasons, free amalgamated products of the form U12 ∗U2 U23 over Q are residually
nilpotent by Theorem A, and hence residually torsionfree nilpotent.
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From now on, we equip L(UA(Q)) with its Q-Lie algebra structure provided by
Proposition 5.2.

Proposition 5.4. The assignment ei 7→ xiγ2(UA(Q)) extends to a Q-Lie algebra
isomorphism

n+
Q → L(UA(Q)).

Proof. Recall that n+
Q has a presentation with generators ei (i ∈ I) and relations

(ad ei)|aij |+1ej (i ̸= j). Since [xi, xi, . . . , xj]] ∈ γ|aij |+3(UA(Q)) (|aij| + 1 terms “xi”)
by definition of UA(Q) and (2.14), the assignment ei 7→ xiγ2(UA(Q)) extends to
a surjective Q-Lie algebra morphism π : n+

Q → L(UA(Q)). On the other hand,
the natural group morphism UA(Q) → U+

A(Q) → Uma+
A (Q) induces a Lie ring

morphism L(UA(Q)) → L(U+
A(Q)) → n+

Q (see (2.9)) whose precomposition with
π is the identity on n+

Q. In particular, π is injective, and hence a Q-Lie algebra
isomorphism. □

We shall now describe how the above arguments also yield simpler presentations of
the rank 2 subgroups Uij = UAij

(Q) of UA(Q) with generators the copies Ui and Uj

of (Q, +) (and therefore also a simpler presentation of UA(Q), on the generators Ui

for i ∈ I). Recall from §3 the iterated commutator subgroup notation C(n)(H) =
[C, [C, . . . , H]] for subgroups C, H of a group G.

Lemma 5.5. Assume that A is spherical of rank 2, indexed by I = {i, j}. Let Ui

and Uj be copies of (Q, +), and let R be a collection of subgroups of Ui ∗ Uj of the
form [Ui1 , Ui2 , . . . , Uir ]] with i1, . . . , ir ∈ I, contained in the kernel of the natural
map Ui ∗ Uj → UA(Q). Suppose that the following conditions hold:

(1) R contains U
(|aij |+1)
i (Uj) and U

(|aji|+1)
j (Ui);

(2) the group UR(Q) := Ui ∗ Uj/⟨⟨R⟩⟩ is nilpotent.

Then the canonical homomorphism φR : UR(Q) → UA(Q) is an isomorphism.

Proof. Proposition 4.2 provides a Q-Lie algebra structure on L(UR(Q)). More-
over, as in the proof of Proposition 5.4, we have a surjective Q-Lie algebra
morphism n+

Q → L(UR(Q)) → L(UA(Q)) by (1), whose composition with the
Lie ring morphism L(UA(Q)) → n+

Q is the identity on n+
Q. Hence the map

L(UR(Q)) → L(UA(Q)) induced by φR is an isomorphism. This shows that ker φR
is contained in γ∞(UR(Q)). But γ∞(UR(Q)) = {1} by (2), and hence φR is also
injective. □

Example 5.6. Let i, j ∈ I with i ̸= j. Then Uij = UAij
(Q) is isomorphic to

UR(Q) = Ui ∗ Uj/⟨⟨R⟩⟩ in the following cases.

(1) If (aij, aji) = (0, 0) and R = {[Ui, Uj]};
(2) If (aij, aji) = (−1, −1) and

R = {U
(2)
i (Uj), U

(2)
j (Ui)} = {[Ui, [Ui, Uj]], [Uj, [Uj, Ui]]};
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(3) If (aij, aji) = (−1, −2) and

R = {U
(2)
i (Uj), U

(3)
j (Ui), [Ui, U

(2)
j (Ui)]}.

We remark that there is no obvious way to obtain a similar presentation of UAij
(Q)

of type G2, i.e. if (aij, aji) = (−1, −3). Indeed, that group satisfies the relations

R0 =
{
U

(3)
i (Uj), [Uj, U

(2)
i (Uj)],

U
(2)
i (U (2)

j (Ui)), [Uj, Ui, U
(2)
j (Ui)]], U

(4)
j (Ui),

U
(2)
i (U (3)

j (Ui)), [Uj, Ui, U
(3)
j (Ui)]]

}
.

