
KAC–MOODY GEOMETRY IN KIEL
PREREQUISITES MINICOURSE ON KAC–MOODY GROUPS

TIMOTHÉE MARQUIS

For this minicourse, I will assume the audience is familiar with the content of
Sections 1–3 below. The appendices contain some extra information, mainly in
the form of examples illustrating some concepts that will appear at some point in
the minicourse; a previous familiarity with those concepts would be helpful, but
is not absolutely necessary to get a global understanding of the minicourse.

1. Preliminaries

1.1. Universal enveloping algebra of a Lie algebra. Let g be a Lie algebra
over a field K. Its universal enveloping algebra is the (unital, associative) K-
algebra U(g), defined as the quotient of the tensor algebra T (g) = K ⊕⊕

n≥1 g
⊗n

by the two-sided ideal generated by the relations x ⊗ y − y ⊗ x = [x, y] for all
x, y ∈ g.

The canonical map ι : g → U(g) is an injective Lie algebra morphism (when con-
sidering U(g) as a Lie algebra with respect to the commutator bracket). The
algebra U(g) satisfies the following universal property: if A is a unital associa-
tive algebra with a Lie algebra morphism φ : g → A, there is a unique algebra
morphism φ̃ : U(g) → A such that φ̃ ◦ ι = φ.

1.2. Gradations. Let M be an abelian group (e.g., M ∼= Zℓ). A Lie algebra g is
M-graded if it admits a vector space decomposition g = ⊕

α∈M gα, where the gα

are vector subspaces such that [gα, gβ] ⊆ gα+β for all α, β ∈ M .

An associative algebra A is M-graded if it admits a vector space decomposition
A = ⊕

α∈M Aα, where the Aα are vector subspaces such that Aα · Aβ ⊆ Aα+β for
all α, β ∈ M .

Example 1.1. Let g = ⊕
α∈M gα be an M -graded Lie algebra. Then its universal

enveloping algebra U = U(g) is also M -graded: U = ⊕
α∈M Uα where Uα is spanned

by all products x1 . . . xn (xi ∈ g) with ∑n
i=1 deg(xi) = α.

An element x ∈ gα (resp. x ∈ Aα) is called homogeneous, of degree deg(x) :=
α.
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2. Finite-dimensional simple Lie algebras

Let g be a finite-dimensional simple Lie algebra over C, such as g = sln(C) (the
traceless n × n matrices, with Lie bracket [A, B] := AB − BA). Thus g is a
complex vector space with a Lie bracket [·, ·], which is encoded in the adjoint
representation

ad: g → End(g), ad(x)y := [x, y] for all x, y ∈ g

of g on itself.

The first step in trying to understand the structure of g is to prove the existence
of a Cartan subalgebra h of g, namely, of a nontrivial subalgebra h all whose
elements h are ad-diagonalisable (i.e. ad(h) ∈ End(g) is diagonal in some suit-
able basis of g) and that is maximal for this property. The elements of h are
then simultaneously ad-diagonalisable: in other words, g admits a root space
decomposition

g =
⊕

α∈h∗
gα, (1)

where
gα := {x ∈ g | [h, x] = α(h)x ∀h ∈ h}

is the α-eigenspace of ad(h). The nonzero elements α ∈ h∗ such that gα ̸= {0}
are called roots, and their set is denoted ∆. One shows that g0 = h, so that (1)
may be rewritten as

g = h ⊕
⊕
α∈∆

gα. (2)

Example 2.1. Let g = slℓ+1(C), and write Eij for the (ℓ + 1) × (ℓ + 1) matrix
with an entry “1” in position (i, j) and “0” elsewhere. The subalgebra

h := spanC⟨α∨
i := Eii − Ei+1,i+1 | 1 ≤ i ≤ ℓ⟩

of all diagonal matrices in slℓ+1(C) is a Cartan subalgebra: the ad-diagonalisability
of h follows from the computation

[α∨
i , Ejk] = (δij − δik − δi+1,j + δi+1,k)Ejk = (εj − εk)(α∨

i )Ejk for all i, j, k,

where εj(Eii) := δij. The corresponding set of roots and root spaces are then
given by

∆ = {αjk := εj − εk | 1 ≤ j ̸= k ≤ ℓ + 1} and gαjk
= CEjk,

yielding the root space decomposition slℓ+1(C) = h ⊕⊕
j ̸=k CEjk.

