
MINICOURSE ON KAC–MOODY GROUPS

TIMOTHÉE MARQUIS∗

Abstract. These are informal lecture notes for a three-hour minicourse on Kac–Moody
groups, given at the workshop “Kac–Moody geometry” in July 2023 in Kiel. They provide
a concise overview of the book An introduction to Kac–Moody groups over fields, EMS Text-
books in Mathematics (2018). They assume a previous familiarity with the (very) basics
of Kac–Moody algebras. For readers unfamiliar with the latter topic, short “Prerequisites”
notes (referenced within the text) are also freely available.

All results mentioned in these notes are contained in the book “An introduction to Kac–
Moody groups over fields”. So as to lighten the presentation, no bibliographical details are
provided within the text. Instead, attributions of all mentioned results can be found at
the end of Chapters 6, 7 and 8, and in Chapter 9 of the book. For readers unfamiliar with
Kac–Moody algebras (and/or Coxeter groups, buildings and BN-pairs), short “Prerequisites”
notes are also available here.

0. Setting

• Let A = (aij)i,j∈I be a generalised Cartan matrix (GCM).
• Let (h, Π, Π∨) be a realisation of A: h is a complex vector space with dimC h =

|I| + corank(A) and Π = {αi | i ∈ I} and Π∨ = {α∨
i | i ∈ I} are linearly independant

subsets of h∗ and h respectively such that ⟨αj, α∨
i ⟩ = aij for all i, j ∈ I.

• Let g(A) = ⟨ei, fi (i ∈ I), h | (RA1)–(RA4)⟩ be the Kac-Moody algebra of type A,
where

(RA1) [h, h′] = 0 for all h, h′ ∈ h;
(RA2) [h, ei] = αi(h)ei and [h, fi] = −αi(h)fi for all h ∈ h and i ∈ I;
(RA3) [fi, ej] = δijα

∨
i for all i, j ∈ I;

(RA4) (ad ei)|aij |+1ej = 0 = (ad fi)|aij |+1fj for all i, j ∈ I with i ̸= j.
• We have a root space decomposition

g(A) = h ⊕
⊕
α∈∆

gα where gα = {x ∈ g(A) | [h, x] = α(h)x ∀h ∈ h}

and a triangular decomposition
g(A) = n− ⊕ h ⊕ n+

where n+ (resp. n−) is the subalgebra generated by the ei (resp. fi), i ∈ I. We also
consider the derived Kac–Moody algebra

gA = n− ⊕ h′ ⊕ n+ where h′ =
∑
i∈I

Cα∨
i ⊆ h.
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2 TIMOTHÉE MARQUIS∗

• The root system ∆ = {α ∈ h∗ \ {0} | gα ̸= {0}} decomposes into positive/negative
roots:

∆ = ∆+ ⊔ ∆− where ∆± = {α = ±
∑
i∈I

niαi ∈ ∆ | ni ∈ N}.

For α as above, we write ht(α) = ± ∑
i∈I ni ∈ Z for its height.

• The Weyl group

W = ⟨si : α 7→ α − ⟨α, α∨
i ⟩αi | i ∈ I⟩ ≤ GL(h∗)

of A is a Coxeter group, with set of simple reflections S = {si | i ∈ I}.
• ∆ also splits into the sets of real/imaginary roots:

∆ = ∆re ⊔ ∆im where ∆re = WΠ and ∆im = ∆ \ ∆re

and we set ∆re± = ∆re ∩ ∆± and ∆im± = ∆im ∩ ∆±.

Example 0.1. (1) If A =
(

2 −1
−1 2

)
, then gA = g(A) ∼= sl3(C).

(2) If A =
(

2 −2
−2 2

)
with I = {0, 1}, then gA

∼= sl2(C[t, t−1]) ⋊ CK is a one-dimensional
(nontrivial) central extension of sl2(C[t, t−1]), with

e1 = ( 0 1
0 0 ), f1 = ( 0 0

−1 0 ), α∨
1 = ( 1 0

0 −1 )

and

e0 = ( 0 0
−t 0 ), f0 =

(
0 t−1
0 0

)
, α∨

0 = −α∨
1 + K.

We conclude this section with the Gabber–Kac theorem, justifying why Kac–Moody algebras
are generalisations of the simple finite-dimensional complex Lie algebras, at least when A is
symmetrisable (i.e. A = DB with D a diagonal and B a symmetric matrix).

Theorem 0.2 (Gabber–Kac). If A is an indecomposable symmetrisable GCM, then gA is
simple modulo its center Z(gA) ⊆ h′.