The quotient H = Ui ∗ Uj/⟨⟨R0⟩⟩ is nilpotent, and the Lie ring L(H) is a Q-Lie
algebra (by Proposition 4.2) of nilpotency class 5 and dimension 7. However, the
equality

U
(2)
i (Uj) = [Ui, U

(3)
j (Ui)],

which holds in the group UAij
(Q), does not hold in H, and it is not clear whether

one could express this equality as a consequence of any larger set of relators
exclusively consisting of basic commutators.

Remark 5.7. It follows from Example 5.6 that for each 2-spherical GCM A of
rank n such that |aij| ≤ 2 for all i, j, the KMS group UA(Q) has a presentation as
the quotient of a free product of n copies of Q modulo a set of relators exclusively
consisting of basic commutators. In that sense, the subject of the present paper
is related to [BM14].

We now prove an analogue of Propositions 5.2 and 5.4 for U+
A(Q).

Proposition 5.8. Set Γm := γm(U+
A(Q)) for all m. Then the Lie ring

L(U+
A(Q)) =

⊕
n≥1

Γn/Γn+1

is a Q-Lie algebra with respect to the scalar multiplication defined by (4.1).
Moreover, the assignment ei 7→ xiΓ2 extends to a Q-Lie algebra isomorphism

n+
Q → L(U+

A(Q)).

Proof. Let π : n+
Q → L(U+

A(Q)) denote the composition of the surjective Lie ring
morphisms n+

Q → L(UA(Q)) (provided by Proposition 5.4) and L(UA(Q)) →
L(U+

A(Q)) (induced by the natural surjective group morphism UA(Q) → U+
A(Q)).

Note that π is injective: indeed, the composition of π with the Lie ring morphism
L(U+

A(Q)) → n+
Q (see (2.9)) is the identity map on n+

Q. Hence π is an isomorphism
of Lie rings.

This allows to transport the Q-Lie algebra structure from n+
Q

∼= L(UA(Q)) to
L(U+

A(Q)): more formally, as in the proof of Proposition 4.2, it suffices to check
that if s ∈ N∗ and g ∈ Γn is such that gs ∈ Γn+1, then g ∈ Γn+1. But if x ∈ n+

Q is
the preimage of gΓn+1 ∈ L(U+

A(Q)) under π, then by assumption π(sx) = 0 and
hence sx = x = 0, that is, g ∈ Γn+1.
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In particular, since π is Q-linear (the Q-module structures on n+
Q

∼= L(UA(Q)) and
L(U+

A(Q)) are compatible by construction), it is a Q-Lie algebra isomorphism. □

Corollary 5.9. γn(U+
A(Q)) = U+

A(Q) ∩ Uma
n (Q) for all n ∈ N.

Proof. The inclusion ⊆ is clear. Conversely, let g ∈ U+
A(Q) ∩ Uma

n (Q) for some
n ≥ 2, and suppose for a contradiction that g /∈ γn(U+

A(Q)). Then g ∈ γm(U+
A(Q))\

γm+1(U+
A(Q)) for some m ≤ n − 1. Hence gγm+1(U+

A(Q)) is a nonzero element of
L(U+

A(Q)), and is thus mapped to a nonzero element in ⊕
n≥1 U

ma
n (Q)/Uma

n+1(Q) ∼=
n+
Q under the morphism (2.9), since this morphism is injective by Proposition 5.8.

In other words, g /∈ Uma
m+1(Q), and hence g /∈ Uma

n (Q), a contradiction. □

Corollary 5.10. Theorem C and Corollary D hold. Moreover, the kernel of the
natural map UA(Q) ↠ U+

A(Q) coincides with γ∞(UA(Q)).

Proof. Theorem C sums up Propositions 5.4 and 5.8.

Let us show next that the kernel of π : UA(Q) → U+
A(Q) coincides with γ∞(UA(Q)).