The second step is to establish some properties of the gα’s. Here are some impor-
tant ones:

(1) dim gα = 1 for all α ∈ ∆.
(2) For any nonzero xα ∈ gα (α ∈ ∆), there is some x−α ∈ g−α such that the

assignment

xα 7→
(

0 1
0 0

)
, x−α 7→

(
0 0

−1 0

)
, α∨ := [x−α, xα] ∈ h 7→

(
1 0
0 −1

)
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defines an isomorphism Cx−α ⊕Cα∨ ⊕Cxα → sl2(C) of Lie algebras. The
element α∨ ∈ h depends only on α and is called the coroot of α.

(3) α(β∨) ∈ Z for all α, β ∈ ∆.

Example 2.2. In the notations of Example 2.1: for each j, k ∈ {1, . . . , ℓ+1} with
j ̸= k, we get an embedded copy of sl2(C) in slℓ+1(C) by considering submatrices
indexed by {j, k}. One can then take

xαjk
:= Ejk ∈ gαjk

, x−αjk
:= −Ekj ∈ g−αjk

and α∨
jk := Ejj − Ekk.

We set αi := αi,i+1 for each i ∈ {1, . . . , ℓ}, so that α∨
i = Eii −Ei+1,i+1 is consistent

with our previous notations.

The third step is to study the root system ∆ and to show that, together with the
integers α(β∨) (α, β ∈ ∆), it completely determines g. Here are key properties of
∆:

(4) ∆ admits a root basis Π = {α1, . . . , αℓ}: every α ∈ ∆ can be uniquely
expressed as a linear combination of the simple roots α1, . . . , αℓ: α =
εα
∑ℓ

i=1 niαi for some ni ∈ N and εα ∈ {±1}. Roots α with εα = + (resp.
εα = −) are called positive (resp. negative) and their set is denoted ∆+

(resp. ∆−). We then have ∆− = −∆+.
(5) The subgroup

W := ⟨sα : h∗ → h∗ : β 7→ β − β(α∨)α | α ∈ ∆⟩
of GL(h∗), called the Weyl group of g, is generated by the simple re-
flections si := sαi

(1 ≤ i ≤ ℓ). It stabilises ∆ ⊆ h∗: in fact, ∆ = W (Π).
The pair (W, S := {si | 1 ≤ i ≤ ℓ}) is a (finite) Coxeter system.

The Lie algebra g is then uniquely determined, up to isomorphism, by its Cartan
matrix

A = (aij)1≤i,j≤ℓ := (αj(α∨
i ))1≤i,j≤ℓ.

More precisely, choosing elements ei = xαi
∈ gαi

and fi = x−αi
∈ g−αi

as above, g
is generated by the ℓ copies Cfi ⊕ Cα∨

i ⊕ Cei of sl2(C) (1 ≤ i ≤ ℓ), and can even
be reconstructed as the complex Lie algebra gA on the 3ℓ generators ei, fi, α∨

i and
with the following defining relations (1 ≤ i, j ≤ ℓ):

[α∨
i , α∨

j ] = 0, [α∨
i , ej] = aijej, [α∨

i , fj] = −aijfj, [fi, ej] = δijα
∨
i , (3)

(ad ei)1−aij ej = 0, (ad fi)1−aij fj = 0 for i ̸= j. (4)
Note that the relations (4), called the Serre relations, make sense, as the aij ∈ Z
in fact satisfy aij ≤ 0 whenever i ̸= j.

