KAC-MOODY GEOMETRY IN KIEL
PREREQUISITES MINICOURSE ON KAC-MOODY GROUPS

TIMOTHEE MARQUIS

For this minicourse, I will assume the audience is familiar with the content of
Sections 1-3 below. The appendices contain some extra information, mainly in
the form of examples illustrating some concepts that will appear at some point in
the minicourse; a previous familiarity with those concepts would be helpful, but
is not absolutely necessary to get a global understanding of the minicourse.

1. PRELIMINARIES

1.1. Universal enveloping algebra of a Lie algebra. Let g be a Lie algebra
over a field K. Its universal enveloping algebra is the (unital, associative) K-
algebra U(g), defined as the quotient of the tensor algebra T'(g) = K& @, g°"
by the two-sided ideal generated by the relations z ® y — y ® = [z, y] for all

T,y €g.

The canonical map ¢: g — U(g) is an injective Lie algebra morphism (when con-
sidering U(g) as a Lie algebra with respect to the commutator bracket). The
algebra U(g) satisfies the following universal property: if A is a unital associa-
tive algebra with a Lie algebra morphism ¢: g — A, there is a unique algebra
morphism @: U(g) — A such that g o= .

1.2. Gradations. Let M be an abelian group (e.g., M = Z%). A Lie algebra g is
M-graded if it admits a vector space decomposition g = @,crr 9o, Where the g,
are vector subspaces such that [ga, gs5] C gayp for all o, f € M.

An associative algebra A is M-graded if it admits a vector space decomposition
A = @, Ao, where the A, are vector subspaces such that A, - Az C A, s for
all a, 5 € M.

Example 1.1. Let g = @, 9o be an M-graded Lie algebra. Then its universal
enveloping algebra U = U(g) is also M-graded: U = @, s U, where U, is spanned
by all products z; ...z, (z; € g) with >, deg(z;) = a.

An element = € g, (resp. x € A,) is called homogeneous, of degree deg(x) :=

Q.
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2. FINITE-DIMENSIONAL SIMPLE LIE ALGEBRAS

Let g be a finite-dimensional simple Lie algebra over C, such as g = sl,,(C) (the
traceless n x n matrices, with Lie bracket [A, B] := AB — BA). Thus g is a
complex vector space with a Lie bracket [-, -], which is encoded in the adjoint
representation

ad: g — End(g), ad(x)y:=|z,y] forallz,yecg
of g on itself.

The first step in trying to understand the structure of g is to prove the existence
of a Cartan subalgebra h of g, namely, of a nontrivial subalgebra h all whose
elements h are ad-diagonalisable (i.e. ad(h) € End(g) is diagonal in some suit-
able basis of g) and that is maximal for this property. The elements of h are
then simultaneously ad-diagonalisable: in other words, g admits a root space

decomposition
g= D g (1)

ach*
where
go :={z € g [h, 2] = a(h)x Yh € b}
is the a-eigenspace of ad(h). The nonzero elements o € h* such that g, # {0}
are called roots, and their set is denoted A. One shows that gy = b, so that

may be rewritten as
g= b D @ Ja- (2)
aEA

Example 2.1. Let g = sl;1(C), and write E;; for the (¢ + 1) x (¢ 4+ 1) matrix
with an entry “1” in position (i, j) and “0” elsewhere. The subalgebra
b :=spanc(; == E; — Eiy1,41 | 1 <@ <)

of all diagonal matrices in sl,, 1 (C) is a Cartan subalgebra: the ad-diagonalisability
of b follows from the computation

o, Eji] = (055 — Oire — 0ig1j + Oiprp) Eji = (g5 — e) (o ) Eji - for all 4, j, k,

where ¢;(E;;) = 0;;. The corresponding set of roots and root spaces are then
given by
A={aj=¢cj—er | 1<j#k<L+1} and  ga,, = CEjy,

yielding the root space decomposition sly41(C) = b © @, CEj.