Assume that g ∈ UA(Q)\γ∞(UA(Q)), and let n ∈ N be such that g ∈ γn(UA(Q))\
γn+1(UA(Q)). Then gγn+1(UA(Q)) is a nonzero element of L(UA(Q)), and hence
π(g)γn+1(U+

A(Q)) is a nonzero element of L(U+
A(Q)) by Theorem C. In particular,

g /∈ ker π. This shows that ker π ⊆ γ∞(UA(Q)), and the reverse inclusion follows
from the fact that U+

A(Q) is residually nilpotent (see Remark 2.1).

Finally, we show that Corollary D holds. Since Û+
A(Q) and Uma+

A (Q) are the
Hausdorff completions of U+

A(Q) with respect to the filtrations (γn(U+
A(Q)))n∈N

and (U+
A(Q) ∩ Uma

n (Q))n∈N, the isomorphism Û+
A(Q) → Uma+

A (Q) follows from
Corollary 5.9. On the other hand, we have just established that the natural map
UA(Q)/γ∞(UA(Q)) → U+

A(Q) is an isomorphism, and hence induces an isomor-
phism of the corresponding pro-nilpotent completions ÛA(Q) → Û+

A(Q). □

Note that Corollary 5.9 is no longer true without the 2-sphericity assumption on
A, as shown by the following lemma.

Lemma 5.11. Suppose that A =
(

2 a12
a21 2

)
with a12a21 ≥ 4. Then γn(U+

A(Q)) is
properly contained in U+

A(Q) ∩ Uma
n (Q) for n = |a12| + 3.

Proof. By [Mor88, §3(6)], the real root groups x1(Q) and x2(Q) generate their free
product in U+

A(Q). Let g := [x1, x1, . . . , x1, x2]] ∈ U+
A(Q) (|a12| + 1 terms “x1”).

Then g ∈ U+
A(Q) ∩ Uma

N+1(Q) where N := |a12| + 2 because (ad e1)|a12|+1e2 = 0 in
n+
Q (see [Mar18, Theorem 8.51(5)]).

We claim that g /∈ γN+1(U+
A(Q)). Indeed, write U+

A(Q) = ⋃
n≥1 Vn where Vn is

the subgroup of U+
A(Q) generated by x1(1/n) and x2(1/n) (hence a free group on

these two elements). Suppose for a contradiction that g ∈ γN+1(U+
A(Q)). Then

g ∈ γN+1(Vn) for some large enough n. Hence gγN+1(Vn) is zero in the Lie ring
L(Vn). On the other hand, L(Vn) is the free Lie algebra on y1 := x1(1/n)γ2(Vn)
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and y2 := x2(1/n)γ2(Vn) by [Bou72, II §5 n°4 Théorème 3]. Since

gγN+1(Vn) = nN [y1, y1, . . . , y1, y2]]

(N − 1 terms “y1”), we get the desired contradiction. □

Corollary 5.12. Corollary G holds, but becomes false without the 2-sphericity
assumption on A.

Proof. The fact that every element g of Uma+
A (Q) has a unique expression of the

form
g =

∏
x∈B

ux(λx) ∈ Uma+
A (Q) for some λx ∈ Q

readily follows from [Mar18, Theorem 8.51] (for any GCM A).

If A is 2-spherical, then for each n ∈ N, the element ∏
nx≥n ux(λx) belongs to

U+
A(Q) ∩ Uma

n (Q) = γn(U+
A(Q)) by Corollary 5.9, yielding Corollary G.

If A is not assumed to be 2-spherical, then Lemma 5.11 shows that there exists
an element g ∈ (U+

A(Q) ∩ Uma
n (Q)) \ γn(U+

A(Q)). The unique expression g =∏
x∈B ux(λx) is then such that g = ∏

nx≥n ux(λx) /∈ γn(U+
A(Q)). □

6. Characterisation of the residual nilpotence of UA(Q)

6.1. Functoriality of UA(K). Given two GCM A = (aij)i,j∈I and A′ = (a′
ij)i,j∈I′ ,

we write A ≥ A′ if I ′ ⊆ I and |aij| ≥ |a′
ij| for all i, j ∈ I ′.

