STRUCTURE OF CONJUGACY CLASSES IN COXETER GROUPS

TIMOTHÉE MARQUIS*

Abstract

This paper gives a definitive solution to the problem of describing conjugacy classes in arbitrary Coxeter groups in terms of cyclic shifts.

Let (W, S) be a Coxeter system. A cyclic shift of an element $w \in W$ is a conjugate of w of the form $s w s$ for some simple reflection $s \in S$ such that $\ell_{S}(s w s) \leq \ell_{S}(w)$. The cyclic shift class of w is then the set of elements of W that can be obtained from w by a sequence of cyclic shifts. Given a subset $K \subseteq S$ such that $W_{K}:=\langle K\rangle \subseteq W$ is finite, we also call two elements $w, w^{\prime} \in W$ K-conjugate if w, w^{\prime} normalise W_{K} and $w^{\prime}=w_{0}(K) w w_{0}(K)$, where $w_{0}(K)$ is the longest element of W_{K}.

Let \mathcal{O} be a conjugacy class in W, and let $\mathcal{O}^{\text {min }}$ be the set of elements of minimal length in \mathcal{O}. Then $\mathcal{O}^{\text {min }}$ is the disjoint union of finitely many cyclic shift classes C_{1}, \ldots, C_{k}. We define the structural conjugation graph associated to \mathcal{O} to be the graph with vertices C_{1}, \ldots, C_{k}, and with an edge between distinct vertices C_{i}, C_{j} if they contain representatives $u \in C_{i}$ and $v \in C_{j}$ such that u, v are K-conjugate for some $K \subseteq S$.

In this paper, we compute explicitely the structural conjugation graph associated to any (possibly twisted) conjugacy class in W, and show in particular that it is connected (that is, any two conjugate elements of W differ only by a sequence of cyclic shifts and K-conjugations). Along the way, we obtain several results of independent interest, such as a description of the centraliser of an infinite order element $w \in W$, as well as the existence of natural decompositions of w as a product of a "torsion part" and of a "straight part", with useful properties.

1. Introduction

1.1. Historical background. Let (W, S) be a Coxeter system. A classical result of Tits ([Tit69]) and, independently, Matsumoto ([Mat64]), asserts that any two words on the alphabet S representing the same group element only differ by a sequence of simple "elementary operations", namely, braid relations and sscancellations (i.e. replacing a subword (s, s) with $s \in S$ by the empty word). This provides a particularly elegant solution to the word problem in Coxeter groups.

From the moment D. Krammer proved, in 1994, that the conjugay problem in Coxeter groups was solvable as well ([Kra09]), the following question came very naturally (see e.g. [Coh94, §2.17]): is there a way to describe the set of words representing conjugates of a given element $w \in W$ in terms of simple "elementary operations", in the same way the set of words representing w can be described in terms of braid relations and $s s$-cancellations ?

[^0]To this end, one first has to identify such additional "elementary operations". Since the difference between a word and the group element it represents is fully understood thanks to Matsumoto-Tits' Theorem, it will be simpler to define these operations directly at the level of the group elements, rather than the words (i.e. making the operations of braid relations and $s s$-cancellations implicit).

The most natural elementary operation one might consider for the conjugacy problem is certainly that of cyclic shift: an element $w^{\prime} \in W$ is called a cyclic shift of an element $w \in W$ with $w \neq w^{\prime}$ if there exists a reduced expression $w=s_{1} \ldots s_{d}$ of w such that either $w^{\prime}=s_{2} \ldots s_{d} s_{1}$ or $w^{\prime}=s_{d} s_{1} \ldots s_{d-1}$, or equivalently, if $w^{\prime}=s w s$ for some $s \in S$ such that $\ell_{S}(s w s) \leq \ell_{S}(w)$. We then write $w \rightarrow w^{\prime}$ if w^{\prime} can be obtained from w by performing a sequence of cyclic shifts.

In some cases, for instance if w is straight (namely, $\ell_{S}\left(w^{n}\right)=n \ell_{S}(w)$ for all $n \in \mathbb{N}$), cyclic shifts turn out to be sufficient to describe the conjugacy class \mathcal{O}_{w} of an element $w \in W$ (see [HN14], [Mar21]). In general, however, this need not hold: for instance, two distinct simple reflections $s, t \in S$ are not conjugate by a sequence of cyclic shifts, but might be nonetheless conjugate. In any case, however, cyclic shifts are sufficient in order to obtain from any $w \in W$ an element of minimal length in its conjugacy class (see [GP93] for W finite, [HN14] for W affine, and [Mar21, Theorem A(1)] in general); such elements are called cyclically reduced, and we write $\mathcal{O}_{w}^{\min }$ for their set.

In [GP93], Geck and Pfeiffer introduced a new elementary operation called elementary strong conjugation, and prove that if two cyclically reduced elements w_{1}, w_{2} of a finite Coxeter group W are conjugate, then they are conjugate by a sequence of (cyclic shifts and) elementary strong conjugations. This result was later generalised ([GKP00], [HN12]) to the case of twisted conjugacy classes $\mathcal{O}_{w, \delta}:=\left\{x^{-1} w \delta(x) \mid x \in W\right\}(w \in W, \delta \in \operatorname{Aut}(W, S))$, as well as to Coxeter groups W of affine type ([HN14]).

In [Mar21], we introduced a sharp refinement of elementary strong conjugations, called elementary tight conjugations (see $\S 5.1$ for precise definitions), and proved that if two cyclically reduced elements w_{1}, w_{2} of an arbitrary Coxeter group W are conjugate, then they are conjugate by a sequence of (cyclic shifts and) elementary tight conjugations.
1.2. Goals of the paper. Coxeter groups play a fundamental role in a variety of mathematical domains, and understanding their conjugacy classes is crucial for many applications. As illustrated above, the problem of describing conjugacy classes in terms of cyclic shifts (in some sense, the most elementary conjugation operations one might consider in a Coxeter group) has a long history. While the situation was already well understood for conjugacy classes of finite order elements thanks to the works of Geck, Pfeiffer, and He, understanding when two conjugate infinite order elements are in fact conjugate by cyclic shifts remained a complete mystery, even in affine Coxeter groups.

The main goal of the present paper is to complete the picture outlined in §1.1, by giving a definitive solution to the problem of describing conjugacy classes in arbitrary Coxeter groups in terms of cyclic shifts. We not only elucidate the conceptual reason for which two conjugate elements do or do not belong to the same cyclic shift class (see Theorem B below), but we also provide a completely explicit description of the structure of the conjugacy class of a given element $w \in$ W in terms of cyclic shift classes, requiring only straightforward manipulations at
the level of the Coxeter diagrams (see Theorem C and its illustration in Example 1 for the indefinite case, and Theorem D and its illustration in Example 2 for the affine case).

Along the way, we establish several results of independent interest and with a high potential for applications, such as a description of the centraliser of an infinite order element (see Theorem $C(6,7)$ for the indefinite case and Theorem $D(6,7)$ for the affine case), as well as natural splittings of infinite order elements with useful properties (see the statement (4) in Theorems C and D).
1.3. The structural conjugation graph $\mathcal{K}_{\mathcal{O}_{w}}$. In view of [Mar21, Theorem A], the study of a conjugacy class $\mathcal{O}_{w}(w \in W)$ reduces to that of $\mathcal{O}_{w}^{\min }$. On the other hand, $\mathcal{O}_{w}^{\min }$ is the disjoint union of finitely many cyclic shift classes C_{1}, \ldots, C_{k}, where we define the cyclic shift class of an element w as the set

$$
\operatorname{Cyc}(w):=\left\{w^{\prime} \in W \mid w \rightarrow w^{\prime}\right\}
$$

of elements obtained from w by a sequence of cyclic shifts. We next define an even more precise variant of elementary tight conjugations as follows (see §5.1 for the exact connection between the two notions): for a spherical subset $K \subseteq S$ (i.e. such that $W_{K}:=\langle K\rangle \subseteq W$ is finite), we call $w, w^{\prime} \in W K$-conjugate if w, w^{\prime} normalise W_{K} and $w^{\prime}=\mathrm{op}_{K}(w):=w_{0}(K) w w_{0}(K)$, where $w_{0}(K)$ denotes the longest element of W_{K}. In this case, we write

$$
w \stackrel{K}{\leftrightharpoons} w^{\prime}
$$

Finally, we define the structural conjugation graph $\mathcal{K}_{\mathcal{O}_{w}}$ associated to \mathcal{O}_{w} as the graph with vertex set $\left\{C_{1}, \ldots, C_{k}\right\}$, and with an edge between $C_{i}, C_{j}(i \neq j)$ if there exist $u \in C_{i}$ and $v \in C_{j}$ such that u, v are K-conjugate for some spherical subset $K \subseteq S$ (in which case we also call $C_{i}, C_{j} K$-conjugate). In this paper, we not only prove that $\mathcal{K}_{\mathcal{O}_{w}}$ is connected (i.e. every two elements $w_{1}, w_{2} \in \mathcal{O}_{w}^{\min }$ are conjugate by a sequence of cyclic shifts and K-conjugations), but we compute the graph $\mathcal{K}_{\mathcal{O}_{w}}$ explicitely (see Theorems B, C and D below). Note that, replacing K-conjugations by elementary tight conjugations in the above construction, one obtains a graph $\mathcal{K}_{\mathcal{O}_{w}}^{t}$, which we call the tight conjugation graph associated to \mathcal{O}_{w} (see $\S 5.2$ for precise definitions), with same vertex set but in general more edges, and which we compute as well (see Corollary E).
1.4. Structure of $\mathcal{K}_{\mathcal{O}_{w}}$ for w of finite order. To identify $\mathcal{K}_{\mathcal{O}_{w}}$, we relate it to the following easily computable graph: given a diagram automorphism $\delta \in \operatorname{Aut}(W, S)$ (that is, $\delta \in \operatorname{Aut}(W)$ and $\delta(S)=S$), we let $\mathcal{K}_{\delta}=\mathcal{K}_{\delta, W}$ denote the graph with vertex set \mathcal{S}_{δ} the set of δ-invariant spherical subsets of S, and with an edge between $I, J \in \mathcal{S}_{\delta}$ if there exists $K \in \mathcal{S}_{\delta}$ containing I, J such that $J=\mathrm{op}_{K}(I)$; in that case, I and J are called K-conjugate, and we write

$$
I \stackrel{K}{\leftrightharpoons} J .
$$

(When $\delta=\mathrm{id}$, some version of this graph for instance appears in [Kra09, §3.1].) Given a subset $I \in \mathcal{S}_{\delta}$, we let $\mathcal{K}_{\delta}^{0}(I)$ denote the connected component of I in \mathcal{K}_{δ}.

When $w \in W$ is of finite order, the structure of $\mathcal{K}_{\mathcal{O}_{w}}$ can essentially be infered from the work of Geck-Pfeiffer [GP00, Chapter 3], Geck-Kim-Pfeiffer [GKP00] and $\mathrm{He}[\mathrm{He} 07]$. More precisely, denote by $\operatorname{supp}(w) \subseteq S$ the support of $w \in W$, namely, the set of $s \in S$ appearing in any reduced expression of w. Note that the definition of the sets $\mathcal{O}_{w}, \mathcal{O}_{w}^{\min }, \operatorname{Cyc}(w), \operatorname{supp}(w)$ and of the graph $\mathcal{K}_{\mathcal{O}_{w}}$ can
be easily extended to elements $w \in W \rtimes \operatorname{Aut}(W, S)$ (see $\S 3$ and $\S 5.2$ for precise definitions). The following proposition describes the structure of $\mathcal{K}_{\mathcal{O}_{w}}$ for $w \in$ $W \rtimes \operatorname{Aut}(W, S)$ of finite order. The above-mentioned references already contain (if not textually, at least in essence) the case where W is irreducible and finite, and the required extra work is to reduce to that case ${ }^{1}$.

Proposition A. Let (W, S) be a Coxeter system, and let $w \in W \rtimes \operatorname{Aut}(W, S)$ be cyclically reduced and of finite order. Write $w=w^{\prime} \delta$ with $w^{\prime} \in W$ and $\delta \in$ $\operatorname{Aut}(W, S)$. Then there is a graph isomorphism

$$
\mathcal{K}_{\mathcal{O}_{w}} \rightarrow \mathcal{K}_{\delta}^{0}(\operatorname{supp}(w))
$$

defined on the vertex set of $\mathcal{K}_{\mathcal{O}_{w}}$ by the assignment

$$
\operatorname{Cyc}(u) \mapsto \operatorname{supp}(u) \quad \text { for any } u \in \mathcal{O}_{w}^{\min }
$$

Moreover, if $u, v \in \mathcal{O}_{w}^{\min }$ are such that $\operatorname{supp}(u)$ and $\operatorname{supp}(v)$ are K-conjugate for some δ-invariant spherical subset $K \subseteq S$, then $\operatorname{Cyc}(u)$ and $\operatorname{Cyc}(v)$ are K conjugate.

The proof of Proposition A, which is essentially a combination of Theorem 4.14 with a twisted version of the Lusztig-Spaltenstein algorithm ([LS79, Lemma 2.12], [Deo82, Proposition 5.5]) is given in $\S 5.3$ (see Theorem 5.9).
1.5. Geometric tools to describe $\mathcal{K}_{\mathcal{O}_{w}}$. Before explaining the key idea behind the core results of this paper, which describe the structure of \mathcal{O}_{w} for $w \in W \rtimes$ $\operatorname{Aut}(W, S)$ of infinite order, we introduce some geometric notions, since the proofs of the following three theorems are of geometric nature (as was the case in the earlier works [HN12], [HN14] and [Mar21]). The proofs use the Davis complex X of W, which is a $\operatorname{CAT}(0)$ cellular complex on which W naturally acts by cellular isometries (it is a metric realisation of the Coxeter complex $\Sigma=\Sigma(W, S)$ of W, and $W \rtimes \operatorname{Aut}(W, S)$ can be identified with $\operatorname{Aut}(\Sigma)-$ see $\S 2.3-\S 2.4$ for more details). For instance, when W is the affine Coxeter group

$$
W=\left\langle s_{0}, s_{1}, s_{2} \mid s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1=\left(s_{0} s_{1}\right)^{3}=\left(s_{0} s_{2}\right)^{3}=\left(s_{1} s_{2}\right)^{3}\right\rangle
$$

of type \tilde{A}_{2}, then X is the tessellation of the Euclidean plane by congruent equilateral triangles, together with the usual Euclidean metric, and the simple reflections s_{0}, s_{1}, s_{2} of W act on X as orthogonal reflections across the lines (called walls) delimiting a fixed triangle C_{0} (the fundamental chamber of X), as pictured on Figure 1. Any infinite order element $w \in W$ possesses at least one axis, that is, a geodesic line L on which it acts by translation. In the \widetilde{A}_{2} example, the element $w=s_{0} s_{1} s_{2}$ is a glide reflection along the axis L pictured on Figure 1, and thus possesses a single axis (namely, L). Let $\eta=\eta_{w}$ be the direction (in the visual boundary ∂X of X) determined by some (resp. any) w-axis, and consider the set \mathcal{W}^{η} of walls in the direction η (in the example, the lines of the tessellation parallel to L). Then the subgroup W^{η} generated by the reflections r_{m} across the walls $m \in \mathcal{W}^{\eta}$ is itself a Coxeter group, with set of simple reflections

$$
S^{\eta} \subseteq S^{W}:=\left\{v s v^{-1} \mid s \in S, v \in W\right\}
$$

[^1]

Fig. 1. Davis complex of type \widetilde{A}_{2}
across the walls delimiting the connected component C_{0}^{η} of $X \backslash \bigcup_{m \in \mathcal{W}^{\eta}} m$ containing C_{0}. Moreover, the tessellation of X by the walls in \mathcal{W}^{η} induces a cellular complex structure Σ^{η} (called the transversal complex associated to Σ in the direction η) that can be canonically identified with the Coxeter complex $\Sigma\left(W^{\eta}, S^{\eta}\right)$. In the example, letting x_{0}, x_{1}, x_{2} denote the vertices of C_{0} as pictured on Figure 1 and choosing x_{0} as the origin of the Euclidean plane, Σ^{η} can be visualised as the (1-dimensional) orthogonal complement of the wall $m \in \mathcal{W}^{\eta}$ through x_{0}, together with its simplicial structure induced by the traces of the walls in \mathcal{W}^{η}; in other words, X^{η} is a simplicial line and W^{η} is the infinite dihedral Coxeter group, with set of simple reflections $S^{\eta}=\left\{s_{1}, \tau:=s_{2} s_{0} s_{2}\right\}$ (see Figure 1). We let

$$
\pi_{\Sigma^{\eta}}: \Sigma \rightarrow \Sigma^{\eta}
$$

be the corresponding morphism of cellular complexes, mapping a chamber C to C^{η} (see $\S 2.6$ for precise definitions). In the example, $\pi_{\Sigma^{\eta}}$ is induced by the orthogonal projection onto Σ^{η}. Finally, note that the stabiliser $\operatorname{Aut}(\Sigma)_{\eta}$ of η in $\operatorname{Aut}(\Sigma)$ (and its subgroup $W_{\eta}:=\operatorname{Aut}(\Sigma)_{\eta} \cap W$) stabilises \mathcal{W}^{η}, and hence acts by cellular automorphisms on Σ^{η}; we denote by

$$
\pi_{\eta}: \operatorname{Aut}(\Sigma)_{\eta} \rightarrow \operatorname{Aut}\left(\Sigma^{\eta}\right): w \mapsto w_{\eta}
$$

the corresponding action map. If we identify W^{η} with a subgroup of both W_{η} and $\operatorname{Aut}\left(\Sigma^{\eta}\right)$ (so that $\operatorname{Aut}\left(\Sigma^{\eta}\right)=W^{\eta} \rtimes \operatorname{Aut}\left(\Sigma^{\eta}, C_{0}^{\eta}\right)$, where $\operatorname{Aut}\left(\Sigma^{\eta}, C_{0}^{\eta}\right) \approx \operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)$ is the group of automorphisms of Σ^{η} stabilising its fundamental chamber C_{0}^{η} see $\S 2.3)$, then $\left.\pi_{\eta}\right|_{W^{\eta}}$ is the identity, whereas $\pi_{\eta}\left(W_{\eta}\right)$ need not be contained in W^{η}. In fact, each $w \in \operatorname{Aut}(\Sigma)_{\eta}$ determines a unique diagram automorphism $\delta_{w} \in \operatorname{Aut}\left(W^{\eta}, S^{\eta}\right) \approx \operatorname{Aut}\left(\Sigma^{\eta}, C_{0}^{\eta}\right)$ such that $w_{\eta} \in W^{\eta} \delta_{w}$. In the example, w_{η} stabilises C_{0}^{η} and acts on Σ^{η} as the reflection δ_{w} across the midpoint of C_{0}^{η} (i.e. of the segment joining x_{0} to the orthogonal projection x_{1}^{\prime} of x_{1} on Σ^{η}).
1.6. Key idea to describe $\mathcal{K}_{\mathcal{O}_{w}}$. The key idea to describe the conjugacy class of w is now as follows. We define, as in [Mar21] (see also [HN12]), a parametrisation

$$
\pi_{w}: \operatorname{Ch}(\Sigma) \rightarrow \mathcal{O}_{w}: v C_{0} \mapsto v^{-1} w v
$$

of the conjugates of w by the set $\operatorname{Ch}(\Sigma)=\left\{v C_{0} \mid v \in W\right\}$ of chambers of Σ. This allows to translate the combinatorial operations of cyclic shifts and K conjugations on the elements of \mathcal{O}_{w} into geometric operations on the chambers of Σ (see $\S 6.1$ and $\S 7.2$). The advantage of this geometric formulation is that these geometric operations on $\mathrm{Ch}(\Sigma)$ can be related, via $\pi_{\Sigma^{\eta}}$, to the analogous geometric operations on the set $\operatorname{Ch}\left(\Sigma^{\eta}\right)$ of chambers of Σ^{η}, and, in turn, via $\pi_{w_{\eta}}$, to the combinatorial operations of cyclic shifts and K-conjugations on the elements of the conjugacy class of $w_{\eta} \in W^{\eta} \rtimes \operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)$ in W^{η}. But as w_{η} is an element of finite order, its structural conjugation graph is described in Proposition A. Translating the situation back at the level of w then yields the desired description of \mathcal{O}_{w}.

More precisely, we associate to each conjugate $\pi_{w}(C)$ of $w(C \in \operatorname{Ch}(\Sigma))$ the support

$$
I_{w}(C):=\operatorname{supp}\left(\pi_{w_{\eta}}\left(C^{\eta}\right)\right) \subseteq S^{\eta}
$$

of the corresponding conjugate $\pi_{w_{\eta}}\left(C^{\eta}\right)$ of w_{η} (that is, $\pi_{w_{\eta}}\left(C^{\eta}\right)=a^{-1} w_{\eta} a$ if $a \in$ W^{η} is such that $C^{\eta}=a C_{0}^{\eta}$). Using Proposition A (and under the assumption that w_{η} be cyclically reduced), we then show that this defines a graph isomorphism

$$
\varphi_{w}: \mathcal{K}_{\mathcal{O}_{w}} \rightarrow \mathcal{K}_{\delta_{w}, W^{\eta}}^{0}\left(I_{w}\right) \quad \text { where } I_{w}:=I_{w}\left(C_{0}\right)=\operatorname{supp}\left(w_{\eta}\right) \subseteq S^{\eta}
$$

mapping a cyclic shift class $\operatorname{Cyc}\left(\pi_{w}(C)\right)$ to $I_{w}(C)$, up to the following subtlety. Note that for any v in the centraliser $\mathcal{Z}_{W}(w)$ of w in W and any $C \in \operatorname{Ch}(\Sigma)$, the conjugates $\pi_{w}(C)$ and $\pi_{w}(v C)$ of w are the same (more precisely, π_{w} induces a bijection $\left.\operatorname{Ch}(\Sigma) / \mathcal{Z}_{W}(w) \rightarrow \mathcal{O}_{w}\right)$. However, $I_{w}(C)$ and $I_{w}(v C)$ might be different: one easily checks (see Lemma 7.4) that $I_{w}(v C)=\delta_{v}\left(I_{w}(C)\right)$. To ensure the above map φ_{w} is well-defined, we then identify vertices of $\mathcal{K}_{\delta_{w}, W^{n}}$ that are in a same Ξ_{w}-orbit, where

$$
\Xi_{w}:=\left\{\delta_{u} \mid u \in \mathcal{Z}_{W}(w)\right\} \subseteq \Xi_{\eta}:=\left\{\delta_{u} \mid u \in W_{\eta}\right\} \subseteq \operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)
$$

In other words, we let φ_{w} take value in the quotient graph $\mathcal{K}_{\delta_{w}, W^{\eta}}^{0}\left(I_{w}\right) / \Xi_{w}$ (we will see that Ξ_{w} commutes with δ_{w}, and hence indeed permutes the vertices of $\left.\mathcal{K}_{\delta_{w}, W^{\eta}}\right)$.
1.7. Structure of $\mathcal{K}_{\mathcal{O}_{w}}$ for w of infinite order. Before formally stating the result we have just alluded to, we make a straightforward reduction step. By [Mar21, Theorem A(1)], the cyclic shift class of $w \in W \rtimes \operatorname{Aut}(W, S)$ contains an element of $\mathcal{O}_{w}^{\min }$ ([Mar21, Theorem $\left.\mathrm{A}(1)\right]$ is actually stated for $w \in W$, but as we will see in Remark 6.9, this remains true for elements of $W \rtimes \operatorname{Aut}(W, S))$. This thus reduces the study of \mathcal{O}_{w} to that of $\mathcal{O}_{w}^{\min }$, and we may then as well assume that w is cyclically reduced. However, as we will see in Theorem D below, it will be useful to state the following theorem without actually assuming that w is cyclically reduced, but rather by only assuming that w_{η} is cyclically reduced (we will see in Proposition 6.19 that w_{η} is cyclically reduced as soon as w is). As $\operatorname{Cyc}(w) \nsubseteq \mathcal{O}_{w}^{\min }$ when w is not cyclically reduced (and hence $\operatorname{Cyc}(w)$ is not a vertex of $\mathcal{K}_{\mathcal{O}_{w}}$), we then set

$$
\operatorname{Cyc}_{\min }(w):=\operatorname{Cyc}(w) \cap \mathcal{O}_{w}^{\min }
$$

Theorem B. Let (W, S) be an infinite Coxeter system. Let $w \in W \rtimes \operatorname{Aut}(W, S)$ be of infinite order, and set $\eta:=\eta_{w}$. Assume that w_{η} is cyclically reduced. Then there is a graph isomorphism

$$
\varphi_{w}: \mathcal{K}_{\mathcal{O}_{w}} \xlongequal{\cong} \mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}
$$

mapping $\mathrm{Cyc}_{\text {min }}(w)$ to the class $\left[I_{w}\right]$ of I_{w}.
Moreover, if $I_{w}=J_{0} \stackrel{L_{1}}{\leftrightharpoons} J_{1} \stackrel{L_{2}}{\leftrightharpoons} \ldots \stackrel{L_{m}}{\leftrightharpoons} J_{m}$ is a path in $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$, then setting $u_{i}:=w_{0}\left(L_{1}\right) w_{0}\left(L_{2}\right) \ldots w_{0}\left(L_{i}\right) \in W^{\eta}$ and $w_{i}^{\prime}:=u_{i}^{-1} w u_{i} \in W$ for each $i=0, \ldots, m$, the following assertions hold:
(1) $\varphi_{w}^{-1}\left(\left[J_{i}\right]\right)=\mathrm{Cyc}_{\text {min }}\left(w_{i}^{\prime}\right)$ for each $i=1, \ldots, m$.
(2) There exist a spherical subset $K_{i} \subseteq S$ and $a_{i} \in W$ of minimal length in $a_{i} W_{K_{i}}$ with $W_{L_{i}}^{\eta}=a_{i} W_{K_{i}} a_{i}^{-1}$ such that $w_{i-1}:=a_{i}^{-1} w_{i-1}^{\prime} a_{i}$ is cyclically reduced for each $i=1, \ldots, m$.
(3) For any a_{i}, K_{i} and w_{i} as in (2), $\varphi_{w}^{-1}\left(\left[J_{i}\right]\right)=\operatorname{Cyc}\left(w_{i}\right)$ for each i, and $w \rightarrow w_{0} \stackrel{K_{1}}{\leftrightharpoons} \mathrm{op}_{K_{1}}\left(w_{0}\right) \rightarrow w_{1} \stackrel{K_{2}}{\leftrightharpoons} \cdots \rightarrow w_{m-1} \stackrel{K_{m}}{\leftrightharpoons} \mathrm{op}_{K_{m}}\left(w_{m-1}\right) \leftarrow w_{m}^{\prime}$.
Note that the second part of Theorem B allows to compute, starting from w, a representative w_{i} of each cyclic shift class $C_{i} \subseteq \mathcal{O}_{w}^{\min }$, as well as a sequence of cyclic shifts and K-conjugations to reach w_{i} from w (with a minimal number of K conjugations). Note also that Theorem B yields an upper bound depending only on (W, S) on the number of K-conjugations needed to reach any $u \in \mathcal{O}_{w}^{\min }$ from w using cyclic shifts and K-conjugations. The proof of Theorem B is contained in §7.
1.8. Computation of $\mathcal{K}_{\mathcal{O}_{w}}$ for $w \in W$. We now turn to an explicit computation of the structural conjugation graph $\mathcal{K}_{\mathcal{O}_{w}}$, this time restricting to elements $w \in$ W of infinite order. Again, to simplify the statements below, we can make a straightforward reduction step. Recall that a parabolic subgroup of W (resp. W^{η}) is a conjugate of a standard parabolic subgroup, namely, a subgroup of the form $W_{K}:=\langle K\rangle \subseteq W$ for some $K \subseteq S$ (resp. $W_{L}^{\eta}:=\langle L\rangle \subseteq W^{\eta}$ for some $L \subseteq S^{\eta}$). For any $w \in W$, there is a smallest parabolic subgroup $\operatorname{Pc}(w)$ containing w, called its parabolic closure. In order to study $\mathcal{K}_{\mathcal{O}_{w}}$, one can easily reduce to the case where $\operatorname{Pc}(w)$ is irreducible (see $\S 2.2$ for precise definitions). Moreover, we may safely assume as before that w is cyclically reduced. In this case, $\operatorname{Pc}(w)$ is standard (see e.g. [CF10, Proposition 4.2]), and any cyclically reduced conjugate of w is conjugate to w in $\operatorname{Pc}(w)$ (see [Kra09, §3.1]). In other words, there is no loss of generality in assuming that W is irreducible and $\operatorname{Pc}(w)=W$.

In view of Theorem B, to compute the structural conjugation graph $\mathcal{K}_{\mathcal{O}_{w}}$, it now remains to compute the Coxeter system (W^{η}, S^{η}) (more specifically, its Coxeter diagram), the parameters $\delta_{w} \in \operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)$ and $I_{w} \subseteq S^{\eta}$ associated to w, as well as the subgroup $\Xi_{w} \subseteq \operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)$. To this end, we will need to deal separately with the case where W is of irreducible affine type, and where W is of irreducible indefinite (i.e. non-affine) type. Along the way, we shall obtain several results of independent interest, including a description of $\mathcal{Z}_{W}(w)$, as well as natural ways to decompose w as a product of a "straight" part and of a "torsion" part (see §8).
1.9. Computation of $\mathcal{K}_{\mathcal{O}_{w}}$, indefinite case. We start by stating the theorem dealing with the indefinite case, and refer to Remark 1 below for any terminology left unexplained, as well as for comments on the meaning of each statement.

Theorem C. Let (W, S) be an irreducible Coxeter system of indefinite type. Let $w \in W$ with $\operatorname{Pc}(w)=W$, and set $\eta:=\eta_{w}$. Then the following assertions hold:
(1) $P_{w}^{\max }:=W^{\eta}$ is the largest spherical parabolic subgroup normalised by w.
(2) If w is cyclically reduced, there exists $a_{w} \in W$ of minimal length in $W^{\eta} a_{w}$ such that $v:=a_{w}^{-1} w a_{w}$ is standard, that is, v is cyclically reduced and the parabolic subgroup $P_{v}^{\max }=a_{w}^{-1} P_{w}^{\max } a_{w}$ is standard.
Moreover, $v \in \operatorname{Cyc}(w)$ and $S^{\eta_{v}}=a_{w}^{-1} S^{\eta} a_{w} \subseteq S$ for any such a_{w}.
(3) If w is standard, the restriction of $\pi_{\Sigma^{\eta}}$ to the standard S^{η}-residue is a cellular isomorphism onto Σ^{η}. Moreover, if $I_{w}=J_{0} \stackrel{K_{1}}{\leftrightharpoons} J_{1} \stackrel{K_{2}}{\leftrightharpoons} \ldots \stackrel{K_{m}}{\leftrightharpoons} J_{m}$ is a path in $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$, then $w=w_{0} \stackrel{K_{1}}{\leftrightharpoons} w_{1} \stackrel{K_{2}}{\leftrightharpoons} \ldots \stackrel{K_{m}}{\leftrightharpoons} w_{m}$, where $w_{i}:=$ $\mathrm{op}_{K_{i}}\left(w_{i-1}\right)$ and $\varphi_{w}^{-1}\left(\left[J_{i}\right]\right)=\operatorname{Cyc}\left(w_{i}\right)$ for each $i=1, \ldots, m$.
(4) There exist a unique atomic element $w_{c} \in W$ and unique $n \geq 1$ and $a \in P_{w}^{\max }$ such that $w=a w_{c}^{n}$.
(5) $\delta_{w}=\delta_{w_{c}}^{n}$ where $\delta_{w_{c}}$ is the diagram automorphism $S^{\eta} \rightarrow S^{\eta}: s \mapsto w_{c} s w_{c}^{-1}$, and $I_{w}=\operatorname{supp}\left(a \delta_{w}\right) \subseteq S^{\eta}$. Moreover, $w_{\eta}=a \delta_{w_{c}}^{n}$.
(6) Every element $u \in \mathcal{Z}_{W}(w)$ has the form $u=b w_{c}^{m}$ for some $m \in \mathbb{Z}$ and $b \in P_{w}^{\max }$. Moreover, the map

$$
\mathcal{Z}_{W}(w) \rightarrow \mathbb{Z}: u=b w_{c}^{m} \mapsto m
$$

is a group morphism, with kernel the centraliser of w_{η} in W^{η}, and image $n_{w} \mathbb{Z}$ for some $n_{w} \geq 1$ dividing $\min \left\{n^{\prime} \geq 1 \mid \delta_{w_{c}}^{n^{\prime}}(a)=\delta_{w_{c}}^{n}(a)\right\}$.
Finally, there is an exact sequence

$$
1 \rightarrow\left\langle w_{c}^{m}\right\rangle \times \mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right) \rightarrow \mathcal{Z}_{W}(w) \rightarrow \Xi_{w} \rightarrow 1
$$

where $m \in \mathbb{N}$ is the order of $\delta_{w_{c}}$.
(7) Ξ_{w} is cyclic and generated by $\delta_{w_{c}}^{n_{w}}$.

Remark 1. Here are a few comments on the statements of Theorem C, following the same numbering.
(1) The existence of such a parabolic subgroup $P_{w}^{\max }$ is specific to the indefinite case: in the \widetilde{A}_{2} example (see Figure 1), the element $w^{2}=\left(s_{0} s_{1} s_{2}\right)^{2}$ is a translation in the direction η, and hence normalises each of the spherical parabolic subgroups $\left\langle r_{m}\right\rangle$ with $m \in \mathcal{W}^{\eta}$.
(2) This shows that, up to modifying w within its cyclic shift class, we may assume that $W^{\eta}=P_{w}^{\max }$ is standard and that $S^{\eta} \subseteq S$.
(3) Note that $S^{\eta} \subseteq S$ by (2): it thus makes sense to talk about the standard S^{η} residue $R_{S^{\eta}} \subseteq \Sigma$ (see $\S 2.3$ for definitions). This statement then allows to identify Σ^{η} with the subcomplex $R_{S^{\eta}}$ of Σ, and also provides a more precise version of the second statement of Theorem B in this case.
(4) We call w atomic if it is indivisible (i.e. w has no decomposition $w=u^{n}$ with $u \in W$ and $n \geq 2$) and $P_{w}^{\max }$-reduced (see Definition 8.5). We call the decomposition $w=a w_{c}^{n}$ provided by (4) the core splitting of w, and the atomic element w_{c} the core of w (see $\S 8$ and $\S 9.2$ for more details on and further properties of core splittings).
(5) This allows to compute δ_{w} and I_{w} from the core splitting of w.
(6) This provides a precise description of $\mathcal{Z}_{W}(w)$, going beyond [Kra09, Corollary 6.3.10]: computing $\mathcal{Z}_{W}(w)$ boils down to computing the core of w, the centraliser $\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right):=\left\{x \in W^{\eta} \mid x^{-1} w_{\eta} x=w_{\eta}\right\}$ of the (finite order) element w_{η}

Fig. 2. Example 1
(given in (5)) in the finite group W^{η}, and the natural number n_{w} which we call the centraliser degree of w. Details on how to compute n_{w} are given in Remark 9.32.
(7) This allows to compute Ξ_{w} from the core and centraliser degree of w.

We now illustrate Theorems B and C with the following example (see $\S 9.7$ for more examples). A more detailed version of this example, which includes justifications for all the claims made here without a proof, can be found in Example 9.40.

Example 1. Consider the Coxeter group W with Coxeter diagram indexed by $S=\left\{s_{i} \mid 1 \leq i \leq 7\right\}$ and pictured on Figure 2(a).

Set $J_{1}:=S \backslash\left\{s_{6}\right\}$ and $J_{2}:=S \backslash\left\{s_{7}\right\}$. Then the element $x:=w_{0}\left(J_{1}\right) w_{0}\left(J_{2}\right) \in W$ is cyclically reduced and satisfies $\operatorname{Pc}(x)=W$. Moreover, x normalises $I:=$ $S \backslash\left\{s_{6}, s_{7}\right\}$: more precisely, the conjugation map $\delta_{x}: W_{I} \rightarrow W_{I}: u \mapsto x u x^{-1}$ coincides with op_{I}. This implies that $P_{x}^{\max }=W_{I}$ (and $S^{\eta}=I$, where $\eta:=\eta_{x}$), and one checks that x is atomic.

Set $w:=s_{1} s_{3} x^{2}$. Then again $P_{w}^{\max }=W_{I}$ (i.e. $\eta_{w}=\eta$) and w is cyclically reduced. The core of w is $w_{c}=x$. In particular, $\delta_{w}=\delta_{x}^{2}=$ id and $I_{w}=$ $\operatorname{supp}\left(s_{1} s_{3}\right)=\left\{s_{1}, s_{3}\right\} \subseteq I$. Since $w_{0}(I) x \in \mathcal{Z}_{W}(w)$, we have $n_{w}=1$. The group Ξ_{w} is thus generated by $\delta_{x}=\mathrm{op}_{I} \in \operatorname{Aut}\left(W_{I}, I\right)$.

The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has 6 vertices $I_{i j}:=\left\{s_{i}, s_{j}\right\}$, pictured on Figure 2(b) (where $I_{i j}$ is simply written $i j$, and where we put a label $K \subseteq I$ on some of the edges $\left\{I_{i j}, I_{i^{\prime} j^{\prime}}\right\}$, indicating that $I_{i j}, I_{i^{\prime} j^{\prime}}$ are K-conjugate). The quotient graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ is then the complete graph on the 4 vertices $\left[I_{13}\right]=\left[I_{35}\right],\left[I_{14}\right]=$ $\left[I_{25}\right],\left[I_{15}\right],\left[I_{24}\right]$. Moreover, letting $w_{i j}$ denote for each $(i, j) \in\{(1,5),(2,4),(1,4)\}$ the $K_{i j}$-conjugate of $w_{13}:=w$, where $K_{i j}$ is the label of the edge from I_{13} to $I_{i j}$ on Figure 2(b), we have $\varphi_{w}^{-1}\left(\left[I_{i j}\right]\right)=\operatorname{Cyc}\left(w_{i j}\right)$ for each such (i, j), and hence

$$
\mathcal{O}_{w}^{\min }=\operatorname{Cyc}\left(w_{13}\right) \sqcup \operatorname{Cyc}\left(w_{15}\right) \sqcup \operatorname{Cyc}\left(w_{24}\right) \sqcup \operatorname{Cyc}\left(w_{14}\right) .
$$

1.10. Computation of $\mathcal{K}_{\mathcal{O}_{w}}$, affine case. We next state the theorem dealing with the affine case, that is, when W is the affine Weyl group associated to one of the Dynkin diagrams Γ_{S} pictured on Figure 9 in $\S 10.1$. We let the simple reflections in $S=\left\{s_{0}, s_{1}, \ldots, s_{\ell}\right\}$ be numbered as in that figure, and choose, as in the $\widetilde{A}_{2}=A_{2}^{(1)}$ example from Figure 1 , the vertex x_{0} of C_{0} of type s_{0} (i.e. fixed by $S \backslash\left\{s_{0}\right\}$) as the origin of the Euclidean space X. Thus, W decomposes as a semi-direct product $W=W_{x_{0}} \ltimes T_{0}$, where $W_{x_{0}}$ is the fixer of x_{0} in W, and where $T_{0} \cong \mathbb{Z}^{\ell}$ is the translation subgroup of W. As before, we refer to Remark 2 below for any terminology left unexplained, as well as for comments on the meaning of each statement. Note that, while Theorem D contains seven statements so as to draw a parallel with Theorem C (and to show how the graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ in Theorem B can be computed), many of these statements are either folklore or can
be infered from earlier work (see Remark 2 for more details), and the core content of Theorem D (which occupies the bulk of its proof) is the statement (7) (and its use in (6)).

Theorem D. Let (W, S) be an irreducible Coxeter system of affine type. Let $w \in W$ be of infinite order, and set $\eta:=\eta_{w}$. Let x_{0} be the vertex of C_{0} of type s_{0}, and set $P_{w}^{\infty}:=W_{x_{0}} \cap W^{\eta}$. Then the following assertions hold:
(1) $W^{\eta}=\prod_{i=1}^{r} W_{i}$ for some parabolic subgroups $W_{1}, \ldots, W_{r} \subseteq W^{\eta}$ of irreducible affine type, where r is the number of components of P_{w}^{∞}.
(2) Write $P_{w}^{\infty}=a_{w} W_{I} a_{w}^{-1}$ for some $I \subseteq S \backslash\left\{s_{0}\right\}$ and some $a_{w} \in W_{x_{0}}$ of minimal length in $a_{w} W_{I}$. If w is cyclically reduced, then $v:=a_{w}^{-1} w a_{w}$ is standard, that is, $v_{\eta_{v}}$ is cyclically reduced and $P_{v}^{\infty}:=W_{x_{0}} \cap W^{\eta_{v}}$ is standard. Moreover, $\operatorname{Cyc}(w)=\mathrm{Cyc}_{\text {min }}(v)$ and $S^{\eta_{v}}=a_{w}^{-1} S^{\eta} a_{w}$.
(3) If P_{w}^{∞} is standard, so that $P_{w}^{\infty}=W_{I_{\eta}}$ for some $I_{\eta} \subseteq S$, and if I_{1}, \ldots, I_{r} are the components of I, then $I_{\eta}^{\text {ext }}:=S^{\eta}$ has components $I_{1}^{\text {ext }}, \ldots, I_{r}^{\text {ext }}$ where

$$
I_{i}^{\mathrm{ext}}:=I_{i} \cup\left\{\tau_{i}:=r_{\delta-\theta_{I_{i}}}\right\}
$$

and $\Gamma_{I_{i}^{\text {ext }}}$ is the Dynkin diagram extending $\Gamma_{I_{i}}$.
(4) There exist a unique element $w_{\text {tor }} \in P_{w}^{\min }:=\operatorname{Fix}_{W}(\operatorname{Min}(w)) \subseteq W^{\eta}$ and a unique $P_{w}^{\min }$-reduced element $w_{\infty} \in W$ such that $w=w_{\text {tor }} w_{\infty}$.

Moreover, if $w=u t$ is the standard splitting of w with elliptic part u in the sense of [BM15, 3.4], then $w_{\text {tor }}=u$ and $w_{\infty}=t$ if and only if $u, t \in W$.
(5) If w is standard, then δ_{w} is the unique automorphism in $\prod_{i=1}^{r} \operatorname{Aut}\left(\Gamma_{I_{i}^{e x t}}\right)$ such that $\delta_{w}(s)=w_{\infty} s w_{\infty}^{-1}$ for all $s \in I_{\eta}$, and I_{w} is the smallest $\delta_{w^{-}}$ invariant subset of $I_{\eta}^{\text {ext }}$ containing $\operatorname{supp}_{I_{\eta}^{\text {ext }}}\left(w_{\text {tor }}\right)$. Moreover, $w_{\eta}=w_{\text {tor }} \delta_{w}$.
(6) $\mathcal{Z}_{W}(w)=\pi_{\eta}^{-1}\left(\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right) \rtimes \Xi_{w}\right)$. Moreover, there is an exact sequence

$$
1 \rightarrow T_{\eta} \rtimes \mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right) \rightarrow \mathcal{Z}_{W}(w) \rightarrow \Xi_{w} \rightarrow 1
$$

where $T_{\eta}:=\left\{t_{h} \in T_{0} \mid P_{w}^{\infty} \cdot h=h\right\}$.
(7) Ξ_{η} is an abelian subgroup of $\prod_{i=1}^{r} \operatorname{Aut}\left(\Gamma_{I_{e^{\mathrm{ext}}}}\right)$, and is computed explicitely in Theorem 10.12. Moreover, if w_{η} is cyclically reduced, the quotient graphs $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ and $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{\eta}$ coincide, and

$$
\Xi_{w}=\left\{\sigma \in \Xi_{\eta} \mid \sigma\left(I_{w}\right) \text { is a vertex of } \mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)\right\} .
$$

Remark 2. The observations (1) and (3) are well-known (see e.g. [HN14, §3,4] or $[H N 15, \S 4]$ for a similar point of view), and the first statement of (2) can for instance be found in [HN15, Proposition 4.5]. A statement similar to (4) can be found in [HN14, Proposition 2.7], and for (5), the existence of a conjugate x of w_{∞} such that $\delta_{w}(s)=x s x^{-1}$ for all $s \in I_{\eta}$ follows from [HN14, Proposition 3.2]. Finally, the statement (6) in itself is an elementary observation, whose relevance is given by the explicit computation of Ξ_{w} in (7).

Here are a few additional comments on the statements of Theorem D, following the same numbering.
(1) The group P_{w}^{∞} coincides with the fixer in W of the geodesic ray from x_{0} to η, and is thus in particular a (spherical) parabolic subgroup. It thus makes sense to talk about the components of P_{w}^{∞} (see §2.2).
(2) This shows that, up to modifying w within its cyclic shift class, we may assume that P_{w}^{∞} is standard and w_{η} is cyclically reduced.
(3) This allows to compute the Dynkin diagram of $\left(W^{\eta}, S^{\eta}\right)$: each $W_{I_{i}}$ is of irreducible finite type, and is the Weyl group of a reduced root system Δ_{i}. The associated Dynkin diagram $\Gamma_{I_{i}}$ (say of type Y_{i}) can then be extended to one of the affine Dynkin diagrams $\Gamma_{I_{i}^{\text {ext }}}$ (of type $Y_{i}^{(1)}$) pictured on Figure 9, by adding a simple reflection τ_{i} to I_{i}. Similarly, the group W is the affine Weyl group associated to the root system Δ of an affine Kac-Moody algebra. Letting $\delta \in \Delta$ denote the unique positive imaginary root of Δ of minimal height, and $\theta_{I_{i}}$ denote the highest root of Δ_{i}, the reflection τ_{i}, as an element of $S^{\eta} \subseteq S^{W}$, coincides with the reflection associated to the root $\delta-\theta_{I_{i}} \in \Delta$ (see $\S 10.1$ for precise definitions).

Note that, as in the \widetilde{A}_{2} example from Figure 1, one can realise Σ^{η} (and even the associated Davis complex) as a subspace of X (see Proposition 10.5).
(4) By [BM15, 3.4], the element w has a standard decomposition, in the group Isom (X) of affine isometries of X, as the product $w=u t$ of a finite order element $u \in \operatorname{Isom}(X)$ with a translation $t \in \operatorname{Isom}(X)$ such that the fixed-point set $\operatorname{Fix}(u)$ of u in X coincides with $\operatorname{Min}(w):=\{x \in X \mid \mathrm{d}(x, w x)$ is minimal $\}$, where d is the usual Euclidean distance on X (see $\S 10.6$). However, u, t need not belong to W : for instance, in the \widetilde{A}_{2} example from Figure $1, w=u t$ with u the orthogonal reflection across L and t a translation along L.

We then introduce in (4) the standard splitting in W of w, denoted $w=$ $w_{\text {tor }} w_{\infty}$, which in some sense is the best possible approximation of the standard splitting $w=u t$, but this time requiring that the factors $w_{\text {tor }}, w_{\infty}$ belong to W (see $\S 8$ and $\S 10.6$ for more details on and further properties of this splitting).
(5) This allows to compute δ_{w} and I_{w} from the standard splitting in W of w.
(6) This provides a precise description of $\mathcal{Z}_{W}(w)$: computing $\mathcal{Z}_{W}(w)$ boils down to computing the centraliser $\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right)$ of the (finite order) element w_{η} (given in (5)) in the group W^{η}, as well as the subgroup Ξ_{w} (given in (7)). Here, $t_{h} \in T_{0}$ denotes the translation of vector $h \in X$. See Proposition 10.33 for more details.
(7) The explicit computation of $\Xi_{\eta} \subseteq \operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)$ is achieved in Theorem 10.12; the theorem is stated, for notational simplicity, under the assumption that $P_{w}^{\infty}=$ $W_{I_{\eta}}$ is standard (the adaptation to the general case is detailed in Remark 10.10), and the notation for the elements of Ξ_{η} used in the theorem are introduced in Definition 10.11. The statement (7) allows to compute $\mathcal{K}_{\mathcal{O}_{w}}$ using Ξ_{η} instead of Ξ_{w}, and as a byproduct allows to compute Ξ_{w} as well.

We now illustrate Theorems B and D with the following example (see §10.9 for more examples). A more detailed version of this example, which includes justifications for all the claims made here without a proof, can be found in Example 10.52.

Example 2. Consider the Coxeter group W of affine type $D_{7}^{(1)}$, with set of simple reflections $S=\left\{s_{i} \mid 0 \leq i \leq 7\right\}$ as on Figure 3 .

Let $\theta:=\theta_{S \backslash\left\{s_{0}\right\}}$ be the highest root associated to $S \backslash\left\{s_{0}\right\}$. Then $t:=s_{0} r_{\theta}$ is a translation centralising $I:=S \backslash\left\{s_{0}, s_{2}\right\}$, and hence $P_{t}^{\infty}=W_{I}$. Set $w:=u t$, where $u:=s_{1} s_{3} s_{4} s_{5} s_{6} \in W_{I}$. Then again $P_{w}^{\infty}=W_{I}$ (i.e. $\eta_{w}=\eta_{t}=: \eta$), and w is cyclically reduced.