The second step is to establish some properties of the g,’s. Here are some impor-
tant ones:

(1) dimg, =1 for all « € A.
(2) For any nonzero z, € g, (o € A), there is some z_, € g_, such that the
assignment

(01 (00 Vo ]EbH1o
xoc O O ) :L‘—Oz _1 O Y « L l‘—aaxa O _1
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defines an isomorphism Cz_, ® Ca¥ & Cx, — sly(C) of Lie algebras. The
element oV € b depends only on « and is called the coroot of a.

(3) a(BY) € Z for all o, p € A.

Example 2.2. In the notations of Example[2.1} for each j, k € {1,...,¢+1} with
j # k, we get an embedded copy of sly(C) in sl,,1(C) by considering submatrices
indexed by {j, k}. One can then take

o o Vo
Toy = Eji € 80y, Toay, = —Eij €94, and gy = Ejj — Egg.

We set a; = a; ;41 for each i € {1,..., ¢}, so that oy = Ej; — E; 11,11 is consistent
with our previous notations.

The third step is to study the root system A and to show that, together with the

integers a(5Y) (a, f € A), it completely determines g. Here are key properties of
A:

(4) A admits a root basis Il = {ay,...,q}: every @ € A can be uniquely

expressed as a linear combination of the simple roots ay,...,ap: o =
€a Ele n;a; for some n; € N and ¢, € {+1}. Roots a with e, = + (resp.
£o = —) are called positive (resp. negative) and their set is denoted A™

(resp. A7). We then have A~ = =A™,
(5) The subgroup

W= (sq: B" =2 h*: 8= —B)a|aec )
of GL(h*), called the Weyl group of g, is generated by the simple re-
flections s; := s,, (1 < i < ¢). It stabilises A C h*: in fact, A = W(II).
The pair (W, S :={s; | 1 <i < /¢}) is a (finite) Coxeter system.

The Lie algebra g is then uniquely determined, up to isomorphism, by its Cartan
matrix
A = (ai)i<ijze = (0(0)) )1<ijze-

More precisely, choosing elements e; = ,, € g4, and f; = v_,, € g_q, as above, g
is generated by the ¢ copies Cf; @ Cao @ Ce; of sl5(C) (1 <i < (), and can even
be reconstructed as the complex Lie algebra g4 on the 3¢ generators e;, f;, @’ and
with the following defining relations (1 <i,j < ¢):

v

/]

1=0, [, ej] = aije;, [af, fi] = —ai fj, [fire;] = i), (3)
(ade;)' " "ie; =0, (ad f;) i f; =0 for i # 7. (4)

Note that the relations , called the Serre relations, make sense, as the a;; € Z
in fact satisfy a;; < 0 whenever ¢ # j.

Example 2.3. In the notations of Examples2.1]and 2.2} I = {a; | 1 <i < (} is
a root basis of A, and AT = {ay;, | j < k}. The Weyl group W of g = sl (C) is
isomorphic to the Coxeter group Sym(¢+1), with the simple reflection s; acting on
{1,...,0+1} as the transposition (,7+1). The Lie algebra sl,;,(C) is generated,
as a Lie algebra, by the elements e; := E; ;1 and f; := —E;1q; (1 < i < {).
The Cartan matrix A = (a;(;))1<i j<¢ has 2’s on the main diagonal, —1’s on the
diagonals (7,7 + 1) and (i + 1,4), and 0’s elsewhere.

[
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3. KAC—MOODY ALGEBRAS

To define infinite-dimensional generalisations of the simple Lie algebras, we follow
the opposite path to the one leading to the classification of simple Lie algebras: we
start from “generalised” Cartan matrices A, then define a Lie algebra associated

to A.

More precisely, the presentation of the Lie algebra g, introduced in the previous
section still makes sense if A = (a;j)1<;j<¢ is a generalised Cartan matrix
(GCM), in the sense that, for each i,j € {1,..., ¢},

(C1) ay = 2 (to ensure that e;, f;, @’ span a copy of sly(C)),

(C2) ay; is a nonpositive integer if ¢ # j (to ensure that the Serre relations
make sense),

(C3) a;; = 0 implies aj; = 0 (because of the Serre relations (ade;)'™%ie; = 0
and (ad e;)!~%ie; = 0).