Example 2.3. In the notations of Examples 2.1 and 2.2: Π = {αi | 1 ≤ i ≤ ℓ} is
a root basis of ∆, and ∆+ = {αjk | j < k}. The Weyl group W of g = slℓ+1(C) is
isomorphic to the Coxeter group Sym(ℓ+1), with the simple reflection si acting on
{1, . . . , ℓ+1} as the transposition (i, i+1). The Lie algebra slℓ+1(C) is generated,
as a Lie algebra, by the elements ei := Ei,i+1 and fi := −Ei+1,i (1 ≤ i ≤ ℓ).
The Cartan matrix A = (αj(α∨

i ))1≤i,j≤ℓ has 2’s on the main diagonal, −1’s on the
diagonals (i, i + 1) and (i + 1, i), and 0’s elsewhere.
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3. Kac–Moody algebras

To define infinite-dimensional generalisations of the simple Lie algebras, we follow
the opposite path to the one leading to the classification of simple Lie algebras: we
start from “generalised” Cartan matrices A, then define a Lie algebra associated
to A.

More precisely, the presentation of the Lie algebra gA introduced in the previous
section still makes sense if A = (aij)1≤i,j≤ℓ is a generalised Cartan matrix
(GCM), in the sense that, for each i, j ∈ {1, . . . , ℓ},

(C1) aii = 2 (to ensure that ei, fi, α∨
i span a copy of sl2(C)),

(C2) aij is a nonpositive integer if i ̸= j (to ensure that the Serre relations (4)
make sense),

(C3) aij = 0 implies aji = 0 (because of the Serre relations (ad ei)1−aij ej = 0
and (ad ej)1−ajiei = 0).

The resulting Lie algebra gA is the Kac–Moody algebra associated to A (or
rather, its derived Lie algebra, see below).

It admits a grading by the free abelian group Q := ⊕
1≤i≤ℓ Zαi on the symbols

α1, . . . , αℓ, obtained by setting deg(ei) := αi, deg(fi) := −αi and deg(α∨
i ) = 0 for

each i (this defines a grading of the free Lie algebra on ei, fi, α∨
i , which passes to

the quotient gA since the relations (3)–(4) are homogeneous):

gA = h′ ⊕
⊕

α∈Q\{0}
gα where h′ :=

ℓ∑
i=1

Cα∨
i .

If we define the Z-linear map

c : Q → (h′)∗ : α 7→ cα, where cαj
(α∨

i ) = aij,

the relations (3) then imply that

gα ⊆ {x ∈ gA | [h, x] = cα(h)x ∀h ∈ h′}.

If A is invertible, then c is injective (we may then identify αi with cαi
and Q with

a subset of h∗) and the above inclusions are equalities. If A is singular, however,
c is not injective and the above inclusion is in general proper; in other words, the
Q-grading of gA is then finer than its eigenspace decomposition with respect to the
adjoint action of h′. To remedy this, we can enlarge h′ to a Cartan subalgebra
h in such a way that Π∨ := {α∨

i | 1 ≤ i ≤ ℓ} and Π := {αi | 1 ≤ i ≤ ℓ} are linearly
independent subsets of h and h∗ paired by αj(α∨

i ) = aij, and dim h is minimal
for these properties. Such a triple (h, Π, Π∨) is essentially unique and called a
realisation of A.

Example 3.1. Consider the GCM A =
(

2 −2
−2 2

)
. Then cα1+α2 = 0. If we enlarge

h′ to a 3-dimensional vector space h with basis {α∨
1 , α∨

2 , d}, then denoting by
{u1, u2, u3} ⊆ h∗ the corresponding dual basis, one can identify α1 with 2u1 − 2u2
and α2 with −2u1 + 2u2 + u3.
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The Lie algebra g(A) = h + gA = h ⊕⊕
α∈Q\{0} gα where

[h, h′] = 0, [h, ei] = αi(h)ei and [h, fi] = −αi(h)fi

for all h, h′ ∈ h and all i ∈ {1, . . . , ℓ} is called the Kac–Moody algebra associ-
ated to A, and we have gA = [g(A), g(A)].