Let $I_{1}=\left\{s_{1}\right\}$ and $I_{2}=\left\{s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$ be the components of I. Then $S^{\eta}=$ $I^{\text {ext }}$ has two components $I_{1}^{\text {ext }}=I_{1} \cup\left\{\tau_{1}=r_{\delta-\theta_{I_{1}}}\right\}$ and $I_{2}^{\text {ext }}=I_{2} \cup\left\{\tau_{2}=r_{\delta-\theta_{I_{2}}}\right\}$, respectively of type $A_{1}^{(1)}$ and $D_{5}^{(1)}$ (see Figure 3).
Γ_{S}

Fig. 3. Example 2

The decomposition $w=u t$ is the standard splitting of w (both in W and in $\operatorname{Isom}(X))$, with $w_{\text {tor }}=u$ and $w_{\infty}=t$. In particular, $\delta_{w}=\mathrm{id}$ and $I_{w}=\operatorname{supp}(u)=$ $\left\{s_{1}, s_{3}, s_{4}, s_{5}, s_{6}\right\}$.
Denote, as in Definition 10.11, by σ_{1} the diagram automorphism of $\Gamma_{I_{1}^{\text {ext }}}$ of order 2 permuting τ_{1} and s_{1}, and by σ_{2} the diagram automorphism of $\Gamma_{I_{2}^{\text {ext }}}$ of order 2 which permutes nontrivially each of the sets $\left\{\tau_{2}, s_{3}\right\}$ and $\left\{s_{6}, s_{7}\right\}$. Then the group Ξ_{η} is generated by $\sigma_{1} \sigma_{2}$ (see Theorem 10.12(D1)).

The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has 4 vertices, pictured on Figure 3 (with the same notational convention as on Figure 2). Since $\sigma_{1} \sigma_{2}\left(I_{w}\right)$ is not one of them, $\Xi_{w}=\{1\}$. Hence $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ coincides with $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$, and $\mathcal{Z}_{W}(w)=T_{\eta} \rtimes \mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right)$, where $W^{\eta}=\left\langle I^{\text {ext }}\right\rangle$ and $w_{\eta}=u$.

Representatives for each of the four cyclic shift classes in $\mathcal{O}_{w}^{\min }$ (as well as a sequence of cyclic shifts and K-conjugations to reach them from w) are computed explicitely in Example 10.52.
1.11. Tight conjugation graph. To conclude, we obtain a version of Theorem B for the tight conjugation graph $\mathcal{K}_{\mathcal{O}_{w}}^{t}$. For this, call a path $I=I_{0}, I_{1}, \ldots, I_{k}=J$ in $\mathcal{K}_{\delta_{w}}$ spherical if there exist $K_{1}, \ldots, K_{k} \in \mathcal{S}_{\delta_{w}}$ with $\bigcup_{i=1}^{k} K_{i} \in \mathcal{S}_{\delta_{w}}$ such that

$$
I=I_{0} \stackrel{K_{1}}{\leftrightharpoons} I_{1} \stackrel{K_{2}}{\leftrightharpoons} \ldots \stackrel{K_{k}}{\leftrightharpoons} I_{k}=J .
$$

We then let $\overline{\mathcal{K}}_{\delta_{w}}$ denote the graph with vertex set $\mathcal{S}_{\delta_{w}}$ and with an edge between $I, J \in \mathcal{S}_{\delta_{w}}$ if they are connected by a spherical path in $\mathcal{K}_{\delta_{w}}$. As before, we also let $\overline{\mathcal{K}}_{\delta_{w}}^{0}\left(I_{w}\right)$ denote the connected component of $\overline{\mathcal{K}}_{\delta_{w}}$ containing I_{w}.
Corollary E. Let (W, S) be an infinite Coxeter system. Let $w \in W$ with $\operatorname{Pc}(w)=$ W, and assume that w_{η} is cyclically reduced. Then there is a graph isomorphism

$$
\bar{\varphi}_{w}: \mathcal{K}_{\mathcal{O}_{w}}^{t} \xrightarrow{\cong} \overline{\mathcal{K}}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}
$$

mapping $\mathrm{Cyc}_{\text {min }}(w)$ to the class $\left[I_{w}\right]$ of I_{w}. Moreover,
(1) if (W, S) is of irreducible indefinite type, then $\mathcal{K}_{\mathcal{O}_{w}}^{t}$ is a complete graph;
(2) if (W, S) is of irreducible affine type, then the diameter of $\mathcal{K}_{\mathcal{O}_{w}}^{t}$ is bounded above by a constant depending only on (W, S);
(3) if (W, S) is of affine type $A_{4 n+1}^{(1)}$, there is an element $v \in W$ with $\operatorname{Pc}(v)=W$ such that $\mathcal{K}_{\mathcal{O}_{v}}^{t}$ has $2 n+1$ vertices and diameter n.
Remark 3. Corollary $\mathrm{E}(1)$ implies that, if W is of indefinite type, one can pass from any $w_{1} \in \mathcal{O}_{w}^{\min }$ to any $w_{2} \in \mathcal{O}_{w}^{\min }$ using (cyclic shifts and) at most one elementary tight conjugation. When W is of affine type, however, Corollary E(3) shows that no such uniform (across all irreducible affine Coxeter groups W) upper bound on the number of required elementary tight conjugations exists.

The structure of the paper is outlined in the table of contents below.
Acknowledgement. I would like to thank Xuhua He for helpful discussions on twisted conjugacy classes of finite order elements, and for pointing out to me several references. I would also like to thank the referee for their careful reading of the paper and useful comments.

Contents

1. Introduction 1
2. Preliminaries 14
2.1. Coxeter groups 14
2.2. Coxeter diagrams 14
2.3. Coxeter complexes 15
2.4. Davis complex 16
2.5. Visual boundary and actions on CAT(0)-spaces 18
2.6. Transversal complex 19
3. Cyclic shift classes 20
4. Elements of finite order 21
4.1. Preliminaries 21
4.2. Conjugacy classes in finite Coxeter groups 23
4.3. Distinguishing cyclic shift classes 26
5. The structural conjugation graph 28
5.1. K-conjugation 29
5.2. Structural and tight conjugation graphs 30
5.3. The structural conjugation graph of a finite order element 31
6. Combinatorial minimal displacement sets 32
6.1. Geometric interpretation of cyclic shifts 32
6.2. Relations between $\operatorname{CombiMin}(w)$ and $\operatorname{Min}(w)$ 33
6.3. Comparison of galleries in Σ and Σ^{η} 37
6.4. Regular points 42
7. Proof of Theorem B 42
7.1. Distinguishing cyclic shift classes 43
7.2. The structural conjugation graph of an infinite order element 44
7.3. The tight conjugation graph of an infinite order element 48
8. The P-splitting of an element 50
9. Indefinite Coxeter groups 53
9.1. The transversal Coxeter group and complex 53
9.2. The core splitting of an element 56
9.3. The centraliser of an element 61
9.4. The subgroup Ξ_{w} 62
9.5. Theorem C, concluded 63
9.6. Computing $\mathcal{K}_{\mathcal{O}_{w}}$: a summary 63
9.7. Examples 65
10. Affine Coxeter groups 67
10.1. Preliminaries 67
10.2. Setting for the rest of Section 10 71
10.3. The transversal Coxeter group and complex 72
10.4. The subgroup Ξ_{η} 74
10.5. Relation between Ξ_{w} and $\Xi_{\eta_{w}}$, and centraliser of an element 88
10.6. The standard splitting in W of an element 92
10.7. Theorem D and Corollary E, concluded 95
10.8. Computing $\mathcal{K}_{\mathcal{O}_{w}}$: a summary 97
10.9. Examples 97
Index of notions 101
Index of symbols 102
References 105

2. Preliminaries

In this section, we review some basic concepts and properties related to Coxeter groups. Basics on Coxeter groups, diagrams and complexes (see §2.1-2.3 below) can be found in [AB08, Chapters 1-5].
2.1. Coxeter groups. Let (W, S) be a Coxeter system of finite rank, that is, W is a group with a distinguished finite subset S of involutions admitting a presentation of the form

$$
\left.W=\langle S| s^{2}=1,(s t)^{m_{s t}}=1 \text { for all distinct } s, t \in S\right\rangle
$$

for some $m_{s t} \in \mathbb{N}_{\geq 2} \cup\{\infty\}$ (when $m_{s t}=\infty$, the relation $(s t)^{m_{s t}}=1$ is omitted in the above presentation). The Coxeter matrix associated to (W, S) is the matrix $M=\left(m_{s t}\right)_{s, t \in S}$, where we set $m_{s s}:=1$ for all $s \in S$. The elements of S are called simple reflections and their conjugates reflections; the set of reflections is denoted $S^{W}:=\left\{w s w^{-1} \mid s \in S, w \in W\right\}$.

Let $\ell=\ell_{S}: W \rightarrow \mathbb{N}$ denote the word metric on W with respect to $S: \ell(w)$ is the least number $n \in \mathbb{N}$ such that $w=s_{1} \ldots s_{n}$ for some $s_{i} \in S$. Such a decomposition $w=s_{1} \ldots s_{n}$ of $w \in W$ with $n=\ell(w)$ is called reduced. The $\operatorname{support} \operatorname{supp}(w)=\operatorname{supp}_{S}(w)$ of $w \in W$ is the subset J of elements of S appearing in some (equivalently, any) reduced decomposition of w.

A standard parabolic subgroup is a subgroup of W of the form $W_{I}:=\langle I\rangle$ for some $I \subseteq S$; the couple (W_{I}, I) is then itself a Coxeter system. Conjugates of standard parabolic subgroups are called parabolic subgroups. Intersections of parabolic subgroups are again parabolic subgroups. In particular, for any subset $H \subseteq W$, there is a smallest parabolic subgroup $\mathrm{Pc}(H)$ containing H (the intersection of all parabolic subgroups containing H), called the parabolic closure of H; if $H=\{w\}$ for some $w \in W$, we simply write $\operatorname{Pc}(w):=\operatorname{Pc}(\{w\})$.
2.2. Coxeter diagrams. The Coxeter diagram of the Coxeter system (W, S) is the labelled graph $\Gamma_{S}^{\text {Cox }}$ with vertex set S and an edge labelled $m_{s t}$ between s and t for each distinct $s, t \in S$ with $m_{s t}>2$ (when $m_{s t}=3$, the label $m_{s t}$ is usually omitted). We will often identify a subset J of S with the full subgraph Γ_{J} of $\Gamma_{S}^{\mathrm{Cox}}$ with vertex set J.

The irreducible components (or just components) of a subset $J \subseteq S$ are the subsets J_{1}, \ldots, J_{r} such that $\Gamma_{J_{1}}, \ldots, \Gamma_{J_{r}}$ are the connected components of $\Gamma_{J} \subseteq \Gamma_{S}^{\text {Cox }} ;$ in that case, W_{J} decomposes as a direct product $W_{J}=W_{J_{1}} \times \cdots \times W_{J_{r}}$. The subset J (resp. the Coxeter group W_{J}) is irreducible if Γ_{J} is connected.

Irreducible finite Coxeter groups (also called Coxeter groups of finite type) are classified, and are of one of the types $A_{n}(n \geq 1), B_{n}=C_{n}(n \geq 2), D_{n}(n \geq 4)$, $E_{6}, E_{7}, E_{8}, F_{4}, G_{2}, H_{3}, H_{4}$, or $I_{2}(m)(m=5$ or $m \geq 7)$, whose associated Coxeter diagram can for instance be found in [AB08, §1.5.6] (see also §4.1.1). We call a subset $J \subseteq S$ (resp. the parabolic subgroups conjugate to W_{J}) spherical if all its components are of finite type.

Another important class of Coxeter groups are those of irreducible affine type, namely, of one of the types $A_{\ell}^{(1)}(\ell \geq 1), B_{\ell}^{(1)}(\ell \geq 3), C_{\ell}^{(1)}(\ell \geq 2), D_{\ell}^{(1)}(\ell \geq 4)$, $E_{6}^{(1)}, E_{7}^{(1)}, E_{8}^{(1)}, F_{4}^{(1)}$, or $G_{2}^{(1)}$ (see $\S 10.1$ for more details). All other irreducible Coxeter groups are said to be of indefinite type.

We denote by $\operatorname{Aut}(W, S)$ the group of automorphisms of (W, S), that is, of automorphisms $\delta \in \operatorname{Aut}(W)$ such that $\delta(S)=S$. Such automorphisms naturally induce automorphisms of $\Gamma_{S}^{\text {Cox }}$ and are called diagram automorphisms of W.

Given $\delta \in \operatorname{Aut}(W, S)$ and $w \in W$, we define the δ-support of w as the smallest δ-invariant subset $\operatorname{supp}_{\delta}(w):=\bigcup_{n>0} \delta^{n}(\operatorname{supp}(w))$ of S containing $\operatorname{supp}(w)$. Alternatively, we shall write $\operatorname{supp}(w \delta):=\operatorname{supp}_{\delta}(w)$ for the support of the element $w \delta$ of $W \rtimes\langle\delta\rangle$. We also define the δ-conjugation by an element $x \in W$ as the automorphism $W \rightarrow W: w \mapsto x^{-1} w \delta(x)$.
2.3. Coxeter complexes. The Coxeter complex $\Sigma=\Sigma(W, S)$ associated to the Coxeter system (W, S) is the poset $\left(\left\{w W_{I} \mid w \in W, I \subseteq S\right\}\right.$, $\left.\supseteq\right)$ of left cosets of standard parabolic subgroups of W, ordered by the opposite of the inclusion relation (called the face relation). It is a simplicial complex. If S_{1}, \ldots, S_{n} are the components of S, then Σ is naturally isomorphic to the product of the simplicial complexes $\Sigma\left(W_{S_{i}}, S_{i}\right)(1 \leq i \leq n)$. In particular, each simplex σ is of the form $w W_{I}$ for some $w \in W$ and $I \subseteq S$, and decomposes as a product $w_{1} W_{I_{1}} \times \cdots \times w_{n} W_{I_{n}}$ of simplices (where $w=w_{1} \ldots w_{n}$ is the decomposition of w in $W=W_{S_{1}} \times \cdots \times W_{S_{n}}$ and $\left.I_{i} \subseteq S_{i}\right)$. The type $\operatorname{typ}(\sigma)=\operatorname{typ}_{\Sigma}(\sigma)$ of σ is then the subset $I=\sqcup_{i=1}^{n} I_{i}$ of S.

The group W acts by left translation on Σ. This action is type-preserving, and the stabiliser of the simplex $w W_{I}$ coincides with the parabolic subgroup $w W_{I} w^{-1}$. The maximal simplices of Σ (i.e. those of the form $w W_{\varnothing}=\{w\}$ for some $w \in$ $W)$ are called chambers; the chamber $C_{0}:=\left\{1_{W}\right\}$ is called the fundamental chamber of Σ. The set $\operatorname{Ch}(\Sigma)$ of chambers of Σ can thus be W-equivariantly identified with the 0 -skeleton of the Cayley graph $\operatorname{Cay}(W, S)$ of (W, S). For $s \in$ S, we then call two chambers $C, D \in \operatorname{Ch}(\Sigma) s$-adjacent if they are s-adjacent in Cay (W, S) (and adjacent if they are s-adjacent for some $s \in S$). In other words, C and D are s-adjacent if $\{C, D\}=\left\{w C_{0}, w s C_{0}\right\}$ for some $w \in W$ or, alternatively, if C and D intersect in a panel (that is, a codimension 1 simplex) of type s.

The group $\operatorname{Aut}(\Sigma)$ of (simplicial) automorphisms of Σ decomposes as a semidirect product $\operatorname{Aut}(\Sigma)=\operatorname{Aut}_{0}(\Sigma) \rtimes \operatorname{Aut}\left(\Sigma, C_{0}\right)$, where $\operatorname{Aut}_{0}(\Sigma)$ is the group of typepreserving automorphisms of Σ and coincides with W, and where $\operatorname{Aut}\left(\Sigma, C_{0}\right)$ is the group of automorphisms of Σ stabilising C_{0} and is naturally isomorphic to $\operatorname{Aut}(W, S)$ (as an automorphism $\delta \in \operatorname{Aut}\left(\Sigma, C_{0}\right)$ permutes the panels of C_{0}, and hence also their types). We will always identify $\operatorname{Aut}\left(\Sigma, C_{0}\right)$ and $\operatorname{Aut}(W, S)$, so that $\operatorname{Aut}(\Sigma)=W \rtimes \operatorname{Aut}(W, S)$.

A gallery (from D_{0} to $\left.D_{k}\right)$ in Σ is a sequence $\Gamma=\left(D_{0}, D_{1}, \ldots, D_{k}\right)$ of chambers $D_{i} \in \operatorname{Ch}(\Sigma)$ such that for each $i \in\{1, \ldots, k\}$, the chamber D_{i-1} is s_{i}-adjacent to
D_{i} for some $s_{i} \in S$. The number $\ell(\Gamma):=k$ is called the length of Γ and the tuple $\operatorname{typ}(\Gamma):=\left(s_{1}, \ldots, s_{k}\right) \in S^{k}$ the type of Γ. If $\operatorname{typ}(\Gamma) \subseteq J^{k}$ for some $J \subseteq S$, we call Γ a J-gallery. The gallery Γ between D_{0} and D_{k} is minimal if it is of minimal length among all galleries from D_{0} to D_{k}. The chamber distance $\mathrm{d}_{\mathrm{Ch}}(C, D)$ between $C, D \in \operatorname{Ch}(\Sigma)$ is the length of a minimal gallery between C and D; thus, if $C=w C_{0}$ and $D=v C_{0}$ for some $w, v \in W$, then $\mathrm{d}_{\mathrm{Ch}}(C, D)=\ell_{S}\left(v^{-1} w\right)$. Similarly, if $u \in \operatorname{Aut}(\Sigma)$, say $u=w \delta$ for some $w \in W$ and $\delta \in \operatorname{Aut}\left(\Sigma, C_{0}\right)$, we set

$$
\ell_{S}(u):=\mathrm{d}_{\mathrm{Ch}}\left(C_{0}, u C_{0}\right)=\mathrm{d}_{\mathrm{Ch}}\left(C_{0}, w C_{0}\right)=\ell_{S}(w) .
$$

Each pair (C, D) of distinct adjacent chambers determines two subcomplexes $\Phi(C, D):=\left\{E \in \operatorname{Ch}(\Sigma) \mid \mathrm{d}_{\mathrm{Ch}}(E, C)<\mathrm{d}_{\mathrm{Ch}}(E, D)\right\}$ and $\Phi(D, C)$ of Σ, called (opposite) half-spaces, and the intersection of two opposite half-spaces is called a wall. The set of walls of Σ is denoted $\mathcal{W}=\mathcal{W}(\Sigma)$. It is in bijection with S^{W}, each wall m being the fixed-point set in Σ of a unique reflection $r_{m} \in S^{W}$: if $\Phi\left(w C_{0}, w s C_{0}\right)(w \in W, s \in S)$ is a half-space associated to m, then $r_{m}=w s w^{-1}$. Two chambers C, D are separated by a wall $m \in \mathcal{W}$ if they lie in different halfspaces associated to m. We denote by $\mathcal{W}(C, D)$ the set of walls separating the chambers C and D. Thus, $\mathrm{d}_{\mathrm{Ch}}(C, D)=|\mathcal{W}(C, D)|$. We also say that a gallery $\Gamma=\left(D_{0}, D_{1}, \ldots, D_{k}\right)$ from D_{0} to D_{k} crosses a wall m if m separates D_{i-1} from D_{i} for some i; if Γ is minimal, then Γ crosses m if and only if $m \in \mathcal{W}\left(D_{0}, D_{k}\right)$. Finally, two walls are parallel if their intersection is empty.

A residue in Σ is the set of chambers $R=R_{\sigma} \subseteq \operatorname{Ch}(\Sigma)$ (or, when convenient, the underlying subcomplex of Σ) that contain a given simplex σ of Σ. Alternatively, if σ is of type $J \subseteq S$ and C is any chamber containing σ (i.e. having σ as a face), then R coincides with the set $R_{J}(C)$ of chambers connected to C by a J-gallery. In this case, R is called a J-residue and $J=\operatorname{typ}(R)$ is its type. We then call R spherical if J is spherical. The residue $R_{J}:=R_{J}\left(C_{0}\right)$ is called standard. We call a wall $m \in \mathcal{W}$ a wall of the residue $R\left(\operatorname{or~of~}_{\operatorname{Stab}_{W}}(R)\right)$ if m separates two chambers of R (equivalently, if $r_{m} \in \operatorname{Stab}_{W}(R)$).

If R is a residue and $C \in \operatorname{Ch}(\Sigma)$, there is a unique chamber $D \in R$ at minimal (chamber) distance from C; it is callled the projection of C on R and is denoted $\operatorname{proj}_{R}(C)$. Alternatively, $\operatorname{proj}_{R}(C)$ is the unique chamber $D \in R$ such that C and D are not separated by any wall of R. It enjoys the following gate property:

$$
\mathrm{d}_{\mathrm{Ch}}(C, E)=\mathrm{d}_{\mathrm{Ch}}\left(C, \operatorname{proj}_{R}(C)\right)+\mathrm{d}_{\mathrm{Ch}}\left(\operatorname{proj}_{R}(C), E\right) \quad \text { for all chambers } E \in R .
$$

In particular, if $w C_{0} \in R$ for some $w \in \operatorname{Aut}(\Sigma)$, then $\operatorname{proj}_{R}\left(C_{0}\right)=w C_{0}$ if and only if w is of minimal length in $\operatorname{Stab}_{W}(R) w$. Note also that $w \operatorname{proj}_{R}(C)=\operatorname{proj}_{w R}(w C)$ for any $w \in \operatorname{Aut}(\Sigma)$.

Two residues R, R^{\prime} are parallel if $\left.\operatorname{proj}_{R}\right|_{R^{\prime}}$ is a bijection from R^{\prime} to R (with inverse $\left.\operatorname{proj}_{R^{\prime}}\right|_{R}$). In that case, $\mathrm{d}_{\mathrm{Ch}}\left(C, \operatorname{proj}_{R}(C)\right)=: \mathrm{d}_{\mathrm{Ch}}\left(R, R^{\prime}\right)$ is independent of the choice of chamber $C \in R^{\prime}$. Equivalently, R, R^{\prime} are parallel if they have the same set of walls, or else if $\operatorname{Stab}_{W}(R)=\operatorname{Stab}_{W}\left(R^{\prime}\right)$.
2.4. Davis complex. Basics on Davis complexes can be found in [Dav98] (see also [AB08, Example 12.43] and [Nos11]).

The Davis complex $X=|\Sigma(W, S)|_{\mathrm{CAT}(0)}$ of the Coxeter system (W, S) (also called the Davis realisation of Σ) is a proper complete CAT(0) cellular complex on which $\operatorname{Aut}(\Sigma)$ acts by cellular isometries. It can be constructed as follows. Let $\Sigma^{(1)}$ be the barycentric subdivision of Σ, that is, $\Sigma^{(1)}$ is the simplicial complex

Fig. 4. Example 2.1: Coxeter complex versus Davis complex
with vertex set the set of simplices of Σ, and with simplices the flags of simplices of Σ. Let $\Sigma_{s}^{(1)}$ denote the simplicial subcomplex of $\Sigma^{(1)}$ with vertex set the set of spherical simplices of Σ, that is, the set of simplices of Σ with finite stabiliser in W (for instance, chambers and panels are spherical simplices). Then X is the standard geometric realisation of $\Sigma_{s}^{(1)}$ (hence a cellular subcomplex of the barycentric subdivision of the geometric realisation of Σ), together with a suitably defined locally Euclidean CAT(0) metric d: $X \times X \rightarrow \mathbb{R}$.

In this paper, we will identify a spherical simplex $w W_{J}$ of Σ with the closed convex subset of X which is the union of the realisations of all its faces: in other words, we identify $w W_{J}$ with the (realisation of the) union of all flags of spherical simplices whose upper bound (for the face relation) is $w W_{J}$ - see also Example 2.1. Each point $x \in X$ is then contained in a unique minimal spherical simplex of Σ, called its support, and denoted $\operatorname{supp}(x)$. For any $x \in X$, we will then write R_{x} for the residue $R_{\operatorname{supp}(x)}$, that is, for the set of chambers containing x (equivalently, $\operatorname{supp}(x))$. Note that, by construction, the residue R_{x} is spherical.

The $\operatorname{Aut}(\Sigma)$-action on X is induced by the $\operatorname{Aut}(\Sigma)$-action on $\Sigma_{s}^{(1)}$. Note that the stabiliser $\operatorname{Stab}_{W}(x)=\operatorname{Stab}_{W}(\operatorname{supp}(x))$ of any point $x \in X$ is a spherical (i.e. finite) parabolic subgroup of W.

We also identify walls (and half-spaces) of Σ with their realisation in X : in other words, the walls in X are the fixed-point sets in X of the reflections of W. The set \mathcal{W} of walls is locally finite, in the sense that any $x \in X$ has a neighbourhood meeting only finitely many walls (see e.g. [Nos11, §3.1]). For any wall $m \in \mathcal{W}$, the set $X \backslash m$ has two connected components (namely, the two half-spaces associated to m), which are both convex (see [Nos11, Lemma 2.3.1]). The wall m itself is convex in the following strong sense: if m intersects a geodesic segment (or line) L in at least two points, it entirely contains L (see [Nos11, Lemma 2.2.6]).

Example 2.1. Consider the Coxeter group $W=\left\langle s_{1}, s_{2}, s_{3} \mid s_{1}^{2}=s_{2}^{2}=s_{3}^{2}=1\right\rangle$. Its Coxeter complex Σ is the tessellation of the hyperbolic disk by congruent equilateral ideal triangles, as pictured on Figure 4(a). The spherical simplices of Σ are the chambers (i.e. triangles) and panels (i.e. edges), and hence $\Sigma_{s}^{(1)}$ is the simplicial tree pictured on Figure 4(b), with vertices the barycenters of all
triangles and edges of Σ. The Davis complex is then a suitable metric realisation of this tree. We identify the fundamental chamber C_{0} (pictured on Figure 4(a)) with the thick blue tripod pictured on Figure 4(b), that is, with the intersection of all (closed) half-spaces containing the barycenter of C_{0}. The walls are in this case just the barycenters of the edges, and half-spaces are half-trees.
2.5. Visual boundary and actions on $\operatorname{CAT}(0)$-spaces. Basics on $\operatorname{CAT}(0)$ spaces can be found in [BH99].

Given two points x, y of the Davis complex $X=|\Sigma(W, S)|_{\mathrm{CAT}(0)}$, we denote by $[x, y]$ the unique geodesic segment from x to y.

A geodesic ray $r \subseteq X$ is an isometrically embedded copy of \mathbb{R}_{+}in X. Two geodesic rays r, r^{\prime} are equivalent if they are at bounded Hausdorff distance from one another, that is, if they lie in a tubular neighbourhood of one another. The visual boundary ∂X of X is the set of equivalence classes of geodesic rays in X. If $x \in X$ and $\eta \in \partial X$, we write $[x, \eta)$ for the unique geodesic ray r from x in the direction η (i.e., such that $r \in \eta$). Note that the $\operatorname{Aut}(\Sigma)$-action on X induces an $\operatorname{Aut}(\Sigma)$-action on ∂X.

For $w \in \operatorname{Aut}(\Sigma)$, let

$$
|w|:=\inf \{\mathrm{d}(x, w x) \mid x \in X\}
$$

denote the translation length of w, and let

$$
\operatorname{Min}(w):=\{x \in X|\mathrm{~d}(x, w x)=|w|\} \subseteq X
$$

denote its minimal displacement set. By a classical result of M. Bridson ([Bri99]), $\operatorname{Min}(w)$ is a nonempty closed convex subset of X for all $w \in \operatorname{Aut}(\Sigma)$. More precisely, if w has finite order, then $|w|=0$ and $\operatorname{Min}(w)$ is the fixed-point set of w : this follows from the fact (see [AB08, Theorem 11.26]) that any nonempty bounded subset $C \subseteq X$ (such as the $\langle w\rangle$-orbit of some $x \in X$) has a unique circumcenter $x_{C} \in X$ (with $x_{C} \in C$ if C is convex, see [AB08, Theorem 11.27]), whose definition ([AB08, Definition 11.25])) only depends on the metric d. On the other hand, if w has infinite order, then $|w|>0$ (for otherwise w would fix a point $x \in X$, contradicting the fact that point-stabilisers are finite), and $\operatorname{Min}(w)$ is the union of all w-axes, where a w-axis is a geodesic line stabilised by w (on which w then acts as a translation of step $|w|)$.

If Z is a nonempty closed convex subset of X, then for any $x \in X$ there is a unique $y \in Z$ minimising the distance $\mathrm{d}(x, y)$, called the CAT(0)-projection of x on Z. As a consequence, every nonempty closed convex subset of X that is stabilised by w intersects $\operatorname{Min}(w)$ nontrivially (cf. [BH99, II.6.2(4)]).

Recall from $\S 2.4$ that if w has infinite order and $m \in \mathcal{W}$ is a wall intersecting a w-axis L, then either $L \subseteq m$ or $L \cap m$ is a single point; in the latter case, the wall m is called w-essential, and intersects any w-axis in a single point (see e.g. [CM13, Lemma 2.5]). Note that a w-essential wall always exists (see for instance [CM13, Lemma 2.7]). We further call a point $x \in \operatorname{Min}(w) w$-essential if it does not lie on any w-essential wall, or equivalently, if $\operatorname{Fix}_{W}(x)=\operatorname{Fix}_{W}(L)$ where L is the w-axis through x. In this case, we call the (spherical) residue R_{x} a w-residue. Note that the walls of R_{x} are precisely the walls containing L, and hence w normalises $\operatorname{Stab}_{W}\left(R_{x}\right)$ (equivalently, R_{x} and $w R_{x}$ are parallel residues).

Finally, for w of infinite order, we let $\eta_{w} \in \partial X$ denote the direction of its axes: for any w-axis L and any $x \in L$, the geodesic ray based at x, contained in L and containing $w x$ is a representative for η_{w}.
2.6. Transversal complex. Fix a direction $\eta \in \partial X$ of the Davis complex $X=$ $|\Sigma(W, S)|_{\operatorname{Cat}(0)}$. Let \mathcal{W}^{η} denote the set of walls $m \in \mathcal{W}$ in the direction η, namely, such that $[x, \eta) \subseteq m$ for some (equivalently, any) $x \in m$. Let $W^{\eta} \subseteq W$ be the reflection subgroup of W generated by the reflections r_{m} with $m \in \mathcal{W}^{\eta}$. Given a chamber $C \in \operatorname{Ch}(\Sigma)$, we write $C(\eta)$ for the connected component of $X \backslash \bigcup_{m \in \mathcal{W}^{n}} m$ containing C.

By a classical result of Deodhar (see [Deo89]), (W^{η}, S^{η}) is itself a Coxeter system, where $S^{\eta} \subseteq S^{W}$ is the (finite) set of reflections r_{m} whose wall m delimits $C_{0}(\eta)$. The poset Σ^{η} obtained from the tessellation of X by the walls in \mathcal{W}^{η} is then naturally isomorphic to $\Sigma\left(W^{\eta}, S^{\eta}\right)$, and we call it the transversal complex associated to Σ in the direction η (see also [CL11, Section 5] and [Mar19, Appendix A]). Its set of walls is \mathcal{W}^{η}. For a chamber $C \in \operatorname{Ch}(\Sigma)$, we will write C^{η} for the chamber $C(\eta)$ of Σ^{η} viewed as an (abstract) cell of the cellular complex Σ^{η}, rather than as a subset of X. The fundamental chamber of Σ^{η} is then C_{0}^{η}.

The assignment $C \in \operatorname{Ch}(\Sigma) \mapsto C^{\eta} \in \operatorname{Ch}\left(\Sigma^{\eta}\right)$ induces a surjective morphism of posets $\pi_{\Sigma^{\eta}}: \Sigma \rightarrow \Sigma^{\eta}$. The stabiliser $\operatorname{Aut}(\Sigma)_{\eta}:=\operatorname{Stab}_{\operatorname{Aut}(\Sigma)}(\eta)$ of η in $\operatorname{Aut}(\Sigma)$ (and its subgroup $\left.W_{\eta}:=\operatorname{Stab}_{W}(\eta)=\operatorname{Aut}(\Sigma)_{\eta} \cap W\right)$ stabilises \mathcal{W}^{η}, and hence acts by cellular automorphisms on Σ^{η}. We let

$$
\pi_{\eta}: \operatorname{Aut}(\Sigma)_{\eta} \rightarrow \operatorname{Aut}\left(\Sigma^{\eta}\right): w \mapsto w_{\eta}
$$

denote the corresponding action map. Thus, viewing W^{η} as a subgroup of both W_{η} and $\operatorname{Aut}\left(\Sigma^{\eta}\right)$, the map π_{η} is the identity on W^{η}, and

$$
\begin{equation*}
\pi_{\Sigma^{\eta}}(w C)=w_{\eta} C^{\eta} \quad \text { for all } w \in \operatorname{Aut}(\Sigma)_{\eta} \text { and } C \in \operatorname{Ch}(\Sigma) \tag{2.1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
w v w^{-1}=w_{\eta} v w_{\eta}^{-1} \quad \text { for all } w \in \operatorname{Aut}(\Sigma)_{\eta} \text { and } v \in W^{\eta} \tag{2.2}
\end{equation*}
$$

Indeed, if $x \in W^{\eta}$ is such that $x^{-1} w_{\eta} C_{0}^{\eta}=C_{0}^{\eta}$, then $x^{-1} w$ stabilises $C_{0}(\eta)$ and hence permutes the walls delimiting $C_{0}(\eta)$. In other words, $x^{-1} w$ normalises S^{η}, and its conjugation action on S^{η} is the same as that of $x^{-1} w_{\eta}=\pi_{\eta}\left(x^{-1} w\right)$. Therefore, $w s w^{-1}=x\left(x^{-1} w s w^{-1} x\right) x^{-1}=x\left(x^{-1} w_{\eta} s w_{\eta}^{-1} x\right) x^{-1}=w_{\eta} s w_{\eta}^{-1}$ for all $s \in S^{\eta}$, yielding (2.2).

Note also that for any two chambers $C, D \in \operatorname{Ch}(\Sigma)$, the chamber distance $\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(C^{\eta}, D^{\eta}\right)$ between C^{η} and D^{η} in Σ^{η} can be computed as

$$
\begin{equation*}
\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(C^{\eta}, D^{\eta}\right)=\left|\mathcal{W}(C, D) \cap \mathcal{W}^{\eta}\right| \tag{2.3}
\end{equation*}
$$

Finally, note that if $v \in \operatorname{Aut}(\Sigma)$, the orbit map $X \rightarrow X: x \mapsto v^{-1} x$ induces a cellular isomorphism $\phi_{v}: \Sigma^{\eta} \rightarrow \Sigma^{v^{-1} \eta}$ mapping the chamber C^{η} to the chamber $\left(v^{-1} C\right)^{v^{-1} \eta}$, that is, such that

$$
\begin{equation*}
\pi_{\Sigma^{v^{-1} \eta}}(C)=\phi_{v} \pi_{\Sigma^{\eta}}(v C) \quad \text { for all } C \in \operatorname{Ch}(\Sigma) . \tag{2.4}
\end{equation*}
$$

In other words, if we view $\Sigma^{\eta}, \Sigma^{v^{-1} \eta}$ as tessellations of X, we have

$$
\begin{equation*}
\Sigma^{v^{-1} \eta}=v^{-1} \Sigma^{\eta} \tag{2.5}
\end{equation*}
$$

In particular, if $\pi_{\Sigma^{\eta}}\left(v C_{0}\right)=C_{0}^{\eta}$, then $\phi_{v}\left(C_{0}^{\eta}\right)=C_{0}^{v^{-1} \eta}$ (or equivalently, $C_{0}\left(v^{-1} \eta\right)=$ $v^{-1} C_{0}(\eta)$), and hence

$$
\begin{equation*}
S^{v^{-1} \eta}=v^{-1} S^{\eta} v \quad \text { for all } v \in \operatorname{Aut}(\Sigma) \text { with } \pi_{\Sigma^{\eta}}\left(v C_{0}\right)=C_{0}^{\eta} \tag{2.6}
\end{equation*}
$$

3. Cyclic shift classes

Throughout this section, we fix a Coxeter system (W, S). The purpose of this short section is to introduce the basic notations and terminology related to cyclic shift classes.

Definition 3.1. For $v \in W$, we denote by $\kappa_{v}: W \rightarrow W: w \mapsto v^{-1} w v$ the conjugation by v.
Definition 3.2. Given $w \in \operatorname{Aut}(\Sigma)$, we denote by $\mathcal{O}_{w}:=\left\{v^{-1} w v \mid v \in W\right\}$ its conjugacy class and by $\mathcal{O}_{w}^{\min } \subseteq \mathcal{O}_{w}$ the set of conjugates of w of minimal length. We say that $w, w^{\prime} \in \operatorname{Aut}(\Sigma)$ are conjugate in W if $w^{\prime} \in \mathcal{O}_{w}$.

We emphasise that \mathcal{O}_{w} is in general distinct from the conjugacy class of w in $\operatorname{Aut}(\Sigma)$, which coincides with $\bigcup_{\delta \in \operatorname{Aut}(W, S)} \delta \mathcal{O}_{w} \delta^{-1}$.
Definition 3.3. Let $w \in \operatorname{Aut}(\Sigma)$. We call $v \in \operatorname{Aut}(\Sigma)$ a cyclic shift of w if $\ell_{S}(v) \leq \ell_{S}(w)$ and $v=s w s$ for some $s \in S$; in this case, we write $w \xrightarrow{s} v$. For $v \in \operatorname{Aut}(\Sigma)$, we further write $w \rightarrow v$ if $w=w_{0} \xrightarrow{s_{1}} w_{1} \xrightarrow{s_{2}} \ldots \xrightarrow{s_{k}} w_{k}=v$ for some $w_{i} \in \operatorname{Aut}(\Sigma)$ and $s_{i} \in S$.

We define the cyclic shift class of w as the set

$$
\operatorname{Cyc}(w):=\{v \in \operatorname{Aut}(\Sigma) \mid w \rightarrow v\} \subseteq \mathcal{O}_{w}
$$

of elements $v \in \operatorname{Aut}(\Sigma)$ that can be obtained from w by a sequence of cyclic shifts. We also let $\mathrm{Cyc}_{\text {min }}(w)$ denote the set of elements of minimal length in $\mathrm{Cyc}(w)$. If $w \in W$, [Mar21, Theorem A(1)] implies that

$$
\begin{equation*}
\operatorname{Cyc}_{\min }(w)=\operatorname{Cyc}(w) \cap \mathcal{O}_{w}^{\min } \tag{3.1}
\end{equation*}
$$

(as noticed in Remark 6.9, this in fact also holds for $w \in \operatorname{Aut}(\Sigma)$). We call w cyclically reduced if $w \in \mathcal{O}_{w}^{\min }$.

We emphasise that the notion of "cyclic shift" used here (and which is better suited for our purposes) is slightly different from the one used for instance in [GP00] or in [HN12] (but it is the same as in [Mar21]), as we do not require that cyclic shifts have the same length. In particular, $\operatorname{Cyc}(w)$ is an equivalence class if and only if w is cyclically reduced.

Remark 3.4. The name "cyclic shift" comes from the following equivalent definition: if $w, v \in W$ are distinct and $s \in S$, then $w \xrightarrow{s} v$ if and only if there is a reduced expression $w=s_{1} \ldots s_{k}\left(s_{i} \in S\right)$ of w such that $v \in\left\{s_{2} \ldots s_{k} s_{1}, s_{k} s_{1} \ldots s_{k-1}\right\}$ (see [Mar21, Lemma 3.5(1)]).

Moreover, if $w \in W$, the equality (3.1) implies that w is cyclically reduced if and only if its length cannot be decreased by a sequence of cyclic shifts.
Lemma 3.5. Let $w \in \operatorname{Aut}(\Sigma)$. If $s \in S$ is such that $\ell_{S}(s w s) \leq \ell_{S}(w)$, then $\operatorname{supp}(s w s) \subseteq \operatorname{supp}(w)$. In particular, if $w \rightarrow v$ for some $v \in \operatorname{Aut}(\Sigma)$, then $\operatorname{supp}(v) \subseteq \operatorname{supp}(w)$, and $\operatorname{supp}(v)=\operatorname{supp}(w)$ in case $\ell_{S}(v)=\ell_{S}(w)$.

Proof. Write $w=u \delta$ with $u \in W$ and $\delta \in \operatorname{Aut}(W, S)$. Then sws $=$ sut δ, where $t:=\delta(s) \in S$. By assumption, $\ell_{S}(s u t) \leq \ell_{S}(u)$, and we may assume that sut $\neq u$ (that is, sws $\neq s$). Then [AB08, Condition (F) page 79] implies that either $\ell_{S}(s u)<\ell_{S}(u)$ or $\ell_{S}(u t)<\ell_{S}(u)$. The exchange condition (see [AB08, Condition (E) page 79]) then implies that u has a reduced expression that either starts with s or ends with t, and hence that $\operatorname{supp}(w) \supseteq\{s, t\}$. The lemma follows.

Remark 3.6. Let $w \in \operatorname{Aut}(\Sigma)$. Write $w=u \delta$ with $u \in W$ and $\delta \in \operatorname{Aut}(W, S)$. Then for any $x \in W$, we have $x^{-1} w x=x^{-1} u \delta(x) \cdot \delta$. In particular, $w^{\prime}=u^{\prime} \delta^{\prime}$ (with $u^{\prime} \in W$ and $\delta^{\prime} \in \operatorname{Aut}(W, S)$) and $w=u \delta$ are conjugate if and only if $\delta=\delta^{\prime}$ and u, u^{\prime} are δ-conjugate (see $\S 2.2$). Similarly, the notation $u \rightarrow_{\delta} u^{\prime}$ used in other papers, such as [He07, §3.1], is equivalent to $u \delta \rightarrow u^{\prime} \delta$, and we set $\operatorname{Cyc}_{\delta}(u):=\left\{u^{\prime} \in W \mid u \rightarrow_{\delta} u^{\prime}\right\}=\operatorname{Cyc}(u \delta) \delta^{-1}$. We also recall from $\S 2.2$ that we $\operatorname{set} \operatorname{supp}(w):=\operatorname{supp}_{\delta}(u)=\bigcup_{n \in \mathbb{N}} \delta^{n}(\operatorname{supp}(u))$.

4. Elements of finite order

Throughout this section, we fix a Coxeter system (W, S). The purpose of this section is to establish the main ingredients for the proof of Proposition A.
4.1. Preliminaries. In this subsection, we recall some basic facts, mainly concerning finite Coxeter groups (see e.g. [AB08, Chapter 1 and §2.5] or [Deo82]).

Crystallographic

Fig. 5. Dynkin/Coxeter diagrams of finite type.
4.1.1. Dynkin/Coxeter diagrams of finite type. If the Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$ of (W, S) satisfies $m_{s t} \in\{2,3,4,6, \infty\}$ for all $s, t \in S$, then W is said to be of crystallographic type. If W is of crystallographic finite type, then W is the Weyl group of an irreducible reduced root system in the sense of [Bou68, Chapter 6], and is encoded by its Dynkin diagram Γ_{S} (see [Bou68, Ch. 6, $\S 4$, nr 2]), of one of the types $A_{\ell}(\ell \geq 1), B_{\ell}(\ell \geq 3), C_{\ell}(\ell \geq 2), D_{\ell}(\ell \geq 4), E_{6}, E_{7}, E_{8}, F_{4}$, and G_{2}, as pictured on Figure 5 (if Γ_{S} is of type X_{ℓ}, it has ℓ vertices). Note that the Coxeter diagram $\Gamma_{S}^{\text {Cox }}$ can be obtained from Γ_{S} by replacing each double edge (resp. triple edge) with an edge labelled 4 (resp. 6). The remaining possible Coxeter diagrams of finite type (of type H_{3}, H_{4}, and $I_{2}(m)$ for $m=5$ or $m \geq 7$) are also pictured on Figure 5.
4.1.2. The canonical linear representation. Let V be a real vector space with basis $\left\{e_{s} \mid s \in S\right\}$ in bijection with S. Endow V with the symmetric bilinear form $B: V \times V \rightarrow \mathbb{R}$ defined by $B\left(e_{s}, e_{t}\right)=-\cos \left(\pi / m_{s t}\right)$ for $s, t \in S$, where $\left(m_{s t}\right)_{s, t \in S}$ is the Coxeter matrix associated to (W, S). For each $s \in S$, consider the orthogonal (with respect to B) reflection

$$
\rho_{s}: V \rightarrow V: v \mapsto v-2 B\left(e_{s}, v\right) e_{s} .
$$

Then there is an injective group morphism $\rho: W \rightarrow \mathrm{GL}(V)$, called the canonical linear representation of W, defined by the assignment $s \mapsto \rho_{s}$ for each $s \in S$. For $w \in W$ and $v \in V$, we will also simply write $w(v):=\rho(w) v$.

Let $\Pi:=\left\{e_{s} \mid s \in S\right\}$ be the set of simple roots, and $\Phi:=W(\Pi)$ be the set of roots of V. Denoting by $\Phi^{+}:=\Phi \cap \sum_{s \in S} \mathbb{R}_{\geq 0} e_{s}$ and $\Phi^{-}:=-\Phi^{+}$the set of positive and negative roots, we have $\Phi=\Phi^{+} \cup \Phi^{-}$. For $\alpha \in \Phi$, we will then write $\alpha>0$ or $\alpha<0$, depending on whether α is positive or negative. For $I \subseteq S$, we set $\Pi_{I}:=\left\{e_{s} \mid s \in I\right\}, \Phi_{I}:=\Phi \cap \sum_{i \in I} \mathbb{R} e_{i}=W_{I}\left(\Pi_{I}\right)$, and $\Phi_{I}^{+}:=\Phi_{I} \cap \Phi^{+}$.

Lemma 4.1. Let $v, v^{\prime} \in W$ and $s \in S$. Then:
(1) $v\left(e_{s}\right)>0 \Longleftrightarrow \ell(v s)>\ell(v)$.
(2) $\Phi(v):=\left\{\alpha \in \Phi^{+} \mid v(\alpha)<0\right\}$ is finite, and if $\Phi(v)=\Phi\left(v^{\prime}\right)$ then $v=v^{\prime}$.
4.1.3. The Coxeter complex of a finite Coxeter group. Assume that W is finite. Then the bilinear form B is positive definite. For each $s \in S$, consider the ρ_{s}-fixed hyperplane $H_{s}:=\left\{v \in V \mid B\left(e_{s}, v\right)=0\right\}$ in V. Consider also the simplicial cone $C:=\left\{v \in V \mid B\left(e_{s}, v\right)>0 \forall s \in S\right\}$ in V. Finally, let $\Sigma(W, V)$ be the cellular complex induced by the tessellation of V by the hyperplanes in $\mathcal{H}:=\left\{w H_{s} \mid w \in W, s \in S\right\}$ (see e.g. [AB08, §1.4,1.5]). Then there is a natural W-equivariant cellular isomorphism $\Sigma(W, V) \rightarrow \Sigma(W, S)$ mapping C to C_{0} (and identifying \mathcal{H} with the set of walls of $\Sigma)$.

Two chambers D, E of Σ are called opposite if $E=-D$ in $\Sigma(W, V)$. Note that if W is arbitrary (not necessarily finite), then a residue R of Σ of spherical type $I \subseteq S$ is isomorphic to the Coxeter complex $\Sigma\left(W_{I}, I\right)$, and it thus also makes sense to call two chambers D, E of R opposite (in R).
4.1.4. Opposition in finite Coxeter groups. Let $I \subseteq S$ be a spherical subset. Then W_{I} has a unique element of maximal length, which we denote $w_{0}(I)$. It has order 2, and normalises I : the map $\mathrm{op}_{I}: W_{I} \rightarrow W_{I}: x \mapsto w_{0}(I) x w_{0}(I)$ restricts to a diagram automorphism $\mathrm{op}_{I}: I \rightarrow I$ of $\left(W_{I}, I\right)$. More precisely, in the canonical linear representation of W, we have

$$
\begin{equation*}
w_{0}(I)\left(e_{s}\right)=-e_{\mathrm{op}_{I}(s)} \quad \text { for all } s \in I \tag{4.1}
\end{equation*}
$$

Note that $\mathrm{op}_{I}: I \rightarrow I$ preserves each component of I, and hence can be computed from the following lemma.

Lemma 4.2 ([AB08, §5.7.4]). Assume that (W, S) is of irreducible finite type X. Then $\mathrm{op}_{S}: S \rightarrow S$ is nontrivial if and only if $X=A_{\ell}(\ell \geq 2)$, or $X=D_{\ell}$ with ℓ odd, or $X=E_{6}$, or $X=I_{2}(\ell)$ with ℓ odd. In those cases, op_{S} is the unique nontrivial automorphism of $\Gamma_{S}^{\text {Cox }}$.