The resulting Lie algebra g4 is the Kac—Moody algebra associated to A (or
rather, its derived Lie algebra, see below).

It admits a grading by the free abelian group Q) := @;<;<,Za; on the symbols
aq, ..., obtained by setting deg(e;) := «y, deg(f;) := —a; and deg(«;’) = 0 for
each ¢ (this defines a grading of the free Lie algebra on e;, f;, o, which passes to
the quotient g4 since the relations ([3)-(4) are homogeneous):

¢
ga=b® P g. whereh =) Ceo;.
aeQ\{0} i=1

If we define the Z-linear map
c: Q= (b)) :am cq, where ¢, (o) = ayj,
the relations then imply that
6 C {2 € g4 | [ha] = ca(h)a ¥h € '},

If A is invertible, then c is injective (we may then identify a; with ¢,, and @ with
a subset of h*) and the above inclusions are equalities. If A is singular, however,
c is not injective and the above inclusion is in general proper; in other words, the
(Q-grading of g 4 is then finer than its eigenspace decomposition with respect to the
adjoint action of h’. To remedy this, we can enlarge b’ to a Cartan subalgebra
b in such a way that [TV := {a | 1 <i </{} and IT := {a; | 1 <i < ¢} are linearly
independent subsets of h and h* paired by «o;(e;) = a;j, and dimb is minimal
for these properties. Such a triple (h,II,I1V) is essentially unique and called a
realisation of A.

Example 3.1. Consider the GCM A = (32 52). Then ¢4y 10, = 0. If we enlarge
b’ to a 3-dimensional vector space h with basis {af,ay,d}, then denoting by
{u1,us,uz} C h* the corresponding dual basis, one can identify «; with 2u; — 2us
and oo with —2u; + 2us + us.
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The Lie algebra g(A) = b + ga = b © Daco\ (0} 9o Where

[h, W] =0, [he]=ai(h)e; and [h, fi] = —ai(h)f;
for all h,h' € h and all i € {1,...,¢} is called the Kac-Moody algebra associ-
ated to A, and we have g4 = [g(A), g(A)].

Kac-Moody algebras share with finite-dimensional simple Lie algebras a number
of properties:

(1) The set A :={a € h*\ {0} | go # 0} of roots is a disjoint union of the
sets AT := {a = Y% nja; € A|n; € Ny and A~ = —A™ of positive and
negative roots. In particular, we have a triangular decomposition

g(A)=n"@hdn" (direct sum of vector spaces)

where n* := @, ca+ 0 is the subalgebra of g(A) generated by the e;/ f;.

(2) The Weyl group W := (S) C GL(h*) of g(A), generated by the set
S = {si: a— a—ala))a; | 1 <i <} of simple reflections, stabilises
A. The pair (W, S) is a Coxeter system.

Example 3.2. If A = (_21 _21>, then g(A) = sl3(C).

Example 3.3. If A = (_22 _22>, then ga = sl,(C[t,t7!]) xCK is a one-dimensional
(nontrivial) central extension of sly(C[t, #7]), with
er=(86), fi=(%0), aof =( %)
and
ea=1(%9%), fo= (8'561), ay = —af + K.
The associated Weyl group is isomorphic to the infinite dihedral group D..
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APPENDIX A. COXETER GROUPS AND COMPLEXES

A Coxeter group is a group W generated by a subset S of involutions such that
W admits a presentation

W=(s€S|s*=1=(st)™ for all s,t € S with s # t)
for some my € Nsy U {oo} (where the relation 1 = (st)™* is omitted in case

mg = 00). The pair (W, S) is a Coxeter system.

Example A.1. The infinite dihedral group is the Coxeter group W = D
with presentation W = (s,t | s> = t* = 1). It is the group of simplicial isometries
of the simplicial line generated by the orthogonal reflections s,t with respect to
the endpoints of a fixed edge Cj.

Example A.2. Consider the Coxeter group
W= (s,t,u|s*=1>=u>=(st)" = (su)™ = (tu)™ = 1)
for some m € N>y U {o0}.