Kac–Moody algebras share with finite-dimensional simple Lie algebras a number
of properties:

(1) The set ∆ := {α ∈ h∗ \ {0} | gα ̸= 0} of roots is a disjoint union of the
sets ∆+ := {α = ∑ℓ

i=1 niαi ∈ ∆ | ni ∈ N} and ∆− = −∆+ of positive and
negative roots. In particular, we have a triangular decomposition

g(A) = n− ⊕ h ⊕ n+ (direct sum of vector spaces)
where n± := ⊕

α∈∆± gα is the subalgebra of g(A) generated by the ei/fi.
(2) The Weyl group W := ⟨S⟩ ⊆ GL(h∗) of g(A), generated by the set

S := {si : α 7→ α − α(α∨
i )αi | 1 ≤ i ≤ ℓ} of simple reflections, stabilises

∆. The pair (W, S) is a Coxeter system.

Example 3.2. If A =
(

2 −1
−1 2

)
, then g(A) ∼= sl3(C).

Example 3.3. If A =
(

2 −2
−2 2

)
, then gA

∼= sl2(C[t, t−1])⋊CK is a one-dimensional
(nontrivial) central extension of sl2(C[t, t−1]), with

e1 = ( 0 1
0 0 ), f1 = ( 0 0

−1 0 ), α∨
1 = ( 1 0

0 −1 )
and

e2 = ( 0 0
−t 0 ), f2 =

(
0 t−1
0 0

)
, α∨

2 = −α∨
1 + K.

The associated Weyl group is isomorphic to the infinite dihedral group D∞.
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Appendix A. Coxeter groups and complexes

A Coxeter group is a group W generated by a subset S of involutions such that
W admits a presentation

W = ⟨s ∈ S | s2 = 1 = (st)mst for all s, t ∈ S with s ̸= t⟩

for some mst ∈ N≥2 ∪ {∞} (where the relation 1 = (st)mst is omitted in case
mst = ∞). The pair (W, S) is a Coxeter system.

Example A.1. The infinite dihedral group is the Coxeter group W = D∞
with presentation W = ⟨s, t | s2 = t2 = 1⟩. It is the group of simplicial isometries
of the simplicial line generated by the orthogonal reflections s, t with respect to
the endpoints of a fixed edge C0.

Example A.2. Consider the Coxeter group

W = ⟨s, t, u | s2 = t2 = u2 = (st)m = (su)m = (tu)m = 1⟩

for some m ∈ N≥2 ∪ {∞}.

If m = 3, then W is the group of simplicial isometries of the tesselation of the
Euclidean plane by congruent equilateral triangles, generated by the orthogonal
reflections s, t, u on the sides of a fixed triangle C0.

If m = 4, then W is the group of simplicial isometries of the tesselation of the
hyperbolic plane by congruent equilateral triangles with interior angles π/4, gen-
erated by the orthogonal reflections s, t, u on the sides of a fixed triangle C0.

t

u s
C0

m = 3 m = 4

The simplicial complex Σ = Σ(W, S) induced by the tesselations in the above
examples is called the Coxeter complex of W . The hyperplanes of the tesse-
lation are called walls and are in bijection with the set of reflections SW :=
{wsw−1 | w ∈ W, s ∈ S} of W . Each wall m determines two half-spaces m+ and
m−, where m+ is the half-space containing C0. The maximal simplices are called
chambers. The function dCh assigning to a pair of chambers the number of walls
that separate them is a metric, called the chamber distance.