Geometrically, if $R_{I}=R_{I}\left(C_{0}\right) \subseteq \Sigma$ is the standard residue of type I, then $w_{0}(I) C_{0}$ is the unique chamber opposite C_{0} in R_{I}.
4.1.5. Normaliser of a parabolic subgroup. For a subset $I \subseteq S$, we denote by $N_{W}\left(W_{I}\right)$ the normaliser of W_{I} in W, and we set $N_{I}:=\left\{w \in W \mid w \Pi_{I}=\Pi_{I}\right\}$.

Lemma 4.3. Let $I \subseteq S$. Then $N_{W}\left(W_{I}\right)=W_{I} \rtimes N_{I}$. Moreover,

$$
\ell_{S}\left(w_{I} n_{I}\right)=\ell_{S}\left(w_{I}\right)+\ell_{S}\left(n_{I}\right) \quad \text { for all } w_{I} \in W_{I} \text { and } n_{I} \in N_{I} .
$$

Proof. This follows from [Lus77, Lemma 5.2] (see also [Kra09, Proposition 3.1.9]).

Remark 4.4. Lemma 4.3 remains valid if we replace W by $\operatorname{Aut}(\Sigma)$ and N_{I} by

$$
\widetilde{N}_{I}:=\left\{w \in \operatorname{Aut}(\Sigma) \mid w \Pi_{I}=\Pi_{I}\right\} .
$$

Indeed, for $w \in \operatorname{Aut}(\Sigma)$ normalising W_{I}, we let $w_{I} \in W_{I}$ be such that $w_{I} C_{0}=$ $\operatorname{proj}_{R_{I}}\left(w C_{0}\right)$ and set $n_{I}:=w_{I}^{-1} w$. Then $n_{I} \in N_{\text {Aut }(\Sigma)}\left(W_{I}\right)$ is of minimal length in $W_{I} n_{I}$ by the gate property, so that [Kra09, Proposition 3.1.6] implies that $n_{I} \in \widetilde{N}_{I}$ (i.e. writing $n_{I}=x \delta$ with $x \in W$ and $\delta \in \operatorname{Aut}(W, S)$, we have $x W_{\delta(I)} x^{-1}=W_{I}$ and hence $x \delta\left(\Pi_{I}\right)=x \Pi_{\delta(I)}=\Pi_{I}$ by loc. cit.). The conclusions of Lemma 4.3 then follow from the gate property.

Lemma 4.5. Let $I, J \subseteq S$ and $a \in W$ be of minimal length in $a W_{I}$ and such that $a W_{I} a^{-1}=W_{J}$. Then $a \Pi_{I}=\Pi_{J}$. In particular, $a I a^{-1}=J$ and a is of minimal length in $W_{J} a W_{I}$.

Proof. See [Kra09, Proposition 3.1.6].
4.2. Conjugacy classes in finite Coxeter groups. In this subsection, we formulate consequences of the properties (P1), (P2) and (P3) of conjugacy classes in finite Coxeter groups described in [He07, Theorem 7.5] (see also [GP00, Theorem 3.2.7] for the untwisted case). Remark 3.6 serves as a dictionary between our notations and the ones of [He07].
Definition 4.6. Let $w \in \operatorname{Aut}(\Sigma)$. Its conjugacy class \mathcal{O}_{w} in W is called cuspidal if $\operatorname{supp}(v)=S$ for every $v \in \mathcal{O}_{w}^{\min }$. Alternatively, writing $w=u \delta$ with $u \in W$ and $\delta \in \operatorname{Aut}(W, S)$, we call the δ-conjugacy class $\mathcal{O}=\left\{x^{-1} u \delta(x) \mid x \in W\right\}$ of u in W cuspidal if $\mathcal{O} \delta=\mathcal{O}_{w}$ is cuspidal, that is, if $\operatorname{supp}_{\delta}(v)=S$ for every $v \in \mathcal{O}^{\text {min }}$, where $\mathcal{O}^{\text {min }}$ is the set of minimal length elements in \mathcal{O}.

Proposition 4.7. Assume that W is finite. Let $w \in \operatorname{Aut}(\Sigma)$ be cyclically reduced and such that $\operatorname{supp}(w)=S$. Then the following assertions hold:
(1) \mathcal{O}_{w} is cuspidal.
(2) $\mathcal{O}_{w}^{\min }=\operatorname{Cyc}(w)$.

Proof. In the language and notations of [He07] and [GKP00], the lemma can be reformulated as follows. Let $\delta \in \operatorname{Aut}(W, S)$ and $w \in W$ be such that $\operatorname{supp}_{\delta}(w)=S$ and w is of minimal length in its δ-conjugacy class \mathcal{O}. Then:
(1) \mathcal{O} is cuspidal, that is, $\operatorname{supp}_{\delta}(v)=S$ for any $v \in \mathcal{O}^{\text {min }}$.
(2) $\mathcal{O}^{\text {min }}$ coincides with $\operatorname{Cyc}_{\delta}(w)=\left\{v \in W \mid w \rightarrow_{\delta} v\right\}$.

If W is irreducible, this follows from (P1) and (P2) in [He07, Theorem 7.5]. Let now W be arbitrary. Reasoning componentwise, there is no loss of generality in assuming that S coincides with the $\langle\delta\rangle$-orbit of a component J of S, say $S=$ $\bigcup_{i=0}^{r-1} \delta^{i}(J)$ with $r \geq 1$ minimal. Let $v \in \mathcal{O}^{\text {min }}$. We have to show that $\operatorname{supp}_{\delta}(v)=S$ and that $w \rightarrow_{\delta} v$.

Up to performing $(\delta$ - $)$ cyclic shifts, we may assume by [GKP00, Lemma 2.7(a)] that $w, v \in W_{J}$ (see Lemma 3.5). By assumption, $\operatorname{supp}(w)=J$, and hence also $\operatorname{supp}_{\delta^{r}}(w)=J$. Since the δ^{r}-conjugacy class of w in W_{J} is contained in the δ conjugacy class of w in W (i.e. $x^{-1} w \delta^{r}(x)=y^{-1} w \delta(y)$ with $y:=x \delta(x) \ldots \delta^{r-1}(x)$, for any $x \in W_{J}$), certainly w is of minimal length in its δ^{r}-conjugacy class in W_{J}. As w, v are δ^{r}-conjugate in W_{J} by [GKP00, Lemma 2.7(b)], the irreducible case (applied to $\left.\left(W_{J}, \delta^{r}\right)\right)$ implies that $\operatorname{supp}_{\delta^{r}}(v)=J$ and that $w \rightarrow_{\delta^{r}} v$. Hence, $\operatorname{supp}_{\delta}(v)=S$, and $w \rightarrow_{\delta} v$ by [GKP00, Lemma 2.7(c)], as desired.

Contrary to (P1) and (P2), the property (P3) in [He07, Theorem 7.5] does not generalise to arbitrary (not necessarily irreducible) finite Coxeter groups. The following proposition, which will be sufficient for our purpose, deals with an important particular case of (P3), valid in arbitrary finite Coxeter groups.

Proposition 4.8. Assume that W is finite. Let $\delta, \sigma \in \operatorname{Aut}(W, S)$ be commuting diagram automorphisms. Assume that σ stabilises every component I of S such that one of the following holds:
(C1) I is not of type A_{m} for some $m \geq 1$;
(C2) $\left.\delta^{r}\right|_{I} \neq \mathrm{id}$, where $r \geq 1$ is minimal such that $\delta^{r}(I)=I$.
Assume, moreover, that σ is the identity on each component I of S of type F_{4}. Let $w \in W$ be such that the δ-conjugacy class of w in W is cuspidal. Then $\sigma(w \delta)$ and $w \delta$ are conjugate in W.

Proof. (1) Assume first that W is irreducible. If $|S|=2$, say $S=\{s, t\}$, then either $\sigma \in\{\mathrm{id}, \delta\}$, in which case $\sigma(w \delta)=w \delta$ (if $\sigma=\mathrm{id}$) or $\sigma(w \delta)=w^{-1} \cdot w \delta \cdot w$ (if $\sigma=\delta$), or else $\delta=$ id and σ permutes s and t, in which case w is of the form $(s t)^{m}$ or $(t s)^{m}$ for some $m \in \mathbb{N}$ (because its conjugacy class is cuspidal) and $\sigma(w)=s w s$.

Assume now that $|S| \geq 3$. In this case, the proposition follows from $[\mathrm{He} 07$, Theorem 7.5(P3)]: indeed, in the notations of loc. cit., we have $l_{i, \delta}(w)=l_{i, \delta}(\sigma(w))$ for each $i \in S$, as $\sigma(s)$ and s are conjugate for every $s \in S$ (i.e. if $\sigma(s) \neq s$, then W is not of type F_{4} by assumption, and hence $\sigma(s)$ and s are joined by an edgepath with odd labels in $\left.\Gamma_{S}^{\text {Cox }}\right)$. Similarly, viewing w, δ, σ as elements of $\operatorname{GL}(V)$ as in $[\mathrm{He} 07, \S 7.1]$ (so that σ is a permutation matrix), we have
$p_{\sigma(w), \delta}(q)=\operatorname{det}\left(q \operatorname{id}-\sigma w \delta \sigma^{-1}\right)=\operatorname{det}\left(\sigma(q \operatorname{id}-w \delta) \sigma^{-1}\right)=\operatorname{det}(q \operatorname{id}-w \delta)=p_{w, \delta}(q)$, as desired.
(2) We now deal with the general case. Reasoning componentwise, there is no loss of generality in assuming that S coincides with the $\langle\delta, \sigma\rangle$-orbit of a component J of S. Let $r \geq 1$ be minimal such that $\delta^{r}(J)=J$. Then the components $\delta^{i}(J)$ ($0 \leq i<r$) of S are cyclically permuted by δ.
(2.1) Assume first that $\sigma(J)=\delta^{j}(J)$ for some $j \in\{0, \ldots, r-1\}$. Since δ, σ commute, σ then stabilises $\left\{\delta^{i}(J) \mid 0 \leq i<r\right\}$, and hence $S=\bigcup_{0 \leq i<r} \delta^{i}(J)$ by assumption. Up to conjugating $w \delta$ in W, there is then no loss of generality in assuming that $w \in W_{J}$ (see [GKP00, Lemma 2.7(a)]).

If $j=0$, that is, $\sigma(J)=J$, we are done by (1): indeed, since the δ^{r}-conjugacy class of w in W_{J} is cuspidal (i.e. $\operatorname{supp}\left(w \delta^{r}\right) \supseteq \operatorname{supp}(w)=J$), (1) implies that $\sigma(w)=x^{-1} w \delta^{r}(x)$ for some $x \in W_{J}$, and hence $\sigma(w \delta)=y^{-1} w \delta y$ with $y:=$ $x \delta(x) \ldots \delta^{r-1}(x)$.

Suppose now that $\sigma(J) \neq J$. By (C1), J is of type A_{m} for some $m \geq 1$. In particular, $\left.\delta^{-j} \sigma\right|_{J} \in\left\{\mathrm{id}, \mathrm{op}_{J}\right\}$.

If $\left.\sigma\right|_{J}=\left.\delta^{j}\right|_{J}$, then $\sigma(w \delta)=\delta^{j}(w) \delta=a^{-1} w \delta a$, where $a:=w \delta(w) \ldots \delta^{j-1}(w)$ and we are done. On the other hand, if $\left.\sigma\right|_{J}=\left.\delta^{j}\right|_{J} \mathrm{op}_{J}$, then the same argument implies that $\sigma(w \delta)=\delta^{j}\left(\mathrm{op}_{J}(w)\right) \delta$ is conjugate to $\mathrm{op}_{J}(w) \delta$. It then remains to see that $\mathrm{op}_{J}(w)$ is δ-conjugate to w. But this follows as before from the fact that $\mathrm{op}_{J}(w)=w_{0}(J) w w_{0}(J)$ is δ^{r}-conjugate to w in W_{J}.
(2.2) Assume now that $\sigma(J) \notin\left\{\delta^{i}(J) \mid 0 \leq i<r\right\}$. Let $s \geq 1$ be minimal such that $\sigma^{s}(J)=J$ (thus, $s \geq 2$). Then by assumption, $S=\amalg_{0 \leq i<r}^{0 \leq i<s} \sigma^{j} \delta^{i}(J)$.

As in (2.1), up to conjugating $w \delta$ in W, there is no loss of generality in assuming that $w=w_{0} \ldots w_{s-1} \in \prod_{0 \leq j<s} W_{\sigma^{j}(J)}$ with $w_{j} \in W_{\sigma^{j}(J)}$. By assumption, the conjugacy class of w_{j} in $W_{\sigma^{j}(J)}^{j_{j}}$ is cuspidal for each j (otherwise, there is some $a \in W_{\sigma^{j}(J)}$ such that $\operatorname{supp}\left(a^{-1} w_{j} a\right) \subsetneq \sigma^{j}(J)$, and hence $a^{-1} w a=a^{-1} w_{j} a \cdot \prod_{i \neq j} w_{i}$ has δ-support properly contained in S, contradicting the assumption that the δ-conjugacy class of w is cuspidal).

It remains to show that $\sigma\left(w_{j-1}\right)$ and w_{j} are δ-conjugate in $\prod_{0 \leq i<r} W_{\delta^{i} \sigma^{j}(J)}$ for each $j \in\{0, \ldots, s-1\}$ (where we set $w_{-1}:=w_{s-1}$), for if $\sigma\left(w_{j-1}\right)=a_{j}^{-1} w_{j} \delta\left(a_{j}\right)$ with $a_{j} \in \prod_{0 \leq i<r} W_{\delta^{i} \sigma^{j}(J)}$ for each j, then $\sigma(w)=a^{-1} w \delta(a)$ with $a:=\prod_{0 \leq j<s} a_{j}$. As in (2.1), it is sufficient to check that $\sigma\left(w_{j-1}\right)$ and w_{j} are δ^{r}-conjugate in $W_{\sigma^{j}(J)}$.

As we have seen above, the conjugacy class of w_{j} (and of $\sigma\left(w_{j-1}\right)$) in $W_{\sigma^{j}(J)}$ is cuspidal. Moreover, since σ does not stabilise $\sigma^{j}(J)$, (C1) and (C2) imply that $\sigma^{j}(J)$ is of type A_{m} for some $m \geq 1$ and that $\left.\delta^{r}\right|_{\sigma^{j}(J)}=$ id. As there is only one cuspidal conjugacy class in $W_{\sigma^{j}(J)}$ by [GP00, Example 3.1.16], the proposition follows.

Remark 4.9. The technical assumptions of Proposition 4.8 cannot be removed:
(1) The condition (C1) is necessary, because if a component I of W is not of type A_{m}, then W_{I} in general contains at least two distinct cuspidal conjugacy classes (cf. [GP00, 3.1.16]), say \mathcal{O}_{v} and $\mathcal{O}_{v^{\prime}}$. Hence if $\delta=\mathrm{id}$ and σ permutes two components I_{1}, I_{2} of type I (say $W=W_{I_{1}} \times W_{I_{2}}$), and if v_{i}, v_{i}^{\prime} are the elements of $W_{I_{i}}$ corresponding to v, v^{\prime} respectively $(i=1,2)$, then the conjugacy class of $w:=v_{1} v_{2}^{\prime} \in W$ is cuspidal, but $\sigma(w)=v_{2} v_{1}^{\prime}$ is not conjugate to w.
(2) The condition (C2) is necessary for the same reasons as (C1), because if a component I of W is of type A_{m} but $\delta(I)=I$ and $\delta_{\mid I} \neq \mathrm{id}$, then W_{I} contains at least two distinct cuspidal $\delta_{\mid I}$-conjugacy classes (cf. [He07, 7.14]).
(3) The condition on components of type F_{4} is necessary, because if W is of type F_{4} (and $\delta=\mathrm{id)}$,$\mathrm{then} W contains a cuspidal conjugacy class \mathcal{O}_{w}$ such that, in the notations of the proof, $\ell_{s_{1}, \delta}(w) \neq \ell_{s_{3}, \delta}(w)$ (where the vertices of F_{4} are labelled as usual $s_{1}, s_{2}, s_{3}, s_{4}$ from left to right) - see [GP00, Table B. 3 on p.407]. Hence if $\sigma \neq \mathrm{id}$, the conjugacy criterion mentioned in the proof implies that $\sigma(w)$ and w are not conjugate.
4.3. Distinguishing cyclic shift classes. The following lemma is a reformulation of [CH16, Proposition 2.4.1]. It is stated in loc. cit. for finite groups, but the same proof, which we repeat here for the convenience of the reader, holds for an arbitrary W.

Lemma 4.10. Let $\delta \in \operatorname{Aut}(W, S)$. Let $w \in W$ be such that $w \delta$ is cyclically reduced, and set $J:=\operatorname{supp}(w \delta)$. Let $x \in W$ and set $J^{\prime}:=\operatorname{supp}\left(x w \delta x^{-1}\right)$. Then $x=x^{\prime} x_{1}$ for some $x^{\prime} \in W_{J^{\prime}}$ and some $x_{1} \in W$ of minimal length in $W_{J^{\prime}} x_{1} W_{J}$ and such that $\delta\left(x_{1}\right)=x_{1}$ and $x_{1} \Pi_{J} \subseteq \Pi_{J^{\prime}}$. Moreover, if $x w \delta x^{-1}$ is cyclically reduced, then $x_{1} \Pi_{J}=\Pi_{J^{\prime}}$.

Proof. Write $x=y^{\prime} x_{1} y$ with $y^{\prime} \in W_{J^{\prime}}, y \in W_{J}$ and x_{1} the unique element of minimal length in $W_{J^{\prime}} x_{1} W_{J}$ (see [AB08, Proposition 2.23]). Set $w^{\prime}:=y w \delta(y)^{-1} \in$ W_{J}. Thus $x_{1} w^{\prime} \delta x_{1}^{-1}=\left(y^{\prime}\right)^{-1} x w \delta x^{-1} y^{\prime}$ has support $J^{\prime \prime}$ contained in J^{\prime} (and $J^{\prime \prime}=$ J^{\prime} if $x w \delta x^{-1}$ is cyclically reduced by Proposition 4.7(1)). Hence $x_{1} w^{\prime} \in x_{1} W_{J} \subseteq$ $W_{J^{\prime}} x_{1} W_{J}$ and $x_{1} w^{\prime} \in W_{J^{\prime}} \delta\left(x_{1}\right) \subseteq W_{J^{\prime}} \delta\left(x_{1}\right) W_{J}$. We deduce that $W_{J^{\prime}} x_{1} W_{J}=$ $W_{J^{\prime}} \delta\left(x_{1}\right) W_{J}$, and hence that $\delta\left(x_{1}\right)=x_{1}$ (because $x_{1}, \delta\left(x_{1}\right)$ are of minimal length in their $\left(W_{J^{\prime}}, W_{J}\right)$-double coset). In particular, $w^{\prime} \in W_{J} \cap x_{1}^{-1} W_{J^{\prime}} x_{1}=W_{J \cap x_{1}^{-1} J^{\prime} x_{1}}$ (see [AB08, Lemma 2.25]). Since $w^{\prime} \delta$ has support J by Proposition 4.7(1) (and $J \cap x_{1}^{-1} J^{\prime} x_{1}$ is δ-stable), this implies that $J \cap x_{1}^{-1} J^{\prime} x_{1}=J$, that is, $x_{1} J x_{1}^{-1} \subseteq J^{\prime}$. Therefore, $J^{\prime \prime}=\operatorname{supp}\left(x_{1} w^{\prime} \delta x_{1}^{-1}\right)=x_{1} \operatorname{supp}\left(w^{\prime} \delta\right) x_{1}^{-1}=x_{1} J x_{1}^{-1}$, and hence $x_{1} \Pi_{J}=$ $\Pi_{J^{\prime \prime}}$ by Lemma 4.5. Moreover, $x \in W_{J^{\prime}} x_{1}$, as desired.

The following proposition is a generalisation of [Deo82, Proposition 5.5] (see also [LS79, Lemma 2.12] and [How80, Lemma 5] for the case of finite Coxeter groups) to the twisted case, and its proof is a straightforward adaptation of the proof given in loc. cit..

Proposition 4.11. Let $\delta \in \operatorname{Aut}(W, S)$. Let J, K be δ-invariant spherical subsets of S. Suppose there exists $w \in W$ with $\delta(w)=w$, of minimal length in $W_{K} w W_{J}$ and such that $w \Pi_{J}=\Pi_{K}$. Then there exists a sequence $J=J_{0}, J_{1}, \ldots, J_{k}=K$ of δ-invariant subsets J_{i} of S, and elements $s_{1}, \ldots, s_{k} \in S$ such that the following assertions hold for $i \in\{1, \ldots, k\}$:
(1) $s_{i} \notin J_{i-1}$ and either $J_{i}=J_{i-1}$ or $J_{i-1} \cup J_{i}=J_{i-1} \cup T_{i}$, where $T_{i}:=$ $\left\{\delta^{n}\left(s_{i}\right) \mid n \in \mathbb{N}\right\} ;$
(2) $J_{i-1} \cup T_{i}$ is spherical; we then set $\nu_{i}:=w_{0}\left(J_{i-1} \cup T_{i}\right) w_{0}\left(J_{i-1}\right)$;
(3) $\Pi_{J_{i}}=\nu_{i} \Pi_{J_{i-1}}$;
(4) $w=\nu_{k} \ldots \nu_{2} \nu_{1}$ and $\ell(w)=\sum_{i=1}^{k} \ell\left(\nu_{i}\right)$.

In particular, we have $J_{i}=\operatorname{op}_{J_{i-1} \cup J_{i}}\left(J_{i-1}\right)$ for all $i \in\{1, \ldots, k\}$.
Proof. We prove the proposition by induction on $\ell(w)$. If $\ell(w)=0$, there is nothing to prove. Assume now that $\ell(w) \geq 1$. Let $s_{1} \in S$ with $\ell\left(w s_{1}\right)<\ell(w)$. Since $\delta(w)=w$, we then have $\ell(w t)<\ell(w)$ for each $t \in T:=T_{1}:=\left\{\delta^{n}\left(s_{1}\right) \mid n \in\right.$ $\mathbb{N}\}$. Note that $J \cap T=\varnothing$, as w is of minimal length in $w W_{J}$.

Let $v \in W$ be the unique element of minimal length in $w W_{J \cup T}$. Thus, $w=v w^{\prime}$ for some $w^{\prime} \in W_{J \cup T}$, and we have $\delta(v)=v$ and $\delta\left(w^{\prime}\right)=w^{\prime}$.

For each $s \in J \cup T$, write $w^{\prime}\left(e_{s}\right)=\sum_{s^{\prime} \in J \cup T} \lambda_{s, s^{\prime}} e_{s^{\prime}} \in \Phi$ for some $\lambda_{s, s^{\prime}} \in \mathbb{R}$. Since $\ell\left(w^{\prime} s\right)=\ell(w s)-\ell(v)$ and $\ell\left(w^{\prime}\right)=\ell(w)-\ell(v)$, we have (see Lemma 4.1(1))

$$
\begin{equation*}
w^{\prime}\left(e_{s}\right)>0 \Longleftrightarrow \ell\left(w^{\prime} s\right)>\ell\left(w^{\prime}\right) \Longleftrightarrow \ell(w s)>\ell(w) \Longleftrightarrow s \in J \tag{4.2}
\end{equation*}
$$

Since $w \Pi_{J} \subseteq \Pi$ and $w\left(e_{s}\right)=\sum_{s^{\prime} \in J \cup T} \lambda_{s, s^{\prime}} v\left(e_{s^{\prime}}\right)$ with $v\left(e_{s^{\prime}}\right)>0$ for each $s^{\prime} \in J \cup T$ (because $\ell\left(v s^{\prime}\right)>\ell(v)$), we deduce that $w^{\prime} \Pi_{J} \subseteq \Pi_{J \cup T}$.

In particular, since $w^{\prime}\left(e_{s}\right)<0$ for each $s \in T$ by (4.2), we have $w^{\prime}(\alpha)<0$ for every $\alpha \in \Phi_{J \cup T}^{+} \backslash \Phi_{J}$ (i.e. if $s \in T$, then $e_{s} \notin \operatorname{span}_{\mathbb{R}} \Pi_{J}$ and hence $w^{\prime}\left(e_{s}\right) \notin$
$\operatorname{span}_{\mathbb{R}} w^{\prime} \Pi_{J}$). This shows that $\Phi_{J \cup T}^{+} \backslash \Phi_{J} \subseteq \Phi_{J \cup T}\left(w^{\prime}\right)$ is finite (see Lemma 4.1(2)), and hence $\Phi_{J \cup T}$ is finite, that is, $J \cup T$ is spherical.

Set $\nu_{1}:=w_{0}(J \cup T) w_{0}(J)$ and let $J_{1} \subseteq S$ with $\Pi_{J_{1}}=\nu_{1} \Pi_{J}$. Note that $\delta\left(\nu_{1}\right)=\nu_{1}$ as J and T are δ-invariant, and hence J_{1} is δ-invariant. As we have just seen, $w^{\prime}(\alpha)<0$ for every root $\alpha \in \Phi_{J \cup T}^{+} \backslash \Phi_{J}$, and hence in particular for every $\alpha \in \Phi_{J \cup T}^{+}$ such that $\nu_{1}(\alpha)<0$. In other words, $\Phi_{J \cup T}\left(\nu_{1}\right) \subseteq \Phi_{J \cup T}\left(w^{\prime}\right)$. Since $w^{\prime}\left(e_{s}\right)>0$ for $s \in J$ and $\nu_{1}(\alpha)<0$ for every $\alpha \in \Phi_{J \cup T}^{+} \backslash \Phi_{J}$ (because $w_{0}(J)(\alpha)>0$ by a similar argument as above), we also have $\Phi_{J \cup T}\left(w^{\prime}\right) \subseteq \Phi_{J \cup T}\left(\nu_{1}\right)$. Hence $\Phi_{J \cup T}\left(\nu_{1}\right)=$ $\Phi_{J \cup T}\left(w^{\prime}\right)$, so that $w^{\prime}=\nu_{1}$ by Lemma 4.1(2).

Thus, $w=v \nu_{1}$ with $\ell(w)=\ell(v)+\ell\left(\nu_{1}\right)$, and $v \in W$ satisfies $\delta(v)=v$ and $v \Pi_{J_{1}}=\Pi_{K}$. Note also that either $J_{1}=J_{0}$, or $J_{0} \cup J_{1}=J_{0} \cup T$ (because J_{1} is δ-invariant). Finally, note that $\nu_{1} \neq 1$ (because $\nu_{1}\left(e_{s}\right)<0$ for $s \in T$ and the canonical linear representation of $W_{J \cup T}$ is faithful), and hence $\ell(v)<\ell(w)$. We may then apply the induction hypothesis to v, yielding the proposition.

Before proving the main result of this section (Theorem 4.14 below), we need two additional technical lemmas.

Lemma 4.12. Let $\delta \in \operatorname{Aut}(W, S)$. Let J, K be δ-invariant spherical subsets of S. Suppose there exists $x \in W$ with $\delta(x)=x$, of minimal length in $W_{K} x W_{J}$ and such that $x \Pi_{J}=\Pi_{K}$. Let I be a component of K.
(1) If I is not of type A_{m} for some $m \geq 1$, then $\kappa_{x}(I) \cap I \neq \varnothing$. If, moreover, I is not a subset of type D_{5} inside a subset of S of type E_{6}, then $\kappa_{x}(I)=I$.
(2) If $\delta(I)=I$ but $\left.\delta\right|_{I} \neq \mathrm{id}$, then $\kappa_{x}(I)=I$.
(3) If I is of type F_{4}, then $\left.\kappa_{x}\right|_{I}=\mathrm{id}$.

Proof. By Proposition 4.11, there is a sequence $K=K_{0}, K_{1}, \ldots, K_{k}=J=$ $\kappa_{x}(K)$ of subsets K_{i} of S such that $K_{i-1} \cup K_{i}$ is spherical and $K_{i}=\mathrm{op}_{K_{i-1} \cup K_{i}}\left(K_{i-1}\right)$ for each $i \in\{1, \ldots, k\}$. On the other hand, if L is a spherical subset of S containing I, then Lemma 4.2 implies that $\mathrm{op}_{L}(I)=I$ when I is not of type D_{5} inside a subset of type E_{6} nor of type A_{m}, that $\mathrm{op}_{L}(I) \cap I$ contains the subset of I of type D_{4} when I is of type D_{5} inside a subset of type E_{6}, and that $\left.\mathrm{op}_{L}\right|_{I}=\mathrm{id}$ when I is of type F_{4}. The statements (1) and (3) follow.

We now prove (2). Note that δ and κ_{x} commute, as $\delta(x)=x$. Assume for a contradiction that $\delta(I)=I$, that $\left.\delta\right|_{I} \neq$ id (in particular, $|I| \geq 2$), and that $\kappa_{x}(I) \neq I$. By Proposition 4.11 (applied to $\delta:=\delta, J:=I, K:=\kappa_{x}(I)$ and $w:=x^{-1}$), there exists a δ-invariant subset I^{\prime} of S distinct from I such that $I \cup I^{\prime}$ is irreducible and spherical, and such that $I^{\prime}=\mathrm{op}_{I \cup I^{\prime}}(I)$. In particular, the Coxeter diagram $\Gamma_{I \cup I^{\prime}}^{\mathrm{Cox}}$ is of one of the types $A_{\ell}, D_{\ell}(\ell$ odd $)$ and E_{6}, and $\mathrm{op}_{I \cup I^{\prime}}$ is the only nontrivial automorphism of $\Gamma_{I \cup I^{\prime}}^{\text {Cox }}$ (see Lemma 4.2). Since $\left.\delta\right|_{I} \neq \mathrm{id}$ by assumption, we then have $\left.\delta\right|_{I \cup I^{\prime}}=\mathrm{op}_{I \cup I^{\prime}}$ and hence $\delta(I)=I^{\prime} \neq I$, yielding the desired contradiction.

Lemma 4.13. Let $w \in \operatorname{Aut}(\Sigma)$ be cyclically reduced and of finite order. Then $\operatorname{supp}(w)$ is a spherical subset of S.

Proof. Write $w=u \delta$ with $u \in W$ and $\delta \in \operatorname{Aut}(W, S)$, and set $J:=\operatorname{supp}(w)$. Since w has finite order, it fixes a point $x \in X$ (see $\S 2.5)$. Let $a W_{I}(a \in W$, $I \subseteq S$ spherical) be the support $\operatorname{supp}(x)$ of x (see §2.4). Thus, $a W_{I}=w \cdot a W_{I}=$ $u \delta(a) W_{\delta(I)}$, so that $\delta(I)=I$ and $a^{-1} u \delta(a) \in W_{I}$, that is, $a^{-1} w a \in W_{I} \delta$. In particular, $J^{\prime}:=\operatorname{supp}\left(a^{-1} w a\right) \subseteq I$. By Lemma 4.10, we can write $a^{-1}=a^{\prime} a_{1}$ for
some $a^{\prime} \in W_{J^{\prime}}$ and some $a_{1} \in W$ such that $a_{1} \Pi_{J} \subseteq \Pi_{J^{\prime}}$. But then $a_{1} W_{J} a_{1}^{-1} \subseteq$ $W_{J^{\prime}} \subseteq W_{I}$, and since W_{I} is finite, W_{J} is finite as well, yielding the lemma.
Theorem 4.14. Let (W, S) be a Coxeter system, and let $w, w^{\prime} \in \operatorname{Aut}(\Sigma)$ be cyclically reduced and of finite order. If w, w^{\prime} are conjugate, then $\operatorname{Cyc}(w)=$ $\operatorname{Cyc}\left(w^{\prime}\right)$ if and only if $\operatorname{supp}(w)=\operatorname{supp}\left(w^{\prime}\right)$.
Proof. The forward implication follows from Lemma 3.5. Assume now that $\operatorname{supp}(w)=\operatorname{supp}\left(w^{\prime}\right)$.

Let $x \in W$ be such that $w^{\prime}=x w x^{-1}$, and set $J:=\operatorname{supp}(w)=\operatorname{supp}\left(w^{\prime}\right)$. Note that W_{J} is finite by Lemma 4.13. Let $\delta \in \operatorname{Aut}(W, S)$ and $u, v \in W$ be such that $w=u \delta$ and $w^{\prime}=v \delta$. By Lemma 4.10, we can write $x=x^{\prime} x_{1}$ with $x^{\prime} \in W_{J}$ and $x_{1} \in W$ of minimal length in $W_{J} x_{1} W_{J}$, such that $\delta\left(x_{1}\right)=x_{1}$ and $x_{1} \Pi_{J}=\Pi_{J}$. Let $\sigma:=\left.\kappa_{x_{1}^{-1}}\right|_{J}: W_{J} \rightarrow W_{J}: z \mapsto x_{1} z x_{1}^{-1}$, so that $\sigma(u)=\left(x^{\prime}\right)^{-1} v \delta\left(x^{\prime}\right)$.

Since $\delta\left(x_{1}\right)=x_{1}$, the diagram automorphisms $\left.\delta\right|_{W_{J}}$ and σ of W_{J} commute. Moreover, by Lemma 4.12(1,3) (applied to $\delta:=\mathrm{id}, J=K:=J$ and $\left.x:=x_{1}\right), \sigma$ stabilises every component I of J that is not of type A_{m} for some $m \geq 1$ (note that $\sigma(I) \cap I \neq \varnothing \Rightarrow \sigma(I)=I$ as $I, \sigma(I)$ are components of J), and is the identity on each component of J of type F_{4}. Similarly, σ stabilises every component I of J such that $\left.\delta^{r}\right|_{I} \neq \mathrm{id}$, where $r \geq 1$ is minimal so that $\delta^{r}(I)=I$, as follows from Lemma 4.12(2) (applied to $\delta:=\delta^{r}, J=K:=J$ and $\left.x:=x_{1}\right)$.

We may thus apply Proposition 4.8 (with $W:=W_{J}$) to conclude that u, v are δ-conjugate in W_{J} (note that the δ-conjugacy class of u in W_{J} is cuspidal by Proposition 4.7(1)), and hence that $\operatorname{Cyc}(w)=\operatorname{Cyc}\left(w^{\prime}\right)$ by Proposition 4.7(2).
Corollary 4.15. Let $w, w^{\prime} \in \operatorname{Aut}(\Sigma)$ be cyclically reduced, conjugate, and of finite order. Then there exists $a \in W$ with $\ell\left(a^{-1} w\right)=\ell(a)+\ell(w)=\ell(w a)$ such that $\operatorname{Cyc}\left(a^{-1} w a\right)=\operatorname{Cyc}\left(w^{\prime}\right)$.
Proof. Let $x \in W$ be such that $w^{\prime}=x w x^{-1}$, and set $J:=\operatorname{supp}(w)$ and $J^{\prime}:=$ $\operatorname{supp}\left(w^{\prime}\right)$. By Lemma 4.10, we can write $x=x^{\prime} x_{1}$ with $x^{\prime} \in W_{J^{\prime}}$ and $x_{1} \in W$ of minimal length in $W_{J^{\prime}} x_{1} W_{J}$ and such that $x_{1} \Pi_{J}=\Pi_{J^{\prime}}$. In particular,

$$
\ell\left(x_{1} w\right)=\ell\left(x_{1}\right)+\ell(w)=\ell\left(x_{1}\right)+\ell\left(w^{-1}\right)=\ell\left(x_{1} w^{-1}\right)=\ell\left(w x_{1}^{-1}\right)
$$

and $\ell\left(x_{1} w x_{1}^{-1}\right)=\ell(w)$. Hence $x_{1} w x_{1}^{-1}=\left(x^{\prime}\right)^{-1} w^{\prime} x^{\prime}$ and w^{\prime} are cyclically reduced and have the same support J^{\prime}, and therefore belong to the same cyclic shift class by Theorem 4.14. We may thus set $a:=x_{1}^{-1}$.

5. The structural conjugation graph

Throughout this section, we fix a Coxeter system (W, S).
5.1. K-conjugation. In this subsection, we introduce an "elementary conjugation operation", which may be thought of as a refinement of the tight conjugation operation introduced in [Mar21, Definition 3.4]. We start by recalling the latter notion.

Definition 5.1. Two elements $u, v \in W$ are called elementarily tightly conjugate if $\ell(u)=\ell(v)$ and one of the following holds:
(1) v is a cyclic shift of u;
(2) there exist a spherical subset $K \subseteq S$ and an element $x \in W_{K}$ such that u, v normalise W_{K} and $v=x^{-1} u x$ with either $\ell\left(x^{-1} u\right)=\ell(x)+\ell(u)$ or $\ell(u x)=\ell(u)+\ell(x)$.

In particular, if $u, v \in W$ are cyclically reduced and in different cyclic shift classes, then they are elementarily tightly conjugate if and only if the above condition (2) holds.

Here is the announced conjugation operation.
Definition 5.2. Let $u, v \in \operatorname{Aut}(\Sigma)$ be conjugate elements. Given a spherical subset $K \subseteq S$, we call $u, v K$-conjugate if u, v normalise W_{K} and $v=w_{0}(K) u w_{0}(K)$. In this case, we write $u \stackrel{K}{\leftrightharpoons} v$.

Remark 5.3. Note that there might be several subsets K for which $u, v \in \operatorname{Aut}(\Sigma)$ are K-conjugate. And in general, there is no unique minimal K for which they are: consider for instance the Coxeter group of type $A_{3}^{(1)}$, with $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$ labelled as on Figure 9. Set $K_{1}=\left\{s_{0}, s_{1}, s_{2}\right\}$ and $K_{2}=\left\{s_{0}, s_{3}, s_{2}\right\}$. Then $u=s_{0}$ and $v=s_{2}$ are both $K_{1^{-}}$and K_{2}-conjugate, but they are not ($K_{1} \cap K_{2}$)-conjugate.

Before comparing the two notions in Lemma 5.6 below, we make a few observations.

Lemma 5.4. If $u, v \in \operatorname{Aut}(\Sigma)$ are K-conjugate for some $K \subseteq S$, then $\ell(u)=\ell(v)$.
Proof. By assumption, u normalises W_{K} and $v=w_{0}(K) u w_{0}(K)$. Write $u=$ $u_{K} n_{K}$ with $u_{K} \in W_{K}$ and $n_{K} \in \widetilde{N}_{K}$ (see Remark 4.4). As n_{K} normalises K, it commutes with $w_{0}(K)$, and hence $v=w_{0}(K) u w_{0}(K)=\mathrm{op}_{K}\left(u_{K}\right) \cdot n_{K}$ has length $\ell(v)=\ell\left(\mathrm{op}_{K}\left(u_{K}\right)\right)+\ell\left(n_{K}\right)=\ell\left(u_{K}\right)+\ell\left(n_{K}\right)=\ell(u)$, as desired.

Lemma 5.5. Let $K \subseteq S$ and $n_{K} \in N_{K}$. Let also $\delta_{n_{K}} \in \operatorname{Aut}\left(W_{K}, K\right)$ be defined by $\delta_{n_{K}}(a):=n_{K} a n_{K}^{-1}$ for all $a \in W_{K}$. Let $a, b \in W_{K}$.
(1) If $a n_{K}$ is cyclically reduced in W, then $a \delta_{n_{K}}$ is cyclically reduced in W_{K}.
(2) If $a \delta_{n_{K}} \rightarrow b \delta_{n_{K}}$ in W_{K}, then $a n_{K} \rightarrow b n_{K}$ in W.
(3) If $b \delta_{n_{K}}=w_{0}(L) a \delta_{n_{K}} w_{0}(L)$ for some $\delta_{n_{K}}$-invariant subset $L \subseteq K$, then $b n_{K}=w_{0}(L) a n_{K} w_{0}(L)$.

Proof. (1) Assume that $a \delta_{n_{K}}$ is not cyclically reduced, and let $x \in W_{K}$ be such that $\ell\left(x^{-1} a \delta_{n_{K}} x\right)=\ell\left(x^{-1} a \delta_{n_{K}}(x)\right)<\ell(a)$. Then $x^{-1} a n_{K} x=x^{-1} a \delta_{n_{K}}(x) \cdot n_{K}$ has length $\ell\left(x^{-1} a \delta_{n_{K}}(x)\right)+\ell\left(n_{K}\right)<\ell(a)+\ell\left(n_{K}\right)=\ell\left(a n_{K}\right)$, and hence $a n_{K}$ is not cyclically reduced.
(2) This follows from the fact that if $a \delta_{n_{K}} \xrightarrow{s} s a \delta_{n_{K}} s=s a \delta_{n_{K}}(s) \delta_{n_{K}}$ for some $s \in K$, then $\ell\left(s a \delta_{n_{K}}(s) \cdot n_{K}\right)=\ell\left(s a \delta_{n_{K}}(s)\right)+\ell\left(n_{K}\right) \leq \ell(a)+\ell\left(n_{K}\right)=\ell\left(a n_{K}\right)$, and hence $a \cdot n_{K} \xrightarrow{s} \operatorname{san}_{K} s=s a \delta_{n_{K}}(s) \cdot n_{K}$.
(3) This follows from the fact that n_{K} normalises W_{L} and hence commutes with $w_{0}(L)$.

Lemma 5.6. Let \mathcal{O} be a conjugacy class in W. Let $u, v \in \mathcal{O}^{\text {min }}$ be such that u normalises W_{K} for some spherical subset $K \subseteq S$, and $v=x^{-1} u x$ for some $x \in$ W_{K}. Write $u=u_{K} n_{K}$ with $n_{K} \in N_{K}$ and $u_{K} \in W_{K}$, and set $I:=\operatorname{supp}\left(u_{K} \delta_{n_{K}}\right) \subseteq$ K, where $\delta_{n_{K}} \in \operatorname{Aut}\left(W_{K}, K\right)$ is defined by $\delta_{n_{K}}(a):=n_{K}$ an n_{K}^{-1} for $a \in W_{K}$. Then:
(1) there exists $v^{\prime} \in \mathcal{O}^{\text {min }}$ with $\operatorname{Cyc}\left(v^{\prime}\right)=\operatorname{Cyc}(v)$ such that u, v^{\prime} are elementarily tightly conjugate.
(2) if u, v are K-conjugate, one can choose $v^{\prime}=w_{0}(J) v w_{0}(J)$ where $J:=$ $\mathrm{op}_{K}(I) \subseteq K$.

Proof. Note that $v=x^{-1} u_{K} \delta_{n_{K}}(x) \cdot n_{K}$. Since $u_{K} \delta_{n_{K}}$ and $x^{-1} u_{K} \delta_{n_{K}} x$ are cyclically reduced in W_{K} by Lemma 5.5(1), Corollary 4.15 yields some $a \in W_{K}$ such that $x^{-1} u_{K} \delta_{n_{K}} x \rightarrow a^{-1} u_{K} \delta_{n_{K}} a$ and $\ell\left(a^{-1} u_{K}\right)=\ell(a)+\ell\left(u_{K}\right)$. In particular, $v \rightarrow v^{\prime}:=a^{-1} u a=a^{-1} u_{K} \delta_{n_{K}}(a) n_{K}$ by Lemma 5.5(2), and $\ell\left(a^{-1} u\right)=$ $\ell\left(a^{-1} u_{K}\right)+\ell\left(n_{K}\right)=\ell(a)+\ell\left(u_{K}\right)+\ell\left(n_{K}\right)=\ell(a)+\ell(u)$, yielding (1).

Assume now that $x=w_{0}(K)$ (equivalently, u, v are K-conjugate), so that $J=\operatorname{supp}\left(x^{-1} u_{K} \delta_{n_{K}} x\right)$. Note from the proof of Corollary 4.15 that a is the unique element of minimal length in $W_{I} x W_{J}$. Hence $a=w_{0}(I) w_{0}(K)=w_{0}(K) w_{0}(J)$ (as $\left.\ell\left(w_{0}(I) w_{0}(K)\right)=\ell\left(w_{0}(K)\right)-\ell\left(w_{0}(I)\right)\right)$, and $v^{\prime}=w_{0}(J) w_{0}(K) u w_{0}(K) w_{0}(J)=$ $w_{0}(J) v w_{0}(J)$, yielding (2).
5.2. Structural and tight conjugation graphs. We next introduce the main protagonists of Proposition A and Theorem B.
Definition 5.7. Let $w \in \operatorname{Aut}(\Sigma)$, which we write as $w=w^{\prime} \delta$ with $w^{\prime} \in W$ and $\delta \in \operatorname{Aut}(W, S)$, and let $\mathcal{O}:=\mathcal{O}_{w}=\left\{x^{-1} w x \mid x \in W\right\} \subseteq W \delta$ be its conjugacy class. Then $\mathcal{O}^{\text {min }}$ is the disjoint union of finitely many cyclic shift classes C_{1}, \ldots, C_{k} (of cyclically reduced conjugates of w).

We define the structural conjugation graph associated to \mathcal{O} as the graph $\mathcal{K}_{\mathcal{O}}$ with vertex set $\left\{C_{i} \mid 1 \leq i \leq k\right\}$, and with an edge between C_{i} and $C_{j}(i \neq j)$ if there exist $u \in C_{i}$ and $v \in C_{j}$ and a spherical subset $K \subseteq S$ (assumed to be δ invariant if w has finite order) such that u, v are K-conjugate. We also call C_{i} and $C_{j} K$-conjugate if there exist $u \in C_{i}$ and $v \in C_{j}$ such that u, v are K-conjugate.

When \mathcal{O} is a conjugacy class in W (i.e. when $w \in W$), we also consider the tight conjugation graph $\mathcal{K}_{\mathcal{O}}^{\mathrm{O}}$ associated to \mathcal{O}, with same vertex set $\left\{C_{i} \mid 1 \leq i \leq k\right\}$ as $\mathcal{K}_{\mathcal{O}}$, and with an edge between C_{i} and $C_{j}(i \neq j)$ if there exist $u \in C_{i}$ and $v \in C_{j}$ that are elementarily tightly conjugate.
Definition 5.8. Let $\delta \in \operatorname{Aut}(W, S)$. Let \mathcal{S}_{δ} denote the set of δ-invariant spherical subsets of S. Given $K \in \mathcal{S}_{\delta}$, we call two subsets $I, J \in \mathcal{S}_{\delta} K$-conjugate if $K \supseteq I$ and $J=\mathrm{op}_{K}(I)$ (in which case $K \supseteq J$ and $I=\mathrm{op}_{K}(J)$). In this case, we write $I \stackrel{K}{\leftrightharpoons} J$.

We define the graph $\mathcal{K}_{\delta}=\mathcal{K}_{\delta, W}$ with vertex set \mathcal{S}_{δ}, and with an edge between $I, J \in \mathcal{S}_{\delta}$ if I, J are K-conjugate for some $K \in \mathcal{S}_{\delta}$. For $I \in \mathcal{S}_{\delta}$, we also let $\mathcal{K}_{\delta}^{0}(I)$ denote the connected component of I in \mathcal{K}_{δ}. We call a path $I=I_{0}, I_{1}, \ldots, I_{k}=J$ in \mathcal{K}_{δ} spherical if there exist $K_{1}, \ldots, K_{k} \in \mathcal{S}_{\delta}$ with $\bigcup_{i=1}^{k} K_{i} \in \mathcal{S}_{\delta}$ such that

$$
I=I_{0} \stackrel{K_{1}}{\leftrightharpoons} I_{1} \stackrel{K_{2}}{\leftrightharpoons} \ldots \stackrel{K_{k}}{\leftrightharpoons} I_{k}=J .
$$

Finally, we let $\overline{\mathcal{K}}_{\delta}=\overline{\mathcal{K}}_{\delta, W}$ denote the graph with vertex set \mathcal{S}_{δ} and with an edge between $I, J \in \mathcal{S}_{\delta}$ if they are connected by a spherical path in \mathcal{K}_{δ}. We also let $\overline{\mathcal{K}}_{\delta}^{0}(I)$ denote the connected component of $I \in \mathcal{S}_{\delta}$ in $\overline{\mathcal{K}}_{\delta}$. In other words, $\overline{\mathcal{K}}_{\delta}^{0}(I)$ is obtained from $\mathcal{K}_{\delta}^{0}(I)$ by declaring that each set of vertices of a spherical path in $\mathcal{K}_{\delta}^{0}(I)$ forms a clique.
5.3. The structural conjugation graph of a finite order element. We are now ready to prove Proposition A.
Theorem 5.9. Let (W, S) be a Coxeter system, and let $w \in \operatorname{Aut}(\Sigma)$ be cyclically reduced and of finite order. Write $w=w^{\prime} \delta$ with $w^{\prime} \in W$ and $\delta \in \operatorname{Aut}(W, S)$. Then there is graph isomorphism

$$
\varphi_{w}: \mathcal{K}_{\mathcal{O}_{w}} \rightarrow \mathcal{K}_{\delta}^{0}(\operatorname{supp}(w))
$$

defined on the vertex set of $\mathcal{K}_{\mathcal{O}_{w}}$ by the assignment

$$
\operatorname{Cyc}(u) \mapsto \operatorname{supp}(u) \quad \text { for any } u \in \mathcal{O}_{w}^{\min }
$$

Moreover, if $u, v \in \mathcal{O}_{w}^{\min }$ are such that $\operatorname{supp}(u)$ and $\operatorname{supp}(v)$ are K-conjugate for some $K \in \mathcal{S}_{\delta}$, then $\operatorname{Cyc}(u)$ and $\operatorname{Cyc}(v)$ are K-conjugate.