1. The world of Kac–Moody algebras

Call an (indecomposable) GCM A of finite type if A = DB with B positive definite, of affine
type if A = DB with B positive semidefinite and of corank 1, and of indefinite type otherwise.
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Finite type Affine type Indefinite type

dim gA < ∞ ∞ ∞

growth as n → ∞ of
dim ⊕

0<ht(α)<n gα
constant polynomial exponential

Known “realisations” e.g. sln(C) e.g. sln(C[t, t−1]) ???

Coxeter group W
finite (spherical
geometry)

affine (Euclidean ge-
ometry)

indefinite for |I| ≥ 3
(hyperbolic-like geom-
etry)

Roots ∆re = ∆ ∆re ⊊ ∆, ∆im = Z̸=0δ ∆re ⊊ ∆, ∆im “big”

gα, α ∈ ∆re dim gα = 1: choose1 eα such that gα = Ceα

gα, α ∈ ∆im ∅ supα∈∆im dim gα < ∞ supα∈∆im dim gα = ∞

Example 1.1. In the notations of Example 0.1(2): ∆im = Z̸=0δ with δ = α0 + α1, and
gnδ = C( tn 0

0 −tn ). Similarly, ∆re = {nδ±α1 | n ∈ Z} with enδ+α1 = ( 0 tn

0 0 ) and enδ−α1 = ( 0 0
−tn 0 ).

Remark 1.2. Here is another key difference between real and imaginary roots: if x ∈ gα is
nonzero, then the endomorphism ad x ∈ End(gA) is locally nilpotent (i.e. for all y ∈ gA there
exists n = n(y) ∈ N such that (ad x)ny = 0) if and only if α ∈ ∆re.

2. Kac–Moody groups

There are many objects deserving the name of Kac–Moody group; the most flexible “defini-
tion” of a Kac–Moody group is then as follows.
Definition 2.1. A Kac–Moody group is a group attached to a Kac–Moody algebra.
More precisely, in order for a group G to deserve the name of Kac–Moody group of type A,
it should have an adjoint action Ad: G → Aut(gA) on gA (or some variation of gA, such as
a completion) with small, central kernel.

The most obvious way to construct a Kac–Moody group would then be to exponentiate the
adjoint representation ad: gA → End(gA). On the other hand, if α ∈ ∆ and x ∈ gα is
nonzero, then the map

gA → gA : y 7→ (exp ad x)y :=
∑
n≥0

1
n!(ad x)ny

is a well-defined automorphism of gA if and only if the above sum is always finite, which
happens precisely when α ∈ ∆re by Remark 1.2. This leads us to define the group
Gad

A (C) := ⟨exp ad x | x ∈ gα, α ∈ ∆re⟩ = ⟨xα(r) = exp ad reα | r ∈ C, α ∈ ∆re⟩ ≤ Aut(gA),
which one can call a minimal2 (adjoint) Kac–Moody group over C.
1There is a canonical choice of eα ∈ gα (up to sign), defined using W as in the “Prerequisites” notes.
2here, “minimal” refers to the fact that we only exponentiate the real root spaces and not the imaginary root
spaces.
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Example 2.2. In the notations of Example 1.1, we have Gad
A (C) = PSL2(C[t, t−1]) and

xα(r) = I + reα ∈ Gad
A (C) for all α ∈ ∆re.

Remark 2.3. If h ∈ h′ and y ∈ gβ, then (exp ad h)y = eβ(h)y also makes sense, and we can
thus also exponentiate the adjoint action of h′, to get a torus

T := ⟨ead h = exp ad h | h ∈ h′⟩ ≤ Aut(gA).

But as we will see, T is in fact already contained in Gad
A (C).

Remark 2.4. Let λ ∈ h∗ be dominant integral, i.e. such that λ(α∨
i ) ∈ N for all i ∈ I.

Then the irreducible highest-weight gA-module L(λ) with highest weight λ is integrable: the
representation πλ : gA → End(L(λ)) is such that each πλ(eα) (α ∈ ∆re) is locally nilpotent.
One can thus define in a same the minimal Kac–Moody group

Gπλ
A (C) := ⟨exp πλ(x) | x ∈ gα, α ∈ ∆re⟩ ≤ Aut(L(λ)).

Since finite-dimensional simple Lie algebras yield groups that can be defined over any field or
even (commutative, associative, unital) ring k, such as SLn(k), we would now like to define
Kac–Moody groups over arbitrary fields or even rings. Moreover, we would like to have an
intrinsic definition of a Kac–Moody group that does not depend on an ambiant space such
as Aut(gA) or Aut(L(λ)). In particular, we would like to understand how the various groups
Gad

A (C) and Gπλ
A (C) constructed above compare to each other.