If m = 3, then W is the group of simplicial isometries of the tesselation of the
Euclidean plane by congruent equilateral triangles, generated by the orthogonal
reflections s, t, u on the sides of a fixed triangle Cj.

If m = 4, then W is the group of simplicial isometries of the tesselation of the
hyperbolic plane by congruent equilateral triangles with interior angles 7 /4, gen-
erated by the orthogonal reflections s, ¢, u on the sides of a fixed triangle Cj.

The simplicial complex ¥ = (W, S) induced by the tesselations in the above
examples is called the Coxeter complex of W. The hyperplanes of the tesse-
lation are called walls and are in bijection with the set of reflections S :=
{wsw™ | w e W, s e S} of W. Each wall m determines two half-spaces m™ and
m~, where m™ is the half-space containing Cjy. The maximal simplices are called
chambers. The function dgy, assigning to a pair of chambers the number of walls
that separate them is a metric, called the chamber distance.

Example A.3. Let W be the Weyl group of a Kac-Moody algebra g(A) = h @
@Doca 9o, With set of simple reflections S and set of simple roots II C h*. Set
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A" := W(II) € A. Then there is a W-equivariant bijection
A" 5 {half-spaces of (W, S)}

mapping each simple root a; to the half-space m; where m; is the wall fixed by
s;. Under this bijection, the positive roots in A™ correspond to the half-spaces
containing Cj.
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APPENDIX B. BUILDINGS AND BN-PAIRS

A building is a simplicial complex X obtained by glueing copies of a given Coxeter
complex (W, S) (the type of the building) in such a way that the chamber
distances on the various Coxeter complexes can be patched together to get a
global metric on X.

Example B.1. Buildings of type D, are precisely the trees without leaves (i.e.
without endpoints).

A BN-pair for a group G is a pair of subgroups (B, N) of GG satisfying certain
axioms. Whenever a group G has a BN-pair (B, N), one can construct a building
X = X(G, B) on which G acts strongly transitively by simplicial isometries, with
B the stabiliser of a chamber Cy and N the stabiliser of one of the Coxeter
complexes >y C X containing Cy. The associated Coxeter group W is isomorphic
to N/T where T' := BN N is the pointwise fixer in G of ¥ (at least when the
BN-pair is saturated). Finally, the group G admits the following decomposition
(called Bruhat decomposition) into double B-cosets:

G = H BwB,
weWw

where BwB := BnB for any n € N mapped to w under the quotient map
N —- N/T=W.

Example B.2. Consider the group G = SLy(K[t,t7']). Let N be the subgroup
of monomial matrices in G (i.e. those with exactly one nonzero entry in each
row and each column). Let BT denote the inverse image under the canonical
projection SLy(K[t]) — SLo(K) of the group of upper triangular matrices in
SLs(K). Similarly, let B~ denote the inverse image under the canonical projection
SLy(K[t7!]) — SLa(K) of the group of lower triangular matrices in SLy(K).

Then (B, N) and (B~, N) are BN-pairs for G. If B € {B*}, then the buildings
Xt = X(G,B*") and X~ = X(G,B7) are of type W = N/T = D,. More
precisely, X is a regular tree, in which each edge is adjacent to exactly |K| other
edges. Here is for instance X* for G = SLy(Fy[t, t7]):

Cy

Yo
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APPENDIX C. CHEVALLEY GROUPS

To each finite-dimensional simple Lie algebra g over C with Cartan matrix A and
each field K, one can associate a group & 4(K) called the (simply connected)
Chevalley group of type A: for instance, if g = sl;1(C), then B4(K) =
SLgy1(K). This group can be defined by a presentation, as follows. We keep
the notations from Section 2

Consider first the dual action of W on b, defined by
si(h) =h—a;(h)a) forallhehandiel:={1,... ¢}

)

For each 7 € I, define the automorphism
s; :=exp(ade;) exp(ad f;) exp(ad e;) € Aut(g)
of g, where exp(adz)y := 3,5 %(ad x)"y for x € {e;, f;} and y € g.