Proof. Note that, in view of Theorem 4.14, the assignment $\operatorname{Cyc}(u) \mapsto \operatorname{supp}(u)$ for $u \in \mathcal{O}_{w}^{\min }$ yields a well-defined injective map φ_{w} from the vertex set of $\mathcal{K}_{\mathcal{O}_{w}}$ to the vertex set of \mathcal{K}_{δ}.

We now show that φ_{w} maps an edge of $\mathcal{K}_{\mathcal{O}_{w}}$ to an edge of \mathcal{K}_{δ}. Let $u, v \in \mathcal{O}_{w}^{\text {min }}$ with $\operatorname{Cyc}(u) \neq \operatorname{Cyc}(v)$ be K-conjugate for some $K \in \mathcal{S}_{\delta}$, so that u, v normalise W_{K} and $v=w_{0}(K) u w_{0}(K)$. Write $u=u_{1} \delta$ with $u_{1} \in W$. Then $W_{K}=u W_{K} u^{-1}=$ $u_{1} W_{\delta(K)} u_{1}^{-1}=u_{1} W_{K} u_{1}^{-1}$, that is, $u_{1} \in N_{W}\left(W_{K}\right)$. Write $u_{1}=u_{K} n_{K}$ with $u_{K} \in$ W_{K} and $n_{K} \in N_{K}$ (see Lemma 4.3). Since $n_{K} \Pi_{K}=\Pi_{K}$ (and n_{K} is of minimal length in $W_{K} n_{K} W_{K}=W_{K} n_{K}$), Proposition 4.11(4) (applied to $\delta:=\mathrm{id}$) implies that either $n_{K}=1$ or $\operatorname{supp}\left(n_{K}\right) \supseteq K$ (i.e. if $K^{\prime}:=K \cup\{s\}$ is spherical for some $s \in S \backslash K$, then $\operatorname{supp}\left(w_{0}\left(K^{\prime}\right) w_{0}(K)\right)=K^{\prime} \supseteq K$, as $w_{0}\left(K^{\prime}\right) w_{0}(K)$ maps every root in $\Phi_{K^{\prime}}^{+} \backslash \Phi_{K}$ to a negative root). But in the latter case, u and $v=\mathrm{op}_{K}\left(u_{K}\right) n_{K}$ have same support $\operatorname{supp}\left(n_{K}\right)$, and hence belong to the same cyclic shift class by Theorem 4.14, a contradiction. Thus $n_{K}=1$, and hence $\operatorname{supp}(u) \subseteq K$ and $\operatorname{supp}(v)=\mathrm{op}_{K}(\operatorname{supp}(u))$, so that $\operatorname{supp}(u)$ and $\operatorname{supp}(v)$ are connected by an edge in \mathcal{K}_{δ}.

Note next that if there is a path γ in \mathcal{K}_{δ} starting at $\operatorname{supp}(w)$, say $\operatorname{supp}(w)=$ $I_{0}, I_{1}, \ldots, I_{k}$ where $I_{i} \in \mathcal{S}_{\delta}$ is such that $I_{i}=\mathrm{op}_{K_{i}}\left(I_{i-1}\right)$ for some $K_{i} \in \mathcal{S}_{\delta}$ containing I_{i-1}, then the sequence $\operatorname{Cyc}(w)=\operatorname{Cyc}\left(v_{0}\right), \operatorname{Cyc}\left(v_{1}\right), \ldots, \operatorname{Cyc}\left(v_{k}\right)$ defined by $v_{0}:=$ w and $v_{i}:=w_{0}\left(K_{i}\right) v_{i-1} w_{0}\left(K_{i}\right)$ for $i \in\{1, \ldots, k\}$ corresponds to a path in $\mathcal{K}_{\mathcal{O}_{w}}$ mapped to γ under φ_{w}. This shows that the image of φ_{w} contains $\mathcal{K}_{\delta}^{0}(\operatorname{supp}(w))$, that φ_{w}^{-1} maps an edge of $\mathcal{K}_{\delta}^{0}(\operatorname{supp}(w))$ to an edge of $\mathcal{K}_{\mathcal{O}_{w}}$, and that the second statement of the theorem holds.

It now remains to see that $\mathcal{K}_{\mathcal{O}_{w}}$ is connected. Let $u, v \in \mathcal{O}_{w}^{\text {min }}$, and set $I_{u}:=$ $\operatorname{supp}(u)$ and $I_{v}:=\operatorname{supp}(v)$. Let $x \in W$ be such that $v=x u x^{-1}$. By Lemma 4.10, we can write $x=x^{\prime} x_{1}$ for some $x^{\prime} \in W_{I_{v}}$ and some $x_{1} \in W$ of minimal length in $W_{I_{v}} x_{1} W_{I_{u}}$ such that $\delta\left(x_{1}\right)=x_{1}$ and $x_{1} \Pi_{I_{u}}=\Pi_{I_{v}}$. Note that $v^{\prime}:=\left(x^{\prime}\right)^{-1} v x^{\prime}$ and v have same support I_{v} (and are cyclically reduced), and hence $\operatorname{Cyc}\left(v^{\prime}\right)=\operatorname{Cyc}(v)$ by Theorem 4.14. On the other hand, Proposition 4.11 yields a sequence $I_{u}=$ $I_{0}, I_{1}, \ldots, I_{k}=I_{v}$ of δ-invariant spherical subsets of S such that
(1) $I_{i}=\mathrm{op}_{K_{i}}\left(I_{i-1}\right)$ for all $i \in\{1, \ldots, k\}$, where $K_{i}:=I_{i-1} \cup I_{i}$ is spherical;
(2) setting $u_{0}:=u$ and $u_{i}:=w_{0}\left(K_{i}\right) w_{0}\left(I_{i-1}\right) u_{i-1} w_{0}\left(I_{i-1}\right) w_{0}\left(K_{i}\right)$ for $i \in$ $\{1, \ldots, k\}$, we have $u_{k}=v^{\prime}$.
Note that $\operatorname{Cyc}\left(u_{i-1}\right)$ and $\operatorname{Cyc}\left(u_{i}\right)$ are K_{i}-conjugate for each i, as $\operatorname{Cyc}\left(u_{i-1}\right)=$ $\operatorname{Cyc}\left(w_{0}\left(I_{i-1}\right) u_{i-1} w_{0}\left(I_{i-1}\right)\right)$ by Theorem 4.14 and as $w_{0}\left(I_{i-1}\right) u_{i-1} w_{0}\left(I_{i-1}\right)$ and u_{i} are K_{i}-conjugate by construction. Hence $\operatorname{Cyc}(u)$ and $\operatorname{Cyc}(v)$ are connected by a path in $\mathcal{K}_{\mathcal{O}_{w}}$, as desired.

Corollary 5.10. Let (W, S) be a Coxeter system, and let $u, v \in \operatorname{Aut}(\Sigma)$ be cyclically reduced and of finite order. Write $u=u^{\prime} \delta$ and $v=v^{\prime} \delta^{\prime}$ with $u^{\prime}, v^{\prime} \in W$ and $\delta, \delta^{\prime} \in \operatorname{Aut}(W, S)$, and set $I_{u}:=\operatorname{supp}(u)$ and $I_{v}:=\operatorname{supp}(v)$. Then u and v are conjugate in W if and only if the following assertions hold:
(1) $\delta=\delta^{\prime}$;
(2) there exists some $x \in W$ with $\delta(x)=x$, of minimal length in $W_{I_{v}} x W_{I_{u}}$, such that $x \Pi_{I_{u}}=\Pi_{I_{v}}$;
(3) $\operatorname{Cyc}(u)=\operatorname{Cyc}\left(\kappa_{x}(v)\right)$ for some x as in (2).

Proof. This readily follows from Theorem 5.9 (and Lemma 4.10).

6. Combinatorial minimal displacement sets

Throughout this section, we fix a Coxeter system (W, S). The purpose of this section is to provide the geometric tools necessary for the proof of Theorem B.

6.1. Geometric interpretation of cyclic shifts.

Definition 6.1. Let $w \in \operatorname{Aut}(\Sigma)$. In order to give a geometric reformulation of the properties of \mathcal{O}_{w} and $\mathcal{O}_{w}^{\min }$, we define a parametrisation of \mathcal{O}_{w} by the set $\operatorname{Ch}(\Sigma)$ of chambers of $\Sigma=\Sigma(W, S)$ via the (surjective) map

$$
\pi_{w}: \operatorname{Ch}(\Sigma) \rightarrow \mathcal{O}_{w}: v C_{0} \mapsto v^{-1} w v \quad(v \in W)
$$

Note that this parametrisation is unique modulo the centraliser $\mathcal{Z}_{W}(w)$ of w in W, that is, $\pi_{w}\left(v C_{0}\right)=\pi_{w}\left(u C_{0}\right) \Longleftrightarrow v \mathcal{Z}_{W}(w)=u \mathcal{Z}_{W}(w)$.

We first define the geometric counterpart of the set $\mathcal{O}_{w}^{\min }$.
Definition 6.2. Given $w \in \operatorname{Aut}(\Sigma)$, we define its combinatorial minimal displacement set
$\operatorname{CombiMin}(w)=\operatorname{CombiMin}_{\Sigma}(w):=\left\{C \in \operatorname{Ch}(\Sigma) \mid \mathrm{d}_{\mathrm{Ch}}(C, w C)\right.$ is minimal $\}$.
In other words, $\operatorname{CombiMin}(w)$ is the inverse image of $\mathcal{O}_{w}^{\min }$ under π_{w}.
Remark 6.3. For any $w \in \operatorname{Aut}(\Sigma)$ and $v \in W$, we have
$\operatorname{CombiMin}\left(v^{-1} w v\right)=v^{-1} \operatorname{CombiMin}(w)$ and $\operatorname{Min}\left(v^{-1} w v\right)=v^{-1} \operatorname{Min}(w)$.
We next define the geometric counterpart of the cyclic shift operations.
Definition 6.4. Let $w \in \operatorname{Aut}(\Sigma)$. Call a sequence of chambers $\Gamma=\left(D_{0}, D_{1}, \ldots, D_{k}\right)$ in Σw-decreasing if $\mathrm{d}_{\mathrm{Ch}}\left(D_{i}, w D_{i}\right) \leq \mathrm{d}_{\mathrm{Ch}}\left(D_{i-1}, w D_{i-1}\right)$ for all $i \in\{1, \ldots, k\}$.

Lemma 6.5. Let $w \in \operatorname{Aut}(\Sigma)$, and let $\Gamma=\left(D_{0}, D_{1}, \ldots, D_{k}\right)$ be a gallery in Σ, of type $\left(s_{1}, \ldots, s_{k}\right) \in S^{k}$. Then the following assertions are equivalent:
(1) Γ is w-decreasing.
(2) $\pi_{w}\left(D_{0}\right) \xrightarrow{s_{1}} \pi_{w}\left(D_{1}\right) \xrightarrow{s_{2}} \ldots \xrightarrow{s_{k}} \pi_{w}\left(D_{k}\right)$.

Proof. This follows from the fact that $\mathrm{d}_{\mathrm{Ch}}(D, w D)=\ell_{S}\left(\pi_{w}(D)\right)$ for any $D \in$ $\mathrm{Ch}(\Sigma)$.
Lemma 6.6. Let $w \in \operatorname{Aut}(\Sigma)$. Let $C, D \in \operatorname{CombiMin}(w)$. Then the following assertions are equivalent:
(1) $\pi_{w}(C) \rightarrow \pi_{w}(D)$;
(2) There exist $v \in \mathcal{Z}_{W}(w)$ and a gallery $\Gamma \subseteq \operatorname{CombiMin}(w)$ from C to $v D$.

Proof. The implication $(2) \Longrightarrow(1)$ follows from Lemma $6.5(1) \Rightarrow(2): \Gamma$ is w decreasing, and hence $\pi_{w}(C) \rightarrow \pi_{w}(v D)=\pi_{w}(D)$.

To prove the converse, it is sufficient to consider the case where $\pi_{w}(C) \xrightarrow{s} \pi_{w}(D)$ for some $s \in S$. Write $C=a C_{0}$ and $D=b C_{0}$ for some $a, b \in W$, and let $E:=a s C_{0}$ be the chamber s-adjacent to C. By assumption, $\pi_{w}(D)=b^{-1} w b=s a^{-1}$ was $=$
$\pi_{w}(E)$ and $\ell_{S}\left(b^{-1} w b\right) \leq \ell_{S}\left(a^{-1} w a\right)$. Thus, $\mathrm{d}_{\mathrm{Ch}}(E, w E) \leq \mathrm{d}_{\mathrm{Ch}}(C, w C)$, so that $E \in \operatorname{CombiMin}(w)$, and there exists $v:=a s b^{-1} \in \mathcal{Z}_{W}(w)$ such that $E=v D$, as desired.

We conclude this subsection by giving a geometric interpretation of the support of $\pi_{w}(C)$ for $w \in \operatorname{Aut}(\Sigma)$ and $C \in \operatorname{Ch}(\Sigma)$.
Lemma 6.7. Let $w \in \operatorname{Aut}(\Sigma)$, which we write $w=w^{\prime} \delta$ for some $w^{\prime} \in W$ and $\delta \in \operatorname{Aut}(W, S)$. Let $C \in \operatorname{Ch}(\Sigma)$ and $L \subseteq S$. Then w stabilises the residue $R_{L}(C)$ if and only if $\delta(L)=L$ and $L \supseteq \operatorname{supp}\left(\pi_{w}(C)\right)$. In particular, $\operatorname{supp}\left(\pi_{w}(C)\right)$ is the type of the smallest w-invariant residue containing C.

Proof. Set $I:=\operatorname{supp}\left(\pi_{w}(C)\right)$. Write $C=a C_{0}$ with $a \in W$. Note that w stabilises $R_{I}(C)$, as $\pi_{w}(C)=a^{-1} w a$ stabilises $R_{I}\left(C_{0}\right)=a^{-1} R_{I}(C)$.

If $\delta(L)=L$, then w maps an L-gallery to an L-gallery. If, moreover, $L \supseteq I$, then $R_{L}(C) \supseteq R_{I}(C)$, and hence w stabilises $R_{L}(C)$.

Conversely, if w stabilises $R_{L}(C)$ (which corresponds to the coset $a W_{L}$ of W), then $a W_{L}=w^{\prime} \delta \cdot a W_{L}=w^{\prime} \delta(a) W_{\delta(L)}$, so that $\delta(L)=L$ and $a^{-1} w^{\prime} \delta(a)=a^{-1} w a$. $\delta^{-1} \in W_{L}$. In particular, $I=\operatorname{supp}\left(a^{-1} w a\right) \subseteq L$, as desired.
6.2. Relations between $\operatorname{CombiMin}(w)$ and $\operatorname{Min}(w)$. The following two lemmas collect properties of $\operatorname{CombiMin}(w)$ obtained in [Mar14] and [Mar21] that we will need in the paper.
Lemma 6.8. Let $w \in \operatorname{Aut}(\Sigma)$ be of infinite order. Let also $C \in \operatorname{CombiMin}(w)$ and $D \in \operatorname{Ch}(\Sigma)$. Then the following assertions hold:
(1) There is a w-decreasing gallery from D to some chamber E intersecting $\operatorname{Min}(w)$. In particular, there is a gallery Γ from C to some chamber E intersecting $\operatorname{Min}(w)$ such that $\Gamma \subseteq \operatorname{CombiMin}(w)$.
(2) $\operatorname{proj}_{R_{x}}(C) \in \operatorname{CombiMin}(w)$ for any w-essential $x \in \operatorname{Min}(w)$.
(3) If C and D both contain a point of $\operatorname{Min}(w)$ and are not separated by any wall containing a w-axis, then there is a w-decreasing gallery Γ from D to C. If, moreover, $D \in \operatorname{CombiMin}(w)$, then $\Gamma \subseteq \operatorname{CombiMin}(w)$.
(4) There exists a w-decreasing sequence $D=D_{0}, D_{1}, \ldots, D_{k}=C$ of chambers such that for each $i \in\{1, \ldots, k\}$, either the chambers D_{i-1}, D_{i} are adjacent, or $D_{i} \in \operatorname{CombiMin}(w)$ and both D_{i-1}, D_{i} belong to a residue R_{i} such that w normalises $\operatorname{Stab}_{W}\left(R_{i}\right)$. If, moreover, $D \in \operatorname{CombiMin}(w)$, then $D_{i} \in \operatorname{CombiMin}(w)$ for all i.
Proof. Note first that the second assertion in (1), (3) and (4) follows from the first and the observation that a w-decreasing sequence of chambers starting at a chamber in $\operatorname{CombiMin}(w)$ is entirely contained in $\operatorname{CombiMin}(w)$.
(1) follows from [Mar21, Lemma 5.4]. Indeed, up to conjugating w, there is no loss of generality in assuming that $D=C_{0}$. In the notation of loc. cit., there exists a chamber $E \subseteq \mathscr{C}_{1}^{w}$ intersecting $\operatorname{Min}(w)$ ([Mar21, Lemma 5.4] is actually stated for $w \in W$, but the proof applies verbatim to $w \in \operatorname{Aut}(\Sigma))$. By construction of $\mathscr{C}_{1}^{w}\left(\right.$ see $\left[M a r 21\right.$, Definition 5.1]), there is a gallery $\Gamma=\left(D=D_{0}, D_{1}, \ldots, D_{k}=E\right)$ from $D=C_{0}$ to E such that D_{i} is the second chamber of a minimal gallery Γ_{i} from D_{i-1} to $w^{\varepsilon_{i}} D_{i-1}\left(\varepsilon_{i} \in\{ \pm 1\}\right)$ for each $i \in\{1, \ldots, k\}$. Since a gallery Γ_{i}^{\prime} from D_{i} to $w^{\varepsilon_{i}} D_{i}$ can be obtained by concatenating the galleries $\Gamma_{i} \backslash\left(D_{i-1}\right)$ and ($w^{\varepsilon_{i}} D_{i-1}, w^{\varepsilon_{i}} D_{i}$), we have

$$
\mathrm{d}_{\mathrm{Ch}}\left(D_{i}, w D_{i}\right)=\mathrm{d}_{\mathrm{Ch}}\left(D_{i}, w^{\varepsilon_{i}} D_{i}\right) \leq \ell\left(\Gamma_{i}^{\prime}\right)=\ell\left(\Gamma_{i}\right)=\mathrm{d}_{\mathrm{Ch}}\left(D_{i-1}, w D_{i-1}\right),
$$

and hence Γ is w-decreasing.
(2) follows from [Mar21, Proposition 6.2]. Indeed, since x is w-essential, it has an open neighbourhood $Z \subseteq X$ not meeting any w-essential wall (recall that \mathcal{W} is locally finite). Let L be the w-axis through x. Up to shrinking Z, we may assume that $Z \cap L$ is contained in the simplex $\operatorname{supp}(x)$ of Σ. We may then apply [Mar21, Proposition 6.2] to the residue $R_{x}=R_{\mathrm{supp}(x)}$. (Again, [Mar21, Proposition 6.2] is actually stated for $w \in W$, but the proof applies verbatim to $w \in \operatorname{Aut}(\Sigma)$: the only ingredients in the proof of loc. cit. are Lemma 4.3 - which still holds by Remark 4.4 - and [Mar14, Lemmas 4.3 and 4.1] — whose proof also applies verbatim to elements of $\operatorname{Aut}(\Sigma)$.)
(3) This can be extracted from the proof of [Mar21, Proposition 6.3]; we repeat here the argument. Up to conjugating w, there is no loss of generality in assuming that $D=C_{0}$. Let $x \in C_{0} \cap \operatorname{Min}(w)$ and $y \in C \cap \operatorname{Min}(w)$. Since $\operatorname{Min}(w)$ is convex, we have $[x, y] \subseteq \operatorname{Min}(w)$. Let $\Gamma=\left(C_{0}, C_{1}, \ldots, C_{k}=C\right)$ be a minimal gallery from C_{0} to C containing $[x, y]$ (see [Mar14, Lemma 3.1]). We will show inductively on i that the chamber C_{i} belongs to the complex \mathscr{C}_{1}^{w} from [Mar21, Definition 5.1]; the claim will then follow as in the proof of (1). For $i=0$, this holds by definition. Assume now that C_{i-1} is a chamber of \mathscr{C}_{1}^{w} for some $\in\{1, \ldots, k\}$, and let $x_{i} \in[x, y] \cap\left(C_{i-1} \cap C_{i}\right)$. Thus, $x_{i} \in \operatorname{Min}(w)$, and x_{i} belongs to the wall m separating C_{i-1} from C_{i}. By assumption, the w-axis L through x_{i} intersects m in a single point (namely, $\left\{x_{i}\right\}$). In particular, there is some $\varepsilon \in\{ \pm 1\}$ such that $w^{\varepsilon} C_{i-1}$ and C_{i-1} are separated by m. This means that C_{i} is on a minimal gallery from C_{i-1} to $w^{\varepsilon} C_{i-1}$, and hence C_{i} is a chamber of \mathscr{C}_{1}^{w} (see [Mar21, Definition 5.1 (CM1)]), as desired.
(4) By (1), we may assume that C, D intersect $\operatorname{Min}(w)$. The claim is then precisely the content of the proof of [Mar21, Proposition 6.3]. Indeed, up to conjugating w, there is no loss of generality in assuming that $D=C_{0}$. Let $v \in W$ with $C=v C_{0}$. The first paragraph of the proof of [Mar21, Proposition 6.3] reduces to the case where C_{0} and $v C_{0}$ intersect $\operatorname{Min}(w)$ (a reduction step we have already performed). Under the assumption that $v C_{0} \in \operatorname{CombiMin}(w)$ (which holds here by assumption), the proof of [Mar21, Proposition 6.3] concludes (see the last paragraph of the proof) that $v C_{0}$ belongs to the complex \mathscr{C}^{w} defined in [Mar21, Definition 5.1] (again, although [Mar21, Proposition 6.3] is stated for $w \in W$, everything goes through verbatim for $w \in \operatorname{Aut}(\Sigma)$). But the chambers of \mathscr{C}^{w} are constructed inductively starting from C_{0} and adding, for any previously constructed chamber $C^{\prime} \in \operatorname{Ch}\left(\mathscr{C}^{w}\right)$, either a chamber D^{\prime} adjacent to C^{\prime} on a minimal gallery from C^{\prime} to $w^{ \pm 1} C^{\prime}$ (in particular, $\left(C^{\prime}, D^{\prime}\right)$ is a w-decreasing gallery, see (1)), or a chamber $D^{\prime} \in \operatorname{CombiMin}(w)$ belonging together with C^{\prime} to a common spherical residue R^{\prime} such that w normalises $\operatorname{Stab}_{W}\left(R^{\prime}\right)$ (see also the steps (I) and (II) in the proof of [Mar21, Proposition 5.6]). This yields the claim.

Remark 6.9. The statement of [Mar21, Theorem A(1)] remains valid for elements of $\operatorname{Aut}(\Sigma)$: if $w \in \operatorname{Aut}(\Sigma)$, then there exists an element $w^{\prime} \in \mathcal{O}_{w}^{\min }$ such that $w \rightarrow w^{\prime}$ (in other words, $\left.\operatorname{Cyc}_{\min }(w)=\operatorname{Cyc}(w) \cap \mathcal{O}_{w}^{\min }\right)$.

Indeed, in view of Remark 4.4, the proof of [Mar21, Lemma 5.5] applies verbatim to elements $w \in \operatorname{Aut}(\Sigma)$. Together with Lemma 6.5, these are precisely the two ingredients allowing to reformulate the (geometric) statement of Lemma 6.8(4) into the (combinatorial) statement of [Mar21, Theorem A(1) and (2)] (see also [Mar21, Proposition 5.6]).

Lemma 6.10. Let $w \in \operatorname{Aut}(\Sigma)$ be of finite order. Let also $C \in \operatorname{CombiMin}(w)$. Then the following assertions hold:
(1) There is a gallery $\Gamma \subseteq \operatorname{CombiMin}(w)$ from C to some chamber D intersecting $\operatorname{Min}(w)$.
(2) $\operatorname{proj}_{R}(C) \in \operatorname{CombiMin}(w)$ for any w-stable residue R.

Proof. (1) This follows from the proof of [Mar14, Proposition 3.4]. Indeed, up to conjugating w, there is no loss of generality in assuming that $C=C_{0}$. Let \mathscr{C}_{w} be the subcomplex of X constructed in [Mar14, §3]: it is the smallest subcomplex of X containing C_{0} and such that for any chamber $D \subseteq \mathscr{C}_{w}$ and any $\varepsilon \in\{ \pm 1\}$, any minimal gallery $\Gamma=\left(D=D_{0}, D_{1}, \ldots, D_{k}=w^{\varepsilon} D\right)$ from D to $w^{\varepsilon} D$ is entirely contained in \mathscr{C}_{w}. Note that for any $i \in\{1, \ldots, k\}$, we have a gallery $\Gamma_{i}=\left(D_{i}, D_{i+1}, \ldots, D_{k}=w^{\varepsilon} D_{0}, w^{\varepsilon} D_{1}, \ldots, w^{\varepsilon} D_{i}\right)$ from D_{i} to $w^{\varepsilon} D_{i}$ of length $\ell(\Gamma)$, and hence $\mathrm{d}_{\mathrm{Ch}}\left(D_{i}, w D_{i}\right) \leq \mathrm{d}_{\mathrm{Ch}}(D, w D)$. Reasoning inductively, this implies that

$$
\begin{equation*}
\mathrm{d}_{\mathrm{Ch}}(D, w D) \leq \mathrm{d}_{\mathrm{Ch}}\left(C_{0}, w C_{0}\right) \quad \text { for any chamber } D \text { of } \mathscr{C}_{w} \tag{6.1}
\end{equation*}
$$

The proof of [Mar14, Proposition 3.4] then applies verbatim (with the reference to Lemma 3.3 of loc. cit. replaced by (6.1)) and implies that there is a chamber D of \mathscr{C}_{w} intersecting $\operatorname{Min}(w)$. Let Γ be any gallery from $C_{0}=C$ to D contained in \mathscr{C}_{w}. Since $C \in \operatorname{CombiMin}(w)$ by assumption, (6.1) implies that $\Gamma \subseteq \operatorname{CombiMin}(w)$, as desired.
(2) Since $w R=R$, we have

$$
\mathrm{d}_{\mathrm{Ch}}\left(\operatorname{proj}_{R}(C), w \operatorname{proj}_{R}(C)\right)=\mathrm{d}_{\mathrm{Ch}}\left(\operatorname{proj}_{R}(C), \operatorname{proj}_{R}(w C)\right) \leq \mathrm{d}_{\mathrm{Ch}}(C, w C)
$$

where the inequality follows from the fact that projections on residues do not increase the chamber distance (see e.g. [AB08, Corollary 5.39]). Since $C \in$ CombiMin (w), the claim follows.

Note that Lemma $6.10(2)$ implies that $\operatorname{Min}(w) \subseteq \operatorname{CombiMin}(w)$ for any $w \in$ $\operatorname{Aut}(\Sigma)$ of finite order (since for any $x \in \operatorname{Min}(w)$, the residue $R=R_{x}$ is w-stable). Proposition 6.12 below is a sort of converse to this statement. To prove it, we first need the following technical lemma.

Lemma 6.11. Let R be a residue in Σ, and $D_{1}, \ldots, D_{k} \in \operatorname{Ch}(\Sigma)$ be such that D_{i} and D_{i+1} are only separated by walls of R for each $i \in\{1, \ldots, k-1\}$. Let R^{\prime} be the smallest residue containing D_{1}, \ldots, D_{k}. Then $\operatorname{Stab}_{W}\left(R^{\prime}\right) \subseteq \operatorname{Stab}_{W}(R)$.

Proof. Without loss of generality, we may assume that $D_{1}=C_{0}$. For each $i \in\{1, \ldots, k\}$, let $w_{i} \in W$ be such that $D_{i}=w_{i} C_{0}$, and set $I_{i}:=\operatorname{supp}\left(w_{i}\right) \subseteq S$. Thus, D_{i} belongs to the standard residue $R_{I_{i}}$ of type I_{i}, and R_{i} is the smallest residue containing D_{1} and D_{i}.

By assumption, the walls separating C_{0} from $w_{i} C_{0}$ are walls of R (i.e. any wall separating D_{1} from D_{i} also separates D_{j} from D_{j+1} for some $j \in\{1, \ldots, i-1\}$). On the other hand, if $w_{i}=s_{1} \ldots s_{d}$ is a reduced decomposition for $w_{i}\left(s_{j} \in I_{i}\right)$, then $w_{i}=t_{d} \ldots t_{1}$, where $t_{j}=\left(s_{1} \ldots s_{j-1}\right) s_{j}\left(s_{j-1} \ldots s_{1}\right)$ is the reflection across the j-th wall crossed by the minimal gallery from C_{0} to $w_{i} C_{0}$ of type $\left(s_{1}, \ldots, s_{d}\right)$. Thus, $t_{1}, \ldots, t_{d} \in \operatorname{Stab}_{W}(R)$ and since $\left\langle t_{1}, \ldots, t_{d}\right\rangle=\left\langle s_{1}, \ldots, s_{d}\right\rangle=W_{I_{i}}$, we deduce that $W_{I_{i}} \subseteq \operatorname{Stab}_{W}(R)$.

This shows that $W_{I} \subseteq \operatorname{Stab}_{W}(R)$, where $I=\bigcup_{i=1}^{k} I_{i}$. Since R_{I} is the smallest residue containing D_{1}, \ldots, D_{k}, and since $W_{I}=\operatorname{Stab}_{W}\left(R_{I}\right)$, the lemma follows.

Proposition 6.12. Let $w \in \operatorname{Aut}(\Sigma)$ be of finite order, and let $C \in \operatorname{CombiMin}(w)$. Then C contains a point $x \in \operatorname{Min}(w)$ with $\operatorname{Fix}_{W}(x)=\operatorname{Fix}_{W}(\operatorname{Min}(w))$. Moreover, for any such x, the residue R_{x} is the smallest w-invariant residue containing C.

Proof. Let $k \geq 1$ be the order of w. Let $y \in \operatorname{Min}(w)$. Thus, $w R_{y}=R_{y}$. Set $C_{1}:=\operatorname{proj}_{R_{y}}(C)$, so that $w C_{1}=\operatorname{proj}_{R_{y}}(w C)$. Note that $C_{1} \in \operatorname{CombiMin}(w)$ by Lemma $6.10(2)$, and hence $\mathrm{d}_{\mathrm{Ch}}(C, w C)=\mathrm{d}_{\mathrm{Ch}}\left(C_{1}, w C_{1}\right)$. Since no wall of R_{y} separates C from C_{1} (resp. $w C_{1}$ from $w C$), all the walls separating C_{1} from $w C_{1}$ also separate C from $w C$. Hence the walls separating C from $w C$ are precisely the walls separating C_{1} from $w C_{1}$, and in particular are walls of R_{y}. Setting $D_{i}:=w^{i-1} C$ for all $i \in\{1, \ldots, k\}$ we deduce that the walls separating D_{i} from D_{i+1} are walls of R_{y} for each i (as w stabilises R_{y}), and hence the smallest residue R^{\prime} containing D_{1}, \ldots, D_{k} (equivalently, containing $w^{\mathbb{Z}} C$) satisfies $\operatorname{Stab}_{W}\left(R^{\prime}\right) \subseteq$ $\operatorname{Stab}_{W}\left(R_{y}\right)$ by Lemma 6.11. In particular, R^{\prime} is spherical and w-stable.

Let σ be the spherical simplex of Σ such that $R^{\prime}=R_{\sigma}$, and hence also $\operatorname{Fix}_{W}(\sigma)=\operatorname{Stab}_{W}\left(R^{\prime}\right) \subseteq \operatorname{Fix}_{W}(y)$. Since w stabilises σ, it fixes its circumcenter $x \in \sigma($ see $\S 2.5)$, so that $x \in \operatorname{Min}(w)$, and we have $\operatorname{Fix}_{W}(x)=\operatorname{Fix}_{W}(\sigma) \subseteq \operatorname{Fix}_{W}(y)$. Since x is independent of the choice of $y \in \operatorname{Min}(w)$, we deduce that $\operatorname{Fix}_{W}(x) \subseteq$ $\bigcap_{y \in \operatorname{Min}(w)} \operatorname{Fix}_{W}(y)=\operatorname{Fix}_{W}(\operatorname{Min}(w))$, and hence $\operatorname{Fix}_{W}(x)=\operatorname{Fix}_{W}(\operatorname{Min}(w))$, proving the first statement.

Finally, note that $R^{\prime}=R_{x}$ is the smallest residue containing $w^{\mathbb{Z}} C$. Moreover, if $x^{\prime} \in C \cap \operatorname{Min}(w)$ is such that $\operatorname{Fix}_{W}\left(x^{\prime}\right)=\operatorname{Fix}_{W}(\operatorname{Min}(w))$, then $R_{x^{\prime}}=R_{x}$ as $R_{x^{\prime}} \supseteq R_{x}\left(\right.$ by minimality of $\left.R_{x}\right)$ and $\operatorname{Stab}_{W}\left(R_{x^{\prime}}\right)=\operatorname{Fix}_{W}(\operatorname{Min}(w))=\operatorname{Stab}_{W}\left(R_{x}\right)$. This proves the second statement as well.

We mention for future reference the following consequence of the above results.
Lemma 6.13. Let $w \in \operatorname{Aut}(\Sigma)$ be of finite order, and let $C, D \in \operatorname{CombiMin}(w)$ be chambers in a spherical residue R such that w normalises $\operatorname{Stab}_{W}(R)$. Let also R_{C} and R_{D} be the smallest w-invariant residues containing C and D, respectively, and let $R_{C D}$ be the smallest residue containing $R_{C} \cup R_{D}$. Then:
(1) $R_{C D}$ is a w-invariant spherical residue.
(2) If C, D are opposite in R, then there exists a chamber $D^{\prime} \in R_{D}$ such that C, D^{\prime} are opposite chambers in $R_{C D}$. Moreover, $D^{\prime} \in \operatorname{CombiMin}(w)$ and R_{D} is the smallest w-invariant residue containing D^{\prime}.

Proof. (1) By Proposition 6.12, we find w-fixed points $x \in C$ and $y \in D$ such that $\operatorname{Fix}_{W}(x)=\operatorname{Fix}_{W}(\operatorname{Min}(w))=\operatorname{Fix}_{W}(y)$, and we have $R_{x}=R_{C}$ and $R_{y}=R_{D}$.

Let Z be the intersection of the walls of R, so that R is a nonempty (because R is spherical) closed convex subset of X stabilised by w (because w normalises $\operatorname{Stab}_{W}(R)$). Hence Z contains a w-fixed point z.

Note that the walls of the residues R, R_{x}, R_{y} are all walls of the spherical residue R_{z} : for R, this holds because $z \in Z$, while for R_{x}, R_{y}, this holds because $z \in$ $\operatorname{Min}(w)$ (and because the walls of R_{x}, R_{y} contain $\operatorname{Min}(w)$). In particular, for any two chambers $E, E^{\prime} \in R_{x} \cup R_{y}$, the walls separating E from E^{\prime} are walls of R_{z} : if $E, E^{\prime} \in R_{x}$ or $E, E^{\prime} \in R_{y}$, this is clear, and if $E \in R_{x}$ and $E^{\prime} \in R_{y}$, then fixing a minimal gallery $\Gamma_{E, C} \subseteq R_{x}$ from E to C, a minimal gallery $\Gamma_{C, D} \subseteq R$ from C to D, and a minimal gallery $\Gamma_{D, E^{\prime}} \subseteq R_{y}$ from D to E^{\prime}, any wall separating E from E^{\prime} is crossed by one of the galleries $\Gamma_{E, C}, \Gamma_{C, D}$, and $\Gamma_{D, E^{\prime}}$.

Letting $R_{C D}$ be the smallest residue containing $R_{x} \cup R_{y}$, Lemma 6.11 now implies that $\operatorname{Stab}_{W}\left(R_{C D}\right) \subseteq \operatorname{Stab}_{W}\left(R_{z}\right)$. In particular, $R_{C D}$ is spherical. On the other hand, since $R_{x} \cup R_{y}$ is w-invariant, so is $R_{C D}$. This proves (1).
(2) Assume now that C, D are opposite in R. Without loss of generality, we may assume that $C=C_{0}$. Let L be the type of R, so that $D=w_{0}(L) C$, and let J, K be the types of R_{C}, R_{D}, respectively. Let $D_{1}:=\operatorname{proj}_{R_{D}}(C)$, so that $D_{1}=v C$ with v the unique element of minimal length in $w_{0}(L) W_{K}$. In particular, $\operatorname{supp}(v) \subseteq L$.

Note that the residues R_{C}, R_{D} are parallel, as they have the same set of walls. Since every chamber of R_{D} is connected to a chamber of R_{C} by a $\operatorname{supp}(v)$-gallery (see e.g. [MPW15, Proposition 21.10(ii)]), the residue $R_{C D}$ is of type $I:=J \cup L=$ $K \cup L$.

We claim that if $s \in I=K \cup L$ is such that $\ell(v s)>\ell(v)$, then $s \in K$. Indeed, suppose that $s \in L \backslash K$. Then $v s C \notin R_{D}=v R_{K}$ and $v s C \in R_{L}(C)=R$, which respectively imply that $\mathrm{d}_{\mathrm{Ch}}\left(v s C, w_{0}(L) C\right)=\mathrm{d}_{\mathrm{Ch}}\left(v C, w_{0}(L) C\right)+1$ (by the gate property in R_{D}) and that $v s C$ is on a minimal gallery from C to $w_{0}(L) C$, that is, $\mathrm{d}_{\mathrm{Ch}}(C, v s C)+\mathrm{d}_{\mathrm{Ch}}\left(v s C, w_{0}(L) C\right)=\mathrm{d}_{\mathrm{Ch}}\left(C, w_{0}(L) C\right)$. Since $\mathrm{d}_{\mathrm{Ch}}\left(C, w_{0}(L) C\right)=$ $\mathrm{d}_{\mathrm{Ch}}(C, v C)+\mathrm{d}_{\mathrm{Ch}}\left(v C, w_{0}(L) C\right)$ by the gate property in R_{D}, we then have

$$
\mathrm{d}_{\mathrm{Ch}}(C, v s C)=\mathrm{d}_{\mathrm{Ch}}\left(C, w_{0}(L) C\right)-\mathrm{d}_{\mathrm{Ch}}\left(v s C, w_{0}(L) C\right)=\mathrm{d}_{\mathrm{Ch}}(C, v C)-1,
$$

that is, $\ell(v s)<\ell(v)$, as claimed.
It now follows from [MPW15, Proposition 21.30] (as well as [MPW15, Proposition 21.29]) that R_{D} contains a chamber D^{\prime} opposite C in $R_{C D}$. Moreover, since $R_{D}=R_{y}$, Proposition 6.12 implies that R_{D} is the smallest w-invariant residue containing D^{\prime}. Finally, note that
$\mathrm{d}_{\mathrm{Ch}}\left(D^{\prime}, w D^{\prime}\right)=\mathrm{d}_{\mathrm{Ch}}\left(w_{0}(I) C, w w_{0}(I) C\right)=\ell\left(w_{0}(I) w w_{0}(I)\right)=\ell(w)=\mathrm{d}_{\mathrm{Ch}}(C, w C)$,
so that $D^{\prime} \in \operatorname{CombiMin}(w)$, yielding (2).
6.3. Comparison of galleries in Σ and Σ^{η}. Throughout this subsection, we fix an element $w \in \operatorname{Aut}(\Sigma)$ of infinite order, and we set $\eta:=\eta_{w} \in \partial X$. In this subsection, we establish a correspondence between galleries in $\operatorname{CombiMin}(w)$ and galleries in CombiMin $\Sigma^{\eta}\left(w_{\eta}\right)$ (see Propositions 6.19 and 6.20 below), thereby relating cyclic shift classes in $\operatorname{Aut}(\Sigma)$ and in $\operatorname{Aut}\left(\Sigma^{\eta}\right)$ (see Lemma 6.6).

We start with an easy observation on w-decreasing galleries (see Definition 6.4).
Definition 6.14. If $\Gamma=\left(D_{0}, D_{1}, \ldots, D_{k}\right)$ is a gallery in Σ from D_{0} to D_{k}, we let Γ^{η} denote the gallery in Σ^{η} from D_{0}^{η} to D_{k}^{η} obtained from $\pi_{\Sigma^{\eta}}(\Gamma)$ by deleting repeated consecutive chambers (i.e. by deleting, for each $i=1, \ldots, k$, the chamber D_{i}^{η} if $\left.D_{i}^{\eta}=D_{i-1}^{\eta}\right)$.

Lemma 6.15. If Γ is a w-decreasing gallery in Σ, then Γ^{η} is a w_{η}-decreasing gallery in Σ^{η}.

Proof. Reasoning inductively on the length of Γ, we may assume that $\Gamma=(C, D)$ for some $C, D \in \operatorname{Ch}(\Sigma)$. By assumption, $\mathrm{d}_{\mathrm{Ch}}(D, w D) \leq \mathrm{d}_{\mathrm{Ch}}(C, w C)$, and we have to show that $\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(D^{\eta}, w_{\eta} D^{\eta}\right) \leq \mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(C^{\eta}, w_{\eta} C^{\eta}\right)$. Let m be the wall of Σ separating C from D. If $m \notin \mathcal{W}^{\eta}$, then $C^{\eta}=D^{\eta}$ and the claim is clear. Assume now that $m \in \mathcal{W}^{\eta}$. As the wall $w m$ separating $w C$ from $w D$ also belongs to \mathcal{W}^{η}, we have
$\mathcal{W}(C, w C) \backslash \mathcal{W}^{\eta}=\mathcal{W}(D, w D) \backslash \mathcal{W}^{\eta}$. It then follows from (2.3) that

$$
\begin{aligned}
\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(D^{\eta}, w_{\eta} D^{\eta}\right) & =\left|\mathcal{W}(D, w D) \cap \mathcal{W}^{\eta}\right|=\mathrm{d}_{\mathrm{Ch}}(D, w D)-\left|\mathcal{W}(D, w D) \backslash \mathcal{W}^{\eta}\right| \\
& \leq \mathrm{d}_{\mathrm{Ch}}(C, w C)-\left|\mathcal{W}(C, w C) \backslash \mathcal{W}^{\eta}\right|=\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(C^{\eta}, w_{\eta} C^{\eta}\right),
\end{aligned}
$$

as desired.
The next technical lemma will be of fundamental importance in establishing a correspondence between galleries in Σ and in Σ^{η}, and will be used repeatedly in the rest of the paper.

Lemma 6.16. The following assertions hold:
(1) Let R be a spherical residue of Σ, and suppose that $\left.\pi_{\Sigma^{\eta}}\right|_{R}: R \rightarrow R^{\eta}$ is a cellular isomorphism onto a spherical residue R^{η} of Σ^{η}. Then

$$
\pi_{\Sigma^{\eta}}\left(\operatorname{proj}_{R}(C)\right)=\operatorname{proj}_{R^{\eta}}\left(C^{\eta}\right) \quad \text { for all } C \in \operatorname{Ch}(\Sigma)
$$

In particular, if $C^{\eta} \in R^{\eta}$ and $D:=\operatorname{proj}_{R}(C)$, then $D^{\eta}=C^{\eta}$.
(2) If $x, y \in \operatorname{Min}(w)$ are on a same w-axis and y is w-essential, then for every chamber $C \in R_{x}$ we have $\pi_{\Sigma^{\eta}}\left(\operatorname{proj}_{R_{y}}(C)\right)=C^{\eta}$.
(3) If R is a spherical residue of Σ such that w normalises $\operatorname{Stab}_{W}(R)$, then the restriction of $\pi_{\Sigma^{\eta}}$ to R is a cellular isomorphism onto a residue R^{η} of Σ^{η}, and w_{η} normalises $\operatorname{Stab}_{W^{\eta}}\left(R^{\eta}\right)$. If, moreover, R is a w-residue, then R^{η} is stabilised by w_{η}.
(4) If R^{η} is a spherical residue of Σ^{η} stabilised by w_{η}, then there is a w-essential point $x \in \operatorname{Min}(w)$ such that the restriction of $\pi_{\Sigma^{n}}$ to the w-residue R_{x} is a cellular isomorphism onto a w_{η}-stable residue R_{x}^{η} containing R^{η}.
Proof. (1) Let $C \in \operatorname{Ch}(\Sigma)$, and set $D:=\operatorname{proj}_{R}(C)$. By assumption, R and R^{η} have the same set of walls (in \mathcal{W}^{η}). Hence for any chamber E of R, we have (see (2.3))

$$
\begin{aligned}
\mathrm{d}_{\mathrm{Ch}}^{\sum^{\eta}}\left(C^{\eta}, E^{\eta}\right) & =\left|\mathcal{W}(C, E) \cap \mathcal{W}^{\eta}\right|=\left|\mathcal{W}(C, D) \cap \mathcal{W}^{\eta}\right|+\mathrm{d}_{\mathrm{Ch}}(D, E) \\
& =\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(C^{\eta}, D^{\eta}\right)+\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(D^{\eta}, E^{\eta}\right),
\end{aligned}
$$

where the second equality follows from the gate property (namely, $\mathcal{W}(C, E)$ is the disjoint union of $\mathcal{W}(C, D)$ and $\left.\mathcal{W}(D, E) \subseteq \mathcal{W}^{\eta}\right)$. Therefore, $D^{\eta}=\operatorname{proj}_{R^{\eta}}\left(C^{\eta}\right)$, as desired.
(2) Assume for a contradiction that $\pi_{\Sigma^{\eta}}\left(\operatorname{proj}_{R_{y}}(C)\right) \neq C^{\eta}$ for some $C \in R_{x}$ (so that $x \neq y$). Then there is a wall $m \in \mathcal{W}^{\eta}$ separating C from $\operatorname{proj}_{R_{y}}(C)$. In particular, m intersects the geodesic $[x, y]$, which is contained in a w-axis L by assumption. As $m \in \mathcal{W}^{\eta}$, it must then contain L, and hence be a wall of R_{y} (because y is w-essential), a contradiction.
(3) Let M be the set of walls of R. By assumption, w stabilises M and hence also the intersection $Z:=\bigcap_{m \in M} m \subseteq X$. Since Z is a nonempty (as R is spherical) closed convex subset of X, it contains a w-axis. In particular, $M \subseteq \mathcal{W}^{\eta}$. Moreover, if $\sigma \subseteq Z$ is the spherical simplex of Σ such that $R=R_{\sigma}$ (so that M is the set of walls containing σ), then the restriction of $\pi_{\Sigma^{\eta}}$ to R is a cellular isomorphism onto the residue R^{η} of Σ^{η} corresponding to the cell $\sigma^{\eta}:=\pi_{\Sigma^{\eta}}(\sigma)$; moreover, the set M of walls of R^{η} is stabilised by w_{η}, and hence w_{η} normalises $\operatorname{Stab}_{W^{\eta}}\left(R^{\eta}\right)$.

Assume now that R is a w-residue, and let $x \in \operatorname{Min}(w)$ be w-essential such that $R=R_{x}$. Thus, $\sigma=\operatorname{supp}(x)$, and we have to show that w_{η} stabilises σ^{η}. Note that $y:=w x$ is w-essential and that the residues R_{x}, R_{y} are parallel. Since
$\sigma=\bigcap_{C \in R_{x}} C$ and $w \sigma=\bigcap_{D \in R_{y}} D$, we then deduce from (2) that $\pi_{\Sigma^{\eta}}(w \sigma)=$ $\bigcap_{C^{\eta} \in R^{\eta}} C^{\eta}=\sigma^{\eta}$. Since $w_{\eta} \sigma^{\eta}=\pi_{\Sigma^{\eta}}(w \sigma)$ by (2.1), the claim follows.
(4) Recall from $\S 2.6$ the definition of the closed convex subset $C(\eta)$ of X, for each $C \in \operatorname{Ch}(\Sigma)$. Let R^{η} be a spherical residue of Σ^{η} stabilised by w_{η}. Then w stabilises the set $\left\{C(\eta) \mid C^{\eta} \in R^{\eta}\right\}$, and hence also the nonempty closed convex set $Z:=\bigcap_{C^{n} \in R^{\eta}} C(\eta)$. Hence Z contains a w-axis L, and we choose a w-essential point $x \in L$. By (3), the restriction of $\pi_{\Sigma^{\eta}}$ to R_{x} is a cellular isomorphism onto a w_{η}-stable residue R_{x}^{η}. Moreover, the set of walls of R_{x}^{η} coincides with the set of walls containing x, and hence contains the set of walls containing Z, that is, the set of walls of R^{η}. In particular, the spherical simplex $\sigma:=\operatorname{supp}(x)$ of Σ is contained in Z (as σ and Z are an intersection of half-spaces, see e.g. [AB08, $\S 3.6 .6]$), and hence $R_{x}^{\eta}=\pi_{\Sigma^{\eta}}\left(R_{\sigma}\right) \supseteq R^{\eta}$, as desired.