Note that Gad
A (C) (and Gπλ

A (C)) is generated by a torus T and by copies Uα := xα(C) ∼= (C, +)
of the additive group of C for each α ∈ ∆re. One could then define a Kac–Moody group over
k as a free product of groups Uα(k) ∼= (k, +) for α ∈ ∆re (we then denote by

xα : k → Uα(k) : r 7→ xα(r)

the corresponding isomorphism) and of a torus Tk
∼= (k×)|I| (we then write

Tk = ⟨rα∨
i | i ∈ I⟩ ∼= (k×)|I|,

with an injective group morphism k× → Tk : r 7→ rα∨
i for each i ∈ I), which we quotient out

by all the relations we observe between these generators inside Aut(gA) and Aut(L(λ)) (at
least over C), with the hope to find sufficiently many such relations to get back the groups
Gad

A (C) and Gπλ
A (C) for k = C.

Definition 2.5. Let k be a ring. Define the group GA(k) = Tk ∗ (∗α∈∆reUα(k))/(R0)–(R4)
where the relations (R0)–(R4) are as follows. For each i ∈ I and r ∈ k×, set s̃i(r) :=
xαi

(r)x−αi
(r−1)xαi

(r) and s̃i := s̃i(1). For all α, β ∈ ∆re, fix a total order on ]α, β[N:=
(N>0α + N>0β) ∩ ∆.

(R0) [xα(t), xβ(u)] = ∏
γ=iα+jβ∈]α,β[N xγ(Cαβ

ij tiuj) for all prenilpotent pairs {α, β} ⊆ ∆re,
where the Cαβ

ij are given integers;
(R1) rα∨

i xαj
(t)r−α∨

i = xαj
(raij t) for all r ∈ k×, i, j ∈ I and t ∈ k;

(R2) s̃ir
α∨

j s̃−1
i = rsiα

∨
j for all r ∈ k× and i, j ∈ I;

(R3) rα∨
i = s̃−1

i s̃i(r−1) for all r ∈ k× and i ∈ I;
(R4) s̃ixγ(t)s̃i

−1 = xsiγ(t) for all i ∈ I, t ∈ k and γ ∈ ∆re.
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The group functor GA : Z-alg → Gr is called the constructive Tits functor of type A. For
K a field, the group GA(K) is called the minimal Kac–Moody group of (simply connected)
type A over K.

The relation (R1) says that the torus Tk normalises each real root group Uα(k). The
relation (R2) says that the elements s̃i normalise Tk (the notation siα

∨
j refers to the dual

action of W ≤ GL(h∗) on h). The relation (R3) implies that Tk is already contained in the
subgroup generated by the real root groups. The relation (R4) says that the elements s̃i

permute (by conjugation) the real root groups according to the corresponding action of the
Weyl group W on ∆re.

We now explain (R0). Note that the product ∏
γ=iα+jβ∈]α,β[N xγ(Cαβ

ij tiuj) only makes sense if
the interval ]α, β[N is finite and contained in ∆re. A pair of roots {α, β} ∈ ∆re is prenilpo-
tent if there exist v, w ∈ W such that {vα, vβ} ⊆ ∆re+ and {wα, wβ} ⊆ ∆re−. If β ̸= ±α,
this turns out to be equivalent to requiring that ]α, β[N be finite and contained in ∆re.

Finally, we explain where the constants Cαβ
ij ∈ Z come from. Using (R4) and the definition

of a prenilpotent pair, we may assume that α, β ∈ ∆re+. We would like to be able to write
down the exponential exp(reα) = ∑

n≥0 rnen
α/n! for r ∈ k (k a ring) in a suitable space. A

natural candidate would be the enveloping algebra of n+, except we need to define a k-form
of this algebra in which the fractions 1/n! make sense, and which also allows for infinite sums.

Definition 2.6. Let UC(gA) be the universal enveloping algebra of gA, and consider its Z-
subalgebra U+

Z generated by the elements en
i /n! for i ∈ I and n ∈ N. Then U+

Z is a Z-form
of UC(n+), that is, the canonical map U+

Z ⊗Z C → UC(n+) is an isomorphism. For a ring k,
one also defines the k-form U+

k := U+
Z ⊗Z k. Let U+

k = ⊕
α∈Q+ U+

αk be the Q+-gradation of
U+

k inherited from the Q+-gradation of n+, where Q+ := ⊕
i∈I Nαi (note that the U+

αk are
finite-dimensional k-modules). Finally, set Û+

k := ∏
α∈Q+ U+

αk.

For each α ∈ ∆re+ we have en
α/n! ∈ U+

nαZ, so that for any r ∈ k the exponential

exp(reα) =
∑
n≥0

rnen
α/n! ∈ (Û+

k )×

belongs to the group of invertible elements of Û+
k .