Example A.3. Let W be the Weyl group of a Kac–Moody algebra g(A) = h ⊕⊕
α∈∆ gα, with set of simple reflections S and set of simple roots Π ⊆ h∗. Set
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∆re := W (Π) ⊆ ∆. Then there is a W -equivariant bijection
∆re ∼→ {half-spaces of Σ(W, S)}

mapping each simple root αi to the half-space m+
i where mi is the wall fixed by

si. Under this bijection, the positive roots in ∆re correspond to the half-spaces
containing C0.
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Appendix B. Buildings and BN-pairs

A building is a simplicial complex X obtained by glueing copies of a given Coxeter
complex Σ(W, S) (the type of the building) in such a way that the chamber
distances on the various Coxeter complexes can be patched together to get a
global metric on X.

Example B.1. Buildings of type D∞ are precisely the trees without leaves (i.e.
without endpoints).

A BN-pair for a group G is a pair of subgroups (B, N) of G satisfying certain
axioms. Whenever a group G has a BN-pair (B, N), one can construct a building
X = X(G, B) on which G acts strongly transitively by simplicial isometries, with
B the stabiliser of a chamber C0 and N the stabiliser of one of the Coxeter
complexes Σ0 ⊆ X containing C0. The associated Coxeter group W is isomorphic
to N/T where T := B ∩ N is the pointwise fixer in G of Σ0 (at least when the
BN-pair is saturated). Finally, the group G admits the following decomposition
(called Bruhat decomposition) into double B-cosets:

G =
∐

w∈W

BwB,

where BwB := BnB for any n ∈ N mapped to w under the quotient map
N ↠ N/T = W .

Example B.2. Consider the group G = SL2(K[t, t−1]). Let N be the subgroup
of monomial matrices in G (i.e. those with exactly one nonzero entry in each
row and each column). Let B+ denote the inverse image under the canonical
projection SL2(K[t]) ↠ SL2(K) of the group of upper triangular matrices in
SL2(K). Similarly, let B− denote the inverse image under the canonical projection
SL2(K[t−1]) ↠ SL2(K) of the group of lower triangular matrices in SL2(K).

Then (B+, N) and (B−, N) are BN-pairs for G. If B ∈ {B±}, then the buildings
X+ = X(G, B+) and X− = X(G, B−) are of type W ∼= N/T ∼= D∞. More
precisely, X± is a regular tree, in which each edge is adjacent to exactly |K| other
edges. Here is for instance X± for G = SL2(F2[t, t−1]):

Σ0

C0

1
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Appendix C. Chevalley groups

To each finite-dimensional simple Lie algebra g over C with Cartan matrix A and
each field K, one can associate a group GA(K) called the (simply connected)
Chevalley group of type A: for instance, if g = slℓ+1(C), then GA(K) =
SLℓ+1(K). This group can be defined by a presentation, as follows. We keep
the notations from Section 2.

Consider first the dual action of W on h, defined by

si(h) = h − αi(h)α∨
i for all h ∈ h and i ∈ I := {1, . . . , ℓ}.

For each i ∈ I, define the automorphism

s∗
i := exp(ad ei) exp(ad fi) exp(ad ei) ∈ Aut(g)

of g, where exp(ad x)y := ∑
n≥0

1
n!(ad x)ny for x ∈ {ei, fi} and y ∈ g.

Example C.1. Let g = sl2(C). Then exp(e1) = ( 1 1
0 1 ) and exp(f1) = ( 1 0

−1 1 ), so
that exp(e1) exp(f1) exp(e1) = ( 0 1

−1 0 ). Hence s∗
1 is the conjugation by ( 0 1

−1 0 ).

Lemma C.2. Let i ∈ I. Then:

(1) s∗
i |h = si ∈ GL(h).

(2) s∗
i gα = gsiα for all α ∈ ∆.

(3) There is a surjective group morphism ν : W ∗ → W : s∗
i 7→ si, where

W ∗ := ⟨s∗
i | i ∈ I⟩ ⊆ Aut(g).

(4) For each w∗ ∈ W ∗ and i ∈ I, the couple Eα = {±w∗ei} depends only on
α = ν(w∗)αi ∈ ∆.