Remark 6.17. Lemma 6.16(3) implies in particular that w_{η} stabilises a spherical residue of Σ^{η}, and hence is a finite order automorphism of Σ^{η}.

Before proving the two main propositions of this subsection (Propositions 6.19 and 6.20), we need one more observation. Recall from the last paragraph of $\S 2.3$ the definition of the chamber distance $\mathrm{d}_{\mathrm{Ch}}\left(R, R^{\prime}\right)$ between two parallel residues R, R^{\prime}.

Lemma 6.18. Let $x \in \operatorname{Min}(w)$ be w-essential, and let $C \in R_{x}$. Then

$$
\mathrm{d}_{\mathrm{Ch}}(C, w C)=\mathrm{d}_{\mathrm{Ch}}\left(R_{x}, R_{w x}\right)+\mathrm{d}_{\mathrm{Ch}}^{\sum^{\eta}}\left(C^{\eta}, w_{\eta} C^{\eta}\right) .
$$

Proof. Since R_{x} is a w-residue (hence, R_{x} and $w R_{x}=R_{w x}$ are parallel), the gate property implies that $\mathrm{d}_{\mathrm{Ch}}(C, w C)=\mathrm{d}_{\mathrm{Ch}}\left(R_{x}, R_{w x}\right)+\mathrm{d}_{\mathrm{Ch}}\left(\operatorname{proj}_{R_{w x}}(C), w C\right)$. On the other hand, Lemma 6.16(3) implies that $\left.\pi_{\Sigma^{\eta}}\right|_{R_{w x}}$ is a cellular isomorphism onto its image, which maps $\operatorname{proj}_{R_{w x}}(C)$ to C^{η} (by Lemma 6.16(2)) and $w C$ to $w_{\eta} C^{\eta}$ (by (2.1)). Hence, $\mathrm{d}_{\mathrm{Ch}}\left(\operatorname{proj}_{R_{w x}}(C), w C\right)=\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(C^{\eta}, w_{\eta} C^{\eta}\right)$, yielding the lemma.

Proposition 6.19. We have $\pi_{\Sigma^{\eta}}(\operatorname{CombiMin}(w))=\operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$.
Proof. (1) Let $C \in \operatorname{CombiMin}(w)$, and let us show that $C^{\eta} \in \operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$. By Lemma 6.8(1), there is a gallery $\Gamma \subseteq \operatorname{CombiMin}(w)$ from C to some chamber $C^{\prime} \in \operatorname{CombiMin}(w)$ intersecting $\operatorname{Min}(w)$. Up to replacing C by C^{\prime}, we may then assume by Lemma 6.15 that C contains a point $x \in \operatorname{Min}(w)$. On the other hand, if L_{x} is the w-axis through x and σ is the support of a w-essential point $x^{\prime} \in L_{x}$ such that $x, x^{\prime} \in \sigma$, then C and $C^{\prime \prime}:=\operatorname{proj}_{R_{\sigma}}(C)$ (which belongs to CombiMin (w) by Lemma $6.8(2)$) are not separated by any wall in \mathcal{W}^{η} (for such a wall would contain x, and hence also L_{x}, and would thus be a wall of R_{σ}, a contradiction). Thus, $C^{\eta}=\left(C^{\prime \prime}\right)^{\eta}$, and up to replacing C by $C^{\prime \prime}$ (and x by x^{\prime}), we may assume that x is w-essential.

In particular, R_{x} is a w-residue, and by Lemma 6.16(3), the restriction of $\pi_{\Sigma^{n}}$ to R_{x} is a cellular isomorphism onto a residue R_{x}^{η} of Σ^{η} stabilised by w_{η}. By Lemma 6.10(2), we find a chamber $D \in R_{x}$ such that $D^{\eta} \in R_{x}^{\eta} \cap \operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$ (by taking for D^{η} the projection on R_{x}^{η} of any chamber in $\operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$). It then follows from Lemma 6.18 (applied to C and D) that

$$
\begin{aligned}
\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(C^{\eta}, w_{\eta} C^{\eta}\right) & =\mathrm{d}_{\mathrm{Ch}}(C, w C)-\mathrm{d}_{\mathrm{Ch}}\left(R_{x}, R_{w x}\right) \\
& \leq \mathrm{d}_{\mathrm{Ch}}(D, w D)-\mathrm{d}_{\mathrm{Ch}}\left(R_{x}, R_{w x}\right)=\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(D^{\eta}, w_{\eta} D^{\eta}\right),
\end{aligned}
$$

so that $\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(C^{\eta}, w_{\eta} C^{\eta}\right)=\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(D^{\eta}, w_{\eta} D^{\eta}\right)$ and $C^{\eta} \in \operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$, as desired.
(2) Conversely, assume that $C^{\eta} \in \operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$ for some $C \in \operatorname{Ch}(\Sigma)$, and let us show that there is some $D \in \operatorname{CombiMin}(w)$ with $D^{\eta}=C^{\eta}$. By Proposition 6.12, C^{η} contains a w_{η}-fixed point (in the Davis complex of W^{η}), and hence belongs to a spherical residue R^{η} of Σ^{η} stabilised by w_{η}. Up to enlarging R^{η}, we may assume by Lemma 6.16(4) that there exists a w-essential point $x \in \operatorname{Min}(w)$ such that the w-residue R_{x} is mapped isomorphically onto R^{η} by $\pi_{\Sigma^{\eta}}$. By Lemma 6.8(2), there is a chamber $D_{1} \in R_{x} \cap \operatorname{CombiMin}(w)$. Let D be the unique chamber of R_{x} with $D^{\eta}=C^{\eta}$. Lemma 6.18 (applied to D and D_{1}) then yields

$$
\begin{aligned}
\mathrm{d}_{\mathrm{Ch}}(D, w D) & =\mathrm{d}_{\mathrm{Ch}}\left(R_{x}, R_{w x}\right)+\mathrm{d}_{\mathrm{Ch}}^{\sum^{\eta}}\left(D^{\eta}, w_{\eta} D^{\eta}\right) \\
& \leq \mathrm{d}_{\mathrm{Ch}}\left(R_{x}, R_{w x}\right)+\mathrm{d}_{\mathrm{Ch}}^{\sum^{\eta}}\left(D_{1}^{\eta}, w_{\eta} D_{1}^{\eta}\right)=\mathrm{d}_{\mathrm{Ch}}\left(D_{1}, w D_{1}\right),
\end{aligned}
$$

and hence $D \in \operatorname{CombiMin}(w)$, as desired.
Proposition 6.20. Let $C, D \in \operatorname{CombiMin}(w)$. Then the following assertions are equivalent:
(1) There exists a gallery $\Gamma \subseteq \operatorname{CombiMin}(w)$ from C to D.
(2) There exists a gallery $\Gamma^{\eta} \subseteq$ CombiMin $\Sigma_{\Sigma^{\eta}}\left(w_{\eta}\right)$ from C^{η} to D^{η}.

Proof. If (1) holds, then the gallery Γ^{η} from C^{η} to D^{η} (see Definition 6.14) is contained in CombiMin ${ }_{\Sigma^{\eta}}\left(w_{\eta}\right)$ by Proposition 6.19, yielding (2).

Conversely, assume that (2) holds. By Lemma 6.8(1), there exist galleries $\Gamma_{C} \subseteq$ $\operatorname{CombiMin}(w)$ from C to some $C^{\prime} \in \operatorname{CombiMin}(w)$ and $\Gamma_{D} \subseteq \operatorname{CombiMin}(w)$ from D to some $D^{\prime} \in \operatorname{CombiMin}(w)$, with C^{\prime}, D^{\prime} intersecting $\operatorname{Min}(w)$. As we have just seen, this yields corresponding galleries in $\operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$ from C^{η} to $\left(C^{\prime}\right)^{\eta}$ and from D^{η} to $\left(D^{\prime}\right)^{\eta}$. To prove (1), we may thus assume without loss of generality that C and D intersect $\operatorname{Min}(w)$.

By Proposition 6.19, we may write $\Gamma^{\eta}=\left(C^{\eta}=D_{0}^{\eta}, D_{1}^{\eta}, \ldots, D_{k}^{\eta}=D^{\eta}\right)$ for some $D_{i} \in \operatorname{CombiMin}(w)$ (with $D_{0}:=C$ and $D_{k}:=D$). By Proposition 6.12, there exists for each $i \in\{0, \ldots, k\}$ some $y_{i} \in D_{i}^{\eta} \cap \operatorname{Min}\left(w_{\eta}\right)$.

Let $i \in\{1, \ldots, k\}$. As the union of the (closed) chambers D_{i-1}^{η} and D_{i}^{η} in the Davis complex of W^{η} is convex with respect to the $\operatorname{CAT}(0)$ metric (as it is an intersection of half-spaces by $[\mathrm{AB} 08$, Theorem $3.131(\mathrm{i}) \Leftrightarrow(\mathrm{ii})]$), the geodesic $\left[y_{i-1}, y_{i}\right] \subseteq \operatorname{Min}\left(w_{\eta}\right)$ intersects $D_{i-1}^{\eta} \cap D_{i}^{\eta}$. In particular, D_{i-1}^{η} and D_{i}^{η} are contained in a common spherical residue R_{i}^{η} of Σ^{η} stabilised by w_{η}. Up to enlarging R_{i}^{η}, Lemma 6.16(4) then yields a w-essential point $x_{i} \in \operatorname{Min}(w)$ such that $R_{x_{i}}$ is a w-residue mapped isomorphically onto R_{i}^{η} by $\pi_{\Sigma^{\eta}}$.

By Lemma 6.8(2), the chambers $\bar{D}_{i}:=\operatorname{proj}_{R_{x_{i}}}\left(D_{i-1}\right)$ and $\widetilde{D}_{i}:=\operatorname{proj}_{R_{x_{i}}}\left(D_{i}\right)$ belong to $\operatorname{CombiMin}(w)$ (see Figure 6). Note that $\bar{D}_{i}^{\eta}=D_{i-1}^{\eta}$ and $\widetilde{D}_{i}^{\eta}=D_{i}^{\eta}$ by Lemma $6.16(1)$. In particular, \widetilde{D}_{i} and \bar{D}_{i+1} are not separated by any wall in \mathcal{W}^{η}, so that Lemma $6.8(3)$ yields for each $i \in\{1, \ldots, k-1\}$ a gallery $\Gamma_{i} \subseteq$ $\operatorname{CombiMin}(w)$ from \widetilde{D}_{i} to \bar{D}_{i+1}. Similarly, as $C=D_{0}$ and $D=D_{k}$ intersect $\operatorname{Min}(w)$ by assumption, Lemma 6.8(3) also yields a gallery $\Gamma_{0} \subseteq \operatorname{CombiMin}(w)$ from C to \bar{D}_{1} and a gallery $\Gamma_{k} \subseteq \operatorname{CombiMin}(w)$ from \widetilde{D}_{k} to D. Moreover, since the chambers D_{i-1}^{η} and D_{i}^{η} of R_{i}^{η} are adjacent in Σ^{η}, the chambers \bar{D}_{i} and \widetilde{D}_{i} of $R_{x_{i}}$ are adjacent in Σ for each $i \in\{1, \ldots, k\}$. We thus obtain the desired gallery $\Gamma \subseteq \operatorname{CombiMin}(w)$ from C to D by concatenating the galleries $\Gamma_{0}, \ldots, \Gamma_{k}$, yielding (1).

Fig. 6. Proposition 6.20

We conclude this subsection with the following useful consequence of the above results.

Proposition 6.21. Let $C \in \operatorname{Ch}(\Sigma)$ and $D \in \operatorname{CombiMin}(w)$ be such that $C^{\eta}=D^{\eta}$. Then there exists a w-decreasing gallery from C to D. In particular, $\pi_{w}(C) \rightarrow$ $\pi_{w}(D)$.

Proof. By Lemma 6.8(1), there exists a w-decreasing gallery Γ from C to some $D_{1} \in \operatorname{Ch}(\Sigma)$ containing a point $x \in \operatorname{Min}(w)$. As $C^{\eta}=D^{\eta} \in \operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$ by Proposition 6.19, the gallery Γ^{η} from C^{η} to D_{1}^{η} is contained in $\operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$ by Lemma 6.15. Hence there exists by Proposition 6.19 some $D_{2} \in \operatorname{CombiMin}(w)$ with $D_{1}^{\eta}=D_{2}^{\eta}$. Let L be the w-axis through x, and let σ be the support of a w-essential point $y \in L$ such that $x, y \in \sigma$. By Lemma 6.8(2), the chamber $D_{3}:=\operatorname{proj}_{R_{\sigma}}\left(D_{2}\right)$ belongs to CombiMin (w) and contains $x \in \operatorname{Min}(w)$. Since $D_{1}^{\eta}=D_{2}^{\eta}$, the chambers D_{1} and D_{2} are on the same side of every wall of $R_{\sigma}=R_{y}$, and hence $D_{3}=\operatorname{proj}_{R_{y}}\left(D_{1}\right)$. Therefore, $D_{3}^{\eta}=D_{1}^{\eta}$ by Lemma 6.16(2). Hence there exists by Lemma 6.8(3) a w-decreasing gallery Γ^{\prime} from D_{1} to D_{3}. Finally, Proposition $6.20(2) \Rightarrow(1)$ applied to the chambers D_{3} and D (note that Γ^{η} connects D_{3}^{η} to D^{η}) yields a gallery $\Gamma^{\prime \prime} \subseteq \operatorname{CombiMin}(w)$ from D_{3} to D (in particular, $\Gamma^{\prime \prime}$ is w-decreasing). The desired w-decreasing gallery from C to D is then the concatenation of Γ, Γ^{\prime} and $\Gamma^{\prime \prime}$.

The last statement now follows from Lemma 6.5.
6.4. Regular points. Recall from Proposition 6.12 that if $w \in \operatorname{Aut}(\Sigma)$ has finite order, then there exists $x \in \operatorname{Min}(w)$ such that $\operatorname{Fix}_{W}(x)=\operatorname{Fix}_{W}(\operatorname{Min}(w))$. The purpose of this subsection is to show that this also holds for w of infinite order.

Definition 6.22. For $w \in \operatorname{Aut}(\Sigma)$, we call a point $x \in \operatorname{Min}(w) w$-regular if $\operatorname{Fix}_{W}(x)=\operatorname{Fix}_{W}(\operatorname{Min}(w))$, and we let $\operatorname{Reg}_{X}(w) \subseteq X$ denote the set of w-regular points.

Lemma 6.23. Let $w \in \operatorname{Aut}(\Sigma)$ be of infinite order. Then $\operatorname{Reg}_{X}(w)$ is dense in $\operatorname{Min}(w)$.

Proof. Let $x \in \operatorname{Min}(w)$, and let $\varepsilon>0$. We have to show that the open ball $B_{\varepsilon}(x)$ centered at x and of radius ε in X contains a w-regular point. We claim that any $y \in \operatorname{Min}(w) \cap B_{\varepsilon}(x)$ such that $P_{y}:=\operatorname{Fix}_{W}(y)$ is minimal in $\left\{\operatorname{Fix}_{W}(z) \mid z \in\right.$ $\left.\operatorname{Min}(w) \cap B_{\varepsilon}(x)\right\}$ is w-regular. Up to changing x within $B_{\varepsilon}(x)$, we may assume that P_{x} is minimal in $\left\{P_{z} \mid z \in \operatorname{Min}(w) \cap B_{\varepsilon}(x)\right\}$. Assume for a contradiction that $P_{x} \neq P_{w}:=\operatorname{Fix}_{W}(\operatorname{Min}(w))$. Note that $P_{x} \supseteq P_{w}$.

Let L_{1} be the w-axis through x. As $B_{\varepsilon}(x)$ contains a w-essential point of L_{1}, we have $P_{x}=\operatorname{Fix}_{W}\left(L_{1}\right)$. Since $P_{x} \neq P_{w}$, there exists a w-axis L_{2} with $\operatorname{Fix}_{W}\left(L_{2}\right) \neq \operatorname{Fix}_{W}\left(L_{1}\right)$ (because $P_{w}=\bigcap_{L} \operatorname{Fix}_{W}(L)$, where the intersection runs over the set of w-axes L). For each w-axis L, let \mathcal{W}_{L} denote the set of walls containing L; set for short $\mathcal{W}_{i}:=\mathcal{W}_{L_{i}}$ for $i=1,2$.

Since $\operatorname{Fix}_{W}\left(L_{2}\right) \neq \operatorname{Fix}_{W}\left(L_{1}\right)$, we have $L_{1} \neq L_{2}$. By [BH99, Theorem II.2.13], the convex hull $C:=\operatorname{Conv}\left(L_{1}, L_{2}\right)$ of $L_{1} \cup L_{2}$ is contained in $\operatorname{Min}(w)$ and is isometric to a flat (Euclidean) strip $\left[z_{1}, z_{2}\right] \times \mathbb{R}\left(\right.$ with $z_{1} \in L_{1}$ and $\left.z_{2} \in L_{2}\right)$.

Let $C_{\varepsilon} \subseteq C$ denote the intersection of C with an ε-neighbourhood of L_{1}. Let L, L^{\prime} be two distinct w-axes different from L_{1}, L_{2} and contained in C_{ε}, and such that $\mathcal{W}_{L}=\mathcal{W}_{L^{\prime}}$; such L, L^{\prime} exist, because there are only finitely many possibilities for \mathcal{W}_{L} as L varies amongst the (infinitely many) w-axes contained in C_{ε}. Note first that any wall $m \in \mathcal{W}_{1} \cap \mathcal{W}_{2}$ contains C_{ε}, and hence also L. In other words, $\mathcal{W}_{1} \cap \mathcal{W}_{2} \subseteq \mathcal{W}_{L}$. Conversely, if $m \in \mathcal{W}_{L}=\mathcal{W}_{L^{\prime}}$, then for any $z_{1} \in L_{1}$ and $z_{2} \in L_{2}$, the geodesic $\left[z_{1}, z_{2}\right]$ intersects L and L^{\prime}, and hence the wall m in at least two points, and is therefore entirely contained in m. This shows that $\mathcal{W}_{L} \subseteq \mathcal{W}_{1} \cap \mathcal{W}_{2}$, and hence that $\mathcal{W}_{L}=\mathcal{W}_{1} \cap \mathcal{W}_{2}$.

Let now $y \in L \cap B_{\varepsilon}(x)$ be w-essential. Then $\operatorname{Fix}_{W}(y)=\operatorname{Fix}_{W}(L)=\operatorname{Fix}_{W}\left(L_{1}\right) \cap$ Fix ${ }_{W}\left(L_{2}\right) \subsetneq P_{x}$, contradicting the minimality of P_{x}, as desired.

7. Proof of Theorem B

Throughout this section, we fix a Coxeter system (W, S), as well as an element $w \in \operatorname{Aut}(\Sigma)$ of infinite order, and we set $\eta:=\eta_{w} \in \partial X$. Recall from $\S 2.6$ the definitions of the morphism of complexes $\pi_{\Sigma^{\eta}}: \Sigma \rightarrow \Sigma^{\eta}$ and of the action map $\pi_{\eta}: \operatorname{Aut}(\Sigma)_{\eta} \rightarrow \operatorname{Aut}\left(\Sigma^{\eta}\right): v \mapsto v_{\eta}$.
Definition 7.1. Each element $u \in \operatorname{Aut}(\Sigma)_{\eta}$ induces a diagram automorphism $\delta_{u} \in \operatorname{Aut}\left(\Sigma^{\eta}, C_{0}^{\eta}\right)=\operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)$ of the transversal complex Σ^{η}, defined by

$$
\delta_{u}:=x^{-1} u_{\eta},
$$

where x is the unique element of W^{η} such that $u_{\eta} C_{0}^{\eta}=x C_{0}^{\eta}$. In other words, δ_{u} is the unique element of $\operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)$ such that $u_{\eta} \in W^{\eta} \delta_{u} \subseteq W^{\eta} \rtimes \operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)=$ $\operatorname{Aut}\left(\Sigma^{\eta}\right)$.

We define the subgroups

$$
\Xi_{\eta}:=\left\{\delta_{u} \mid u \in W_{\eta}\right\} \subseteq \operatorname{Aut}\left(W^{\eta}, S^{\eta}\right) \quad \text { and } \quad \Xi_{w}:=\left\{\delta_{u} \mid u \in \mathcal{Z}_{W}(w)\right\} \subseteq \Xi_{\eta}
$$

of all diagram automorphisms of $\left(W^{\eta}, S^{\eta}\right)$ induced by elements of W_{η} (resp. $\left.\mathcal{Z}_{W}(w)\right)$. In other words, $\Xi_{\eta}=\pi_{\eta}\left(W_{\eta}\right) \cap \operatorname{Aut}\left(\Sigma^{\eta}, C_{0}^{\eta}\right) \cong \pi_{\eta}\left(W_{\eta}\right) / W^{\eta}$ and $\Xi_{w}=$ $\pi_{\eta}\left(\mathcal{Z}_{W}(w) \cdot W^{\eta}\right) \cap \operatorname{Aut}\left(\Sigma^{\eta}, C_{0}^{\eta}\right)$.

The goal of this section is to prove Theorem B. In §7.1, we show how the group Ξ_{w} allows to distinguish between cyclic shift classes in $\mathcal{O}_{w}^{\min }$. We then prove Theorem B in §7.2. We conclude by establishing the analogous statement for the tight conjugation graph in §7.3.

In the next sections ($\S 9$ and $\S 10$), we will identify and study the Coxeter system (W^{η}, S^{η}) and its associated complex Σ^{η}, as well as the group Ξ_{w}, dealing with the indefinite and affine cases separately.
7.1. Distinguishing cyclic shift classes. We first introduce a useful notation for the "support at infinity" of the conjugates of w. Recall from Definition 6.1 the parametrisation $\pi_{w_{\eta}}$ of the conjugates of w_{η} in W^{η} by chambers of Σ^{η}.
Definition 7.2. For a chamber $C \in \operatorname{Ch}(\Sigma)$, set $I_{w}(C):=\operatorname{supp}_{S^{\eta}}\left(\pi_{w_{\eta}}\left(C^{\eta}\right)\right) \subseteq S^{\eta}$. Set also for short $I_{w}:=I_{w}\left(C_{0}\right)=\operatorname{supp}_{S^{\eta}}\left(w_{\eta}\right)$.

The following lemma gives a geometric interpretation of $I_{w}(C)$.
Lemma 7.3. Let $C \in \operatorname{Ch}(\Sigma)$, and let $L \subseteq S^{\eta}$. Then w_{η} stabilises the residue $R_{L}\left(C^{\eta}\right)$ of Σ^{η} if and only if $\delta_{w}(L)=L$ and $L \supseteq I_{w}(C)$. In particular, $I_{w}(C)$ is the type of the smallest w_{η}-invariant residue containing C^{η}.
Proof. This readily follows from Lemma 6.7 applied to $(W, S):=\left(W^{\eta}, S^{\eta}\right)$ and $w:=w_{\eta}$.

Here are a few properties of the sets $I_{w}(C)$.
Lemma 7.4. Let $C \in \operatorname{CombiMin}(w)$.
(1) If $v \in \mathcal{Z}_{W}(w)$, then $I_{w}(v C)=\delta_{v}\left(I_{w}(C)\right)$.
(2) If $\delta \in \Xi_{w}$, then $\delta\left(I_{w}(C)\right)=I_{w}(v C)$ for some $v \in \mathcal{Z}_{W}(w)$.

Proof. (1) Let $u \in W^{\eta}$ be such that $v_{\eta} C^{\eta}=u C^{\eta}$, and let $a \in W^{\eta}$ with $C^{\eta}=$ $a C_{0}^{\eta}$. Then $a^{-1} v_{\eta} a C_{0}^{\eta}=a^{-1} u a C_{0}^{\eta}$, and hence $\delta_{v}=\delta_{a^{-1} v a}=\left(a^{-1} u a\right)^{-1} a^{-1} v_{\eta} a=$ $a^{-1} u^{-1} v_{\eta} a$. Since v_{η} and w_{η} commute, we then have

$$
\begin{aligned}
I_{w}(v C) & =\operatorname{supp}_{S^{\eta}}\left(\pi_{w_{\eta}}\left(u a C_{0}^{\eta}\right)\right)=\operatorname{supp}_{S^{\eta}}\left(a^{-1} u^{-1} w_{\eta} u a\right) \\
& =\operatorname{supp}_{S^{\eta}}\left(a^{-1} u^{-1} v_{\eta} w_{\eta} v_{\eta}^{-1} u a\right)=\operatorname{supp}_{S^{\eta}}\left(\delta_{v} a^{-1} w_{\eta} a \delta_{v}^{-1}\right) \\
& =\delta_{v}\left(\operatorname{supp}_{S^{\eta}}\left(a^{-1} w_{\eta} a\right)\right)=\delta_{v}\left(\operatorname{supp}_{S^{\eta}}\left(\pi_{w_{\eta}}\left(C^{\eta}\right)\right)\right)=\delta_{v}\left(I_{w}(C)\right),
\end{aligned}
$$

as desired.
(2) Writing $\delta=\delta_{v}$ for some $v \in \mathcal{Z}_{W}(w)$, we have $\delta\left(I_{w}(C)\right)=I_{w}(v C)$ by (1).

Lemma 7.5. Let $C, D \in \operatorname{CombiMin}(w)$ be such that C^{η}, D^{η} are connected by a gallery $\Gamma^{\eta} \subseteq \operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$. Then $I_{w}(C)=I_{w}(D)$.
Proof. By assumption, the elements $\pi_{w_{\eta}}\left(C^{\eta}\right)$ and $\pi_{w_{\eta}}\left(D^{\eta}\right)$ are cyclically reduced, and belong to the same cyclic shift class in $\left(W^{\eta}, S^{\eta}\right)$ by Lemma $6.6(2) \Rightarrow(1)$. In particular, they have the same support (see Lemma 3.5), that is, $I_{w}(C)=$ $I_{w}(D)$.

We are now ready to show how Ξ_{w} allows to distinguish between the cyclic shift classes in $\mathcal{O}_{w}^{\text {min }}$.

Proposition 7.6. Let $C, D \in \operatorname{CombiMin}(w)$. Then the following assertions are equivalent:
(1) $\pi_{w}(C)$ and $\pi_{w}(D)$ are in the same cyclic shift class.
(2) there exist $v \in \mathcal{Z}_{W}(w)$ and a gallery $\Gamma^{\eta} \subseteq \operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$ from D^{η} to $v_{\eta} C^{\eta}$.
(3) $I_{w}(D)=\sigma\left(I_{w}(C)\right)$ for some $\sigma \in \Xi_{w}$.

Proof. (1) $\Leftrightarrow(2)$: By Lemma 6.6, (1) holds if and only if there exist $v \in \mathcal{Z}_{W}(w)$ and a gallery $\Gamma \subseteq \operatorname{CombiMin}(w)$ from D to $v C$. This latter condition is equivalent to (2) by Proposition 6.20 (recall that $\pi_{\Sigma^{\eta}}(v C)=v_{\eta} C^{\eta}$ by (2.1)).
$(2) \Leftrightarrow(3)$: Assume that (2) holds. Then Lemma 7.5 implies that $I_{w}(D)=$ $I_{w}(v C)$. As $I_{w}(v C)=\sigma\left(I_{w}(C)\right)$ for some $\sigma \in \Xi_{w}$ by Lemma 7.4(1), (3) follows.
Assume, conversely, that (3) holds, and let $\sigma \in \Xi_{w}$ be such that $I_{w}(D)=$ $\sigma\left(I_{w}(C)\right)$. By Lemma 7.4(2), there exists $v \in \mathcal{Z}_{W}(w)$ such that $I_{w}(D)=I_{w}(v C)$. Hence Theorem 4.14 implies that $\pi_{w_{\eta}}\left(D^{\eta}\right)$ and $\pi_{w_{\eta}}\left(v_{\eta} C^{\eta}\right)$ are in the same cyclic shift class of $\left(W^{\eta}, S^{\eta}\right)$. Lemma 6.6 then yields some \bar{v} in

$$
\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right)=\left\{v \in W^{\eta} \mid v w_{\eta} v^{-1}=w_{\eta}\right\}
$$

and a gallery $\Gamma^{\eta} \subseteq \operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$ from D^{η} to $\bar{v} v_{\eta} C^{\eta}$. Note that $\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right) \subseteq$ $\mathcal{Z}_{W}(w)$ by (2.2). Hence $\bar{v} v \in \mathcal{Z}_{W}(w)$, which implies (2), as desired.
7.2. The structural conjugation graph of an infinite order element. The goal of this subsection is to prove Theorem B (see Theorem 7.17 below). The existence of a well-defined map

$$
\varphi_{w}: \mathcal{K}_{\mathcal{O}_{w}} \rightarrow \mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}: \operatorname{Cyc}\left(\pi_{w}(C)\right) \mapsto I_{w}(C) \quad \text { for all } C \in \operatorname{CombiMin}(w)
$$

at the level of the vertex sets will follow from Proposition 7.6, and we now check in a series of lemmas and propositions that φ_{w} is in fact a graph isomorphism.

First, we give a geometric reformulation of K-conjugation.
Lemma 7.7. Let $K \subseteq S$ be spherical. Let $C, D \in \operatorname{Ch}(\Sigma)$. Then the following assertions are equivalent:
(1) $\pi_{w}(C)$ and $\pi_{w}(D)$ are K-conjugate.
(2) There exists $v \in \mathcal{Z}_{W}(w)$ such that C and $v D$ are opposite chambers in a residue R of type K such that w normalises $\operatorname{Stab}_{W}(R)$.

Proof. Let $R=R_{K}(C)$ be the K-residue containing C. Write $C=a C_{0}$ and $D=b C_{0}$ for some $a, b \in W$. If (1) holds, then w normalises $a W_{K} a^{-1}=\operatorname{Stab}_{W}(R)$, and $b^{-1} w b=w_{0}(K) a^{-1} w a w_{0}(K)$. Hence, $v:=a w_{0}(K) b^{-1} \in \mathcal{Z}_{W}(w)$ and $v D=$ $a w_{0}(K) C_{0}$ is the chamber opposite C in $R=a R_{K}$, so that (2) holds.

Conversely, if (2) holds, then $\pi_{w}(C)=a^{-1} w a$ normalises $W_{K}=\operatorname{Stab}_{W}\left(a^{-1} R\right)$ and $\pi_{w}(D)=\pi_{w}(v D)=\pi_{w}\left(a w_{0}(K) C_{0}\right)=w_{0}(K) \pi_{w}(C) w_{0}(K)$, yielding (1).

Next, we check that φ_{w}^{-1} preserves edges.
Proposition 7.8. Let $C \in \operatorname{CombiMin}(w)$ and $L \subseteq S^{\eta}$ be spherical with $\delta_{w}(L)=L$ and $I_{w}(C) \subseteq L$. Write $C^{\eta}=a C_{0}^{\eta}$ with $a \in W^{\eta}$. Then the following assertions hold:
(1) There exist a spherical subset $K \subseteq S$ and $b \in W$ of minimal length in $b W_{K}$ such that $W_{L}^{\eta}=b W_{K} b^{-1}$ and $a b C_{0} \in \operatorname{CombiMin}(w)$.
(2) If $b \in W$ and $K \subseteq S$ are as in (1) and $C_{1}:=a b C_{0}$, then $C_{1}^{\eta}=C^{\eta}$ and $\operatorname{Cyc}\left(\pi_{w}(C)\right)=\operatorname{Cyc}\left(\pi_{w}\left(C_{1}\right)\right)$. Moreover, the chamber D opposite C_{1} in $R_{K}\left(C_{1}\right)$ belongs to $\operatorname{CombiMin}(w)$, and $\pi_{w}\left(C_{1}\right)$ and $\pi_{w}(D)$ are K-conjugate. Finally, D^{η} is opposite C^{η} in $R_{L}\left(C^{\eta}\right)$ and $I_{w}(D)=\mathrm{op}_{L}\left(I_{w}(C)\right)$.

Proof. Let $R_{L}\left(C^{\eta}\right) \subseteq \Sigma^{\eta}$ be the residue of type L containing C^{η}. By Lemma 7.3, w_{η} stabilises $R_{L}\left(C^{\eta}\right)$. By Lemma 6.16(4), we then find a w-essential point $x \in$
$\operatorname{Min}(w)$ such that the restriction of $\pi_{\Sigma^{\eta}}$ to the w-residue R_{x} is a cellular isomorphism onto the w_{η}-stable residue $R_{\bar{L}}\left(C^{\eta}\right)$ for some $\bar{L} \subseteq S^{\eta}$ containing L. Let R^{\prime} be the residue contained in R_{x} and mapped isomorphically to $R_{L}\left(C^{\eta}\right)$ by $\pi_{\Sigma^{\eta}}$.
(1) Lemma 6.8(2) implies that the chamber $C_{1}:=\operatorname{proj}_{R_{x}}(C) \in R_{x}$ belongs to CombiMin (w). Moreover, $C^{\eta}=C_{1}^{\eta} \in \operatorname{CombiMin}\left(w_{\eta}\right)$ by Lemma 6.16(1) and Proposition 6.19. In particular, C_{1} is the unique chamber of R_{x} mapped to C^{η} by $\pi_{\Sigma^{\eta}}$, and hence $C_{1} \in R^{\prime}$. Let $b \in W$ be such that $a^{-1} C_{1}=b C_{0}$, and let $K \subseteq S$ be the type of R^{\prime}, so that $R^{\prime}=a b R_{K}$. Then $a b W_{K}(a b)^{-1}=\operatorname{Stab}_{W}\left(R^{\prime}\right)=$ $\operatorname{Stab}_{W^{\eta}}\left(R_{L}\left(C^{\eta}\right)\right)=a W_{L}^{\eta} a^{-1}$. Moreover, as $a C_{0}^{\eta}=C^{\eta}=C_{1}^{\eta}$, the chambers $a C_{0}$ and C_{1} are not separated by any wall of R^{\prime}, that is, $C_{1}=\operatorname{proj}_{R^{\prime}}\left(a C_{0}\right)$. Hence $b C_{0}=a^{-1} C_{1}=\operatorname{proj}_{b R_{K}}\left(C_{0}\right)$, so that b is of minimal length in $b W_{K}$. This proves (1).
(2) Let $b \in W$ and $K \subseteq S$ be as in (1). Let $R:=R_{K}\left(C_{1}\right) \subseteq \Sigma$ be the residue of type K containing $C_{1}:=a b C_{0}$. Since $a^{-1} C_{1}=b C_{0}=\operatorname{proj}_{b R_{K}}\left(C_{0}\right)$ by assumption, $C_{1}=\operatorname{proj}_{R}\left(a C_{0}\right)$ and hence $C_{1}^{\eta}=a C_{0}^{\eta}=C^{\eta}$ by Lemma 6.16(1). Moreover, as $\operatorname{Stab}_{W}(R)=a b W_{K}(a b)^{-1}=a W_{L}^{\eta} a^{-1}=\operatorname{Stab}_{W^{\eta}}\left(R_{L}\left(C^{\eta}\right)\right)$, the residues R and $R_{L}\left(C^{\eta}\right)$ have the same set of walls, and hence the restriction of $\pi_{\Sigma^{\eta}}$ to R is a cellular isomorphism $R \xlongequal{\rightrightarrows} R_{L}\left(C^{\eta}\right)$.

Since $C_{1} \in \operatorname{CombiMin}(w)$, Proposition 6.20 implies that C and C_{1} are connected by a gallery contained in $\operatorname{CombiMin}(w)$. In particular, $\operatorname{Cyc}\left(\pi_{w}(C)\right)=$ $\operatorname{Cyc}\left(\pi_{w}\left(C_{1}\right)\right)$ by Lemma 6.6.

Let $D \in R$ be the chamber opposite C_{1} in R. Then $\pi_{w}(D)$ and $\pi_{w}\left(C_{1}\right)$ are K-conjugate by Lemma 7.7. In particular, $D \in \operatorname{CombiMin}(w)$ by Lemma 5.4. Note also that D^{η} is the chamber opposite C^{η} in $R_{L}\left(C^{\eta}\right)$, and hence $I_{w}(D)=$ $\operatorname{supp}_{S^{\eta}}\left(\pi_{w_{\eta}}\left(D^{\eta}\right)\right)=\operatorname{supp}_{S^{\eta}}\left(w_{0}(L) \pi_{w_{\eta}}\left(C^{\eta}\right) w_{0}(L)\right)=\operatorname{op}_{L}\left(I_{w}(C)\right)$. This proves (2).

Recall from $\S 5.2$ the definition of the graphs $\mathcal{K}_{\mathcal{O}_{w}}$ and $\mathcal{K}_{\delta_{w}}=\mathcal{K}_{\delta_{w}, W^{\eta}}$.
Corollary 7.9. Let $C \in \operatorname{CombiMin}(w)$ and let J be a vertex of $\mathcal{K}_{\delta_{w}}$ such that $I_{w}(C)$ and J are connected by an edge in $\mathcal{K}_{\delta_{w}}$. Then there exists $D \in \operatorname{CombiMin}(w)$ such that $J=I_{w}(D)$, and such that $\operatorname{Cyc}\left(\pi_{w}(C)\right)$ and $\operatorname{Cyc}\left(\pi_{w}(D)\right)$ are connected by an edge in $\mathcal{K}_{\mathcal{O}_{w}}$.

Proof. By assumption, there exists a δ_{w}-invariant spherical subset $L \subseteq S^{\eta}$ containing $I_{w}(C)$ such that $J=\mathrm{op}_{L}\left(I_{w}(C)\right)$. Hence the claim follows from Proposition 7.8(2).

Next, we show that $\mathcal{K}_{\mathcal{O}_{w}}$ is connected; together with the fact, proved below, that φ_{w} preserves edges, this will imply that the image of φ_{w} is the desired connected component of $\mathcal{K}_{\delta_{w}}$. Recall from Definition 5.8 the definition of spherical paths in $\mathcal{K}_{\delta_{w}}$.

Lemma 7.10. Let R be a spherical residue such that w normalises $\operatorname{Stab}_{W}(R)$, and let $C, D \in R \cap \operatorname{CombiMin}(w)$. Then $I_{w}(C)$ and $I_{w}(D)$ are connected by a spherical path in $\mathcal{K}_{\delta_{w}}$.

Proof. By Lemma 6.16(3), the restriction of $\pi_{\Sigma^{\eta}}$ to R is a cellular isomorphism onto a residue R^{η} of Σ^{η}, and w_{η} normalises $\operatorname{Stab}_{W^{\eta}}\left(R^{\eta}\right)$. Since $C^{\eta}, D^{\eta} \in R^{\eta} \cap$ CombiMin $\left(w_{\eta}\right)$ by Proposition 6.19, Lemma 6.13(1) implies that there is a $w_{\eta^{-}}$ invariant spherical residue \bar{R}^{η} containing C^{η}, D^{η}.

Write $C^{\eta}=a C_{0}^{\eta}$ with $a \in W^{\eta}$, so that $\operatorname{Stab}_{W^{\eta}}\left(\bar{R}^{\eta}\right)=a W_{L}^{\eta} a^{-1}$ for some spherical subset $L \subseteq S^{\eta}$. Let also $x \in W_{L}^{\eta}$ such that $D^{\eta}=a x C_{0}^{\eta}$, so that $v:=\pi_{w_{\eta}}\left(D^{\eta}\right)=$ $x^{-1} u x$, where $u:=\pi_{w_{\eta}}\left(C^{\eta}\right)=a^{-1} w_{\eta} a \in W_{L}^{\eta}$. We have to show that $I_{w}(C)=$ $\operatorname{supp}(u)$ is connected to $I_{w}(D)=\operatorname{supp}(v)$ by a spherical path in $\mathcal{K}_{\delta_{w}}$. But as u, v are conjugate in W_{L}^{η}, this follows from Theorem 5.9 applied with $W:=W_{L}^{\eta}$.
Proposition 7.11. Let $C, D \in \operatorname{CombiMin}(w)$. Then $I_{w}(C)$ and $I_{w}(D)$ are connected by a path in $\mathcal{K}_{\delta_{w}}$. In particular, $\mathcal{K}_{\mathcal{O}_{w}}$ is connected.
Proof. If C, D are adjacent, then $I_{w}(C)=I_{w}(D)$ by Lemma 7.5 (and Proposition 6.20). And if C, D belong to a spherical residue R such that w normalises $\operatorname{Stab}_{W}(R)$, then $I_{w}(C)$ and $I_{w}(D)$ are connected by a path in $\mathcal{K}_{\delta_{w}}$ by Lemma 7.10. Hence the first statement follows from Lemma 6.8(4).

Together with Corollary 7.9, this implies that there exists a chamber $D_{1} \in$ $\operatorname{CombiMin}(w)$ with $I_{w}\left(D_{1}\right)=I_{w}(D)$ such that $\operatorname{Cyc}\left(\pi_{w}(C)\right)$ and $\operatorname{Cyc}\left(\pi_{w}\left(D_{1}\right)\right)$ are connected by a path in $\mathcal{K}_{\mathcal{O}_{w}}$. Since $\operatorname{Cyc}\left(\pi_{w}\left(D_{1}\right)\right)=\operatorname{Cyc}\left(\pi_{w}(D)\right)$ by Proposition $7.6(3) \Rightarrow(1)$, the second statement follows as well.

Finally, we show that φ_{w} preserves edges.
Lemma 7.12. Let $C, D \in \operatorname{CombiMin}(w)$ be such that $\pi_{w}(C)$ and $\pi_{w}(D)$ are K conjugate for some spherical subset K of S. Then there exist a δ_{w}-stable spherical subset $L \subseteq S^{\eta}$ containing $I_{w}(C)$ and an automorphism $\sigma \in \Xi_{w}$ such that $\sigma\left(I_{w}(D)\right)=\mathrm{op}_{L}\left(I_{w}(C)\right)$.
Proof. Let $R:=R_{K}(C)$ be the K-residue containing C. By Lemma 7.7, there exists some $v \in \mathcal{Z}_{W}(w)$ such that C and $D_{1}:=v D \in \operatorname{CombiMin}(w)$ are opposite chambers of R, and w normalises $\operatorname{Stab}_{W}(R)$. By Lemma 6.16(3), the restriction of $\pi_{\Sigma^{\eta}}$ to R is a cellular isomorphism onto a residue R^{η} of Σ^{η}, and w_{η} normalises $\operatorname{Stab}_{W^{\eta}}\left(R^{\eta}\right)$. In particular, the chambers C^{η}, D_{1}^{η} are opposite in R^{η}, and belong to CombiMin ${ }_{\Sigma^{\eta}}\left(w_{\eta}\right)$ by Proposition 6.19. Moreover, by Lemma 7.3, the residues $R_{I_{w}(C)}\left(C^{\eta}\right)$ and $R_{I_{w}\left(D_{1}\right)}\left(D_{1}^{\eta}\right)$ of Σ^{η} are the smallest w_{η}-invariant residues containing C^{η} and D_{1}^{η}, respectively. Denoting by \bar{R}^{η} the smallest residue of Σ^{η} containing $R_{I_{w}(C)}\left(C^{\eta}\right)$ and $R_{I_{w}\left(D_{1}\right)}\left(D_{1}^{\eta}\right)$, it then follows from Lemma 6.13 (and Proposition 6.19) that \bar{R}^{η} is a w_{η}-invariant spherical residue, and that C^{η} and D_{2}^{η} are opposite chambers in \bar{R}^{η} for some $D_{2} \in \operatorname{CombiMin}(w)$ such that $D_{2}^{\eta} \in R_{I_{w}\left(D_{1}\right)}\left(D_{1}^{\eta}\right)$. Moreover, $R_{I_{w}\left(D_{1}\right)}\left(D_{1}^{\eta}\right)$ is the smallest w_{η}-invariant residue containing D_{2}^{η}, and hence $I_{w}\left(D_{1}\right)=I_{w}\left(D_{2}\right)$ by Lemma 7.3.

Let $L \subseteq S^{\eta}$ be the type of \bar{R}^{η}, so that $\bar{R}^{\eta}=R_{L}\left(C^{\eta}\right)$. Then $\delta_{w}(L)=L$ and $L \supseteq I_{w}(C)$ by Lemma 7.3. Let $a \in W^{\eta}$ be such that $C^{\eta}=a C_{0}^{\eta}$. Since C^{η} and D_{2}^{η} are opposite chambers of $R_{L}\left(C^{\eta}\right)$, we then have

$$
\pi_{w_{\eta}}\left(D_{2}^{\eta}\right)=\pi_{w_{\eta}}\left(a w_{0}(L) C_{0}^{\eta}\right)=w_{0}(L) \pi_{w_{\eta}}\left(C^{\eta}\right) w_{0}(L),
$$

so that $I_{w}\left(D_{1}\right)=I_{w}\left(D_{2}\right)=\operatorname{op}_{L}\left(I_{w}(C)\right)$. Since $I_{w}\left(D_{1}\right)=\sigma\left(I_{w}(D)\right)$ for some $\sigma \in \Xi_{w}$ by Lemma 7.4(1), the lemma follows.
Definition 7.13. Recall from $\S 5.2$ the definition of the graphs $\mathcal{K}_{\mathcal{O}_{w}}$ and $\mathcal{K}_{\delta_{w}}=$ $\mathcal{K}_{\delta_{w}, W^{\eta}}$. Note that every element of Ξ_{w} commutes with δ_{w}, as follows from Lemma 7.14 below (applied to $\left(W^{\eta}, S^{\eta}\right)$). Hence the group Ξ_{w} acts by graph automorphisms on $\mathcal{K}_{\delta_{w}}$. Let $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ denote the corresponding quotient graph of the connected component $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ of I_{w} in $\mathcal{K}_{\delta_{w}}$, namely, the graph with vertex set the equivalence classes $[I]$ of vertices I of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ (where the vertices I, J of
$\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ are in the same class if they belong to the same Ξ_{w}-orbit), and with an edge between $[I]$ and $[J]$ if there exist $I^{\prime} \in[I]$ and $J^{\prime} \in[J]$ connected by an edge in $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$.

In the sequel, we will make the notational abuse of identifying vertices I of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ with their equivalence class $[I]$ in $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$.
Lemma 7.14. Assume that $u_{1} \delta_{1}, u_{2} \delta_{2} \in \operatorname{Aut}(\Sigma)$ commute for some $u_{i} \in W$ and $\delta_{i} \in \operatorname{Aut}(W, S)$. Then δ_{1} and δ_{2} commute.

Proof. For each $s \in S$, let σ_{s} be the panel of C_{0} of type s. By assumption, $u_{1} \delta_{1}\left(u_{2}\right) C_{0}=u_{1} \delta_{1} u_{2} \delta_{2} C_{0}=u_{2} \delta_{2} u_{1} \delta_{1} C_{0}=u_{2} \delta_{2}\left(u_{1}\right) C_{0}$ and hence $u_{1} \delta_{1}\left(u_{2}\right)=$ $u_{2} \delta_{2}\left(u_{1}\right)$. Similarly, for all $s \in S$,

$$
u_{1} \delta_{1}\left(u_{2}\right) \sigma_{\delta_{1} \delta_{2}(s)}=u_{1} \delta_{1} u_{2} \delta_{2} \sigma_{s}=u_{2} \delta_{2} u_{1} \delta_{1} \sigma_{s}=u_{2} \delta_{2}\left(u_{1}\right) \sigma_{\delta_{2} \delta_{1}(s)}
$$

so that $\sigma_{\delta_{1} \delta_{2}(s)}=\sigma_{\delta_{2} \delta_{1}(s)}$ and hence $\delta_{1} \delta_{2}(s)=\delta_{2} \delta_{1}(s)$, as desired.
Remark 7.15. If w_{η} is cyclically reduced, then there exists $C \in \operatorname{CombiMin}(w)$ such that $C_{0}^{\eta}=C^{\eta}$ by Proposition 6.19, and hence such that $I_{w}=I_{w}(C)$.

Before proving the main result of this subsection, we clarify the relationship between the sets $I_{w}(C)$ and the vertices of $\mathcal{K}_{\delta_{w}}$.

Lemma 7.16. Assume that w_{η} is cyclically reduced. Then

$$
I_{w}(\operatorname{CombiMin}(w)):=\left\{I_{w}(C) \mid C \in \operatorname{CombiMin}(w)\right\}
$$

coincides with the vertex set of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$.
In particular, Ξ_{w} stabilises the vertex set of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$.
Proof. By Corollary 7.9, every vertex of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ is in $I_{w}(\operatorname{CombiMin}(w))$. The converse inclusion follows from Proposition 7.11. The second statement then follows from Lemma 7.4(2).