The integers Cαβ
ij can then be computed from the group commutator [g, h] := g−1h−1gh of

the exponentials exp(teα) and exp(ueβ) inside Û+
k .

Example 2.7. Suppose that the simple roots {αi, αj} form a subsystem of type A2, that
is, the corresponding sub-matrix of A is

(
2 −1

−1 2

)
. We then have ]αi, αj[N= {αi + αj} and

eαi
= ei, eαj

= ej and eαi+αj
= [ei, ej]. Using the Serre relations (ad ei)2ej = 0 = (ad ej)2ei,

one can compute in Û+
k that

[exp(teαi
), exp(ueαj

)] = [exp(tei), exp(uej)] = exp(tu[ei, ej]) = exp(tueαi+αj
),

so that C
αiαj

11 = 1.
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Now that we have explained Definition 2.5, we make two remarks, respectively justifying why
GA(K) is the right object for A of finite type, and why it is not too small (the presentation
does not collapse) over any ring k.

Remark 2.8. If A is a Cartan matrix and K a field, then GA(K) is the Chevalley group of
(simply connected) type A.

Remark 2.9. One can extend U+
Z (see Definition 2.6) to a Z-form UZ of UC(gA), and hence

for any ring k define a k-form gAk := (gA ∩ UZ) ⊗Z k of gA. As before, we can then define the
group

Gad
A (k) := ⟨exp ad reα | r ∈ k, α ∈ ∆re⟩ ≤ Aut(gAk).

One easily checks that the relations (R0)–(R4) are satisfied in Gad
A (k) (this is how the relations

were found!), and so we have an adjoint action map
Adk : GA(k) ↠ Gad

A (k) ≤ Aut(gAk).
In particular, GA(k) is “big enough” as it admits Gad

A (k) as a quotient (and the same can be
done with the highest weight representations πλ instead of ad).

To justify why GA(K) is not too big either over fields K (i.e. we found sufficiently many
relations so that AdK has small, central kernel), we will need the theory of buildings (see the
“Prerequisites” notes).

3. Buildings

If K is a field, it readily follows from the relations (R0)–(R4) that the real root groups Uα(K)
satisfy the axioms of an RGD system (which is no surprise as RGD systems were defined to
fit this picture).

Lemma 3.1. Let K be a field. Then (GA(K), (Uα(K))α∈∆re , TK) is an RGD system of type
(W, S).

The deeper result of this section, which is purely building-theoretic, is that RGD systems
yield (twin) BN-pairs, and hence strongly transitive actions on buildings.

Corollary 3.2. Let K be a field. Set
U±

A(K) = ⟨Uα(K) | α ∈ ∆re±⟩, B± = TK ⋉ U±
A (K) and N := ⟨s̃i, TK | i ∈ I⟩.

Then (B+, N) and (B−, N) are (twinned, saturated) BN-pairs. In particular, GA(K) acts
strongly transitively on the associated buildings X± = X(GA(K), B±), and we have Bruhat
decompositions GA(K) = ∐

w∈W B±wB±.

4. Axiomatic

At this point, we could already justify why GA(K) is not too big, but before we do so, let us
also ask ourselves the question whether this group GA(K) is essentially unique, or in other
words whether any group deserving the name of “(minimal) Kac–Moody” in the sense of
Definition 2.1 is already isomorphic to GA(K).
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Such deserving candidates should be group functors G : Z-alg → Gr such that G(C) has an
adjoint action on gA with small, central kernel. In other words, they should come equipped
with group functor morphisms φi : SL2 → G (i ∈ I) and η : T → G (respectively exponenti-
ating the fundamental copies Cei +Cα∨

i +Cfi of sl2(C) and the Cartan subalgebra h′), such
that

(KMG5) there is an adjoint action AdC : G(C) → Aut(gA), with central kernel contained in
TC, such that

AdC φi( 1 r
0 1 ) = exp ad rei, AdC φi( 1 0

−r 1 ) = exp ad rfi and AdC(η(erα∨
i )) = exp ad rα∨

i

for all r ∈ C and i ∈ I.

Since we want our group to be “minimal”, it should also be generated by the fundamental
copies of SL2 and the torus (at least over fields):

(KMG1) If K is a field, G(K) is generated by the φi(SL2(K)) (i ∈ I) and η(T (K)).

Note that these two axioms are not sufficient: over C, the group G(C) is small enough thanks
to (KMG5), but for k ̸= C, we could take for G(k) the free product of the φi(SL2(k)) (i ∈ I)
and η(T (k)) without violating (KMG1) or (KMG5). To ensure that G(k) is also small enough
for k ̸= C (at least over fields), we then impose one last axiom:

(KMG4) If k → C is an injective morphism from a ring k to C, then the corresponding group
morphism G(k) → G(C) is also injective.