Example C.1. Let g = sly(C). Then exp(e;) = (1) and exp(f;) = (*

0
1 )a S0
that exp(e;) exp(fi)exp(er) = (% §). Hence s} is the conjugation by (% ¢)

Lemma C.2. Leti € I. Then:

(1) sily = s; € GL(b).

(2) 8580 = @s;a for all o € A.

(3) There is a surjective group morphism v: W* — W : s!
W* = (sf | iel)C Aut(g).

(4) For each w* € W* and i € I, the couple E, = {Fw*e;} depends only on
a=v(w)a € A.

— s;, where

For each oo € A, we choose an element e, € E, so that e,, = e; and e_,, = f; for
cach i € I, and [e,,e_o] = —a” for all o € A.

Example C.3. Let g = sl3(C). Then A = {+ay, +as, £(a; + az)} and we can

choose €4, 40, = E13 and e_n, —o, = —E31.

Let U = U(g) be the universal enveloping algebra of g. For o, 8 € A with o # —f3,
we define the (finite) sets

[, By := (Na+NB)NA and o, Bn:=[o, B]n \ {o, B}

Theorem C.4. Let o, € A with o # —f. Fiz an arbitrary order on |a, fBn.
Then there exist integers C’iajﬂ depending only on «, 5 and the chosen order, such
that in the ring U[t,u] of formal power series in two indeterminates t,u and with
coefficients in U we have the group commutator formula

[exp(tea), exp(ueg)] = Hexp(tiuijjﬁew),
B!

where v = ia + j5 runs through |a, B[y in the prescribed order.
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Theorem C.5. Suppose g % sl5(C). Let K be a field. For every root o and every
t € K, we introduce the symbol x,(t). Let & 4(K) be the abstract group defined by
the generators x,(t) and the relations

xa(t) : xa(u) =x4(t+u) (t,ue€K),
[z4(t wa C’aﬁtluj where v = ia + jf runs through o, By (o # £5),

ho(t) - ha(u) = ha(tu) (t,u € K*),

where the integers C’%B are as in Theorem and where ho(t) :== nq(t) - no(—1)
with na(t) == 14(t) - 2_o(t7Y) - 2o (t). Finally, let Z denote the center of & A(K).
Then & 4(K)/Z is the simple quotient of the Chevalley group of type A over K
(up to five exceptions for K = Fy or F3).

Exercise C.6. Let gx = sl,41(K) for K a field. For each ¢ € I, we identify as
before the subalgebra generated by e;, f;, o with sly(K) viae; = (34), fi = (5% 9)
and o = (§ % ), embedded in position {7, l+1} We define the followmg elements

of SLy(K): for r € Kand i€ I, we set

wi(r) = (é 1") and  2_i(r) = <_17« ?)

and for » € K* (an invertible element) we set

aY r 0 - - 0 r
réo= <0 7"1> and  5;(r) := z;(r)z_i(r HDa(r) = <—r1 0).

(1) Show that if K C C, then for all r € K, we have exp(re;) = z;(r),
exp(rfi) = o4(r) and exp(ray) = (¢7)°!.

(2) Show that 5;(1) = exp(e;) exp(f;) exp(e;) and that " = 5;(1)~'5,(r~) for
r e K.

(3) Note that, for r € K* and a = «; a simple root, the elements x,(7), ny/(r)
and hg(r) in Theorem respectively correspond to the elements x;(r),
5i(r) and 7% (with respect to the corresponding embedding of SLy(K) in
& 4(K) = SLy41(K), in position {i,7 + 1}).

Exercise C.7. Let g = sl3(C), with the fundamental copies Cf; ® Ca; @ Ce; of
slo(C) (i = 1,2) respectively embedded in the upper left and lower right corners.
Identify elements x,(t), ho(t) and n,(t) (for @« € A = {£ay, £ag, £(a1 + a2)}
and ¢ € K*) of $4(K) = SL3(K) as in Theorem [C.5 and compute the integers
cor.

%)
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