Theorem 7.17. Let (W, S) be a Coxeter system. Let $w \in \operatorname{Aut}(\Sigma)$ be of infinite order, and set $\eta:=\eta_{w} \in \partial X$. Assume that w_{η} is cyclically reduced. Then there is a graph isomorphism

$$
\varphi_{w}: \mathcal{K}_{\mathcal{O}_{w}} \rightarrow \mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}
$$

defined on the vertex set of $\mathcal{K}_{\mathcal{O}_{w}}$ by the assignment

$$
\operatorname{Cyc}\left(\pi_{w}(C)\right) \mapsto I_{w}(C) \quad \text { for all } C \in \operatorname{CombiMin}(w)
$$

Proof. Note first that the assignment $\operatorname{Cyc}\left(\pi_{w}(C)\right) \mapsto I_{w}(C)(C \in \operatorname{CombiMin}(w))$ yields a well-defined map φ from the vertex set of $\mathcal{K}_{\mathcal{O}_{w}}$ to the vertex set of $\mathcal{K}_{\delta_{w}} / \Xi_{w}$. Indeed, this amounts to show that if $\pi_{w}(C)$ and $\pi_{w}(D)$ are in the same cyclic shift class, then $I_{w}(D)=\sigma\left(I_{w}(C)\right)$ for some $\sigma \in \Xi_{w}$. But this follows from Proposition $7.6(1) \Rightarrow(3)$.

By Proposition 7.6(3) $\Rightarrow(1)$, the map φ is injective. Moreover, φ maps an edge of $\mathcal{K}_{\mathcal{O}_{w}}$ to an edge of $\mathcal{K}_{\delta_{w}} / \Xi_{w}$ by Lemma 7.12. In particular, since $\mathcal{K}_{\mathcal{O}_{w}}$ is connected by Proposition 7.11, the image of φ is contained in the vertex set of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ (see Remark 7.15). We then conclude from Corollary 7.9 that φ corestricts to a graph isomorphism $\mathcal{K}_{\mathcal{O}_{w}} \rightarrow \mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$.

Here is the proof of the second part of Theorem B.

Proposition 7.18. Assume that w_{η} is cyclically reduced, and let φ_{w} be as in Theorem 7.17. Let $I_{w}=J_{0} \stackrel{L_{1}}{\leftrightharpoons} J_{1} \stackrel{L_{2}}{\leftrightharpoons} \ldots \stackrel{L_{m}}{\leftrightharpoons} J_{m}$ be a path in $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$, and set $u_{i}:=w_{0}\left(L_{1}\right) w_{0}\left(L_{2}\right) \ldots w_{0}\left(L_{i}\right) \in W^{\eta}$ and $w_{i}^{\prime}:=u_{i}^{-1} w u_{i}$ for each $i=0, \ldots, m$, where $u_{0}:=1$. Then the following assertions hold:
(1) $\varphi_{w}^{-1}\left(\left[J_{i}\right]\right)=\mathrm{Cyc}_{\text {min }}\left(w_{i}^{\prime}\right)$ for each $i=1, \ldots, m$.
(2) There exist a spherical subset $K_{i} \subseteq S$ and $a_{i} \in W$ of minimal length in $a_{i} W_{K_{i}}$ with $W_{L_{i}}^{\eta}=a_{i} W_{K_{i}} a_{i}^{-1}$ such that $w_{i-1}:=a_{i}^{-1} w_{i-1}^{\prime} a_{i}$ is cyclically reduced for each $i=1, \ldots, m$.
(3) For any a_{i}, K_{i} and w_{i} as in (2), $\varphi_{w}^{-1}\left(\left[J_{i}\right]\right)=\operatorname{Cyc}\left(w_{i}\right)$ for each i, and

$$
w \rightarrow w_{0} \stackrel{K_{1}}{\leftrightharpoons} \mathrm{op}_{K_{1}}\left(w_{0}\right) \rightarrow w_{1} \stackrel{K_{2}}{\leftrightharpoons} \cdots \rightarrow w_{m-1} \stackrel{K_{m}}{\leftrightharpoons} \mathrm{op}_{K_{m}}\left(w_{m-1}\right) \leftarrow w_{m}^{\prime}
$$

Proof. Set $C_{i}:=u_{i} C_{0}$ for each $i=1, \ldots, m$, so that $w_{i}^{\prime}=\pi_{w}\left(C_{i}\right)$. We construct inductively a sequence of chambers $D_{0}, D_{1}, \ldots, D_{m} \in \operatorname{CombiMin}(w)$ with $D_{i}^{\eta}=$ C_{i}^{η} and $I_{w}\left(D_{i}\right)=J_{i}$ (equivalently, $\left.\varphi_{w}^{-1}\left(\left[J_{i}\right]\right)=\operatorname{Cyc}\left(\pi_{w}\left(D_{i}\right)\right)\right)$ for each $i=0, \ldots, m$, as follows. Let $D_{0} \in \operatorname{CombiMin}(w)$ with $D_{0}^{\eta}=C_{0}^{\eta}$ (see Proposition 6.19), so that $I_{w}\left(D_{0}\right)=I_{w}=J_{0}$ and $w \rightarrow \pi_{w}\left(D_{0}\right)$ by Proposition 6.21. Suppose that we have already constructed the chambers D_{0}, \ldots, D_{i-1} for some $i \geq 1$.

Since $D_{i-1}^{\eta}=C_{i-1}^{\eta}=u_{i-1} C_{0}^{\eta}$, Proposition 7.8 (applied with $C:=D_{i-1}$ and $L:=L_{i}$) yields some spherical subset $K_{i} \subseteq S$ and some $a_{i} \in W$ of minimal length in $a_{i} W_{K_{i}}$ such that $W_{L_{i}}^{\eta}=a_{i} W_{K_{i}} a_{i}^{-1}$ and $D_{i-1}^{\prime}:=u_{i-1} a_{i} C_{0} \in \operatorname{CombiMin}(w)$ (equivalently, $w_{i-1}:=a_{i}^{-1} w_{i-1}^{\prime} a_{i}=\pi_{w}\left(D_{i-1}^{\prime}\right)$ is cyclically reduced).

Moreover, for any such a_{i}, K_{i}, we have

$$
\pi_{w}\left(D_{i-1}\right) \rightarrow \pi_{w}\left(D_{i-1}^{\prime}\right)=w_{i-1},
$$

and the chamber $D_{i} \in \operatorname{CombiMin}(w)$ opposite D_{i-1}^{\prime} in $R_{K_{i}}\left(D_{i-1}^{\prime}\right)$ satisfies $I_{w}\left(D_{i}\right)=$ $\operatorname{op}_{L_{i}}\left(J_{i-1}\right)=J_{i}$ and is such that

$$
\pi_{w}\left(D_{i-1}^{\prime}\right)=w_{i-1} \stackrel{K_{i}}{\leftrightharpoons} \pi_{w}\left(D_{i}\right)=\mathrm{op}_{K_{i}}\left(w_{i-1}\right) .
$$

Finally, D_{i}^{η} is opposite D_{i-1}^{η} in $R_{L_{i}}\left(D_{i-1}^{\eta}\right)$, that is, $D_{i}^{\eta}=u_{i-1} w_{0}\left(L_{i}\right) C_{0}^{\eta}=u_{i} C_{0}^{\eta}=$ C_{i}^{η}, thus completing the induction step.

Since $D_{i}^{\eta}=C_{i}^{\eta}$ for each i, we have $\operatorname{Cyc}\left(\pi_{w}\left(D_{i}\right)\right)=\operatorname{Cyc}_{\text {min }}\left(\pi_{w}\left(C_{i}\right)\right)$ by Proposition 6.21, proving (1). The statements (2) and (3) now easily follow: since $w=$ $\pi_{w}\left(C_{0}\right) \rightarrow \pi_{w}\left(D_{0}\right) \rightarrow \pi_{w}\left(D_{0}^{\prime}\right)$, the sequence of conjugates of w in (3) corresponds under π_{w} to the sequence of chambers $C_{0}, D_{0}^{\prime}, D_{1}, D_{1}^{\prime}, \ldots, D_{m-1}^{\prime}, D_{m}, C_{m}$.
7.3. The tight conjugation graph of an infinite order element. We conclude this section by proving an analogue of Theorem 7.17 for the tight conjugation graph associated to \mathcal{O}_{w}, where $w \in W$ has infinite order.

We start with an analogue of Lemma 7.7.
Lemma 7.19. Let $C, D \in \operatorname{CombiMin}(w)$ with $\operatorname{Cyc}\left(\pi_{w}(C)\right) \neq \operatorname{Cyc}\left(\pi_{w}(D)\right)$. Then the following assertions hold.
(1) If $\pi_{w}(C)$ and $\pi_{w}(D)$ are elementarily tightly conjugate, there exists $z \in$ $\mathcal{Z}_{W}(w)$ such that $C, z D$ belong to a spherical residue R such that w normalises $\operatorname{Stab}_{W}(R)$.
(2) If C, D belong to a spherical residue R such that w normalises $\operatorname{Stab}_{W}(R)$, then there exists $D^{\prime} \in \operatorname{CombiMin}(w)$ with $\operatorname{Cyc}\left(\pi_{w}\left(D^{\prime}\right)\right)=\operatorname{Cyc}\left(\pi_{w}(D)\right)$ such that $\pi_{w}(C)$ and $\pi_{w}\left(D^{\prime}\right)$ are elementarily tightly conjugate.

Proof. (1) Assume that $u:=\pi_{w}(C)$ and $v:=\pi_{w}(D)$ are elementarily tightly conjugate. Let $K \subseteq S$ be spherical such that u normalises W_{K}, and let $x \in W_{K}$ with $v=x^{-1} u x$. Let $a \in W$ with $C=a C_{0}$, and set $R:=R_{K}(C)=a R_{K}$ and $D^{\prime}:=a x C_{0} \in R$. Then $w=a u a^{-1}$ normalises $\operatorname{Stab}_{W}(R)=a W_{K} a^{-1}$ and $\pi_{w}\left(D^{\prime}\right)=v=\pi_{w}(D)$. In particular, $D^{\prime}=z D$ for some $z \in \mathcal{Z}_{W}(w)$, yielding (1).
(2) Write $C=a C_{0}$ and let $K \subseteq S$ be spherical with $R=a R_{K}$. Then $u:=$ $\pi_{w}(C)=a^{-1} w a$ normalises $W_{K}=a^{-1} \operatorname{Stab}_{W}(R) a$, and there exists $x \in W_{K}$ such that $D=a x C_{0}$. Thus $v:=\pi_{w}(D)=x^{-1} u x$, and Lemma $5.6(1)$ yields some $v^{\prime} \in W$ with $\operatorname{Cyc}\left(v^{\prime}\right)=\operatorname{Cyc}(v)\left(\right.$ say $v^{\prime}=\pi_{w}\left(D^{\prime}\right)$ for some $\left.D^{\prime} \in \operatorname{CombiMin}(w)\right)$ such that u, v^{\prime} are elementarily tightly conjugate, yielding (2).

Recall from $\S 5.2$ the definition of the graphs $\mathcal{K}_{\mathcal{O}_{w}}^{t}$ and $\overline{\mathcal{K}}_{\delta_{w}}=\overline{\mathcal{K}}_{\delta_{w}, W^{n}}$.
Theorem 7.20. Let (W, S) be a Coxeter system. Let $w \in W$ be of infinite order, and set $\eta:=\eta_{w} \in \partial X$. Assume that w_{η} is cyclically reduced. Then there is a graph isomorphism

$$
\mathcal{K}_{\mathcal{O}_{w}}^{t} \rightarrow \overline{\mathcal{K}}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}
$$

defined on the vertex set of $\mathcal{K}_{\mathcal{O}_{w}}^{t}$ by the assignment

$$
\operatorname{Cyc}\left(\pi_{w}(C)\right) \mapsto I_{w}(C) \quad \text { for all } C \in \operatorname{CombiMin}(w)
$$

Proof. Let $C, D \in \operatorname{CombiMin}(w)$ with $\operatorname{Cyc}\left(\pi_{w}(C)\right) \neq \operatorname{Cyc}\left(\pi_{w}(D)\right)$. In view of Theorem 7.17, it is sufficient to prove the following two assertions:
(1) If $\pi_{w}(C)$ and $\pi_{w}(D)$ are elementarily tightly conjugate, then there exists $\sigma \in \Xi_{w}$ such that $I_{w}(C)$ and $\sigma\left(I_{w}(D)\right)$ are connected by a spherical path in $\mathcal{K}_{\delta_{w}}$.
(2) If $I_{w}(C)$ and $I_{w}(D)$ are connected by a spherical path in $\mathcal{K}_{\delta_{w}}$, then the classes $\operatorname{Cyc}\left(\pi_{w}(C)\right)$ and $\operatorname{Cyc}\left(\pi_{w}(D)\right)$ have elementarily tightly conjugate representatives.
(1) Assume first that $\pi_{w}(C)$ and $\pi_{w}(D)$ are elementarily tightly conjugate. By Lemma $7.19(1)$, there exists $z \in \mathcal{Z}_{W}(w)$ such that $C, z D$ belong to a spherical residue R such that w normalises $\operatorname{Stab}_{W}(R)$. Since $\pi_{w}(z D)=\pi_{w}(D)$ and $I_{w}(z D)=\sigma\left(I_{w}(D)\right)$ for some $\sigma \in \Xi_{w}$ by Lemma 7.4(1), the claim follows from Lemma 7.10.
(2) Conversely, assume that $I_{w}(C)$ and $I_{w}(D)$ are connected by a spherical path $I_{w}(C)=I_{0} \stackrel{L_{1}}{\leftrightharpoons} I_{1} \stackrel{L_{2}}{\leftrightharpoons} \ldots \stackrel{L_{k}}{\leftrightharpoons} I_{k}=I_{w}(D)$ in $\mathcal{K}_{\delta_{w}}$, so that $\bar{L}:=\bigcup_{i=1}^{k} L_{i} \subseteq S^{\eta}$ is spherical. Note that $R_{\bar{L}}\left(C^{\eta}\right)$ is w_{η}-stable by Lemma 7.3. Lemma 6.16(4) then yields a w-essential point $x \in \operatorname{Min}(w)$ such that the restriction of $\pi_{\Sigma^{\eta}}$ to R_{x} is a cellular isomorphism onto the w_{η}-stable residue $R_{L}\left(C^{\eta}\right)$ for some spherical subset $L \subseteq S^{\eta}$ containing \bar{L}.
$\overline{\text { Set }} \bar{C}:=\operatorname{proj}_{R_{x}}(C)$, so that $\bar{C} \in R_{x} \cap \operatorname{CombiMin}(w)$ by Lemma 6.8(2), $\bar{C}^{\eta}=C^{\eta}$ by Lemma $6.16(1)$, and $\operatorname{Cyc}\left(\pi_{w}(C)\right)=\operatorname{Cyc}\left(\pi_{w}(\bar{C})\right)$ by Proposition 6.21. We now construct inductively a sequence of chambers $D_{0}, D_{1}, \ldots, D_{k} \in R_{x} \cap \operatorname{CombiMin}(w)$ such that $I_{w}\left(D_{i}\right)=I_{i}$ for each $i=0, \ldots, k$.

We set $D_{0}:=\bar{C}$, so that $I_{w}\left(D_{0}\right)=I_{w}(\bar{C})=I_{w}(C)$. Suppose that we already constructed $D_{i-1}(i \in\{1, \ldots, k\})$, and let us construct D_{i}. Write $D_{i-1}^{\eta}=$ $a C_{0}^{\eta}$ with $a \in W^{\eta}$ and $D_{i-1}=a b C_{0}$ with $b \in W$. Let $K_{i} \subseteq S$ be such that the restriction of $\pi_{\Sigma^{\eta}}$ to $a b R_{K_{i}}=R_{K_{i}}\left(D_{i-1}\right) \subseteq R_{x}$ is a cellular isomorphism onto $R_{L_{i}}\left(D_{i-1}^{\eta}\right) \subseteq R_{L}\left(C^{\eta}\right)$. Then $a b W_{K_{i}}(a b)^{-1}=\operatorname{Stab}_{W}\left(R_{K_{i}}\left(D_{i-1}\right)\right)=$ $\operatorname{Stab}_{W^{\eta}}\left(R_{L_{i}}\left(D_{i-1}^{\eta}\right)\right)=a W_{L}^{\eta} a^{-1}$. Moreover, b is of minimal length in $b W_{K_{i}}$, as
$b C_{0}=a^{-1} D_{i-1}=\operatorname{proj}_{b R_{K_{i}}}\left(C_{0}\right)$ (because $a^{-1} D_{i-1}^{\eta}=C_{0}^{\eta}$). Hence Proposition 7.8(2) implies that the chamber $D_{i} \in R_{x} \cap \operatorname{CombiMin}(w)$ opposite D_{i-1} in $R_{K_{i}}\left(D_{i-1}\right)$ satisfies $I_{w}\left(D_{i}\right)=\mathrm{op}_{L_{i}}\left(I_{w}\left(D_{i-1}\right)\right)=\mathrm{op}_{L_{i}}\left(I_{i-1}\right)=I_{i}$, as desired.

We conclude that $D_{k} \in R_{x} \cap \operatorname{CombiMin}(w)$ is such that $I_{w}\left(D_{k}\right)=I_{k}=$ $I_{w}(D)$. In particular, $\operatorname{Cyc}\left(\pi_{w}\left(D_{k}\right)\right)=\operatorname{Cyc}\left(\pi_{w}(D)\right)$ by Proposition $7.6(3) \Rightarrow(1)$. As $D_{0}, D_{k} \in R_{x}$ and $\operatorname{Cyc}\left(\pi_{w}(C)\right)=\operatorname{Cyc}\left(\pi_{w}\left(D_{0}\right)\right)$, the statement (2) now follows from Lemma 7.19(2).

8. The P-splitting of an element

Throughout this section, we fix a Coxeter system (W, S) and an element $w \in$ $\operatorname{Aut}(\Sigma)$.

In this short section, we introduce certain decompositions of w, which may be thought of as analogues of the decomposition of an affine isometry as a product of a rotation and of a translation. These decompositions will be used (and further investigated) in two important special cases in $\S 9$ and $\S 10$.
Definition 8.1. Recall from $\S 2.5$ the definition of a w-essential point for w of infinite order. We extend this terminology to elements w of finite order by calling any $x \in \operatorname{Min}(w)$ a w-essential point.

Call a parabolic subgroup P of W a w-parabolic subgroup if there exists a w-essential point $x \in \operatorname{Min}(w)$ such that $P=\operatorname{Fix}_{W}(x)=\operatorname{Stab}_{W}\left(R_{x}\right)$. Equivalently, for w of infinite order, P is the fixer of a w-axis (resp. the stabiliser of a w-residue).
Example 8.2. By Proposition 6.12 and Lemma 6.23, the parabolic subgroup

$$
P_{w}^{\min }:=\operatorname{Fix}_{W}(\operatorname{Min}(w))
$$

is a w-parabolic subgroup: it is in fact the smallest w-parabolic subgroup.
Here is another source of examples of w-parabolic subgroups.
Lemma 8.3. Let P be a maximal spherical parabolic subgroup normalised by w. Then P is a w-parabolic subgroup.
Proof. Let M be the set of walls of P, and let $Z:=\bigcap_{m \in M} m \subseteq X$. By assumption, Z is a nonempty closed convex subset of X stabilised by w, and hence contains a w-essential point $x \in \operatorname{Min}(w)$: this is clear for w of finite order, and when w has infinite order, Z contains a w-axis L since a w-axis is the convex closure of the $\langle w\rangle$-orbit of any of its points. In particular, the w-parabolic subgroup $P^{\prime}:=\operatorname{Fix}_{W}(x)$ contains $P=\operatorname{Fix}_{W}(Z)$. By maximality of P, we then have $P=P^{\prime}$.
Lemma 8.4. Let P be a w-parabolic subgroup, and $x \in \operatorname{Min}(w)$ with $P=$ $\operatorname{Fix}_{W}(x)$. Let $a \in P$. Then $x \in \operatorname{Min}(a w)$. Moreover, if w has infinite order, the w-axis through x is also an aw-axis.
Proof. If w has finite order, then $a w x=a x=x$, as desired. Assume now that w has infinite order. Let L_{x} be the w-axis through x. Then for any $a \in P$, we have $(a w)^{-1} x=w^{-1} x \in L_{x}$ and $a w x=w \cdot w^{-1} a w x=w x \in L_{x}\left(\right.$ as $\left.w^{-1} a w \in P\right)$, and hence L_{x} is also an $a w$-axis (see e.g. [BH99, Chapter II, Proposition 1.4(2)]).
Definition 8.5. Let P be a spherical parabolic subgroup of W. Call an element $v \in \operatorname{Aut}(\Sigma) P$-reduced if C_{0} and $v C_{0}$ lie on the same side of every wall of P.

For instance, if $P=W_{I}$ for some $I \subseteq S$, then v is P-reduced if and only if v is of minimal length in $W_{I} v$.

Lemma 8.6. Let R be a spherical residue such that w normalises $P:=\operatorname{Stab}_{W}(R)$, and let $v \in W$ be such that $v C_{0}=\operatorname{proj}_{R}\left(C_{0}\right)$. Then w is P-reduced if and only if $v^{-1} w v$ is $v^{-1} P v$-reduced.

Proof. By assumption, C_{0} and $v C_{0}$ lie on the same side of every wall of P. Since w stabilises this set of walls, $w C_{0}$ and $w v C_{0}$ also lie on the same side of every wall of P. Hence w is P-reduced if and only if $v C_{0}$ and $w v C_{0}$ lie on the same side of every wall of P, that is, if and only if $v^{-1} w v$ is $v^{-1} P v$-reduced.

Recall from [Mar14] that an element $v \in \operatorname{Aut}(\Sigma)$ is called straight if $\ell\left(v^{n}\right)=$ $n \ell(v)$ for all $n \in \mathbb{N}$. We now associate to each w-parabolic subgroup P a decomposition of w as a product of an element $w_{\text {tor }} \in P$ with a P-reduced element $w_{\infty} \in W$, which intuitively can be thought of as the "torsion part" and "straight part" of w with respect to P, respectively.

Proposition 8.7. Let P be a w-parabolic subgroup. Then there are uniquely determined elements $w_{\text {tor }}=w_{\text {tor }}(P), w_{\infty}=w_{\infty}(P) \in \operatorname{Aut}(\Sigma)$ with $w=w_{\text {tor }} w_{\infty}$ such that $w_{\text {tor }} \in P$ and such that w_{∞} is P-reduced.

Moreover, if $P=\operatorname{Stab}_{W}\left(R_{x}\right)$ for some w-essential point $x \in \operatorname{Min}(w)$, and $v \in W$ is such that $\operatorname{proj}_{R_{x}}\left(C_{0}\right)=v C_{0}$, then $v^{-1} w_{\infty} v$ is straight.

Proof. Let $x \in \operatorname{Min}(w)$ be w-essential and such that $\operatorname{Stab}_{W}\left(R_{x}\right)=P$. Let $C:=\operatorname{proj}_{R_{x}}\left(C_{0}\right)$ and let $a \in P$ with $a C=\operatorname{proj}_{R_{x}}\left(w C_{0}\right)$. Then $\operatorname{proj}_{R_{x}}\left(a^{-1} w C_{0}\right)=$ C, and hence C_{0} and $a^{-1} w C_{0}$ lie on the same side of every wall of P, that is, $a^{-1} w$ is P-reduced. We may thus set $w_{\text {tor }}:=a$ and $w_{\infty}:=a^{-1} w$. For the uniqueness statement, note that if $b^{-1} w$ is P-reduced for some $b \in P$, then $C=$ $\operatorname{proj}_{R_{x}}\left(b^{-1} w C_{0}\right)=b^{-1} \operatorname{proj}_{R_{x}}\left(w C_{0}\right)=b^{-1} a C$, so that $b=a$.

To prove the last statement, let $v \in W$ be such that $C=\operatorname{proj}_{R_{x}}\left(C_{0}\right)=v C_{0}$. If w has finite order, so that $w R_{x}=R_{x}$, we have $a C=w C$ and hence $w_{\infty} C=C$. Thus, in that case, $v^{-1} w_{\infty} v \in \operatorname{Aut}\left(\Sigma, C_{0}\right)$ has length 0 and is trivially straight. We may thus assume that w has infinite order. Since w_{∞} is P-reduced, Lemma 8.6 implies that C_{0} and $v^{-1} w_{\infty} v C_{0}$ lie on the same side of every wall of $R_{v^{-1} x}$. As $v^{-1} x \in C_{0}$ and is a $v^{-1} w_{\infty} v$-essential point by Lemma 8.4 (so that the walls of $R_{v^{-1} x}$ are those containing the $v^{-1} w_{\infty} v$-axis through $v^{-1} x$), [Mar14, Lemma 4.3] (which is stated for elements of W but whose proof applies verbatim to elements of $\operatorname{Aut}(\Sigma)$) implies that $v^{-1} w_{\infty} v$ is straight, thus concluding the proof of the proposition.

Definition 8.8. Let P be a w-parabolic subgroup. We call the decomposition $w=w_{\text {tor }} w_{\infty}$ with $w_{\text {tor }} \in P$ provided by Proposition 8.7 the P-splitting of w.

Here is another way to compute the P-splitting of w.
Lemma 8.9. Let P be a w-parabolic subgroup. Let $I \subseteq S$ and $v \in W$ of minimal length in $v W_{I}$ be such that $P=v W_{I} v^{-1}$. Write $v^{-1} w v=w_{I} n_{I}$ with $w_{I} \in W_{I}$ and $n_{I} \in \widetilde{N}_{I}$, as in Remark 4.4. Then $w_{\text {tor }}(P)=v w_{I} v^{-1}$ and $w_{\infty}(P)=v n_{I} v^{-1}$.

Proof. By construction, $v w_{I} v^{-1} \in P$. On the other hand, n_{I} is W_{I}-reduced (cf. Remark 4.4). Since $\operatorname{proj}_{R}\left(C_{0}\right)=v C_{0}$ by assumption on v, where $R:=v R_{I}$, Lemma 8.6 then implies that $v n_{I} v^{-1}$ is P-reduced, yielding the lemma.
P-splittings offer a useful criterion to check whether an element w is cyclically reduced (see also Corollary 10.37).

Lemma 8.10. Let P be a w-parabolic subgroup and let $w=w_{\text {tor }} w_{\infty}$ be the P splitting of w, with $w_{\text {tor }} \in P$. Let $\delta_{\infty}: P \rightarrow P: x \mapsto w_{\infty} x w_{\infty}^{-1}$. Then the following assertions hold:
(1) There exists $v \in W$ such that $v^{-1} w v$ is cyclically reduced and $v^{-1} P v$ is standard.
(2) If P is standard, then w is cyclically reduced if and only if w_{∞} is cyclically reduced and $w_{\text {tor }} \delta_{\infty}$ is cyclically reduced in P.
Proof. (1) Let $x \in \operatorname{Min}(w)$ be w-essential and such that $P=\operatorname{Stab}_{W}\left(R_{x}\right)$. Then R_{x} contains a chamber $C \in \operatorname{CombiMin}(w)$ by Lemmas 6.8(2) and 6.10(2), and we may thus choose $v \in W$ such that $C=v C_{0}$.
(2) Let $I \subseteq S$ with $P=W_{I}$, and write $w=w_{I} n_{I}$ with $w_{I} \in W_{I}$ and $n_{I} \in \widetilde{N}_{I}$, so that $w_{\text {tor }}=w_{I}$ and $w_{\infty}=n_{I}$ by Lemma 8.9. In particular, $\delta=\delta_{\infty}: W_{I} \rightarrow$ $W_{I}: x \mapsto n_{I} x n_{I}^{-1}$ is a diagram automorphism of $\left(W_{I}, I\right)$.

Assume first that n_{I} is cyclically reduced and that w_{I} is of minimal length in $\left\{x^{-1} w_{I} \delta(x) \mid x \in W_{I}\right\}$. By (1), there exists $v \in W$ such that $v^{-1} w v$ is cyclically reduced and $v^{-1} W_{I} v=W_{J}$ for some $J \subseteq S$. By Lemma 4.5, we can write $v^{-1}=x_{I J} v_{I}$ with $v_{I} \in W_{I}$ and $x_{I J} \in W$ such that $x_{I J} \Pi_{I}=\Pi_{J}$. Let $\delta_{I J}: W \rightarrow$ $W: u \mapsto x_{I J} u x_{I J}^{-1}$, so that $\delta_{I J}\left(W_{I}\right)=W_{J}$ and $\delta_{I J}\left(\widetilde{N}_{I}\right)=\widetilde{N}_{J}$. Then

$$
v^{-1} w v=x_{I J} v_{I} w_{I} n_{I} v_{I}^{-1} x_{I J}^{-1}=\delta_{I J}\left(v_{I} w_{I} \delta\left(v_{I}\right)^{-1}\right) \cdot \delta_{I J}\left(n_{I}\right) .
$$

Since $\ell\left(\delta_{I J}\left(v_{I} w_{I} \delta\left(v_{I}\right)^{-1}\right)\right)=\ell\left(v_{I} w_{I} \delta\left(v_{I}\right)^{-1}\right) \geq \ell\left(w_{I}\right)$ and $\ell\left(\delta_{I J}\left(n_{I}\right)\right) \geq \ell\left(n_{I}\right)$ by assumption, we conclude that

$$
\ell\left(v^{-1} w v\right)=\ell\left(\delta_{I J}\left(v_{I} w_{I} \delta\left(v_{I}\right)^{-1}\right)\right)+\ell\left(\delta_{I J}\left(n_{I}\right)\right) \geq \ell\left(w_{I}\right)+\ell\left(n_{I}\right)=\ell(w),
$$

and hence that w is cyclically reduced.
Assume, conversely, that w is cyclically reduced. Then certainly $w_{I} \delta$ is cyclically reduced in W_{I}, for if $\ell\left(x^{-1} w_{I} \delta(x)\right)<\ell\left(w_{I}\right)$ for some $x \in W_{I}$, then $x^{-1} w x=$ $x^{-1} w_{I} \delta(x) \cdot n_{I}$ has length $\ell\left(x^{-1} w_{I} \delta(x)\right)+\ell\left(n_{I}\right)<\ell\left(w_{I}\right)+\ell\left(n_{I}\right)=\ell(w)$.

To show that n_{I} is cyclically reduced as well, note that P is also an n_{I}-parabolic subgroup by Lemma 8.4. Hence (1) yields some $v \in W$ such that $v^{-1} n_{I} v$ is cyclically reduced and $v^{-1} W_{I} v=W_{J}$ for some $J \subseteq S$. Let $x_{I J}, v_{I}, \delta_{I J}$ be as above. Then
$\ell\left(w_{I}\right)+\ell\left(n_{I}\right)=\ell(w) \leq \ell\left(\delta_{I J}(w)\right)=\ell\left(\delta_{I J}\left(w_{I}\right)\right)+\ell\left(\delta_{I J}\left(n_{I}\right)\right)=\ell\left(w_{I}\right)+\ell\left(\delta_{I J}\left(n_{I}\right)\right)$, so that $\ell\left(n_{I}\right) \leq \ell\left(\delta_{I J}\left(n_{I}\right)\right)$. On the other hand, as $v^{-1} n_{I} v=\delta_{I J}\left(v_{I} \delta\left(v_{I}\right)^{-1}\right) \cdot \delta_{I J}\left(n_{I}\right)$, we have

$$
\ell\left(v^{-1} n_{I} v\right)=\ell\left(v_{I} \delta\left(v_{I}\right)^{-1}\right)+\ell\left(\delta_{I J}\left(n_{I}\right)\right) \geq \ell\left(\delta_{I J}\left(n_{I}\right)\right),
$$

so that $\ell\left(n_{I}\right) \leq \ell\left(v^{-1} n_{I} v\right)$ and n_{I} is cyclically reduced, as desired.
To conclude this section, we prove the following criterion, of independent interest, for an element to be straight, analogous to [Mar14, Theorem D].

Corollary 8.11. Let P be a w-parabolic subgroup, and let $w=w_{\text {tor }} w_{\infty}$ be the P-splitting of w, with $w_{\text {tor }} \in P$. Then w is straight if and only if w is cyclically reduced and $w_{\text {tor }}=1$.

Proof. Note first that the proofs of [Mar14, Lemmas 4.1 and 4.2] apply verbatim to elements of $\operatorname{Aut}(\Sigma)$ and not just to elements of W.

If $w_{\text {tor }}=1$ and $w=w_{\infty}$ is cyclically reduced, then w has a straight conjugate by Proposition 8.7, and hence w is itself straight by [Mar14, Lemma 4.2]. Conversely,
assume that w is straight. Then w is cyclically reduced by [Mar14, Lemma 4.1]. Write $P=\operatorname{Stab}_{W}\left(R_{x}\right)$ for some w-essential point $x \in \operatorname{Min}(w)$, and let $v \in W$ be such that $\operatorname{proj}_{R_{x}}\left(C_{0}\right)=v C_{0}$, so that $v^{-1} P v=W_{I}$ for some $I \subseteq S$, and $v^{-1} w v$ normalises W_{I}. Write $v^{-1} w v=w_{I} n_{I}$ with $w_{I} \in W_{I}$ and $n_{I} \in \widetilde{N}_{I}$, as in Remark 4.4. Note that $v C_{0} \in \operatorname{CombiMin}(w)$ by Lemmas 6.8(2) and 6.10(2), and hence $v^{-1} w v$ is cyclically reduced. In particular, $v^{-1} w v$ is straight by [Mar14, Lemma 4.2]. It then follows from [Mar14, Lemma 4.1] that $w_{I}=1$. Hence $w_{\text {tor }}=1$ by Lemma 8.9, as desired.

9. Indefinite Coxeter groups

Throughout this section, we assume that (W, S) is a Coxeter system of irreducible indefinite type.

In this section, we will start by identifying $\left(W^{\eta}, S^{\eta}\right)$ and Σ^{η} in $\S 9.1$. We then introduce the core splitting of an element $w \in W$ with $\operatorname{Pc}(w)=W$ in $\S 9.2$. This will allow us to give in $\S 9.3$ a precise description of the centraliser of w, going beyond [Kra09, Corollary 6.3.10] (which states that $\mathcal{Z}_{W}(w)$ contains $\langle w\rangle$ as a finite index subgroup - note that this is in sharp contrast with the case of affine Coxeter groups), and then to compute Ξ_{w} in $\S 9.4$. We will then complete the proof of Theorem C in $\S 9.5$. To conclude, we give in $\S 9.6$ a summary of the steps to be performed in order to compute the structural conjugation graph associated to \mathcal{O}_{w}, and we illustrate this recipe on some examples in $\S 9.7$.
9.1. The transversal Coxeter group and complex. In order to identify the transversal Coxeter group, we first make some elementary observations and extract a few lemmas from [CM13].

Lemma 9.1. Let $w \in W$ be of infinite order, and set $\eta:=\eta_{w} \in \partial X$. Let $m \in \mathcal{W}$ be a wall of Σ. Then the following assertions are equivalent:
(1) r_{m} commutes with some positive power of w;
(2) $m \in \mathcal{W}^{\eta}$.

Proof. If $w^{n} r_{m} w^{-n}=r_{m}$ for some $n>0$, then w^{n} stabilises m and hence m contains a w^{n}-axis, yielding (2). Conversely, assume that $m \in \mathcal{W}^{\eta}$, and let $x \in$ $\operatorname{Min}(w)$. Then the geodesic ray $L:=[x, \eta)$ is contained in a tubular neighbourhood of m. As $w L \subseteq L$, this implies that $w^{n} m=m$ for some $n>0$ (because the set of walls is locally finite), or else that r_{m} commutes with w^{n}, yielding (1).

Lemma 9.2. Let $w \in W$ with $\operatorname{Pc}(w)=W$. Then $\operatorname{Pc}\left(w^{n}\right)=W$ for all $n \geq 1$.
Proof. Since $\operatorname{Pc}\left(w^{n}\right)$ has finite index in $\operatorname{Pc}(w)$ by [CM13, Lemma 2.4], this follows from the fact that infinite irreducible Coxeter groups have no proper parabolic subgroups of finite index (see [AB08, Proposition 2.43]).

Note that if $\operatorname{Pc}(w)=W$ for some $w \in W$, then w has infinite order.
Lemma 9.3 ([CM13, Corollary 2.12]). Let $w \in W$ with $\operatorname{Pc}(w)=W$. Then there is a constant C such that for every pair m, m^{\prime} of w-essential walls with $\mathrm{d}\left(m, m^{\prime}\right)>C$, we have $\mathrm{Pc}\left(r_{m}, r_{m^{\prime}}\right)=\operatorname{Pc}(w)=W$.

The following lemma is a variation of the grid lemma ([CM13, Lemma 2.8]).

Lemma 9.4. Let $w \in W$ with $\operatorname{Pc}(w)=W$. Let \mathcal{W}_{A} be an infinite family of pairwise parallel w-essential walls. Then there is no infinite family \mathcal{W}_{B} of pairwise parallel walls intersecting each wall of \mathcal{W}_{A}.
Proof. Suppose for a contradiction that such a family \mathcal{W}_{B} of walls exists. Set $A:=\left\langle r_{m} \mid m \in \mathcal{W}_{A}\right\rangle \subseteq W$ and $B:=\left\langle r_{m} \mid m \in \mathcal{W}_{B}\right\rangle \subseteq W$. Note that for any large enough finite subset \mathcal{W}_{A}^{\prime} of \mathcal{W}_{A}, Lemma 9.3 implies that $W=\operatorname{Pc}(w) \subseteq$ $\mathrm{Pc}\left(\left\langle r_{m} \mid m \in \mathcal{W}_{A}^{\prime}\right\rangle\right) \subseteq \operatorname{Pc}(A)$ and hence that $\mathrm{Pc}\left(\left\langle r_{m} \mid m \in \mathcal{W}_{A}^{\prime}\right\rangle\right)=\operatorname{Pc}(A)=W$ (and similarly for B). We may then apply [CM13, Lemma 2.8] to conclude that either $\operatorname{Pc}(A)$ and $\operatorname{Pc}(B)$ are of affine type, or $\operatorname{Pc}(A)$ and $\operatorname{Pc}(B)$ centralise one another. As $\operatorname{Pc}(A)=W$ and as W has trivial center by [AB08, Proposition 2.73], we deduce that $W=\operatorname{Pc}(A)$ is of affine type, a contradiction.

Finally, recall that by Selberg's lemma, W contains a torsion-free finite index normal subgroup W_{0}.
Lemma 9.5 ([CM13, Lemma 2.6]). Let $w \in W_{0}$. Then for every wall m, either $w m=m$ or $w m \cap m=\varnothing$.

We are now ready to determine transversal Coxeter groups.
Theorem 9.6. Let (W, S) be a Coxeter system of irreducible indefinite type, and let $w \in W$ with $\mathrm{Pc}(w)=W$. Then $W^{\eta_{w}}$ is the largest spherical parabolic subgroup of W normalised by w.

Proof. Set $\eta:=\eta_{w}$, and assume for a contradiction that W^{η} is infinite. Let W_{0} be a torsion-free finite index normal subgroup of W. Let $h \in W^{\eta} \cap W_{0}$ be such that $\operatorname{Pc}(h)$ has finite index in $\operatorname{Pc}\left(W^{\eta}\right)$ (see [CM13, Corollary 2.17]). In particular, h has infinite order, for otherwise $\operatorname{Pc}(h)$ and $\operatorname{Pc}\left(W^{\eta}\right)$ would be finite (see e.g. [AB08, Proposition 2.87]), a contradiction.

Let $m \in \mathcal{W}^{\eta}$ be an h-essential wall, so that $h m \cap m=\varnothing$ by Lemma 9.5. Then the reflections r_{m} and $r_{h m}=h r_{m} h^{-1}$ belong to W^{η}, commute with w^{n} for some $n>0$ by Lemma 9.1, and generate an infinite dihedral group. In particular, setting $u:=r_{m} r_{h m} \in W^{\eta}$, the set $\mathcal{W}_{B}:=u^{\mathbb{Z}} m$ consists of pairwise parallel walls stabilised by w^{n}. Note that $\operatorname{Pc}\left(w^{n}\right)=W$ by Lemma 9.2.

Let now m^{\prime} be a w^{n}-essential wall, and let $k>0$ be such that the walls in $\mathcal{W}_{A}:=w^{n k \mathbb{Z}} m^{\prime}$ are pairwise parallel (see Lemma 9.5) and such that the reflections associated to any two of them generate $\operatorname{Pc}\left(w^{n}\right)$ as a parabolic subgroup (see Lemma 9.3). Note that any wall in \mathcal{W}_{B} contains a w^{n}-axis, and hence intersects any wall in \mathcal{W}_{A} (because the walls in \mathcal{W}_{A} are w^{n}-essential, and hence intersect any w^{n}-axis). Lemma 9.4 then yields the desired contradiction.

Thus W^{η} is indeed finite. Moreover, w normalises W^{η} (and hence also the parabolic closure of W^{η}, which is finite by [AB08, Proposition 2.87]). Finally, if P is any spherical parabolic subgroup normalised by w, then there is some $n>0$ such that w^{n} centralises P, and hence the walls of P belong to \mathcal{W}^{η} by Lemma 9.1, that is, $P \subseteq W^{\eta}$. This shows that $W^{\eta}=\operatorname{Pc}\left(W^{\eta}\right)$ is parabolic, and the largest spherical parabolic subgroup of W normalised by w.
Definition 9.7. For $w \in W$ with $\operatorname{Pc}(w)=W$, we let $P_{w}^{\max }$ denote the largest spherical parabolic subgroup of W normalised by w, that is, $P_{w}^{\max }=W^{\eta_{w}}$.
Remark 9.8. Let $w \in W$ with $\operatorname{Pc}(w)=W$. Then $P_{w}^{\max }$ is a w-parabolic subgroup by Lemma 8.3 (and hence the largest one).

Definition 9.9. We call an element $w \in W$ with $\operatorname{Pc}(w)=W$ standard if w is cyclically reduced and $P_{w}^{\max }$ is standard.

Proposition 9.10. Let $w \in W$ with $\mathrm{Pc}(w)=W$ be cyclically reduced, and set $\eta:=\eta_{w} \in \partial X$. Then there exists $a_{w} \in W$ of minimal length in $W^{\eta} a_{w}$ such that $v:=a_{w}^{-1} w a_{w}$ is standard. Moreover, for any such a_{w}, the following assertions hold:
(1) $v \in \operatorname{Cyc}(w)$ and $\pi_{\Sigma^{\eta}}\left(a_{w} C_{0}\right)=C_{0}^{\eta}$ and $S^{\eta_{v}}=a_{w}^{-1} S^{\eta} a_{w}$;
(2) $S^{\eta_{v}} \subseteq S$;
(3) the restriction of $\pi_{\Sigma^{n}}$ to the residue $R_{S^{n_{v}}}\left(a_{w} C_{0}\right)$ is a cellular isomorphism onto Σ^{η}.

Proof. Let $x \in \operatorname{Min}(w)$ be w-essential and such that $P_{w}^{\max }=\operatorname{Stab}_{W}\left(R_{x}\right)$ (see Remark 9.8). Let $a_{w} \in W$ be such that $a_{w} C_{0}=\operatorname{proj}_{R_{x}}\left(C_{0}\right)$ (so that a_{w} is of minimal length in $W^{\eta} a_{w}$). Since $C_{0} \in \operatorname{CombiMin}(w)$ by assumption, $a_{w} C_{0} \in \operatorname{CombiMin}(w)$ by Lemma 6.8(2), that is, $v:=a_{w}^{-1} w a_{w}$ is cyclically reduced. Moreover, $P_{v}^{\max }=$ $a_{w}^{-1} P_{w}^{\max } a_{w}=\operatorname{Stab}_{W}\left(a_{w}^{-1} R_{x}\right)$ is standard, yielding the first assertion.

Assume now that $a_{w} \in W$ is of minimal length in $W^{\eta} a_{w}$ and such that $v:=$ $a_{w}^{-1} w a_{w}$ is standard, and let us show (1)-(3). By assumption, $W^{\eta}=a_{w} W_{I} a_{w}^{-1}$ for some $I \subseteq S$, the chamber $C:=a_{w} C_{0}$ belongs to $\operatorname{CombiMin}(w)$, and $C=\operatorname{proj}_{R}\left(C_{0}\right)$ where $R:=a_{w} R_{I}=R_{I}(C)$ has stabiliser W^{η}.

Since C and C_{0} are not separated by any wall of R (that is, by any wall in \mathcal{W}^{η}), we have $C_{0}^{\eta}=C^{\eta}$. Propositions 6.19 and 6.20 then imply that C_{0} and C are connected by a gallery in $\operatorname{CombiMin}(w)$, and hence that $v=\pi_{w}(C) \in \operatorname{Cyc}(w)$ by Lemma 6.6. Moreover, $S^{\eta_{v}}=S^{a_{w}^{-1} \eta}=a_{w}^{-1} S^{\eta} a_{w}$ by (2.6), yielding (1).

Since $\operatorname{Stab}_{W}(R)=W^{\eta}$ and $\operatorname{Stab}_{W}\left(R_{I}\right)=W^{\eta_{v}}$, Lemma 6.16(3) implies that $\left.\pi_{\Sigma^{\eta}}\right|_{R}: R \rightarrow \Sigma^{\eta}$ and $\left.\pi_{\Sigma^{\eta_{v}}}\right|_{R_{I}}: R_{I} \rightarrow \Sigma^{\eta_{v}}$ are cellular isomorphisms. It then remains for the proof of (2) and (3) to see that $I=S^{\eta_{v}}$. But by definition of $S^{\eta_{v}}$, the walls m with $r_{m} \in S^{\eta_{v}}$ are precisely the walls of R_{I} that delimit the chamber C_{0} in R_{I}, yielding the claim.

Remark 9.11. Let $w \in W$ with $\operatorname{Pc}(w)=W$ be cyclically reduced. Let $a_{w} \in W$ and $v:=a_{w}^{-1} w a_{w}$ be as in Proposition 9.10. In the notations of $\S 2.6$, we have the following commutative diagram, where all maps are cellular isomorphisms:

Note, moreover, that identifying $R_{S^{\eta_{v}}}$ with the Coxeter complex $\Sigma\left(W_{S^{\eta_{v}}}, S^{\eta_{v}}\right)$, the cellular isomorphism

$$
\left.\pi_{\Sigma^{n_{v}}}\right|_{R_{S} \eta_{v}}: R_{S^{n_{v}}} \xrightarrow{\cong} \Sigma^{\eta_{v}}
$$

is type-preserving.
Proposition 9.10 allows to view the subgroup $\pi_{\eta}\left(W_{\eta}\right)$ of $\operatorname{Aut}\left(\Sigma^{\eta}\right)$ as a group of automorphisms of a spherical residue of Σ, as follows.

Lemma 9.12. Let $w \in W$ with $\operatorname{Pc}(w)=W$ be standard. Write $P_{w}^{\max }=W_{I}$ for some $I \subseteq S$, and $w=w_{I} n_{I}$ with $w_{I} \in W_{I}$ and $n_{I} \in N_{I}$. Let $\delta \in \operatorname{Aut}\left(W_{I}, I\right)=$ $\operatorname{Aut}\left(R_{I}, C_{0}\right)$ be defined by $\delta(s)=n_{I} s n_{I}^{-1}$ for all $s \in I$. Identifying $\Sigma^{\eta_{w}}$ with R_{I} as
in Proposition 9.10(3), we have $\delta_{w}=\delta$ and $w_{\eta_{w}}=w_{I} \delta$. In particular, I_{w} is the smallest δ-invariant subset of I containing $\operatorname{supp}\left(w_{I}\right)$.

Proof. Since $\pi_{\eta}(w)=w_{I} \pi_{\eta}\left(n_{I}\right)$ and $\pi_{\eta}\left(n_{I}\right) C_{0}^{\eta}=\pi_{\Sigma^{\eta}}\left(n_{I} C_{0}\right)=C_{0}^{\eta}$ (where $\eta:=$ η_{w}), we have $\delta_{w}=\pi_{\eta}\left(n_{I}\right)$, so that the lemma follows from the definition of the identifications $R_{I} \approx \Sigma^{\eta}$ and $\operatorname{Aut}\left(W_{I}, I\right)=\operatorname{Aut}\left(R_{I}, C_{0}\right)$.

The identification of W^{η} allows to give a more precise version of the second statement of Theorem B in this setting.