Lemma 6.1. Let A = (aij)i,j∈I and A′ = (a′
ij)i,j∈I′ be two 2-spherical GCM with

A ≥ A′, and let K be a ring. Then for i, j ∈ I with i ̸= j, γ ∈ ∆+
ij and a ∈ K, the

assignment

xγ(a) 7→

xγ(a) if i, j ∈ I ′ and γ ∈ ∆(A′)
1 otherwise

defines a surjective group morphism UA(K) → UA′(K).

Proof. Since this holds for A of rank 2 by [Mar18, §8.5.3], it also holds in general
by the definition of UA(K) and UA′(K). □

Lemma 6.2. Let J ⊆ I and let K be a ring. Then the natural morphism
UAJ

(K) → UA(K) is injective.

Proof. The composition of UAJ
(K) → UA(K) with the morphism UA(K) → UAJ

(K)
provided by Lemma 6.1 is the identity on UAJ

(K), yielding the claim. □
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6.2. Distance between edges in Γ(Uij; Ui, Uj). Recall that when A is a spheri-
cal GCM of rank 2, the elements of U+

A(K) admit a normal form (2.12) (see §2.7).

Proposition 6.3. Let K be a ring, and let A be a rank 2 GCM, with simple roots
α, β. Let n ∈ N and a1, . . . , an, b1, . . . , bn ∈ K. Set

An :=
n∑

i=1
ai, Bn :=

n∑
i=1

bi, Rn :=
n∑

i=1
biAi, Sn :=

n∑
i=1

biA
2
i , Tn :=

n∑
i=1

biA
3
i

and

Un :=
n∑

i=1
b2

i A
3
i −

n∑
i=1

biA
3
i Bi−1 + 3

n∑
i=1

biA
2
i Ri−1

(with the usual convention that a sum over an empty set is zero). Set also Xn :=
xβ(bn)xα(an) . . . xβ(b1)xα(a1) ∈ U+

A(K).

(1) If A is of type A2, then

Xn = xα(An)xβ(Bn)xα+β(Rn).

(2) If A is of type B2, with short root α, then

Xn = xα(An)xβ(Bn)xα+β(Rn)x2α+β(Sn).

(3) If A is of type G2, with short root α, then

Xn = xα(An)xβ(Bn)xα+β(Rn)x2α+β(Sn)x3α+β(Tn)x3α+2β(Un).

Proof. Note that (1) and (2) follow from (3) and the functoriality of U+
A(K) =

UA(K) in A (see Lemma 6.1). Let us thus assume we are in case (3). The
nontrivial commutation relations (2.13) in U+

A(K) between root group elements
are then the following, for all a, b ∈ K:

xβ(b)xα(a) = xα(a)xβ(b)xα+β(ab)x2α+β(a2b)x3α+β(a3b)x3α+2β(a3b2) (6.1)
xα+β(b)xα(a) = xα(a)xα+β(b)x2α+β(2ab)x3α+β(3a2b)x3α+2β(3ab2) (6.2)

x2α+β(b)xα(a) = xα(a)x2α+β(b)x3α+2β(3ab) (6.3)
x3α+β(b)xβ(a) = xβ(a)x3α+β(b)x3α+2β(−ab) (6.4)

x2α+β(b)xα+β(a) = xα+β(a)x2α+β(b)x3α+2β(3ab). (6.5)
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In particular, (3) holds for n = 1 by (6.1). Assume now that it holds for n ≥ 1,
and set Zn := x2α+β(Sn)x3α+β(Tn)x3α+2β(Un) and Yn := xα+β(Rn)Zn. Then

Xn+1 = xβ(bn+1)xα(an+1)xα(An)xβ(Bn)Yn

= xβ(bn+1)xα(An+1)xβ(Bn)Yn

= xα(An+1)xβ(bn+1)xα+β(An+1bn+1)x2α+β(A2
n+1bn+1)x3α+β(A3

n+1bn+1)
x3α+2β(A3

n+1b
2
n+1)xβ(Bn)Yn by (6.1)