Definition 4.1. A triple (G, (φi)i∈I , η) as above satisfying the axioms (KMG1), (KMG4),
(KMG5) is called a Tits functor of type A.

Here is now the desired uniqueness statement. Let Ga : Z-alg → Gr : k 7→ (k, +) be the
additive group functor, and let x± : Ga → SL2 be the functors defined by

x+(r) = ( 1 r
0 1 ) and x−(r) = ( 1 0

−r 1 ).

Theorem 4.2. Let (G, (φi)i∈I , η) be a Tits functor of type A. Then there is a unique mor-
phism of group functors π : GA → G such that the diagrams

T //

η
  

GA

π
��
G

and Ga
x±αi //

x± ""

U±αi
// GA

π

��
SL2 φi

// G

are commutative. Moreover, πK : GA(K) → G(K) is an isomorphism for any field K (up to
kernel contained in TK), provided φi(SL2(K)) ̸⊆ πK(U+

A(K)) for all i ∈ I.3

Proof. Here is a sketch proof of this theorem.

(1) By (KMG5), we have the morphism πC : GA(C) → G(C) (as (KMG5) says that
essentially, G(C) is just Gad

A (C)).
3This last condition is a “non-degeneracy condition” that prevents degenerate examples.
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(2) By (KMG4), we then get the morphism πk : GA(k) → G(k) for any subring k of C.
(3) Using the functoriality of GA and G, this then yields the desired morphism πk for any

ring k.
(4) Assume now that k = K is a field. Then πK is surjective by (KMG1). Moreover, πK

maps the RGD system of GA(K) to an RGD system of G(K) of the same type4. In
particular, the kernel of

πK : GA(K) =
∐

w∈W

B+wB+ → G(K) =
∐

w∈W

πK(B+)wπK(B+)

lies in B+. Hence Ker(πK) ⊆ ⋂
g∈G gB+g−1 = TK, as desired (where the last equality

follows from the fact that the BN-pair (B+, N) is saturated). □

Remark 4.3. Note that, as shown by the above proof, we need for the uniqueness statement
over fields that the Tits functors be defined over rings and not just fields: otherwise, there
would for instance be no way to go from C to a finite field when trying to construct the
morphism π.

We also note that the terminology is a bit confusing, in that the constructive Tits functor GA

is (probably) not a Tits functor, as it (probably) does not satisfy (KMG4) in full generality
(see also Section 6.1).

As the group functor G = Gad
A from Remark 2.9 trivially satisfies the assumptions of Theo-

rem 4.25, we can now justify why GA(K) is not too big for K a field.
Corollary 4.4. Let K be a field. Then the adjoint action map AdK : GA(K) ↠ Gad

A (K) ≤
Aut(gAK) has kernel contained in TK.

Since Kac–Moody algebras of affine type are realised as (twisted) loop algebras over a finite-
dimensional simple Lie algebra, Theorem 4.2 also allows to identify the corresponding minimal
Kac–Moody groups over fields.

Corollary 4.5. Let A =
(

2 −2
−2 2

)
. Then GA(K) ∼= SL2(K[t, t−1]) ⋊K× for K a field.

5. Maximal Kac–Moody groups

Let A = (aij)i,j∈I be a GCM and K be a field. So far, we have constructed a “minimal”
Kac–Moody group GA(K) by exponentiating the real root spaces of the Kac–Moody algebra
gA, and have seen that GA(K) admits the following action maps with kernel contained in TK:

(1) GA(K) → Aut(gAK);
(2) GA(K) → Aut(LK(λ)) for λ ∈ h∗ dominant integral (where LK(λ) is a K-form of L(λ)

defined using UZ);
(3) GA(K) → Aut(X±) where (X+, X−) is the twin building of GA(K).

Going back to the beginning of Section 2, we could try a bit harder to define an “adjoint” Kac–
Moody group over C by also exponentiating the adjoint action of imaginary root spaces on gA.
4This is where the non-degeneracy condition is used.
5Technically speaking, one has to replace the group functors SL2 by the elementary subgroup functors E2.
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The problem was that if α ∈ ∆im and x ∈ gα is nonzero, then (exp ad x)y = ∑
n≥0

1
n!(ad x)ny

is in general an infinite sum for y ∈ gA. To remedy, this, we could try to complete gA to
allow such infinite sums: recall that

gA =
⊕

α∈∆∪{0}
gα = n− ⊕ h′ ⊕ n+.