Proposition 9.13. Let $w \in W$ with $\operatorname{Pc}(w)=W$ be standard. Let φ_{w} be as in Theorem 7.17. Let $I_{w}=J_{0} \stackrel{K_{1}}{\leftrightharpoons} J_{1} \stackrel{K_{2}}{\leftrightharpoons} \ldots \stackrel{K_{m}}{\leftrightharpoons} J_{m}$ be a path in $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$. Then

$$
w=w_{0} \stackrel{K_{1}}{\leftrightharpoons} w_{1} \stackrel{K_{2}}{\leftrightharpoons} \ldots \stackrel{K_{m}}{\leftrightharpoons} w_{m},
$$

where $w_{i}:=\mathrm{op}_{K_{i}}\left(w_{i-1}\right)$ and $\varphi_{w}^{-1}\left(\left[J_{i}\right]\right)=\operatorname{Cyc}\left(w_{i}\right)$ for each $i=1, \ldots, m$.
Proof. Note that $S^{\eta} \subseteq S$ by Proposition 9.10(2) (applied with $a_{w}=1$). Define the chambers $C_{1}, \ldots, C_{m} \in R_{S^{\eta}}$ recursively by $C_{i}:=\mathrm{op}_{R_{K_{i}}\left(C_{i-1}\right)}\left(C_{i-1}\right)(i=$ $1, \ldots, m)$ and set $w_{i}:=\pi_{w}\left(C_{i}\right)$ for each i. Since $\pi_{\Sigma^{\eta}}$ restricts to a type-preserving cellular isomorphism $R_{S^{\eta}} \rightarrow \Sigma^{\eta}$ (see Remark 9.11), we have $C_{i}^{\eta}=\mathrm{op}_{R_{K_{i}}\left(C_{i-1}^{\eta}\right)}\left(C_{i-1}^{\eta}\right)$ for each $i \geq 1$. Reasoning inductively on i, we then have $I_{w}\left(C_{i}\right)=J_{i}$ for all $i \geq 0$: if $I_{w}\left(C_{i-1}\right)=J_{i-1} \subseteq K_{i}$, then $R_{K_{i}}\left(C_{i-1}^{\eta}\right)$ is w_{η}-invariant by Lemma 7.3, and hence contains the smallest w_{η}-invariant residue containing C_{i-1}^{η}, so that $I_{w}\left(C_{i}\right)=\mathrm{op}_{K_{i}}\left(I_{w}\left(C_{i-1}\right)\right)=\mathrm{op}_{K_{i}}\left(J_{i-1}\right)=J_{i}$ by Lemma 7.3.

In view of Lemma $7.7(2) \Rightarrow(1)$, it then remains to show that w normalises $\operatorname{Stab}_{W}\left(R_{K_{i}}\left(C_{i-1}\right)\right)$ for each $i \geq 1$. But since $R_{K_{i}}\left(C_{i-1}^{\eta}\right)$ is w_{η}-invariant as we saw above, w_{η} (and thus w) normalises $\operatorname{Stab}_{W^{\eta}}\left(R_{K_{i}}\left(C_{i-1}^{\eta}\right)\right)=\operatorname{Stab}_{W}\left(R_{K_{i}}\left(C_{i-1}\right)\right)$, as desired.
9.2. The core splitting of an element. In this section, we investigate a more precise version of the $P_{w}^{\max }$-splitting of an element w (in the sense of §8), which will allow us to compute $\mathcal{Z}_{W}(w)$ and Ξ_{w}, as well the parameters I_{w} and δ_{w} attached to w.

We start with two geometric preparatory lemmas.
Lemma 9.14. Let $w \in W$ with $\operatorname{Pc}(w)=W$. Let L be a w-axis. Then $\operatorname{Min}(w)$ is contained in a tubular neighbourhood of L.
Proof. Let W_{0} be a torsion-free finite index normal subgroup of W. Since for any nonzero $n \in \mathbb{N}$, we have $\operatorname{Min}(w) \subseteq \operatorname{Min}\left(w^{n}\right)$ and $\operatorname{Pc}\left(w^{n}\right)=\operatorname{Pc}(w)$ (see Lemma 9.2), there is no loss of generality in assuming that $w \in W_{0}$. In particular, for any wall $m \in \mathcal{W}$, either $w m=m$ or $w m \cap m \neq \varnothing$ by Lemma 9.5.

Assume for a contradiction that $\operatorname{Min}(w)$ is not contained in a tubular neighbourhood of L. Since X is proper, $[B H 99$, Theorem II.2.13] implies that $\operatorname{Min}(w)$ contains an isometrically embedded copy $Z=L \times \mathbb{R}_{+}$of $\mathbb{R} \times \mathbb{R}_{+}$(with the Euclidean metric), where Z is the convex hull $\operatorname{Conv}(L \cup r) \subseteq \operatorname{Min}(w)$ of L and of some geodesic ray r based at a point of L.

Note that any wall intersecting Z nontrivially either contains a w-axis or is w-essential. Moreover, any wall m intersecting Z nontrivially and not containing Z (in particular, any w-essential wall) must intersect Z in either a Euclidean line (which is then a w-axis), or a Euclidean half-line (based at a point of L): this
follows from the fact that m entirely contains every geodesic segment it intersects in at least two points.

Let m be a w-essential wall. Since $w \in W_{0}$, the walls in $\mathcal{W}_{A}:=w^{\mathbb{Z}} m$ are pairwise parallel, and hence intersect Z in pairwise parallel (in the Euclidean sense) half-lines based at points of L. We claim that there is a second infinite family \mathcal{W}_{B} of pairwise parallel walls intersecting each of the walls in \mathcal{W}_{A}; this will yield the desired contradiction by Lemma 9.4.

If there exists a w-essential wall m^{\prime} intersecting nontrivially some wall in \mathcal{W}_{A}, then for the same reasons as above, the collection $\mathcal{W}_{B}:=w^{\mathbb{Z}} m^{\prime}$ of walls will satisfy the desired properties (as the intersection of the walls in \mathcal{W}_{A} and \mathcal{W}_{B} with Z will form the desired (Euclidean) grid). Assume now this is not the case. Then the Euclidean "stripes" in Z delimited by the walls in \mathcal{W}_{A} must be further subdivided into bounded subsets by the traces on Z of an infinite family \mathcal{W}_{B}^{\prime} of walls m^{\prime} not containing Z and containing each a w-axis (this is because the spherical simplices of Σ are compact, and hence the set of points of X with a given support must be bounded). By [NR03, Lemma 3], \mathcal{W}_{B}^{\prime} contains two parallel walls m_{1}, m_{2}. Since m_{1}, m_{2} contain a w-axis and since $w \in W_{0}$, we have $w m_{1}=m_{1}$ and $w m_{2}=m_{2}$. In other words, w commutes with the reflections $r_{m_{1}}$ and $r_{m_{2}}$. In particular, the walls in $\mathcal{W}_{B}:=\left(r_{m_{1}} r_{m_{2}}\right)^{\mathbb{Z}} m_{1}$ are pairwise parallel and all contain a w-axis, and hence intersect all w-essential walls (e.g. the walls in \mathcal{W}_{A}). This completes the proof of the claim, and hence of the lemma.

Lemma 9.15. Let $w \in W$ with $\operatorname{Pc}(w)=W$. Then there is a w-axis L with $\operatorname{Fix}_{W}(L)=P_{w}^{\max }$ that is also a v-axis for all $v \in \mathcal{Z}_{W}(w)$.
Proof. Since $\mathcal{Z}_{W}(w)$ normalises $P_{w}^{\max }=W^{\eta_{w}}$, the set $Z:=\bigcap_{m \in \mathcal{W}^{\eta_{w}}} m$ is a nonempty closed convex $\mathcal{Z}_{W}(w)$-stable subspace of X. In particular, $Z \cap \operatorname{Min}(w)$ is nonempty and is a union of w-axes.

By [BH99, Theorems II.6.8(4) and II.2.14], there exists a (convex) CAT(0)subspace $Y \subseteq Z \cap \operatorname{Min}(w)$ such that $Z \cap \operatorname{Min}(w)$ is isometric to $Y \times \mathbb{R}$. Let $v \in \mathcal{Z}_{W}(w)$. Then v stabilises $Z \cap \operatorname{Min}(w)=Y \times \mathbb{R}$ and its restriction to $Y \times \mathbb{R}$ is of the form $\left(v^{Y}, v^{\mathbb{R}}\right)$ with v^{Y} an isometry of Y and $v^{\mathbb{R}}$ a translation of \mathbb{R} (see [BH99, Theorem II.6.8(5)]). As Y is bounded by Lemma 9.14, the Bruhat-Tits fixed point theorem (see e.g. [AB08, Theorems 11.23 and 11.26]) implies that v^{Y} fixes the unique circumcenter y of Y; moreover, $y \in Y$ by [AB08, Theorem 11.27]. In other words, the w-axis $L \subseteq Z \cap \operatorname{Min}(w)$ through y is also a v-axis. Finally, since $\operatorname{Fix}_{W}(L) \subseteq P_{w}^{\max }\left(\right.$ by maximality of $\left.P_{w}^{\max }\right)$ and $P_{w}^{\max }=\operatorname{Fix}_{W}(Z) \subseteq \operatorname{Fix}_{W}(L)$, we have $\operatorname{Fix}_{W}(L)=P_{w}^{\max }$, as desired.

Recall from Definition 8.5 the definition of P-reduced elements, for P a spherical parabolic subgroup of W. Here are a few useful observations.
Lemma 9.16. Let $w \in W$ with $\operatorname{Pc}(w)=W$, and set $P:=P_{w}^{\max }$. Then:
(1) there exists a w-essential point $x \in \operatorname{Min}(w)$ such that $\operatorname{Stab}_{W}\left(R_{x}\right)=P$. For any such x, the w-axis through x is also an aw-axis for any $a \in P$.
(2) if $u \in W$ and w share an axis, then $\operatorname{Pc}(u)=\operatorname{Pc}(w)$ and $P_{u}^{\max }=P$.
(3) if $u \in W$ is such that either $u=$ aw for some $a \in P$, or $u^{n}=w$ or $u=w^{n}$ for some $n \geq 1$, then $\operatorname{Pc}(u)=W$ and $P_{u}^{\max }=P$.
(4) there is a unique $a \in P$ such that aw is P-reduced.
(5) if w is P-reduced, then w^{n} is P-reduced for all $n \geq 1$.
(6) if w is P-reduced, then every cyclically reduced conjugate of w is straight.
(7) if w is P-reduced, there exists an element $u \in \mathrm{Cyc}_{\min }(w)$ that is $P_{u}^{\max }{ }_{-}$ reduced and such that $P_{u}^{\max }$ is standard.

Proof. (1) This follows from Remark 9.8 and Lemma 8.4.
(2) By Lemmas 9.3 and 9.5, there exist w-essential walls m, m^{\prime} such that $\operatorname{Pc}\left(r_{m}, r_{m^{\prime}}\right)=W$. Since m, m^{\prime} are also u-essential, [CM13, Lemma 2.7] implies that $r_{m}, r_{m^{\prime}} \in \operatorname{Pc}(u)$, and hence $\operatorname{Pc}(u)=W$. Moreover, since $\eta_{u} \in\left\{\eta_{w}, \eta_{w^{-1}}\right\}$ and $P_{w}^{\max }=P_{w^{-1}}^{\max }$, we have $P_{u}^{\max }=W^{\eta_{u}}=W^{\eta_{w}}=P$.
(3) This follows from (1) and (2).
(4) This follows from Proposition 8.7.
(5) If w is P-reduced, then C_{0} and $w C_{0}$ are on the same side of any wall of P, and hence so are $w^{m} C_{0}$ and $w^{m+1} C_{0}$ for all $m \in \mathbb{N}$, yielding (5).
(6) Proposition 8.7 implies that w has a straight conjugate, and hence every cyclically reduced conjugate of w is straight by [Mar14, Lemmas 4.1 and 4.2].
(7) Let $w^{\prime} \in \operatorname{Cyc}_{\text {min }}(w)$, and let $x \in \operatorname{Min}\left(w^{\prime}\right)$ be w^{\prime}-essential and such that $\operatorname{Stab}_{W}\left(R_{x}\right)=P_{w^{\prime}}^{\max }$ (see (1)). Let $v \in W$ with $v C_{0}=\operatorname{proj}_{R_{x}}\left(C_{0}\right)$, so that $R_{x}=v R_{I}$ for some $I \subseteq S$, and set $u:=v^{-1} w^{\prime} v$. Then u is cyclically reduced by Lemma $6.8(2)$, and hence $u \in \operatorname{Cyc}\left(w^{\prime}\right)=\mathrm{Cyc}_{\min }(w)$ by Proposition 6.21. Moreover, $P_{u}^{\max }=W_{I}$ is standard. Finally, writing $u=u_{I} n_{I}$ with $u_{I} \in W_{I}$ and $n_{I} \in N_{I}$, [Mar14, Lemma 4.1] implies that $u_{I}=1$ as u is straight by (6), and hence $u=n_{I}$ is W_{I}-reduced, as desired.

We next prove a uniqueness statement for "roots" of w.
Lemma 9.17. Let $w \in W$ with $\operatorname{Pc}(w)=W$, and let $u_{1}, u_{2} \in W$ be such that $u_{1}^{m}=u_{2}^{n}=w$ for some $m, n>0$. Then $P_{u_{1}}^{\max }=P_{u_{2}}^{\max }=P_{w}^{\max }=: P$ and there exist a P-reduced element $u \in W$, as well as $r_{1}, r_{2} \in \mathbb{N}$ and $a_{1}, a_{2} \in P$ such that $u_{1}=a_{1} u^{r_{1}}$ and $u_{2}=a_{2} u^{r_{2}}$.

Proof. Let L be the w-axis provided by Lemma 9.15. Thus, $\operatorname{Fix}_{W}(L)=P$ and L is also a u_{1}-axis and a u_{2}-axis. In particular, $P_{u_{1}}^{\max }=P_{u_{2}}^{\max }=P$ by Lemma 9.16(2).

Let $x \in L$ be w-essential (so that $\operatorname{Fix}_{W}(x)=P$), and choose a parametrisation $r: \mathbb{R} \rightarrow L$ of L with $r(0)=x$ and $r(m n / d)=w x$, where $d:=\operatorname{gcd}(m, n)$. Thus, $u_{1} x=r(n / d)$ and $u_{2} x=r(m / d)$. Let $a, b \in \mathbb{Z}$ be such that $a m+b n=d$. Then $u^{\prime}:=u_{1}^{b} u_{2}^{a}$ commutes with w and satisfies $u^{\prime} x=r(1)$; moreover, L is a u^{\prime}-axis and $P_{u^{\prime}}^{\max }=P$ by Lemma 9.16(2).

Let $a \in P=\operatorname{Fix}_{W}(x)$ be such that $u:=a u^{\prime}$ is P-reduced (see Lemma 9.16(4)). Thus, L is a u-axis and $P_{u}^{\max }=P$ by Lemma $9.16(1,2)$. Since $u^{n / d}$ and u_{1} both $\operatorname{map} x \in L$ to $r(n / d) \in L$, there exists $a_{1} \in P$ such that $u_{1}=a_{1} u^{n / d}$. Similarly, there exists $a_{2} \in P$ such that $u_{2}=a_{2} u^{m / d}$. We may thus choose $r_{1}:=n / d$ and $r_{2}:=m / d$, as desired.

Definition 9.18. Call $w \in W$ with $\operatorname{Pc}(w)=W$ atomic if w is $P_{w}^{\max }$-reduced and if there is no $P_{w}^{\max }$-reduced element $u \in W$ such that $w=u^{n}$ for some $n \geq 2$.

We also call an element $w \in W$ divisible if there exist $u \in W$ and $n \geq 2$ such that $w=u^{n}$, and indivisible otherwise.

Lemma 9.19. Let $w \in W$ with $\operatorname{Pc}(w)=W$. Then w is atomic if and only if w is $P_{w}^{\max }$-reduced and indivisible.

Proof. Set $P:=P_{w}^{\max }$. Suppose that w is P-reduced, and let $u \in W$ and $n \geq 1$ be such that $w=u^{n}$. We have to show that $w=u_{1}^{n}$ for some P-reduced element
$u_{1} \in W$. Since $P_{u}^{\max }=P$ by Lemma 9.16(3), and since P is a u-parabolic subgroup by Lemma 9.16(1), we can write $u=a u_{1}$ with $a \in P$ and $u_{1} \in W$ a P-reduced element normalising P by Proposition 8.7. Hence $w=\left(a u_{1}\right)^{n}=a^{\prime} u_{1}^{n}$ for some $a^{\prime} \in P$. Since u_{1}^{n} is P-reduced by Lemma 9.16(5), $a^{\prime}=1$, and hence $w=u_{1}^{n}$, as desired.

We can now state the main result of this subsection.
Theorem 9.20. Let (W, S) be a Coxeter system of irreducible indefinite type, and let $w \in W$ with $\operatorname{Pc}(w)=W$. Then there is a unique atomic element $u \in W$, and unique $n \in \mathbb{N}$ and $a \in P_{w}^{\max }$ such that $w=a u^{n}$.
Proof. Let $a \in P:=P_{w}^{\max }$ be such that $a^{-1} w$ is P-reduced (see Lemma 9.16(4)). Let $n \in \mathbb{N}$ be maximal such that there exists a P-reduced element $u \in W$ with $a^{-1} w=u^{n}$. Note that $P_{u}^{\max }=P$ by Lemma 9.16(3). Hence u is atomic: otherwise, there is some P-reduced $v \in W$ such that $u=v^{m}$ for some $m \geq 2$, so that $a^{-1} w=v^{m n}$, contradicting the minimality of n. This proves the existence of u, n, a.

For the uniqueness statement, suppose that $w=b v^{m}$ for some atomic $v \in W$, some $m \in \mathbb{N}$ and $b \in P$ (so that $P_{v}=P$ and v^{m} is P-reduced by Lemma 9.16(3,5)). Then $b=a$ by Lemma 9.16(4) as $a^{-1} b v^{m}=a^{-1} w$ is P-reduced. Thus, $u^{n}=$ $a^{-1} w=v^{m}$. Since u and v are P-reduced, Lemma 9.17 (applied to $w:=a^{-1} w$) yields some P-reduced $\bar{u} \in W$ such that $u=\bar{u}^{r_{1}}$ and $v=\bar{u}^{r_{2}}$ for some $r_{1}, r_{2} \in \mathbb{N}$. Since u and v are atomic, we have $r_{1}=r_{2}=1$, and hence $u=v$ and $n=m$, as desired.

Definition 9.21. Define the core w_{c} of an element $w \in W$ with $\operatorname{Pc}(w)=W$ to be the unique atomic element $u \in W$ provided by Theorem 9.20, that is, such that $w=a u^{n}$ for some (uniquely determined) $n \geq 1$ and $a \in P_{w}^{\max }$. We further call the decomposition $w=a w_{c}^{n}$ the core splitting of w.
Remark 9.22. Let $w \in W$ with $\operatorname{Pc}(w)=W$, with core splitting $w=a w_{c}^{n}$ with $n \geq 1$ and $a \in P=P_{w}^{\max }$. Recall from Remark 9.8 that P is a w-parabolic subgroup in the sense of Definition 8.1. Hence the core splitting of w is a refinement of its P-splitting (see $\S 8$), as $w_{\text {tor }}(P)=a$ and $w_{\infty}(P)=w_{c}^{n}$ by Lemma 9.16(5).

We now collect a few properties of cores and core splittings, for future reference.
Lemma 9.23. Let $w \in W$ with $\operatorname{Pc}(w)=W$. Then w and w^{m} have the same core for any $m \geq 1$.
Proof. Note that $\operatorname{Pc}\left(w^{n}\right)=W$ and $P_{w^{n}}^{\max }=P_{w}^{\max }=: P$ by Lemma 9.16(2). Let $w=a w_{c}^{n}$ be the core splitting of $w(n \geq 1, a \in P)$. Then $w^{m}=b w_{c}^{m n}$ for some $b \in P$. Since w_{c} is atomic, this is the core splitting of w^{m}, yielding the lemma.

Lemma 9.24. Let $w \in W$ with $\operatorname{Pc}(w)=W$, and set $\eta:=\eta_{w}$. Let $w=a w_{c}^{n}$ be the core splitting of w, where $n \geq 1$ and $a \in W^{\eta}$. Then $\delta_{w}=\delta_{w_{c}}^{n}$ and $w_{\eta}=a \delta_{w_{c}}^{n}$, and $\delta_{w_{c}}=\pi_{\eta}\left(w_{c}\right)$ is the diagram automorphism $W^{\eta} \rightarrow W^{\eta}: b \mapsto w_{c} b w_{c}^{-1}$ of W^{η}.
Proof. Since w_{c} is P-reduced, we have $\pi_{\Sigma^{\eta}}\left(w_{c} C_{0}\right)=C_{0}^{\eta}$, so that $\pi_{\eta}\left(w_{c}\right)=\delta_{w_{c}}$, yielding the last assertion (the fact that $\delta_{w_{c}}$ is the conjugation by w_{c} on W^{η} follows from the definition of the semi-direct product $\operatorname{Aut}\left(\Sigma^{\eta}\right)=W^{\eta} \rtimes \operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)$). Similarly, since w_{c}^{n} is P-reduced by Lemma 9.16(5), we have $\pi_{\eta}\left(a^{-1} w\right) C_{0}^{\eta}=C_{0}^{\eta}$, so that $\delta_{w}=\pi_{\eta}\left(a^{-1} w\right)=\pi_{\eta}\left(w_{c}^{n}\right)=\delta_{w_{c}}^{n}$ and $w_{\eta}=a \delta_{w_{c}}^{n}$, as desired.

Remark 9.25. Let $w \in W$ with $\operatorname{Pc}(w)=W$, and assume that w is straight. Let $w=a w_{c}^{n}$ be the core splitting of w, where $n \geq 1$ and $a \in P:=P_{w}^{\max }$. Since $w_{\text {tor }}(P)=a$ and $w_{\infty}(P)=w_{c}^{n}$ by Remark 9.22, Corollary 8.11 implies that $a=1$. Hence $I_{w}=\varnothing$ by Lemma 9.24, so that $\mathcal{O}_{w}^{\min }=\operatorname{Cyc}(w)$ by Theorem B. We thus recover [Mar21, Theorem $\mathrm{A}(3)]$ for W of irreducible indefinite type.
Lemma 9.26. Let $w \in W$ with $\operatorname{Pc}(w)=W$ be cyclically reduced, and let $w=a w_{c}^{n}$ be its core splitting, with $n \geq 1$ and $a \in P:=P_{w}^{\max }$. Let $v \in W$ be of minimal length in $P v$ and such that $v^{-1} P v$ is standard. Then $u:=v^{-1} w v$ has core splitting $u=b u_{c}^{n}$ with $b:=v^{-1}$ av and $u_{c}:=v^{-1} w_{c} v$.

Moreover, v can be chosen so that, in addition, $u \in \operatorname{Cyc}(w)$ and u_{c} is straight, and hence $\ell(u)=\ell(b)+n \ell\left(u_{c}\right)$. In particular, if w is standard, then n divides $\ell\left(a^{-1} w\right)$.
Proof. Write $v^{-1} P v=W_{I}$ for some $I \subseteq S$, so that $v C_{0}=\operatorname{proj}_{v R_{I}}\left(C_{0}\right)$. Since $P_{u}^{\max }=v^{-1} P v$, Lemma 8.6 implies that $v^{-1} w_{c} v$ is $P_{u}^{\max }$-reduced. In particular, it is atomic by Lemma 9.19, as w_{c} is atomic. As $v^{-1} a v \in P_{u}^{\max }$, we conclude that $u_{c}=v^{-1} w_{c} v$, yielding the first claim.

Since $P_{w_{c}}^{\max }=P$ by Lemma 9.16(3), we find by Lemma 9.16(1) some w_{c}-essential point $x \in \operatorname{Min}\left(w_{c}\right)$ such that $\operatorname{Stab}_{W}\left(R_{x}\right)=P$. We now choose $v \in W$ such that $v C_{0}=\operatorname{proj}_{R_{x}}\left(C_{0}\right)$, so that v is of minimal length in $P v$ and $P_{u}^{\max }=v^{-1} P v=$ $\operatorname{Stab}_{W}\left(R_{v^{-1} x}\right)$ is standard (where $u=v^{-1} w v$). Then $v C_{0} \in \operatorname{CombiMin}(w)$ by Lemma 6.8(2), and hence $u \in \operatorname{Cyc}(w)$ by Proposition 6.21. Moreover, since u_{c} is $P_{u}^{\max }$-reduced and has an axis through $v^{-1} x \in C_{0}$, it is straight by [Mar14, Lemma 4.3]. Since $P_{u}^{\max }=W_{I}$ for some $I \subseteq S$ and u_{c}^{n} is the unique element of minimal length in $W_{I} w$, the equality $\ell(u)=\ell(b)+n \ell\left(u_{c}\right)$ follows. Finally, if w is standard, then w_{c}^{n} is cyclically reduced by Lemma 8.10(2), and hence n divides $\ell\left(a^{-1} w\right)=\ell\left(w_{c}^{n}\right)=\ell\left(u_{c}^{n}\right)=n \ell\left(u_{c}\right)$.

Here is a criterion to determine whether an element is atomic. Call an element $w \in W$ weakly indivisible if there is no decomposition $w=u^{n}$ with $\ell(w)=$ $n \ell(u)$ for some $u \in W$ and $n \geq 2$.
Lemma 9.27. Let $w \in W$ with $\operatorname{Pc}(w)=W$ be $P_{w}^{\max }$-reduced. Then the following assertions are equivalent:
(1) w is atomic.
(2) Every $u \in \mathrm{Cyc}_{\text {min }}(w)$ that is $P_{u}^{\max }$-reduced and such that $P_{u}^{\max }$ is standard is weakly indivisible.

Proof. The implication $(1) \Rightarrow(2)$ follows from Lemma 9.19. To show that $(2) \Rightarrow(1)$, let $x \in \mathrm{Cyc}_{\text {min }}(w)$ be $P_{x}^{\text {max }}$-reduced, as provided by Lemma 9.16(7), and suppose that w is not atomic. Then w is divisible, and hence so is x. In other words, $x=x_{c}^{n}$ for some $n \geq 2$. Lemma 9.26 (applied with $w:=x$) then yields some $v \in W$ such that $u:=v^{-1} x v \in \operatorname{Cyc}(x)=\operatorname{Cyc}_{\text {min }}(w)$, such that u is $P_{u}^{\max }$-reduced and $P_{u}^{\max }$ is standard, and such that $u=u_{c}^{n}$ with $\ell(u)=n \ell\left(u_{c}\right)$, that is, such that u is not weakly indivisible.

Finally, note that Lemma 8.10 yields the following criterion to check whether w is cyclically reduced.
Lemma 9.28. Let $w \in W$ with $\operatorname{Pc}(w)=W$, with core splitting $w=a w_{c}^{n}$. Assume that $P:=P_{w}^{\max }$ is standard, and let $\delta_{w_{c}}: P \rightarrow P: x \mapsto w_{c} x w_{c}^{-1}$. If w_{c} is cyclically reduced and a $\delta_{w_{c}}^{n}$ is cyclically reduced in P, then w is cyclically reduced.

Proof. If w_{c} is cyclically reduced, then it is straight by Lemma 9.16(6), and hence w_{c}^{n} is straight (in particular, cyclically reduced) as well. The lemma thus follows from Lemma 8.10(2).
9.3. The centraliser of an element. We next describe the centraliser of w, by establishing that every $v \in \mathcal{Z}_{W}(w)$ has the same core as w.

Proposition 9.29. Let $w \in W$ with $\mathrm{Pc}(w)=W$, and set $\eta:=\eta_{w}$. Then:
(1) For any $v \in \mathcal{Z}_{W}(w)$, there exist unique $n \in \mathbb{Z}$ and $a \in P_{w}^{\max }$ such that $v=a w_{c}^{n}$.
(2) $\mathcal{Z}_{W}(w) \cap W^{\eta}=\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right)$.
(3) The map $\mathcal{Z}_{W}(w) \rightarrow \mathbb{Z}: a w_{c}^{n} \mapsto n\left(n \in \mathbb{Z}, a \in P_{w}^{\max }\right)$ is a group morphism, with kernel $\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right)$.
(4) The kernel of the restriction to $\mathcal{Z}_{W}(w)$ of π_{η} coincides with $\left\langle w_{c}^{m}\right\rangle$, where $m \in \mathbb{N}$ is the order of the automorphism $\delta_{w_{c}}$.

Proof. (1) As $P_{w}^{\max }=P_{v}^{\max }=P_{v^{-1}}^{\max }$ (see Lemmas 9.15 and 9.16(2)), this amounts to show that w and v^{ε} have the same core for some $\varepsilon \in\{ \pm 1\}$. By [Kra09, Corollary 6.3.10], there exist some $\varepsilon \in\{ \pm 1\}$ and some nonzero $r_{1}, r_{2} \in \mathbb{N}$ such that $w^{r_{1}}=v^{\varepsilon r_{2}}$. As w and $w^{r_{1}}$ (resp. v^{ε} and $v^{\varepsilon r_{2}}$) have the same core by Lemma 9.23, (1) follows.
(2) The inclusion \subseteq is clear. Conversely, suppose that $b \in W^{\eta}$ commutes with w_{η}. Let $w=a w_{c}^{n}\left(a \in W^{\eta}, n \geq 1\right)$ be the core splitting of w. Then Lemma 9.24 implies that

$$
b w b^{-1}=b a \delta_{w_{c}}^{n}\left(b^{-1}\right) \cdot w_{c}^{n}=b w_{\eta} b^{-1} \cdot \delta_{w_{c}}^{-n} w_{c}^{n}=w_{\eta} \delta_{w_{c}}^{-n} w_{c}^{n}=a w_{c}^{n}=w,
$$

so that $b \in \mathcal{Z}_{W}(w) \cap W^{\eta}$, as desired.
(3) Since w_{c} normalises $P_{w}^{\max }=W^{\eta}$, the assignment $a w_{c}^{n} \mapsto n$ indeed defines a group morphism. Moreover, its kernel is $\mathcal{Z}_{W}(w) \cap W^{\eta}$, so that (3) follows from (2).
(4) Let $v \in \mathcal{Z}_{W}(w)$. By (1), we can write $v=a w_{c}^{n}$ with $n \in \mathbb{Z}$ and $a \in W^{\eta}$. Then $v \in \operatorname{ker} \pi_{\eta}$ if and only if $v_{\eta}=a \delta_{w_{c}}^{n}=1$ if and only if $a=1$ and m divides $|n|$.

Note that, as we will see in Example 9.39 below, the map $\mathcal{Z}_{W}(w) \rightarrow \mathbb{Z}$ provided by Proposition 9.29(3) need not be surjective.

Definition 9.30. Let $w \in W$ with $\operatorname{Pc}(w)=W$. We call the unique natural number $n=n_{w} \in \mathbb{N}$ such that the map $\mathcal{Z}_{W}(w) \rightarrow \mathbb{Z}$ provided by Proposition 9.29(3) has image $n \mathbb{Z}$ the centraliser degree of w. Note that, in general, n_{w} might be bigger than 1 (see Example 9.39).

We conclude this subsection by indicating how the centraliser degree of w can be computed.

Lemma 9.31. Let $w \in W$ with $\operatorname{Pc}(w)=W$, and set $\eta:=\eta_{w}$. Let n_{w} be the centraliser degree of w. Let $w=a w_{c}^{m}$ be the core splitting of w, where $m \geq 1$ and $a \in P_{w}^{\max }$. Set $\delta:=\delta_{w_{c}}$. Then the following assertions hold:
(1) Let $n \in \mathbb{Z}$. Then $n \in n_{w} \mathbb{Z}$ if and only if $\delta^{n}(a)$ is δ^{m}-conjugate to a in W^{η}.
(2) $n_{w} \geq 1$ and n_{w} divides m^{\prime} for any $m^{\prime} \in \mathbb{N}$ such that $\delta^{m^{\prime}}(a)=\delta^{m}(a)$.

Proof. (1) By definition, $n \in n_{w} \mathbb{Z}$ if and only if there exists $b \in P_{w}^{\max }$ such that $b w_{c}^{n}$ commutes with $w=a w_{c}^{m}$. As

$$
b w_{c}^{n} w\left(b w_{c}^{n}\right)^{-1}=b \delta^{n}(a) w_{c}^{m} b^{-1}=b \delta^{n}(a) \delta^{m}(b)^{-1} \cdot w_{c}^{m}
$$

the assertion (1) follows.
(2) This follows from (1), as $\delta^{m^{\prime}}(a)=\delta^{m}(a)=a^{-1} a \delta^{m}(a)$ is δ^{m}-conjugate to a in W^{η}.

Remark 9.32. Let $w \in W$ with $\operatorname{Pc}(w)=W$, and set $\eta:=\eta_{w}$. Assume that w_{η} is cyclically reduced (which occurs for instance if w is cyclically reduced by Proposition 6.19), so that the conjugacy class of w_{η} in $W_{I_{w}}^{\eta}$ is cuspidal by Proposition 4.7(1). Recall from Lemma 9.24 that, if $w=a w_{c}^{m}$ is the core splitting of w, then $w_{\eta}=a \delta^{m}$, where $\delta:=\delta_{w_{c}}$.

To compute the centraliser degree n_{w} of w, it suffices to determine when a given $n \in \mathbb{N}$ belongs to $n_{w} \mathbb{Z}$. Note for this the equivalence of the following statements (where $(1) \Leftrightarrow(2)$ is Lemma $9.31(1)$, and $(2) \Leftrightarrow(3)$ follows from Corollary 5.10 and Proposition 4.11):
(1) $n \in n_{w} \mathbb{Z}$.
(2) $\delta^{n}(a)$ and a are δ^{m}-conjugate in W^{η}.
(3) $\delta^{n}\left(I_{w}\right) \in \mathcal{K}_{\delta^{m}}^{0}\left(I_{w}\right)$, and if $x \in W^{\eta}$ with $\delta^{m}(x)=x$ is such that $\delta^{n}\left(I_{w}\right)=$ $x I_{w} x^{-1}$, then $\kappa_{x} \delta^{n}(a)$ and a are δ^{m}-conjugate in $W_{I_{w}}^{\eta}$.
The condition that $\kappa_{x} \delta^{n}(a)$ and a are δ^{m}-conjugate in $W_{I_{w}}^{\eta}$ (with x as in (3)) can be determined by reducing the problem within components of I_{w} exactly as in the proof of Proposition 4.8, and then using [He07, Theorem 7.5(P3)]. Note that Proposition 4.8 (applied to $S:=I_{w}, w:=a, \delta:=\delta^{m}$, and $\sigma:=\kappa_{x} \delta^{n}$) also provides a powerful and easy-to-check criterion to verify this condition (see also Lemma 4.12).

9.4. The subgroup Ξ_{w}.

Theorem 9.33. Let $w \in W$ with $\operatorname{Pc}(w)=W$. Let n_{w} be the centraliser degree of w. Then Ξ_{w} is generated by $\delta_{w_{c}}^{n_{w}}$. In particular, Ξ_{w} is cyclic.

Proof. Note first that $\delta_{w_{c}}^{n_{w}} \in \Xi_{w}$ by Lemma 9.24 , as by definition of n_{w}, there exists $a \in P_{w}^{\max }$ such that $a w_{c}^{n_{w}} \in \mathcal{Z}_{W}(w)$.

Conversely, let $u \in \Xi_{w}$, and let $v \in \mathcal{Z}_{W}(w)$ and $x \in P_{w}^{\max }$ with $u=x^{-1} v_{\eta}$, where $\eta:=\eta_{w}$. By Proposition 9.29, there exist $n \in \mathbb{Z}$ and $a \in P_{w}^{\max }$ such that $v=a w_{c}^{n n_{w}}$ (and this is the core splitting of v by Lemma 9.16(3)). Moreover, $v_{\eta}=a \delta_{w_{c}}^{n n_{w}}$ by Lemma 9.24. Hence $a \delta_{w_{c}}^{n n_{w}}=x u$, that is, $a=x$ and $u=\delta_{w_{c}}^{n n_{w}} \in\left\langle\delta_{w_{c}}^{n_{w}}\right\rangle$, as desired.

Remark 9.34. Let $w \in W$ with $\operatorname{Pc}(w)=W$, and set $\eta:=\eta_{w}$. In view of Theorem 9.33, Proposition 9.29 yields a short exact sequence

$$
1 \rightarrow\left\langle w_{c}^{m}\right\rangle \times \mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right) \rightarrow \mathcal{Z}_{W}(w) \rightarrow \Xi_{w} \rightarrow 1
$$

where $m \in \mathbb{N}$ is the order of $\delta_{w_{c}}$ (with w_{c} the core of w) and where the map $\mathcal{Z}_{W}(w) \rightarrow \Xi_{w}: a w_{c}^{n} \mapsto \delta_{w_{c}}^{n}\left(n \in \mathbb{Z}, a \in P_{w}^{\max }\right)$ corresponds to the restriction to $\mathcal{Z}_{W}(w)$ of the composite map $W_{\eta} \rightarrow \pi_{\eta}\left(W_{\eta}\right) \rightarrow \pi_{\eta}\left(W_{\eta}\right) / W^{\eta} \cong \Xi_{\eta}$.
9.5. Theorem C, concluded. We are now ready to conclude the proof of Theorem C.

Theorem 9.35. Theorem C holds.
Proof. Let $w \in W$ with $\operatorname{Pc}(w)=W$, and let us prove the statements (1)-(7) of Theorem C.
(1) follows from Theorem 9.6.
(2) follows from Proposition 9.10.
(3) The first statement follows from Proposition 9.10 (applied with $a_{w}=1$), and the second from Proposition 9.13.
(4) follows from Theorem 9.20.
(5) follows from Lemma 9.24.
(6) follows from Proposition 9.29, Lemma 9.31 and Remark 9.34.
(7) follows from Theorem 9.33.
9.6. Computing $\mathcal{K}_{\mathcal{O}_{w}}$: a summary. The purpose of this subsection is to summarise the steps to follow in order to compute, given a Coxeter group W of irreducible indefinite type (given by a Coxeter matrix) and an element $w \in W$ (given by a word on the alphabet S), the graph $\mathcal{K}_{\mathcal{O}_{w}}$.
9.6.1. A few algorithms. We first outline a few simple algorithms, which can be easily implemented in the algebra package CHEVIE ([GHL $\left.{ }^{+} 96\right]$, [Mic15]) of GAP ([GAP20]), and which do not aim at being efficient in terms of algorithmic complexity, but rather at providing a simple way to verify some facts in the examples given in $\S 9.7$ and $\S 10.9$ (the relevant code used for these examples is available on the author's webpage). These examples, in turn, only serve as illustrations of the results obtained in this paper.

In this paragraph, we relax our standing assumption that W is of irreducible indefinite type, and let (W, S) be an arbitrary irreducible Coxeter system.
Algorithm A (Cyclic shift class). One can define a function Cyc taking as input an element $w \in W$ and giving as output the cyclic shift class Cyc (w), as a list starting with w : such an algorithm is for instance described in [GP00, Algorithm G page 80] (where we have to replace " $\ell(s y s)=\ell(y)$ " by " $\ell(s y s) \leq \ell(y)$ " in step G2 of that algorithm, to account for our slightly different definition of $\mathrm{Cyc}(w)$).

In particular, we can test whether w is cyclically reduced (i.e. of minimal length in $\operatorname{Cyc}(w)$), and find a cyclically reduced conjugate of w (i.e. an element of $\operatorname{Cyc}(w)$ of minimal length).

We can also test whether $\operatorname{Pc}(w)=W$: first find a cyclically reduced conjugate w^{\prime} of w (so that $\mathrm{Pc}\left(w^{\prime}\right)=W_{I}$ for some $I \subseteq S$ by [CF10, Proposition 4.2]), then test whether $\operatorname{supp}\left(w^{\prime}\right)=S$ (i.e. whether $I=S$).

For the next algorithm, we need the following lemma.
Lemma 9.36. Let $w \in W$ with $\operatorname{Pc}(w)=W$. If $J, J^{\prime} \subseteq S$ are spherical subsets of S such that w normalises W_{J} and $W_{J^{\prime}}$, then $J \cup J^{\prime}$ is spherical. In particular, there is a largest spherical subset $J \subseteq S$ such that w normalises W_{J}.
Proof. Without loss of generality, we may assume that W is infinite. Let $N \in \mathbb{N}$ be such that w^{N} centralises W_{J} and $W_{J^{\prime}}$. Then w^{N} centralises $W_{J \cup J^{\prime}}$. Assume for a contradiction that $J \cup J^{\prime}$ is not spherical, and let $K \subseteq J \cup J^{\prime}$ be the union of all components of $J \cup J^{\prime}$ that are not spherical. Then $w^{N} \in W_{K^{\perp}}$, where
$K^{\perp}:=\{s \in S \mid$ st $=t s \forall t \in K\} \subseteq S \backslash K$ (see e.g. [CM13, Lemma 2.1]). In particular, $\operatorname{Pc}\left(w^{N}\right) \neq W$, contradicting Lemma 9.2.

Algorithm B (Maximal spherical standard parabolic normalised). One can define a function MaxStdNorm taking as input an element $w \in W$ with $\operatorname{Pc}(w)=$ W and giving as output the largest spherical subset $I \subseteq S$ such that w normalises W_{I}, as follows:
(1) For each $s \in S$, compute the support $I_{s} \subseteq S$ of $w s w^{-1}$.
(2) For each $s \in S$, compute the smallest subset $J_{s} \subseteq S$ containing s such that w normalises $W_{J_{s}}$, as follows: define $J_{1}:=\{s\}$ and, inductively, $J_{i+1}:=\bigcup_{t \in J_{i}} I_{t}$ for $i \geq 1$, until reaching J_{m} with $J_{m}=J_{m+1}$. Then $J_{s}=J_{m}$.
(3) $\operatorname{MaxStdNorm}(w)$ is the union of all $J_{s}(s \in S)$ such that J_{s} is spherical.

Algorithm C (Conjugate with standard maximal spherical parabolic normalised). Assume that W is of indefinite type. One can define a function MaxNorm taking as input a cyclically reduced element $w \in W$ with $\mathrm{Pc}(w)=W$ (as provided by Algorithm A) and giving as output an element $v \in \operatorname{Cyc}(w)$ and a spherical subset $I \subseteq S$ such that $P_{v}^{\max }=W_{I}$ (see Proposition 9.10), as follows:
(1) For each $v \in \operatorname{Cyc}(w)$, compute $I_{v}:=\operatorname{MaxStdNorm}(v)$.
(2) Find the first $v \in \operatorname{Cyc}(w)$ such that I_{v} is maximal, and return $\left(v, I_{v}\right)$.

Note that if $P_{w}^{\max }$ is standard, say $P_{w}^{\max }=W_{I}$ for some $I \subseteq S$, then the function $\operatorname{MaxStdNorm}(w)$ returns (w, I) (as the list $\operatorname{Cyc}(w)$ starts with $w)$. In particular, given w as above and $I \subseteq S$, we can check whether $P_{w}^{\max }=W_{I}$ (i.e. whether $\operatorname{MaxNorm}(w)=(w, I))$.

For W of indefinite type, we now describe an algorithm to check whether a given decomposition $w=a w_{c}^{n}$ of an element $w \in W$ with $\mathrm{Pc}(w)=W$ is the core decomposition of w. We first define the following Root algorithm.

Algorithm D (Weak indivisibility). One can define a function Root taking as input an element $w \in W$ and giving as output a couple $(n, x) \in \mathbb{N} \times W$ with $w=x^{n}$ and such that $\ell(w)=n \ell(x)$ and n is maximal for these properties, as follows:
(1) For each positive divider d of $k:=\ell(w)$ (going from the largest to the smallest) and each reduced expression $\boldsymbol{w}=\left(s_{1}, \ldots, s_{k}\right)$ of w, check whether \boldsymbol{w} is the concatenation of k / d copies of $\left(s_{1}, \ldots, s_{d}\right)$.
(2) Return $\left(k / d, s_{1} \ldots s_{d}\right)$ for the first value of d for which the condition holds.

Algorithm E (Core splitting). Assume that W is of indefinite type. One can define a function IsCoreSplitting taking as input a quadruple (w, n, a, x) where $n \in \mathbb{N}$ and $a, x \in W$, and where w is a cyclically reduced element $w \in W$ with $\operatorname{Pc}(w)=W$ such that $P_{w}^{\max }=W_{I}$ for some $I \subseteq S$ (as provided by Algorithm C), and giving as output a Boolean value "true" or "false", answering the question "Is $w=a x^{n}$ the core splitting of w, with core x ?", as follows:
(1) Check whether $w=a x^{n}$.
(2) Check whether $a \in W_{I}$ and x is of minimal length in $W_{I} x$.
(3) For each $y \in \operatorname{Cyc}(x)$, check whether $\operatorname{Root}(y)=(1, y)$.
(4) Return true if (1), (2), (3) hold, and false otherwise.

Indeed, (2) checks whether $a \in P_{w}^{\max }$ and x is $P_{w}^{\max }$-reduced, and (3) determines whether $x=w_{c}$ by Lemma 9.27 , as $\operatorname{Root}(y)=(1, y)$ if and only if y is weakly indivisible.
9.6.2. Steps to compute $\mathcal{K}_{\mathcal{O}_{w}}$. We now come back to our standing assumption that (W, S) is an irreducible Coxeter system of indefinite type.

Let $w \in W$ with $\operatorname{Pc}(w)=W$. Here are the steps to follow in order to compute $\mathcal{K}_{\mathcal{O}_{w}}$:
(1) Up to modifying w inside $\operatorname{Cyc}(w)$, one can assume that w is standard, that is, w is cyclically reduced and $P_{w}^{\max }=W_{I}$, where $I:=S^{\eta_{w}} \subseteq S$ (see Algorithms A and C).
(2) Compute $n_{I} \in W$ of minimal length in $W_{I} w$, so that $w=w_{I} n_{I}$ with $w_{I}:=w n_{I}^{-1} \in W_{I}$ and $n_{I} \in N_{I}$.
(3) Compute $\delta_{w} \in \operatorname{Aut}\left(W_{I}, I\right)$ and $I_{w} \subseteq I$ using Lemma 9.12:
(a) δ_{w} is the diagram automorphism $I \rightarrow I: s \mapsto n_{I} s n_{I}^{-1}$.
(b) I_{w} is the smallest δ_{w}-invariant subset of I containing $\operatorname{supp}\left(w_{I}\right)$.
(4) Compute $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)=\mathcal{K}_{\delta_{w}, W_{I}}^{0}\left(I_{w}\right)$ using Lemma 4.2.
(5) Compute the core splitting $w=w_{I} w_{c}^{n}$ of w (i.e. find an atomic element w_{c} such that $n_{I}=w_{c}^{n}$) with the help of Lemmas 9.26 and 9.27 (see also Algorithm E).
(6) Compute the centraliser degree n_{w} of w using Lemma 9.31 and Remark 9.32.
(7) Compute Ξ_{w} using Theorem 9.33: it is generated by $\delta_{w_{c}}^{n_{w}}$.
(8) Compute $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$, and hence also $\mathcal{K}_{\mathcal{O}_{w}}$ by Theorem B.

9.7. Examples.

Remark 9.37. Note from [Kra09, §3.1] that if (W, S) is any Coxeter system and I is a maximal spherical subset of S, then $N_{W}\left(W_{I}\right)=W_{I}$. In particular, if W is infinite and $w \in N_{W}\left(W_{I}\right)$ for some $w \in W$ with $\operatorname{Pc}(w)=W$, then $|I| \leq|S|-2$.
Example 9.38. Let (W, S) be a hyperbolic triangle group, that is, $S=\{s, t, u\}$ and $\frac{1}{m_{s t}}+\frac{1}{m_{t u}}+\frac{1}{m_{s u}}<1$, where $\left(m_{a b}\right)_{a, b \in S}$ is the Coxeter matrix of (W, S). Let $w \in W$ with $\operatorname{Pc}(w)=W$. Then $\mathcal{O}_{w}^{\min }=\operatorname{Cyc}_{\text {min }}(w)$.

Indeed, by Proposition 9.10, we may assume that w is standard, so that $P_{w}^{\max }=$ W_{I} for some spherical subset $I \subseteq S$. Remark 9.37 then implies that $|I| \leq 1$. Hence either $I_{w}=\varnothing$ or $I_{w}=I$; in both cases, $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has a unique vertex, so that the claim follows from Theorem B.

Example 9.39. Consider the Coxeter group W with Coxeter diagram indexed by $S=\left\{s_{i} \mid 1 \leq i \leq 5\right\}$ and pictured on Figure 7(a).

One checks that $x:=s_{3} s_{1} s_{2} s_{3} s_{4} s_{1} s_{2} s_{4} s_{5} s_{1} s_{2} s_{5} \in W$ is cyclically reduced, and hence $\operatorname{Pc}(x)=W$ (see Algorithm A). Moreover, a quick computation shows that $x^{-1} s_{1} x=s_{2}$ and $x^{-1} s_{2} x=s_{1}$, so that x normalises W_{I} with $I:=\left\{s_{1}, s_{2}\right\}$. In fact, one can check that $P_{x}^{\max }=W_{I}$ (see Algorithm C), that x is of minimal length in $W_{I} x$ and that x is indivisible (see Algorithm E), so that x is atomic by Lemma 9.19.