= xα(An+1)xβ(bn+1)xα+β(An+1bn+1)x2α+β(A2
n+1bn+1)xβ(Bn)

x3α+β(A3
n+1bn+1)x3α+2β(A3

n+1b
2
n+1 − BnA3

n+1bn+1)Yn by (6.4)
= xα(An+1)xβ(Bn+1)xα+β(An+1bn+1)x2α+β(A2

n+1bn+1)x3α+β(A3
n+1bn+1)

x3α+2β(A3
n+1b

2
n+1 − BnA3

n+1bn+1)xα+β(Rn)Zn

= xα(An+1)xβ(Bn+1)xα+β(Rn+1)x2α+β(A2
n+1bn+1)x3α+β(A3

n+1bn+1)
x3α+2β(A3

n+1b
2
n+1 − BnA3

n+1bn+1 + 3RnA2
n+1bn+1)Zn by (6.5)

= xα(An+1)xβ(Bn+1)xα+β(Rn+1)x2α+β(Sn+1)x3α+β(Tn+1)x3α+2β(Un+1),
as desired. □

Lemma 6.4. Let K be a ring. Assume that A is of type A2, with simple roots
α, β. Let g1, g2 ∈ UA(K) be of the form

g1 = xα(a2)xβ(b1)xα(a1) and g2 = xβ(b2)xα(a2)xβ(b1)
for some ai, bi ∈ K. Let i ∈ {1, 2} and suppose gi = xα+β(r) for some r ∈ K.
Then r = 0.

Proof. For i = 1, Proposition 6.3(1) yields
a1 + a2 = 0, b1 = 0, 0 = r.

For i = 2, Proposition 6.3(1) yields
a2 = 0, b1 + b2 = 0, 0 = r.

The lemma follows. □

Lemma 6.5. Let K be a ring. Assume that A is of type B2, with short simple
root α and long simple root β. Let g1, g2 ∈ UA(K) be of the form

g1 = xβ(b2)xα(a2)xβ(b1)xα(a1) and g2 = xα(a3)xβ(b2)xα(a2)xβ(b1)
for some ai, bi ∈ K. Let i ∈ {1, 2} and suppose gi = xα+β(r1)x2α+β(r2) for some
r1, r2 ∈ K. Then r1 = 0 if and only if r2 = 0.

Proof. For i = 1, Proposition 6.3(2) yields
a1 + a2 = 0, b1 + b2 = 0, b1a1 = r1, b1a

2
1 = r2.

For i = 2, Proposition 6.3(2) yields
a2 + a3 = 0, b1 + b2 = 0, b2a2 = r1, b2a

2
2 = r2.

The lemma follows. □



20 PIERRE-EMMANUEL CAPRACE AND TIMOTHÉE MARQUIS

Lemma 6.6. Let K be a ring. Assume that A is of type G2, with short simple
root α and long simple root β. Let g1, g2 ∈ UA(K) be of the form

g1 = xβ(b3)xα(a3)xβ(b2)xα(a2)xβ(b1)xα(a1)
and

g2 = xα(a4)xβ(b3)xα(a3)xβ(b2)xα(a2)xβ(b1)
for some ai, bi ∈ K. Let i ∈ {1, 2} and suppose gi = xα+β(r1)x3α+β(r2)x3α+2β(r3)
for some r1, r2, r3 ∈ K. Then r1 = 0 if and only if r2 = 0.

Proof. We focus on the case i = 1, the case i = 2 yielding the same equations (with
(a1, a2, a3) replaced by (a2, a3, a4) and (b1, b2, b3) by (b2, b3, b1)). Proposition 6.3(3)
yields the following equations:

a1 + a2 + a3 = 0, b1 + b2 + b3 = 0,

and, using that a1 + a2 = −a3,
b1a1 − b2a3 = r1, b1a

2
1 + b2a

2
3 = 0, b1a

3
1 − b2a

3
3 = r2.