If we allow for infinite sums of homogeneous elements, say x = ∑
α xα and y = ∑

β yβ with
xβ, yβ ∈ gβ, then we need to be able to define the Lie bracket [x, y], which for each γ ∈ ∆
has homogeneous component of degree γ given by

[x, y]γ = [
∑

α

xα,
∑

β

yβ]γ =
∑

α+β=γ

[xα, yβ].

But this last sum only makes sense if it is finite, and this prevents us from simultaneously
allowing infinitely many nonzero homogeneous components of positive and negative degrees.
In other words, we have to choose a direction in which to complete, positive or negative: we
set

ĝA := n− ⊕ h′ ⊕ n̂+ where n̂+ :=
∏

α∈∆+

gα.

We could then define6

Gmax
A,ad(C) := ⟨exp ad x | x ∈ gα, α ∈ ∆re ∪ ∆im+⟩ ≤ Aut(ĝA).

More conceptually, for any field K, we could define a completion of GA(K) inside each of the
spaces Aut(gAK), Aut(LK(λ)) and Aut(X+).

Definition 5.1. We define the completions of (the image of) GA(K) inside each the following
spaces, with respect to the topology of uniform convergence on bounded sets7:

(1) inside Aut(ĝAK): this is the algebraic completion of GA(K), denoted Galg
A (K);

(2) inside Aut(LK(λ)): this is the representation-theoretic completion of GA(K),
denoted Grtλ

A (K);
(3) inside Aut(X+): this is the geometric completion of GA(K), denoted Ggeo

A (K).

The metric on each of the spaces ĝAK, LK(λ) and X+ that give a sense to “bounded” sets
(and hence to the topology on their automorphism group) is as follows. For X+, the metric
is the chamber distance. Since ĝAK and LK(λ) are Z-graded vector spaces (for the gradation
induced by root height), they are also equiped with a natural metric, in which two vectors
are close if their difference is a sum of homogeneous elements of high degree.

Example 5.2. If A =
(

2 −2
−2 2

)
, then one can check8 that the completions of GA(K) ∼=

SL2(K[t, t−1]) ⋊K× coincide with SL2(K((t))) ⋊K×.

Example 5.3. If K = Fq is a finite field, then these completions are totally disconnected
locally compact (tdlc) groups, which are locally pro-p where p = char(K).

6The proper way to do it is in fact to take a closure of that group, see Definition 5.1.
7The correct definition of these three completions of GA(K) is actually a slight modification of the completions
defined here, in order to ensure that the torus TK of GA(K) injects in each of them.
8up to a difference at the level of the torus.
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As for minimal Kac–Moody groups, we would also like to define a more intrinsic completion
of GA(K), i.e. one that does not depend on an ambiant space. With the experience of
Section 2, it seems to be a good idea to look at exponentials exp(x) of homogeneous elements
x ∈ gαk with α ∈ ∆+ inside Û+

k , for each ring k.

Proposition 5.4. Let k be a ring. For each α ∈ ∆+, let Bα be a Z-basis of gαZ := gα ∩ U+
Z ,

and fix a total order on B = ⋃
α∈∆+ Bα. Set9

Uma+
A (k) :=

{ ∏
x∈B

[exp](λxx) ∈ Û+
k | λx ∈ k

}
⊆ Û+

k .

Then the following assertions hold:

(1) Uma+
A (k) is a subgroup of (Û+

k )×. In fact, the group functor Uma+
A : Z-alg → Gr is

even an affine group scheme.
(2) Each element g ∈ Uma+

A (k) has a unique expression g = ∏
x∈B[exp](λxx) with λx ∈ k.

(3) We have a group morphism U+
A(k) → Uma+

A (k) : xα(λ) 7→ exp(λeα), which is injective
if k is a field.

(4) The sets

Uma
n (k) :=

{ ∏
x∈B, ht(deg(x))≥n

[exp](λxx) ∈ Û+
k | λx ∈ k

}

for n ∈ N are normal subgroups of Uma+
A (k) and form a basis of identity neighbour-

hoods for a complete Hausdorff group topology on Uma+
A (k).

(5) If charK = 0 or charK > MA := maxi ̸=j |aij|, then U+
A(K) is dense in Uma+

A (K).

We then define an intrinsic completion of GA(k) in the spirit of Definition 2.5.

Definition 5.5. For k a ring, we define the scheme-theoretic completion Gsch
A (k) of

GA(k) via a presentation
Gsch

A (k) = GA(k) ∗ Uma+
A (k)/(obvious relations).

We then have a natural inclusion GA(K) ↪→ Gsch
A (K) and GA(K) = Gsch

A (K) as soon as
charK = 0 or charK > MA.

An analogue of the uniqueness statement for maximal Kac–Moody groups is still out of reach
in general, but we nevertheless have the following.