For each α ∈ ∆, we choose an element eα ∈ Eα so that eαi
= ei and e−αi

= fi for
each i ∈ I, and [eα, e−α] = −α∨ for all α ∈ ∆.

Example C.3. Let g = sl3(C). Then ∆ = {±α1, ±α2, ±(α1 + α2)} and we can
choose eα1+α2 = E13 and e−α1−α2 = −E31.

Let U = U(g) be the universal enveloping algebra of g. For α, β ∈ ∆ with α ̸= −β,
we define the (finite) sets

[α, β]N := (Nα + Nβ) ∩ ∆ and ]α, β[N:= [α, β]N \ {α, β}.

Theorem C.4. Let α, β ∈ ∆ with α ̸= −β. Fix an arbitrary order on ]α, β[N.
Then there exist integers Cαβ

ij depending only on α, β and the chosen order, such
that in the ring U [[t, u]] of formal power series in two indeterminates t, u and with
coefficients in U we have the group commutator formula

[exp(teα), exp(ueβ)] =
∏
γ

exp(tiujCαβ
ij eγ),

where γ = iα + jβ runs through ]α, β[N in the prescribed order.
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Theorem C.5. Suppose g ̸∼= sl2(C). Let K be a field. For every root α and every
t ∈ K, we introduce the symbol xα(t). Let GA(K) be the abstract group defined by
the generators xα(t) and the relations
xα(t) · xα(u) = xα(t + u) (t, u ∈ K),
[xα(t), xβ(u)] =

∏
γ

xγ(Cαβ
ij tiuj) where γ = iα + jβ runs through ]α, β[N (α ̸= ±β),

hα(t) · hα(u) = hα(tu) (t, u ∈ K×),

where the integers Cαβ
ij are as in Theorem C.4, and where hα(t) := nα(t) · nα(−1)

with nα(t) := xα(t) · x−α(t−1) · xα(t). Finally, let Z denote the center of GA(K).
Then GA(K)/Z is the simple quotient of the Chevalley group of type A over K
(up to five exceptions for K = F2 or F3).

Exercise C.6. Let gK = slℓ+1(K) for K a field. For each i ∈ I, we identify as
before the subalgebra generated by ei, fi, α∨

i with sl2(K) via ei = ( 0 1
0 0 ), fi = ( 0 0

−1 0 )
and α∨

i = ( 1 0
0 −1 ), embedded in position {i, i+1}. We define the following elements

of SL2(K): for r ∈ K and i ∈ I, we set

xi(r) :=
(

1 r
0 1

)
and x−i(r) :=

(
1 0

−r 1

)
,

and for r ∈ K× (an invertible element) we set

rα∨
i :=

(
r 0
0 r−1

)
and s̃i(r) := xi(r)x−i(r−1)xi(r) =

(
0 r

−r−1 0

)
.

(1) Show that if K ⊆ C, then for all r ∈ K, we have exp(rei) = xi(r),
exp(rfi) = x−i(r) and exp(rα∨

i ) = (er)α∨
i .

(2) Show that s̃i(1) = exp(ei) exp(fi) exp(ei) and that rα∨
i = s̃i(1)−1s̃i(r−1) for

r ∈ K×.
(3) Note that, for r ∈ K× and α = αi a simple root, the elements xα(r), nα(r)

and hα(r) in Theorem C.5 respectively correspond to the elements xi(r),
s̃i(r) and rα∨

i (with respect to the corresponding embedding of SL2(K) in
GA(K) = SLℓ+1(K), in position {i, i + 1}).

Exercise C.7. Let g = sl3(C), with the fundamental copies Cfi ⊕ Cα∨
i ⊕ Cei of

sl2(C) (i = 1, 2) respectively embedded in the upper left and lower right corners.
Identify elements xα(t), hα(t) and nα(t) (for α ∈ ∆ = {±α1, ±α2, ±(α1 + α2)}
and t ∈ K×) of GA(K) = SL3(K) as in Theorem C.5, and compute the integers
Cαβ

ij .
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