Multiplying by a3 the first (resp. second) equation and adding the second (resp.
third) yields

b1a1(a1 + a3) = a3r1 and b1a
2
1(a1 + a3) = r2.

In particular, if r1 = 0 then r2 = 0. Conversely, if r2 = 0, then either r1 = 0 or
a3 = 0. But in the latter case, b1a1 = r1 and b1a

2
1 = 0, so that r1 = 0 as well, as

desired. □

Recall from §2.2 the definition of the integers mij ∈ N.

Proposition 6.7. Let A = (aij)i,j∈I be a 2-spherical GCM, and let K be a ring.
Let i, j ∈ I with i ̸= j be such that mij ∈ {3, 4, 6}. Then, in the coset graph
Γ(Uij; Ui, Uj), the distance between any two distinct elements of Usj(αi), seen as
edges of the graph, is at least mij + 1.

Proof. Recalling from §2.6 the characterisation of the distance between two edges
of Γ(Uij; Ui, Uj), the proposition readily follows from Lemma 6.4, 6.5 or 6.6, ac-
cording to whether mi,j = 3, 4, or 6. □

6.3. Girth of Γ(Uij; Ui, Uj). In order to prove Theorem E, we will need the fact
that the coset graphs Γ(Uij; Ui, Uj) have girth at least 2mij. This is proved in
[LU93, Theorem 3.1 and Proposition 3.2] (see also [CCKW22, Proposition 7.1]).
Since both these references actually assert that the girth of Γ(Uij; Ui, Uj) is equal
to 2mij, although this is not true over F2 in type A2 and G2, we chose to provide
here the correct statement (and proof) of this result.

Proposition 6.8. Let A be a GCM of type A2, B2 or G2, with simple roots α, β,
and let mαβ = 3, 4 or 6 accordingly. Let K be an integral domain.

(1) The girth of ΓA,K := Γ(UA(K);Uα(K),Uβ(K)) is equal to 2mαβ, unless
K = F2 and A is of type A2 or G2.
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(2) If A is of type A2 and K = F2, then ΓA,K has girth 8 (indeed ΓA,K is a
cycle of length 8).

(3) If A is of type G2 and K = F2, then ΓA,K has girth 16 (indeed ΓA,K is the
disjoint union of 4 cycles of length 16).

Proof. (1) Let k be the field of fractions of K. Then ΓA,K is a subgraph of
ΓA,k := Γ(UA(k);Uα(k),Uβ(k)). Since ΓA,k has girth at least 2mαβ (see [CCKW22,
Proposition 7.1]), the girth of ΓA,K is also at least 2mαβ.

On the other hand, one readily checks using Proposition 6.3 the following identities
for all a, b ∈ K.

If A is of type A2, then

xα(a)xβ(b)xα(b − a) = xβ(b − a)xα(b)xβ(a).

If K ̸= F2, then there exist distinct a, b ∈ K \ {0}, yielding a cycle of length 6.

If A is of type B2, then

xα(a)xβ(b)xα(−a)xβ(b) = xβ(b)xα(a)xβ(b)xα(−a).

Choosing a = b = 1 yields a cycle of length 8.

If A is of type G2, then

xα(a)xβ(b3)xα(−a − b)xβ(a3)xα(b)xβ(−a3 − b3) =
xβ(−a3 − b3)xα(a)xβ(b3)xα(−a − b)xβ(a3)xα(b).

If charK ̸= 2, choosing a = b = 1 yields a cycle of length 12. Assume now that
charK = 2. If |K| ≥ 5, then the polynomial x4 − x = x(x − 1)(x2 + x + 1) is not
identically zero over K. In this case, we obtain a cycle of length 12 by choosing
a ∈ K \ {0, 1} such that a3 ̸= 1 and b = 1. Finally, if K = F4 = F2[y]/(y2 + y + 1),
then one readily checks using Proposition 6.3 that

xα(1)xβ(1)xα(y + 1)xβ(1)xα(y)xβ(1) = xβ(1)xα(y)xβ(1)xα(y + 1)xβ(1)xα(1),

also yielding a cycle of length 12 in that case.