Theorem 5.6. (1) The indentity map on GA(K) induces continuous group morphisms10

GA(K) → Galg
A (K) → Grtλ

A (K) → Ggeo
A (K).

(2) If charK = 0 and A is symmetrisable, these are isomorphisms of topological groups.

9The elements [exp](λx) are called twisted exponentials: as we have seen, when x ∈ Bα with α ∈ ∆re+, the
divided powers xn/n! belong to U+

Z and hence the exponentials exp(λx) =
∑

n≥0 λnxn/n! make sense in Û+
k .

However, this is no longer true if α ∈ ∆im+: in that case, if k is not of characteristic zero, we have to replace
exponentials by these twisted exponentials, which are in some sense the “best possible approximations” of
exponentials living inside Û+

k .
10There is a subtlety for the second arrow when 0 < charK < MA.
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(3) If K = Fq is a finite field, these are surjective, and are isomorphisms if and only if11

Gsch
A (K) is GK-simple, in the sense that the kernel

Z ′(Gsch
A (K)) :=

⋂
g∈Gsch

A (K)
g(TKU

ma+
A (K))g−1

of the Gsch
A (K)-action on the building X+ is contained in TK.

Remark 5.7. One can also construct a (positive) maximal Kac–Moody ind-group
scheme12 Gpma

A : Z-alg → Gr such that

(1) there is a natural morphism Gsch
A → Gpma

A of group functors which is an isomorphism
of topological groups over fields.

(2) if A is a Cartan matrix, then Gpma
A is the Chevalley–Demazure affine group scheme

of type A.

6. Open questions

We collect here a few open questions pertaining to the foundations of the theory. More details
can be found in Chapter 8 and 9 of the book.

6.1. Injectivity of the Tits functor. First, as noted in Remark 4.3, it is unclear how far
the constructive Tits functor is from being a Tits functor because of the axiom (KMG4).
This leads to the following question.
Question 6.1. Given a domain k with field of fractions K, when is the natural map GA(k) →
GA(K) injective?

This question can also be stated for arbitrary rings as follows:
Question 6.2. Given a ring k, when is the natural map GA(k) → Gpma

A (k) injective?

For A of finite type, a lot of work has been done in that direction (the keywords being
“K2-theory for Chevalley groups”).

6.2. GK-simplicity. As we saw, having a uniqueness statement for maximal Kac–Moody
groups over fields K (at least when charK = 0 or charK > MA) essentially amounts to
establishing that Gsch

A (K) is GK-simple.
Question 6.3. When is Gsch

A (K) GK-simple?

Note that when 0 < charK < MA, this is in general false, but the hope is that Gsch
A (K) would

be GK-simple whenever charK > MA.

When charK = 0, the group Gsch
A (K) is GK-simple if A is symmetrisable by Theorem 5.6(2).

For A non-necessarily symmetrisable, this is equivalent to proving the Gabber–Kac simplicity
Theorem 0.2 for A (whence the terminology “Gabber–Kac simple” or “GK-simple”).
11or rather, if and only if GA(K) is GK-simple.
12that is, Gpma

A is a group functor which is an inductive limit of affine schemes.
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When K = Fq is a finite field, GK-simplicity amounts to all the completions of GA(K) being
isomorphic (see Theorem 5.6(3)).

Beyond aiming for a uniqueness statement for maximal Kac–Moody groups over fields, there
is another motivation to study the GK-simplicity of Gsch

A (K): it amounts to understand the
kernel of the map

Gsch
A (K) → Ggeo

A (K) ≤ Aut(X+),
and hence the difference between, on the one hand, the group Ggeo

A (K) which has the nice
property of being simple (see §6.4), and on the other hand the group Gsch

A (K) whose fine
algebraic structure is much more easily accessed thanks to the connection between Uma+

A (K)
and gAK. In practise, this means that the GK-simplicity question is often in the way when
trying to prove fundamental properties of maximal Kac–Moody groups (see also §6.3 and 6.5
for illustrations of this).

On the other hand, when 0 < charK < MA, all hell seems to break loose (non-GK simplicity,
non-density of GA(K) in Gsch

A (K), exceptional isomorphisms, etc), and it would be nice to
understand what exactly is going on.

Question 6.4. What is happening in small characteristic???

6.3. Linearity. A group G is linear if there exists a group morphism φ : G → GLn(F ) for
some field F , with central kernel. If A is of finite or affine type, then the groups GA(K) and
Gsch

A (K) are linear. On the other hand, as soon as A is of indefinite type, the group GA(K)
is not linear (with some exceptions for K = Fq and |I| = 2). The following question, on the
other hand, is still open:

Question 6.5. Suppose A is of indefinite type. When are the groups U+
A(K) and Uma+

A (K)
(non-)linear?