(2)(3) Note that, in the notations of Proposition 6.3, if Xn = 1 over F2 with
an = bn−1 = an−1 · · · = b1 = 1 and either bn = 1 or a1 = 1, then the equations
An = Bn = 0 imply that n is even and that bn = a1 = 1. Moreover, the equation
Rn = 0 implies that n(n + 1)/2 = 0 and hence that n is a multiple of 4. Hence
ΓA,K has girth at least 2n = 8 for A of type A2 and at least 2n = 16 for A of
type G2, and one readily checks that indeed Xn = 1 for these values of n. The
more precise structure of ΓA,K as a union of cycles follows from the fact that all
its vertices have degree 2, and that the group UA(K) (which has order 8 or 64 for
A of type A2 or G2) acts sharply transitively on the edges of ΓA,K. □

6.4. Free products in UA(K).
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Theorem 6.9. Let A = (aij)i,j∈I be a 2-spherical non-spherical GCM of rank 3,
and let K be an integral domain. Choose the indexing set I = {1, 2, 3} so that
a31, a32 ̸= 0. Then Us3α1(K) and Us3α2(K) generate their free product in UA(K).

Proof. By definition, the KMS group UA(K) is the fundamental group of a triangle
of groups (see [BH99, Definition II.12.12]): the face group is trivial, the edge
groups are the simple root groups Ui = xi(K) with i ∈ {1, 2, 3}, and the vertex
groups are the unipotent groups Uij with i ̸= j (the embeddings Ui ↪→ Uij being
the canonical ones). By [BH99, Theorem II.12.18], the group UA(K) has a natural
action on a triangle complex Y that is sharply transitive on the triangles, and has
three orbits of vertices. We fix a base triangle C0, corresponding to the neutral
element of UA(K), and for each pair {i, j} ⊂ {1, 2, 3}, we denote by vij the vertex
of C0 of which Uij is the stabiliser. For each i ̸= j, the (simplicial) link of vij

is isomorphic (by construction of Y ) to the bipartite coset graph Γ(Uij; Ui, Uj),
with the edge opposite vij in C0 corresponding to the base edge eij := {Ui, Uj}
in Γ(Uij; Ui, Uj). Moreover, metrising C0 as a Euclidean or hyperbolic (hence
CAT(0)) triangle with angle π/mij at the vertex vij yields a natural complete
metric on Y such that UA(K) acts on Y by isometries (see [BH99, Theorem I.7.13]).
This also turns Γ(Uij; Ui, Uj) into a metric graph by considering the geometric
link Lk(vij, Y ) of vij in Y (see [BH99, I.7.15]). Since loops in Lk(vij, Y ) have
length at least 2mij.

π
mij

= 2π by Proposition 6.8, it moreover follows from [BH99,
Theorem II.5.2 and Lemma II.5.6] that the metric on Y is CAT(0).

Since a31, a32 ̸= 0 by assumption, we have m13, m23 ∈ {3, 4, 6}. It follows from
Proposition 6.7 that for i ∈ {1, 2}, any two edges in the Usiα3(K)-orbit of ei3 in
the graph Γ(Ui3; Ui, U3) are mutually at distance ≥ mi3 + 1. This means that
in the metric graph Γ(Ui3; Ui, U3), the midpoints of those edges are mutually at
distance > π apart. Since the graph is bipartite and since Ui3 preserves that
bipartition, it follows that if v is a vertex belonging to ei3, any two vertices in
the Usiα3(K)-orbit of v are also mutually at distance > π apart. In particular,
[BH99, Theorem I.7.16 and Remark I.5.7] imply that for any two such vertices
v1, v2, the geodesic segments [vi3, v1] and [vi3, v2] in Y form an angle π. In other
words, letting σ = [v13, v23] denote the edge of Y spanned by the vertices v13 and
v23 (that is, the edge of C0 stabilised by U3), we see that for all g, h ∈ Usiα3(K)
with g ̸= h, the angle at vi3 formed by the geodesic segments gσ and hσ is equal
to π.

Let now T denote the Bass–Serre tree of the free amalgamated product Us1α3(K)∗
Us2α3(K), and let

φ : Us1α3(K) ∗ Us2α3(K) → ⟨Us1α3(K) ∪ Us2α3(K)⟩ ≤ UA(K)

be the natural homomorphism. We view T as a metric tree, each of whose edges
has length equal to the length of the geodesic segment σ ⊂ Y . Using that the
free product Us1α3(K) ∗ Us2α3(K) acts sharply transitively on the edge set of T ,
we obtain a natural φ-equivariant map f : T → Y , ranging in the 1-skeleton
of Y , and mapping the base edge of T to σ. The previous discussion ensures
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that f is locally an isometric embedding. Since Y is complete (see [BH99, Theo-
rem I.7.13]) and simply connected (see [BH99, Corollary II.1.5]), it follows from
[BH99, Prop. II.4.14] that f is a global isometric embedding (in particular f(T ) is
convex), and hence that φ is injective. Thus the subgroup ⟨Us1α3(K)∪Us2α3(K)⟩ ≤
UA(K) is isomorphic to the free product Us1α3(K) ∗ Us2α3(K), as desired. □

Proof of Theorem E: In view of Lemma 6.2, there is no loss of generality in
assuming that A has rank 3. Assume that A is not spherical, and let us show that
UA(K) → U+

A(K) is not injective. Up to reordering the indexing set I = {1, 2, 3} so
that a31, a32 ̸= 0, we know from Theorem 6.9 that Us3α1(K) and Us3α2(K) generate
their free product in UA(K). On the other hand, by (2.6) in §2.3, Us3α1(K) and
Us3α2(K) generate the group s̃3⟨Uα1(K),Uα2(K)⟩s̃−1

3
∼= U+

A12(K) in U+
A(K), yielding

the claim. □

Proof of Corollary F: The first statement is contained in Corollary 5.10. The
equivalence of (i) and (ii) follows from Remark 5.3, and the equivalence of (i) and
(iii) from the first statement and Theorem E. □
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[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curva-
ture, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.

[BM14] Gilbert Baumslag and Roman Mikhailov, Residual properties of groups defined by
basic commutators, Groups Geom. Dyn. 8 (2014), no. 3, 621–642.
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[DM07] Alice Devillers and Bernhard Mühlherr, On the simple connectedness of certain
subsets of buildings, Forum Math. 19 (2007), no. 6, 955–970.

[EJZ10] Mikhail Ershov and Andrei Jaikin-Zapirain, Property (T) for noncommutative uni-
versal lattices, Invent. Math. 179 (2010), no. 2, 303–347.

[Ers12] Mikhail Ershov, Golod-Shafarevich groups: a survey, Internat. J. Algebra Comput.
22 (2012), no. 5, 1230001, 68.

[GdPVB23] Laura Grave de Peralta and Inga Valentiner-Branth, High dimensional expanders
from Kac–Moody–Steinberg groups, preprint (2023).



24 PIERRE-EMMANUEL CAPRACE AND TIMOTHÉE MARQUIS
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pear in the Ann. Sci. École Norm. Sup. ArXiv preprint:2212.00402, 2022.
[Kac90] Victor G. Kac, Infinite-dimensional Lie algebras, third ed., Cambridge University

Press, Cambridge, 1990.
[LU93] Felix Lazebnik and Vasiliy A. Ustimenko, New examples of graphs without small

cycles and of large size, vol. 14, 1993, Algebraic combinatorics (Vladimir, 1991),
pp. 445–460.

[Mag35] Wilhelm Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen
Ring, Math. Ann. 111 (1935), no. 1, 259–280.

[Mal49] A. I. Mal′cev, Generalized nilpotent algebras and their associated groups, Mat.
Sbornik N.S. 25/67 (1949), 347–366.

[Mar18] Timothée Marquis, An introduction to Kac–Moody groups over fields, EMS Text-
books in Mathematics, European Mathematical Society (EMS), Zürich, 2018.
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