For instance, it is a long-standing open question whether Uma+
A (Fq) can be linear over a

local field F . Note that if Gsch
A (Fq) were known to be GK-simple, then this question can be

answered (by the negative, for A of indefinite type).

6.4. Simplicity. Suppose that A is indecomposable. It is known that Gsch
A (K) is (abstractly)

simple modulo its Gabber–Kac kernel for most fields K (including fields of characteristic zero
and finite fields). For the minimal Kac–Moody group GA(K), things are more complicated:
it is known that GA(Fq) is simple modulo center provided A is not of affine type (and with
additional mild assumptions on |I| and q), but the following question remains open:

Question 6.6. Suppose A is of indefinite indecomposable type. Is GA(K) simple modulo
centre when K is a field of characteristic zero?

6.5. Isomorphism problem. Another natural question is the isomorphism problem for
Kac–Moody groups. The minimal Kac–Moody group GA(K) determines A when K has
characteristic zero, but when K = Fq is a finite field, there are exceptional isomorphisms and
GA(K) turns out to carry very little information about A.

One can ask a similar question for maximal Kac–Moody groups:
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Question 6.7. Does the topological group Gsch
A (K) determine A?

As the exceptional isomorphisms between minimal Kac–Moody groups over Fq extend to
topological isomorphisms of the corresponding geometric completions, it is important to
consider the scheme-theoretic completion Gsch

A (K) rather than another completion of GA(K),
as it is the completion that seems to carry the most information about A, even over finite
fields.

Again, partial results to answer the above question can be obtained if we knew the groups
Gsch

A (K) were GK-simple.

6.6. Characterisations of Kac–Moody groups. Finally, as mentioned in Section 1, there
are no known “realisations” of Kac–Moody algebras (and hence groups) when A is of indefinite
type. It would be nice to be able to give examples of Kac–Moody groups of indefinite type,
in the same way one can give SLn(K[t, t−1]) and SLn(K((t))) as examples of Kac–Moody
groups of affine type. More importantly, we would like to be able to characterise Kac–Moody
groups as “building blocks” of various theories, thereby underlining their fundamental nature.
This raises the following question, which we then decline in three sub-questions respectively
pertaining to the theories of schemes, locally compact groups, and buildings.

Question 6.8. Can we characterise (a class of) Kac–Moody groups without reference to
Kac–Moody algebras?

It is known that the Chevalley–Demazure affine group schemes (which maximal Kac–Moody
ind-group schemes generalise by Remark 5.7(2)) are precisely the (split, semisimple) affine
group schemes over Z.

Question 6.9. Are maximal Kac–Moody ind-group schemes the (suitable adjectives) ind-
group schemes over Z?

The quotient of Gsch
A (Fq) by its Gabber–Kac kernel belongs to the class S of compactly

generated, (topologically) simple, non-discrete tdlc groups. This class S plays a fundamental
role in the general structure theory of locally compact groups (with suitable non-discreteness
assumptions). Here are two facts about S 13:

(1) To each group G in S one can attach in a canonical way a compact space ΩG on
which G acts nicely.

(2) The only known examples of groups G in S such that ΩG is trivial (i.e. reduced
to a point) are simple algebraic groups over local fields and (conjecturally) locally
compact Kac–Moody groups (namely, maximal Kac–Moody groups over finite fields).

In other words, locally compact Kac–Moody groups are the only known examples (at least
conjecturally) of groups G in S that are non-linear and with trivial ΩG.

Question 6.10. Can we characterise locally compact Kac–Moody groups within the class
S ?
13For more details, we refer to the survey paper “Non-discrete simple locally compact groups” by Pierre-
Emmanuel Caprace.

http://dx.doi.org/10.4171/176-1/15
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Finally, recall that any minimal Kac–Moody group GA(K) acts on a twin building (X+, X−).
When A is 2-spherical (i.e. aijaji ≤ 3 for all i ̸= j), the automorphism group Aut(X+, X−)
(that is, the group of automorphisms of X+ × X− preserving the twinning) is not “too big”
compared to GA(K) (or rather, it is too big if A is not 2-spherical).
Question 6.11. Assume that A is 2-spherical, with corresponding Weyl group (W, S). Can
we characterise minimal Kac–Moody groups GA(K) as automorphism groups of twin buildings
of type (W, S) (with suitable extra assumptions) ?

The answer to this last question is probably already known.14

14See the paper “Twin buildings and groups of Kac–Moody type” by Jacques Tits, as well as subsequent
work of Bernhard Mühlherr.

http://dx.doi.org/10.1017/CBO9780511629259.023
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