Let $w:=s_{1} x^{2}$, so that $P_{w}^{\max }=W_{I}$ by Lemma 9.16(3). Then w is cyclically reduced by Lemma 9.28, and $w_{c}=x$. We claim that $n_{w}=2$. Since $n_{w} \leq 2$ by Lemma 9.31(2), this amounts to prove that $n_{w} \neq 1$. But as $\delta_{w_{c}}\left(s_{1}\right)=s_{2}$ is not conjugate to s_{1} in $W_{I}=\left\langle s_{1}\right\rangle \times\left\langle s_{2}\right\rangle$, this follows from Lemma 9.31(1) (note that $\delta_{w_{c}}^{2}=\operatorname{id}$ on $\left.W_{I}\right)$.
(a)

(b)

Fig. 7. Examples 9.39 and 9.40

Fig. 8. Example 9.40

Since $\delta_{w}=\delta_{w_{c}}^{2}=\operatorname{id}$ and $I_{w}=\operatorname{supp}\left(s_{1}\right)=\left\{s_{1}\right\}$, the graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)=\mathcal{K}_{\delta_{w}, W_{I}}^{0}\left(I_{w}\right)$ has only one vertex, and hence $\mathcal{O}_{w}^{\min }=\operatorname{Cyc}(w)$.

Let now $w^{\prime}:=s_{1} x$. As before, w^{\prime} is cyclically reduced and $P_{w^{\prime}}^{\max }=W_{I}$. In this case, $n_{w^{\prime}}=1$ by Lemma 9.31(2) and $w_{c}^{\prime}=x$. Moreover, $\delta_{w^{\prime}}=\delta_{x}$ and $I_{w^{\prime}}=\operatorname{supp}_{\delta_{x}}\left(s_{1}\right)=I$, so that again $\mathcal{O}_{w^{\prime}}^{\min }=\operatorname{Cyc}\left(w^{\prime}\right)$.
Example 9.40. Consider the Coxeter group W with Coxeter diagram indexed by $S=\left\{s_{i} \mid 1 \leq i \leq 7\right\}$ and pictured on Figure 7(b).

Set $J_{1}:=S \backslash\left\{s_{6}\right\}$ and $J_{2}:=S \backslash\left\{s_{7}\right\}$. One checks that $x:=w_{0}\left(J_{1}\right) w_{0}\left(J_{2}\right) \in W$ is cyclically reduced, and hence $\operatorname{Pc}(x)=W$ (see Algorithm A). Moreover, x normalises $I:=S \backslash\left\{s_{6}, s_{7}\right\}$, and the map $\delta_{x}: W_{I} \rightarrow W_{I}: u \mapsto x u x^{-1}$ is the unique nontrivial diagram automorphism of ($\left.W_{I}, I\right)$. It follows from Remark 9.37 that $P_{x}^{\max }=W_{I}$, and one easily checks that x is of minimal length in $W_{I} x$. Moreover, x is indivisible (see Algorithm E), and hence atomic by Lemma 9.19.

Let $w_{i}:=s_{3} x^{i}$ for $i \in\{1,2\}$. Then $P_{w_{i}}^{\max }=W_{I}$ by Lemma 9.16(3) and $\left(w_{i}\right)_{c}=x$. In particular, $\delta_{w_{i}}=\delta_{x}^{i}$ and $I_{w_{i}}=\left\{s_{3}\right\}$. Moreover, w_{i} is cyclically reduced by Lemma 9.28. Since δ_{x} is the conjugation by $w_{0}(I)$, Lemma $9.31(1)$ further implies that $n_{w_{i}}=1$, and hence $\Xi_{w_{i}}=\left\langle\delta_{x}\right\rangle$.

If $w:=w_{1}$, so that $\delta_{w}=\delta_{x}$, then $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has only one vertex, so that $\mathcal{O}_{w}^{\min }=$ $\operatorname{Cyc}(w)$.
If $w:=w_{2}$, so that $\delta_{w}=\mathrm{id}$, then $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ is a complete graph with vertices $I_{j}:=\left\{s_{j}\right\}$ for $j=1, \ldots, 5$. Hence $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ is a complete graph with vertices $\left[I_{1}\right],\left[I_{2}\right],\left[I_{3}\right]$. Therefore, $\mathcal{O}_{w}^{\min }$ is the union of three distinct cyclic shift classes. Moreover, setting $u_{3}:=w, u_{2}:=s_{2} s_{3} s_{2} u_{3} s_{2} s_{3} s_{2}$ and $u_{1}:=s_{1} s_{2} s_{1} u_{2} s_{1} s_{2} s_{1}$, so that

$$
w=u_{3} \stackrel{\left\{s_{2}, s_{3}\right\}}{\leftrightharpoons} u_{2} \stackrel{\left\{s_{1}, s_{2}\right\}}{\leftrightharpoons} u_{1},
$$

we have $\varphi_{w}^{-1}\left(\left[I_{i}\right]\right)=\operatorname{Cyc}\left(u_{i}\right)$ for each $i=1,2,3$ by Theorem $\mathrm{C}(3)$, and hence $\mathcal{O}_{w}^{\text {min }}=\sqcup_{i=1}^{3} \operatorname{Cyc}\left(u_{i}\right)$.
Finally, let $w:=s_{1} s_{3} x^{2}$. As before, $P_{w}^{\max }=W_{I}, w_{c}=x, w$ is cyclically reduced, $n_{w}=1$ and $\Xi_{w}=\left\langle\delta_{x}\right\rangle$. Moreover, $\delta_{w}=$ id and $I_{w}=\left\{s_{1}, s_{3}\right\}$. The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has 6 vertices $I_{i j}:=\left\{s_{i}, s_{j}\right\}$ with $(i, j) \in\{(1,3),(1,4),(1,5),(2,4),(2,5),(3,5)\}$ and is pictured on Figure 8 (where $I_{i j}$ is simply written $i j$, and where we put a label $K \subseteq I$ on some of the edges $\left\{I_{i j}, I_{i^{\prime} j^{\prime}}\right\}$, indicating that $I_{i j}, I_{i^{\prime} j^{\prime}}$ are K conjugate). The quotient graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ is then the complete graph on the 4 vertices $\left[I_{13}\right]=\left[I_{35}\right],\left[I_{14}\right]=\left[I_{25}\right],\left[I_{15}\right],\left[I_{24}\right]$. Moreover, letting $w_{i j}$ denote for each
$(i, j) \in\{(1,5),(2,4),(1,4)\}$ the conjugate of $w_{13}:=w$ by $w_{0}\left(K_{i j}\right)$, where $K_{i j}$ is the label of the edge from I_{13} to $I_{i j}$ on Figure 8, we have $\varphi_{w}^{-1}\left(\left[I_{i j}\right]\right)=\operatorname{Cyc}\left(w_{i j}\right)$ for each such (i, j), and hence

$$
\mathcal{O}_{w}^{\min }=\operatorname{Cyc}\left(w_{13}\right) \sqcup \operatorname{Cyc}\left(w_{15}\right) \sqcup \operatorname{Cyc}\left(w_{24}\right) \sqcup \operatorname{Cyc}\left(w_{14}\right) .
$$

10. Affine Coxeter groups

We now turn to the study of affine Coxeter groups W. We start with some preliminaries on their construction and basic properties in $\S 10.1$, and fix the notations to be used for the whole section in $\S 10.2$. In $\S 10.3$, we identify the transversal Coxeter group and complex associated to a direction $\eta \in \partial X$ (see Proposition 10.5). We then compute the group Ξ_{η} in $\S 10.4$ (see Theorem 10.12), and show how it can be related to Ξ_{w} for $w \in W$ of infinite order with $\eta_{w}=\eta$ in $\S 10.5$ (see Theorem 10.31); in particular, we compute Ξ_{w} (see Proposition 10.32). As a byproduct, we also obtain in $\S 10.5$ a description of the centraliser of w in W. In $\S 10.6$, we investigate in more details the P-splitting introduced in $\S 8$ when $P=P_{w}^{\min }$, and show how it can be used to compute $\delta_{w} \in \Xi_{w}$ and $I_{w} \subseteq S^{\eta}$. We complete the proof of Theorem D and of Corollary E in $\S 10.7$. To conclude, we give in $\S 10.8$ a summary of the steps to be performed in order to compute the structural conjugation graph associated to \mathcal{O}_{w}, and we illustrate this recipe on some examples in §10.9.
10.1. Preliminaries. General references for this subsection are [Bou68, Chapter 6], [AB08, Chapter 10] and [Wei09, Chapters 1,2] (see also [DL11, §3]).
10.1.1. Root system. Let $V=V_{\Phi}$ be a Euclidean vector space of dimension $\ell \geq 1$, whose inner product we denote by $\langle\cdot, \cdot\rangle$, and $\Phi \subseteq V$ be a reduced (not necessarily irreducible) root system in V in the sense of [Bou68, Chapter 6], with basis $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ and associated Weyl group W_{Φ}. Thus, Π is a basis of V, and every root $\alpha \in \Phi$ has the form $\alpha=\varepsilon \sum_{i=1}^{\ell} n_{i} \alpha_{i}$ for some $\varepsilon \in\{ \pm 1\}$ and $n_{i} \in \mathbb{N}$. In this case, the integer $\operatorname{ht}(\alpha):=\varepsilon \sum_{i=1}^{\ell} n_{i}$ is called the height of α.

For each root $\alpha \in \Phi$, let $\alpha^{\vee}:=\frac{2 \alpha}{\langle\alpha, \alpha\rangle} \in V$ denote its coroot, and let

$$
s_{\alpha}: V \rightarrow V: v \mapsto v-\langle v, \alpha\rangle \alpha^{\vee}
$$

be its associated reflection. Then $W_{\Phi} \subseteq \mathrm{GL}(V)$ stabilises $\Phi^{\vee}:=\left\{\alpha^{\vee} \mid \alpha \in \Phi\right\}$, and is a finite Coxeter group with set of simple reflections $S_{\Pi}:=\left\{s_{i}=s_{\alpha_{i}} \mid 1 \leq i \leq \ell\right\}$. For each $i \neq j$, the numbers $a_{i j}:=\left\langle\alpha_{i}^{\vee}, \alpha_{j}\right\rangle$ are nonpositive integers, and the Coxeter matrix of W_{Φ} is $\left(m_{i j}\right)_{1 \leq i, j \leq \ell}$ with $m_{i j}=2,3,4,6$ or ∞, depending on whether $a_{i j} a_{j i}=0,1,2,3$ or ≥ 4, respectively.

Let J_{1}, \ldots, J_{r} be the components of S_{Π}. Then for each $i \in\{1, \ldots, r\}$, the set $\Phi_{J_{i}}:=\Phi \cap \sum_{j \in J_{i}} \mathbb{Z} \alpha_{j}$ is an irreducible reduced root system (whose type we denote by $X_{i} \in\left\{A_{\left|J_{i}\right|}, B_{\left|J_{i}\right|}, C_{\left|J_{i}\right|}, D_{\left|J_{i}\right|}, E_{\left|J_{i}\right|}, F_{4}, G_{2}\right\}$) coinciding with the orbit of $\Pi_{J_{i}}:=\Pi \cap \Phi_{J_{i}}$ under the action of the irreducible finite Coxeter group $\left(W_{\Phi}\right)_{J_{i}}=$ $\left\langle s_{j} \mid j \in J_{i}\right\rangle \subseteq W_{\Phi}$ (also of type X_{i}). Finally, we denote by $\theta_{J_{i}}$ the unique highest root of $\Phi_{J_{i}}$, and we set

$$
H_{\Phi}:=\left\{\theta_{J_{i}} \mid 1 \leq i \leq r\right\} \subseteq \Phi .
$$

Note that, if S_{Π} is of irreducible (finite) type X_{ℓ}, then the highest root $\theta_{S_{\Pi}}=$ $\sum_{j=1}^{\ell} a_{j} \alpha_{j}$ of Φ can be recovered from the Dynkin diagram $\Gamma_{S_{\Pi}}$ of type X_{ℓ} pictured on Figure 5 in §4.1: the coefficient a_{j} is written below the vertex of $\Gamma_{S_{\Pi}}$ corresponding to α_{j} for each $j \in\{1, \ldots, \ell\}$ (see e.g. [Kac90, Chapter 4]).
10.1.2. Affine Weyl group. Set $\Phi^{a}:=\Phi \times \mathbb{Z}$. To each $(\alpha, k) \in \Phi^{a}$, we associate an affine hyperplane $H_{\alpha, k}:=\{v \in V \mid\langle v, \alpha\rangle=k\}=H_{\alpha, 0}+k \alpha^{\vee} / 2$ in V, as well as the orthogonal reflection

$$
s_{\alpha, k}: V \rightarrow V: v \mapsto s_{\alpha}(v)+k \alpha^{\vee}
$$

with fixed hyperplane $H_{\alpha, k}$. For each $v \in V$, we denote by $t_{v}: V \rightarrow V$ the translation of V given by

$$
t_{v}(u):=u+v \quad \text { for all } u \in V .
$$

Thus, $s_{\alpha, k}=t_{k \alpha \vee} s_{\alpha}$ for all $(\alpha, k) \in \Phi^{a}$.
The group

$$
W:=W_{\Phi^{a}}:=\left\langle s_{\alpha, k} \mid(\alpha, k) \in \Phi^{a}\right\rangle \subseteq \mathrm{GL}(V)
$$

is called the affine Weyl group of Φ. It is a Coxeter group, with set of simple reflections

$$
S:=S_{\Pi}^{a}:=S_{\Pi} \cup\left\{s_{\theta, 1} \mid \theta \in H_{\Phi}\right\}
$$

and has $r=\left|H_{\Phi}\right|$ irreducible components of affine type $X_{1}^{(1)}, \ldots, X_{r}^{(1)}$, respectively determined by the subsets

$$
S_{i}:=\left\{s_{j} \mid j \in J_{i}\right\} \cup\left\{s_{\theta_{J_{i}}, 1}\right\}
$$

$(1 \leq i \leq r)$ of S.
10.1.3. Linear realisation and Dynkin diagram. Let $\widehat{V}:=V \times \mathbb{R}$, and set $\delta:=$ $(0,-1) \in \widehat{V}$, so that $\widehat{V}=V \oplus \mathbb{R} \delta$ (identifying V with $V \times\{0\} \subseteq \widehat{V}$). Then W can be viewed as a group of linear transformations of \widehat{V}, as follows (see [DL11, §3.3]).

Extend $\langle\cdot, \cdot\rangle$ to a symmetric positive semidefinite bilinear form on \widehat{V} with radical $\mathbb{R} \delta$. For each $x \in \widehat{V} \backslash \mathbb{R} \delta$, set as before $x^{\vee}:=\frac{2 x}{\langle x, x\rangle} \in \widehat{V}$, and define the linear reflection

$$
\widehat{s}_{x}: \widehat{V} \rightarrow \widehat{V}: v \mapsto v-\langle v, x\rangle x^{v} .
$$

Then the assignment

$$
s_{\alpha, k} \mapsto \widehat{s}_{\alpha-k \delta}=\widehat{s}_{k \delta-\alpha} \quad \text { for }(\alpha, k) \in \Phi^{a}
$$

defines an injective morphism $W \rightarrow \mathrm{GL}(\widehat{V})$, and we identify W with its image in $\mathrm{GL}(\widehat{V})$.

Moreover, when Φ is irreducible (that is, $r=1$), of type $X:=X_{1}$, then the assignment $(\alpha, k) \mapsto \alpha-k \delta$ identifies Φ^{a} with the set of real roots $\Delta^{r e}\left(X^{(1)}\right)$ of the Kac-Moody algebra of untwisted affine type $X^{(1)}$, mapping the roots

$$
\alpha_{0}:=-\left(\theta_{\Pi_{S}}, 1\right)=\delta-\theta_{\Pi_{S}}, \alpha_{1}, \ldots, \alpha_{\ell} \in \Phi^{a}
$$

to the corresponding simple roots $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{\ell}$ of $\Delta^{r e}\left(X^{(1)}\right)$, and δ to the positive imaginary root of minimal height δ of $\Delta^{r e}\left(X^{(1)}\right)$ (see [Kac90, Chapter 1 and Theorem 5.6 and Proposition 6.3a)]).

In this case, the matrix $\left(a_{i j}\right)_{0 \leq i, j \leq \ell}$ (where $\left.a_{i j}:=\left\langle\alpha_{i}^{\vee}, \alpha_{j}\right\rangle\right)$ is the generalised Cartan matrix of affine type $X^{(1)}$ in the sense of [Kac90, Chapters 1,4], and we define the Dynkin diagram associated to Φ^{a} as the graph Γ_{S} with vertex set
$S=\left\{s_{0}:=s_{\alpha_{0}}=s_{\theta_{\Pi_{S}}, 1}, s_{1}, \ldots, s_{\ell}\right\}$, and with $\left|a_{i j}\right|$ edges between s_{i} and $s_{j}(i \neq j)$ if $\left|a_{i j}\right| \geq\left|a_{j i}\right|$, decorated with an arrow pointing towards s_{i} in case $\left|a_{i j}\right|>1$. We call $X^{(1)}$ the type of Γ_{S}.

The Dynkin diagram of irreducible type $X^{(1)}$ is pictured on Figure 9 (where the vertex s_{i} is simply labelled i). It will sometimes be useful to distinguish between a subset $I \subseteq S$ and the set $\bar{I}:=\{\bar{s} \mid s \in I\} \subseteq\{0,1, \ldots, \ell\}$ of corresponding indices, where for each $i \in\{0,1, \ldots, \ell\}$ we set $\overline{s_{i}}:=i$ (so that $I=\left\{s_{i} \mid i \in \bar{I}\right\}$).

Fig. 9. Dynkin diagrams of untwisted affine type.
Back to a general Φ, we define the Dynkin diagram associated to Φ^{a} as the graph Γ_{S} obtained as the disjoint union of the Dynkin diagrams $\Gamma_{S_{i}}$ of irreducible affine type $X_{i}^{(1)}$ (keeping the notations of the previous paragraphs).

Note that Γ_{S} carries a bit more information (given by the arrows) than the Coxeter diagram $\Gamma_{S}^{\text {Cox }}$ of (W, S), but that both diagrams have the same connectedness properties. As in $\S 2.2$, we let Γ_{I} for $I \subseteq S$ denote the subdiagram of Γ_{S} with vertex set I, so that I_{1}, \ldots, I_{r} are the components of I if and only if $\Gamma_{I_{1}}, \ldots, \Gamma_{I_{r}}$ are the connected components of $\Gamma_{I} \subseteq \Gamma_{S}$.
10.1.4. Coxeter and Davis complex. The group W permutes the affine hyperplanes $H_{\alpha, k}\left((\alpha, k) \in \Phi^{a}\right)$, and hence also the connected components of $V \backslash \bigcup_{(\alpha, k) \in \Phi^{a}} H_{\alpha, k}$, which are called alcoves. We denote by $\Sigma(W, V)$ the cell complex induced from the tessellation of V by the affine hyperplanes $H_{\alpha, k}\left((\alpha, k) \in \Phi^{a}\right)$, equipped with the usual Euclidean metric on V, and by $\operatorname{Aut}(\Sigma(W, V))$ the group of isometries of $\Sigma(W, V)$ preserving the cell structure.

If W is irreducible, then the Coxeter complex $\Sigma=\Sigma(W, S)$ (or rather, its subcomplex $\Sigma_{s}(W, S)$ of spherical simplices, obtained in this case from $\Sigma(W, S)$ by removing the empty simplex) can be identified with the underlying cell complex of $\Sigma(W, V)$. In general, the cell complex $\Sigma(W, V)$ is still isomorphic, as a poset, to $\Sigma_{s}(W, S)$, but need not be a simplicial complex anymore (see [AB08, Proposition 10.13 and paragraph after Definition 10.15]). The walls of $\Sigma(W, S)$ then correspond to the affine hyperplanes $H_{\alpha, k}\left((\alpha, k) \in \Phi^{a}\right)$, and the fundamental chamber C_{0} correspond to the fundamental alcove

$$
C_{0}:=\left\{v \in V \mid\langle v, \alpha\rangle>0 \text { for all } \alpha \in \Pi, \quad\langle v, \theta\rangle<1 \text { for all } \theta \in H_{\Phi}\right\}
$$

delimited by the walls $\left\{H_{\alpha, 0} \mid \alpha \in \Pi\right\} \cup\left\{H_{\theta, 1} \mid \theta \in H_{\Phi}\right\}$ (see [DL11, Proposition 1]). Moreover, $\Sigma(W, V)$ itself is isometric to (and will be identified with) the Davis complex of (W, S) (see [AB08, Example 12.43]).
10.1.5. Extended affine Weyl group and special vertices. A point $v \in V$ is called special if for each $\alpha \in \Phi$, there is some $k \in \mathbb{Z}$ such that $v \in H_{\alpha, k}$ (or, equivalently, if $\langle v, \alpha\rangle \in \mathbb{Z}$ for all $\alpha \in \Phi$). The group

$$
T:=T_{\Phi}:=\left\{t_{v} \mid v \text { is special }\right\}
$$

acts transitively on the set of special points of V, and coincides with the set of all translations of V belonging to $\operatorname{Aut}(\Sigma)$.

Note that each special point $v \in V$ is in fact a vertex (i.e. a 0 -dimensional cell) of Σ. In particular, denoting as before by S_{1}, \ldots, S_{r} the components of S, the vertex v is of the form $w_{1} W_{S_{1} \backslash\left\{t_{1}\right\}} \times \cdots \times w_{r} W_{S_{r} \backslash\left\{t_{r}\right\}}$ for some $w_{i} \in W_{S_{i}}$ and $t_{i} \in S_{i}$, $1 \leq i \leq r$ (see $\S 2.3$). We then define its cotype $\overline{\operatorname{typ}}_{\Sigma}(v):=\left(t_{1}, \ldots, t_{r}\right)$. To lighten the notations, we shall always write $\operatorname{typ}_{\Sigma}(v):=\overline{\operatorname{typ}}_{\Sigma}(v)$ for the cotype of a vertex v of Σ (this is the only use we will make of the notation $\operatorname{typ}_{\Sigma}$ for the rest of the paper, so there will be no confusion possible with the type function from §2.3). When (W, S) is irreducible (that is, $r=1$), we simply write $\operatorname{typ}_{\Sigma}(v):=t_{1} \in S$, and we call the vertex $t_{1} \in S$ of Γ_{S} special when v is special; the special vertices of Γ_{S} are the black dots indicated on Figure 9. Alternatively, if Γ_{S} is of irreducible type $X^{(1)}$, then a vertex s of Γ_{S} is special if and only if the Dynkin diagram $\Gamma_{S \backslash\{s\}}$ is of type X (see [Kac90, Chapter 4]); in this case, we call Γ_{S} the Dynkin diagram extending $\Gamma_{S \backslash\{s\}}$.

The extended affine Weyl group of Φ (also called the extended Weyl group of W) is the group \widetilde{W} generated by W and T. It is the direct product of the extended affine Weyl groups $\widetilde{W}_{S_{i}}$ of $\Phi_{J_{i}}(1 \leq i \leq r)$. Moreover, it decomposes as a semidirect product $\widetilde{W}=W_{\Phi} \ltimes T$, and contains W as a normal subgroup (see [DL11, Proposition 1]).

We will identify the quotient group $\widetilde{W} / W=\prod_{i=1}^{r} \widetilde{W}_{S_{i}} / W_{S_{i}}$ with the image of $\widetilde{W} \subseteq \operatorname{Aut}(\Sigma)=W \rtimes \operatorname{Aut}\left(\Sigma, C_{0}\right)$ under the quotient map $\operatorname{Aut}(\Sigma) \rightarrow \operatorname{Aut}\left(\Sigma, C_{0}\right)=$ $\operatorname{Aut}(W, S)=\operatorname{Aut}\left(\Gamma_{S}^{\mathrm{Cox}}\right)=\operatorname{Aut}\left(\Gamma_{S}\right)$. It is given by the following lemma (note that for an irreducible (W, S), any automorphism of Γ_{S} is determined by where it sends the special vertices).

Lemma 10.1. Assume that (W, S) is irreducible, of type $X=X_{\ell}^{(1)}$. Writing each element of $\operatorname{Aut}\left(\Gamma_{S}\right)$ as a permutation of the set $\left\{i \in \bar{S} \mid s_{i}\right.$ is special $\}$, the group $\widetilde{W} / W \subseteq \operatorname{Aut}\left(\Gamma_{S}\right)$ is given as follows:
(1) If $X=A_{\ell}^{(1)}$, then $\widetilde{W} / W=\langle(0,1,2, \ldots, \ell)\rangle$.
(2) If $X=B_{\ell}^{(1)}$, then $\widetilde{W} / W=\langle(0,1)\rangle$.
(3) If $X=C_{\ell}^{(1)}$, then $\widetilde{W} / W=\langle(0, \ell)\rangle$.
(4) If $X=D_{\ell}^{(1)}$, then $\widetilde{W} / W=\langle(0, \ell-1,1, \ell)\rangle$ if ℓ is odd, and $\widetilde{W} / W=$ $\langle(0,1)(\ell-1, \ell),(0, \ell-1)(1, \ell)\rangle$ if ℓ is even.
(5) If $X=E_{6}^{(1)}$, then $\widetilde{W} / W=\langle(0,1,6)\rangle$.
(6) If $X=E_{7}^{(1)}$, then $\widetilde{W} / W=\langle(0,7)\rangle$.
(7) If $X=E_{8}^{(1)}, F_{4}^{(1)}$, or $G_{2}^{(1)}$, then \widetilde{W} / W is trivial.

In particular, for any two special vertices x, y of Γ_{S}, there is a unique $\sigma_{x, y} \in$ $\widetilde{W} / W \subseteq \operatorname{Aut}\left(\Gamma_{S}\right)$ mapping x to y.

Proof. See [Bou68, VI, §4.5(XII)-4.13(XII)].
Finally, for any special vertex $x \in V$, the stabiliser W_{x} of x in W can be identified with W_{Φ}, and we have a semidirect decomposition $W=W_{x} \ltimes T_{0}$, where

$$
T_{0}:=T \cap W
$$

In particular,

$$
\widetilde{W} / W \cong T / T_{0} .
$$

Moreover, T_{0} acts transitively on the set of special vertices of Σ of a given (co-)type (see e.g. [Wei09, Corollary 1.30]).
10.2. Setting for the rest of Section 10. For the rest of this section, we fix a Coxeter system (W, S) of irreducible affine type $X_{\ell}^{(1)}$, so that $W=W_{\Phi^{a}}$ and $S=S_{\Pi}^{a}=\left\{s_{0}, s_{1}, \ldots, s_{\ell}\right\}$ for some irreducible root system Φ of type X_{ℓ} and root basis $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$, and we keep all the notations from $\S 10.1$ (including $T:=T_{\Phi}$ and $\left.T_{0}:=T \cap W\right)$.

In particular, we identify Φ^{a} with the set $\Delta^{r e}\left(X^{(1)}\right)=\{\alpha+n \delta \mid \alpha \in \Phi, n \in \mathbb{Z}\}$ of real roots of the Kac-Moody algebra of untwisted affine type $X_{\ell}^{(1)}$, as in §10.1.3. Thus, $\delta=\alpha_{0}+\theta_{S_{\Pi}}$ where $S_{\Pi}=\left\{s_{1}, \ldots, s_{\ell}\right\}$, and $\Phi^{a}=W \cdot\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{\ell}\right\}$ with $s_{i} \alpha_{j}=\alpha_{j}-a_{i j} \alpha_{i}(i, j \in \bar{S}=\{0,1, \ldots, \ell\})$. For $\beta=\sum_{i=0}^{\ell} n_{i} \alpha_{i} \in \Delta^{r e}\left(X^{(1)}\right) \cup \mathbb{Z} \delta$, we write

$$
\operatorname{ht}(\beta):=\sum_{i=0}^{\ell} n_{i} \quad \text { and } \quad \operatorname{supp}(\beta):=\left\{\alpha_{i} \mid n_{i} \neq 0,0 \leq i \leq \ell\right\}
$$

for the height and support of β, respectively.
Note that if the root $\beta:=(\alpha, k)=\alpha-k \delta \in \Phi^{a}$ can be written as $\beta=w \alpha_{i}$ with $w \in W$ and $i \in \bar{S}$, then the reflection r_{m} of Σ across the wall $m=H_{\beta}=H_{\alpha, k} \in \mathcal{W}$ (see §2.3) coincides with $s_{\alpha, k}=w s_{i} w^{-1}$. We will then also write

$$
r_{\beta}:=r_{m}=w s_{i} w^{-1},
$$

and we set

$$
m_{r_{\beta}}:=H_{\beta} \in \mathcal{W} .
$$

Finally, for each $i \in \bar{S}$, we shall denote by $x_{i} \in V$ the vertex of cotype s_{i} of the fundamental chamber (i.e. alcove) C_{0}, and we set $m_{i}:=m_{s_{i}}=H_{\alpha_{i}} \in \mathcal{W}$, so that C_{0} is delimited by the walls m_{0}, \ldots, m_{ℓ}, and $\left\{x_{i}\right\}=\bigcap_{j \in \bar{S} \backslash\{i\}} m_{j}$. Moreover, we choose the vertex x_{0} as the origin of V (and we identify V with the Davis complex X of (W, S)). Since x_{0} is special, we can also identify W_{Φ} and $W_{x_{0}}$.

10.3. The transversal Coxeter group and complex.

Definition 10.2. Let $\eta \in \partial V$. Recall that \mathcal{W}^{η} denotes the set of walls $m \subseteq V$ of Σ containing η in their visual boundary. Set

$$
\mathcal{W}_{x_{0}}:=\left\{m \in \mathcal{W} \mid x_{0} \in m\right\} \quad \text { and } \quad \mathcal{W}_{x_{0}}^{\eta}:=\mathcal{W}^{\eta} \cap \mathcal{W}_{x_{0}}
$$

Let also $V^{\eta} \subseteq V$ be the orthogonal complement of $\bigcap_{m \in \mathcal{W}_{x_{0}}^{\eta}} m$ in V, and let

$$
\pi_{V^{n}}: V \rightarrow V^{\eta}: x \mapsto x^{\eta}
$$

denote the orthogonal projection onto V^{η}.

We also let $x^{\perp_{\eta}} \in\left[x_{0}, \eta\right) \subseteq V$ denote the unit vector in the direction η. Finally, we let $\sigma_{x_{0}, \eta}$ be the (closed) spherical simplex of Σ containing the geodesic segment $\left[x_{0}, \epsilon x^{\perp \eta}\right] \subseteq\left[x_{0}, \eta\right)$ for all sufficiently small $\epsilon>0$, so that the residue $R_{\sigma_{x_{0}, \eta}}$ of Σ has stabiliser

$$
\operatorname{Fix}_{W}\left(\left[x_{0}, \eta\right)\right)=W_{x_{0}} \cap W_{\eta}
$$

and set of walls $\mathcal{W}_{x_{0}}^{\eta}$.
Definition 10.3. We call $\eta \in \partial V$ standard if $\operatorname{Fix}_{W}\left(\left[x_{0}, \eta\right)\right)$ is a standard parabolic subgroup (equivalently, if the simplex $\sigma_{x_{0}, \eta}$ is contained in the (closed) fundamental chamber $\left.C_{0}\right)$. In this case, we let $I_{\eta} \subseteq S$ be such that $\operatorname{Fix}_{W}\left(\left[x_{0}, \eta\right)\right)=W_{I_{\eta}}$.

Lemma 10.4. Let $\eta \in \partial V$ be standard, and set $I:=I_{\eta}$. Then:
(1) V^{η} is the orthogonal complement of $\pi_{V \eta}^{-1}\left(x_{0}\right)=\bigcap_{i \in \bar{I}} m_{i}$ in V.
(2) $\pi_{V^{n}}^{-1}\left(x_{0}\right)$ has dimension $\ell-|I|$ and is spanned by the lines through x_{0}, x_{i} for $i \in\{1, \ldots, \ell\} \backslash \bar{I}$.
(3) $\operatorname{dim} V^{\eta}=|I| \leq \ell-1$.

Proof. Recalling that $\left\{m_{i} \mid i \in \bar{I}\right\}$ is the set of walls of the parabolic subgroup $\operatorname{Fix}_{W}\left(\left[x_{0}, \eta\right)\right)$ of W (that is, the set of walls in $\mathcal{W}_{x_{0}}^{\eta}$), the statement (1) follows from the definition of V^{η}. The statement (2) then follows from the fact that the ℓ lines $L_{i}=\bigcap_{1 \leq j \leq \ell}^{j \neq i} m_{j}$ through $x_{0}, x_{i}(i=1, \ldots, \ell)$ span V, and (3) is a consequence of (1) and (2).

The following proposition, whose content is certainly folklore, describes (W^{η}, S^{η}) and Σ^{η} for any $\eta \in \partial V$.

Proposition 10.5. Let $\eta \in \partial V$. Then the following assertions hold:
(1) The set $\Phi_{\eta}:=\left\{\alpha \in \Phi \mid H_{\alpha, 0} \in \mathcal{W}_{x_{0}}^{\eta}\right\}=\left\{\alpha \in \Phi \mid\left\langle\alpha, x^{\perp_{\eta}}\right\rangle=0\right\}$ is a reduced (not necessarily irreducible) root system in V^{η}.
(2) For each $(\alpha, k) \in \Phi_{\eta}^{a}=\Phi_{\eta} \times \mathbb{Z}$, the affine hyperplane $H_{\alpha, k}=\{v \in$ $\left.V^{\eta} \mid\langle v, \alpha\rangle=k\right\}$ of V^{η} is the trace on V^{η} of the corresponding hyperplane $H_{\alpha, k}$ of V (we will identify these two hyperplanes in the sequel).
(3) Write $\operatorname{Fix}_{W}\left(\left[x_{0}, \eta\right)\right)=b W_{I} b^{-1} \subseteq W_{\Phi}$ for some subset $I \subseteq S_{\Pi}=S \backslash\left\{s_{0}\right\}$ and some $b \in W_{x_{0}}$. Then $\Pi_{b}^{\eta}:=b \Pi_{I}=\left\{b \alpha_{i} \mid i \in \bar{I}\right\}$ is a root basis of Φ_{η}.
(4) Viewing W^{η} as a subgroup of $\mathrm{GL}\left(V^{\eta}\right)$, and identifying the affine reflection $s_{\alpha, k}$ for $(\alpha, k) \in \Phi_{\eta}^{a}$ with its restriction to V^{η}, the couple $\left(W^{\eta}, V^{\eta}\right)$ coincides, in the notations of $\$ 10.1$, with $\left(W_{\Phi_{\eta}^{a}}, V_{\Phi_{\eta}}\right)$.
(5) The poset Σ^{η} is the underlying cell complex of $\Sigma\left(W^{\eta}, V^{\eta}\right)$, with fundamental alcove C_{0}^{η}, and $\Sigma\left(W^{\eta}, V^{\eta}\right)$ is the Davis realisation of Σ^{η}.
(6) Let b, I be as in (3), and such that b is of minimal length in $b W_{I}$. Then $b^{-1} S^{\eta} b=S^{b^{-1} \eta}$. Moreover, if I_{1}, \ldots, I_{r} are the components of I, then $S^{b^{-1} \eta}=I \cup\left\{s_{\theta_{I_{i}}, 1}=r_{\delta-\theta_{I_{i}}} \mid 1 \leq i \leq r\right\}$ and has components $I_{1}^{\text {ext }}, \ldots, I_{r}^{\text {ext }}$, where $I_{i}^{\text {ext }}:=I_{i} \cup\left\{r_{\delta-\theta_{I_{i}}}\right\}$. In particular, the Dynkin diagram $\Gamma_{S^{b-1 \eta}}$ associated to $\Phi_{b^{-1} \eta}^{a}=b^{-1} \Phi_{\eta}^{a}$ has connected components $\Gamma_{I_{1}^{\text {ext }}}, \ldots, \Gamma_{I_{r}^{\text {ext }}}$, and $\Gamma_{I_{i}^{\mathrm{ext}}}$ is the Dynkin diagram extending $\Gamma_{I_{i}}$.

Proof. For (1), note that Φ_{η} is certainly a reduced root system in $\operatorname{span}_{\mathbb{R}} \Phi_{\eta} \subseteq V^{\eta}$. On the other hand, if b, I are as in (3), then $b \Pi_{I} \subseteq \Phi_{\eta}$ (see the proof of (3) below). Since $V^{b^{-1} \eta}=b^{-1} V^{\eta}$ has dimension $|I|$ by Lemma 10.4(3) $\left(\right.$ as $^{\operatorname{Fix}}{ }_{W}\left(\left[x_{0}, b^{-1} \eta\right)\right)=$
W_{I}) and $b \Pi_{I}$ is a linearly independent subset of Φ_{η}, we conclude that $\operatorname{span}_{\mathbb{R}} \Phi_{\eta}=$ V^{η}, as desired.

The statement (2) is a tautology. For (3), note first that, by assumption, I consists of all $s_{i} \in S \backslash\left\{s_{0}\right\}$ such that $H_{b \alpha_{i}}=b H_{\alpha_{i}}$ contains [x_{0}, η), or equivalently, such that $b \alpha_{i} \in \Phi_{\eta}$. In particular, $b \Pi_{I} \subseteq \Phi_{\eta}$. Let now $\alpha \in \Phi_{\eta}$. Since $b \Pi$ is a root basis of Φ, we can write α in a unique way as $\alpha=\varepsilon \sum_{i=1}^{\ell} n_{i} b \alpha_{i}$ for some $\varepsilon \in\{ \pm 1\}$ and $n_{i} \in \mathbb{N}$. On the other hand, since $b^{-1} x^{\perp_{\eta}}$ belongs to the connected component of $V \backslash \bigcup_{m \in \mathcal{W}_{x_{0}}} m$ (i.e. Weyl chamber of Φ) delimited by the walls $H_{\alpha_{1}}, \ldots, H_{\alpha_{\ell}}$, we have $\left\langle\alpha_{i}, b^{-1} x^{\perp_{\eta}}\right\rangle \geq 0$ for all $i \in\{1, \ldots, \ell\}$ (see [Bou68, Ch. VI, $\S 1$ nr 5]), and hence also

$$
\left\langle b \alpha_{i}, x^{\perp_{\eta}}\right\rangle \geq 0 \quad \text { for all } i \in\{1, \ldots, \ell\} .
$$

We then deduce from

$$
0=\left\langle\alpha, x^{\perp_{\eta}}\right\rangle=\varepsilon \sum_{i=1}^{\ell} n_{i}\left\langle b \alpha_{i}, x^{\perp_{\eta}}\right\rangle
$$

that $n_{i}=0$ if $s_{i} \notin I$, and hence $b \Pi_{I}$ is indeed a root basis of Φ_{η}, yielding (3).
The statements (4), (5) and (6) are clear from §10.1, except for the first claim in (6): to check that $b^{-1} S^{\eta} b=S^{b^{-1} \eta}$, it is sufficient to show by (2.6) that $\pi_{\Sigma^{\eta}}\left(b C_{0}\right)=C_{0}^{\eta}$. The assumption on b means that $b C_{0}=\operatorname{proj}_{R_{\sigma_{0}, \eta}}\left(C_{0}\right)$. Suppose for a contradiction that a wall $m \in \mathcal{W}^{\eta}$ separates C_{0} from $b C_{0}$. Then m contains x_{0}, and hence $m \in \mathcal{W}_{x_{0}}^{\eta}$, that is, m is a wall of $R_{\sigma_{x_{0}, \eta}}$, yielding the desired contradiction.

Remark 10.6. Let $\eta \in \partial V$, and let b, I be as in Proposition 10.5(6). Then $b^{-1} \eta$ is standard, $I=I_{b^{-1} \eta}$, and Proposition 10.5(6) implies that

$$
S^{b^{-1} \eta}=b^{-1} S^{\eta} b, \quad W^{b^{-1} \eta}=b^{-1} W^{\eta} b, \quad \text { and } \quad \Sigma^{b^{-1} \eta}=b^{-1} \Sigma^{\eta} \subseteq V^{b^{-1} \eta}=b^{-1} V^{\eta}
$$

Moreover, the fundamental chamber $C_{0}^{b^{-1} \eta}$ of $\Sigma^{b^{-1} \eta}=b^{-1} \Sigma^{\eta}$ coincides with $b^{-1} C_{0}^{\eta}$, as it is delimited by the walls fixed by the reflections in $S^{b^{-1} \eta}=b^{-1} S^{\eta} b$.

Definition 10.7. Let $\eta \in \partial V$ be standard, and let I_{1}, \ldots, I_{r} be the components of I_{η}. For each $i \in\{1, \ldots, r\}$, we denote by τ_{i} the additional vertex in the Dynkin diagram $\Gamma_{I_{i}^{\text {ext }}}$ extending $\Gamma_{I_{i}} \subseteq \Gamma_{S}$, so that

$$
I_{i}^{\mathrm{ext}}=I_{i} \cup\left\{\tau_{i}\right\} .
$$

Proposition 10.5(6) then implies that

$$
\tau_{i}=r_{\delta-\theta_{I_{i}}} \text { for each } i \in\{1, \ldots, r\}
$$

and that the Dynkin diagram $\Gamma_{S^{\eta}}$ associated to Φ_{η}^{a} has connected components $\Gamma_{I_{1}^{\text {ext }}}, \ldots, \Gamma_{I_{r}^{\text {ext }}}$. We will then also write

$$
I_{\eta}^{\mathrm{ext}}:=S^{\eta}=\bigcup_{i=1}^{r} I_{i}^{\mathrm{ext}}
$$

As usual, we let

$$
W_{I_{i}^{\text {ext }}}^{\eta}:=\left\langle I_{i}^{\mathrm{ext}}\right\rangle \subseteq W^{\eta}
$$

denote the standard parabolic subgroup of W^{η} of type $I_{i}^{\text {ext }}(i=1, \ldots, r)$, so that

$$
W^{\eta}=W_{I_{1}^{\mathrm{ext}}}^{\eta} \times \cdots \times W_{I_{r}^{\mathrm{ext}}}^{\eta}
$$

Finally, recall from $\S 10.1 .5$ that the extended Weyl group \widetilde{W}^{η} of W^{η} is the direct product

$$
\widetilde{W}^{\eta}=\widetilde{W}_{I_{1}^{\mathrm{ext}}}^{\eta} \times \cdots \times \widetilde{W}_{I_{\mathrm{ext}}}^{\eta}
$$

of the extended Weyl groups $\widetilde{W_{i}^{\text {ext }}} \eta$ of the irreducible Coxeter groups $W_{I_{i}^{\text {ext }}}^{\eta}$.
10.4. The subgroup Ξ_{η}. Recall from Definition 7.1 that, for a given $\eta \in \partial V$, we set

$$
\Xi_{\eta}=\pi_{\eta}\left(W_{\eta}\right) \cap \operatorname{Aut}\left(\Sigma^{\eta}, C_{0}^{\eta}\right) \approx \pi_{\eta}\left(W_{\eta}\right) / W^{\eta} \subseteq \operatorname{Aut}\left(\Sigma^{\eta}, C_{0}^{\eta}\right)=\operatorname{Aut}\left(W^{\eta}, S^{\eta}\right)
$$

where W_{η} is the stabiliser of η in W. The purpose of this section is to obtain a complete description of Ξ_{η}.

We start with a few observations on W_{η}. Recall from $\S 10.1 .5$ that $W=W_{x_{0}} \ltimes T_{0}$ where T_{0} is the set of translations in W, and that $W_{x_{0}}^{\eta}$ denotes the stabiliser of x_{0} in W^{η}.

Lemma 10.8. Let $\eta \in \partial V$. Then the following assertions hold:
(1) $W_{\eta}=\left\langle W^{\eta}, T_{0}\right\rangle \subseteq W$.
(2) $W_{\eta}=W_{x_{0}}^{\eta} \ltimes T_{0}$.
(3) The image of $\pi_{\eta}: W_{\eta} \rightarrow \operatorname{Aut}\left(\Sigma^{\eta}\right)$ is a subgroup of the extended Weyl group \widetilde{W}^{η} of W^{η}.
(4) $\operatorname{ker} \pi_{\eta}=\mathcal{Z}_{W_{\eta}}\left(W^{\eta}\right)=\left\{t_{v} \in T_{0} \mid v \in\left(V^{\eta}\right)^{\perp}=\bigcap_{m \in \mathcal{W}_{x_{0}}^{\eta}} m\right\}$.
(5) If $w \in W_{\eta}$, then $\pi_{V^{\eta}}(w x)=\pi_{\eta}(w) \pi_{V^{\eta}}(x)$ for all $x \in V$.

Proof. (1) Clearly, $\left\langle W^{\eta}, T_{0}\right\rangle$ stabilises η. Conversely, if $u t \in W=W_{x_{0}} \ltimes T_{0}$ stabilises $\eta\left(u \in W_{x_{0}}, t \in T_{0}\right)$, then u stabilises η, and hence u fixes the geodesic ray $\left[x_{0}, \eta\right)$. Since $\operatorname{Fix}_{W}\left(\left[x_{0}, \eta\right)\right) \subseteq W^{\eta}$, the claim follows.
(2) This follows from (1) and the fact that $W^{\eta} \subseteq W_{x_{0}}^{\eta} T_{0}$.
(3) This follows from the fact that $\pi_{\eta}\left(W^{\eta}\right)=W^{\eta}$ and that $\pi_{\eta}\left(T_{0}\right)$ is a group of translations in $\operatorname{Aut}\left(\Sigma^{\eta}\right)$.
(4) An element $w \in W_{\eta}$ belongs to ker π_{η} if and ony if it stabilises each of the walls in \mathcal{W}^{η}, or equivalently, if it centralises W^{η}. On the other hand, if w stabilises each of the walls in \mathcal{W}^{η}, then in particular it maps every wall in \mathcal{W}^{η} to a parallel one, and hence $w \in T_{0}$ by (2). The claim easily follows.
(5) If $w \in W^{\eta}$ or if $w \in T_{0}$, the claim is clear. In general, if $w=u t$ with $u \in W_{x_{0}}^{\eta}$ and $t \in T_{0}$ (see (2)), we then have $\pi_{V^{\eta}}(w x)=\pi_{\eta}(u) \pi_{V^{\eta}}(t x)=\pi_{\eta}(u) \pi_{\eta}(t) \pi_{V^{\eta}}(x) \stackrel{x_{0}}{=}$ $\pi_{\eta}(w) \pi_{V^{\eta}}(x)$, as desired.
Lemma 10.9. Let $\eta \in \partial V$ be standard, and let I_{1}, \ldots, I_{r} be the components of I_{η}. Then

$$
\Xi_{\eta} \subseteq \widetilde{W}^{\eta} / W^{\eta}=\prod_{i=1}^{r} \widetilde{W}_{I_{i}^{\mathrm{ext}}}^{\eta} / W_{I_{i}^{\mathrm{ext}}}^{\eta} \subseteq \prod_{i=1}^{r} \operatorname{Aut}\left(W_{I_{i}^{\mathrm{ext}}}^{\eta}, I_{i}^{\mathrm{ext}}\right)=\prod_{i=1}^{r} \operatorname{Aut}\left(\Gamma_{I_{i}^{\mathrm{ext}}}\right)
$$

In particular, Ξ_{η} is abelian.
Proof. The first assertion follows from Lemma 10.8(3), while the second follows from Lemma 10.1.

Remark 10.10. Let $\eta \in \partial V$, and let b, I be as in Proposition 10.5(6). Then, as in Remark 10.6, $b^{-1} \eta \in \partial V$ is standard, and

$$
\Xi_{b^{-1} \eta} \cong \pi_{b^{-1} \eta}\left(W_{b^{-1} \eta}\right) / W^{b^{-1} \eta}=b^{-1} \pi_{\eta}\left(W_{\eta}\right) b / b^{-1} W^{\eta} b \cong \pi_{\eta}\left(W_{\eta}\right) / W^{\eta} \cong \Xi_{\eta}
$$

In particular, Lemma 10.9 implies that Ξ_{η} is abelian.
More precisely, since $S^{b^{-1} \eta}=b^{-1} S^{\eta} b$, the conjugation map $\kappa_{b}: S^{\eta} \rightarrow S^{b^{-1} \eta}$ induces an isomorphism

$$
\begin{equation*}
\phi_{b}: \Gamma_{S^{\eta}} \cong \Gamma_{S^{b-1} \eta} \tag{10.1}
\end{equation*}
$$

of the corresponding Dynkin diagrams, and the above isomorphism between $\Xi_{\eta} \subseteq$ $\operatorname{Aut}\left(\Gamma_{S^{\eta}}\right)$ and $\Xi_{b^{-1} \eta} \subseteq \operatorname{Aut}\left(\Gamma_{S^{b^{-1} \eta}}\right)$ is given by

$$
\begin{equation*}
\widetilde{\phi}_{b}: \Xi_{\eta} \xlongequal{\cong} \Xi_{b^{-1} \eta}: \delta \mapsto \phi_{b} \circ \delta \circ \phi_{b}^{-1} . \tag{10.2}
\end{equation*}
$$

Alternatively, if we instead view Ξ_{η} and $\Xi_{b^{-1} \eta}$ as subgroups of $\operatorname{Aut}\left(\Sigma^{\eta}\right)$ and $\operatorname{Aut}\left(\Sigma^{b^{-1} \eta}\right)$, respectively, then as $\Sigma^{b^{-1} \eta}=b^{-1} \Sigma^{\eta}$ (see Remark 10.6), this isomorphism is simply given by

$$
\begin{equation*}
\Xi_{\eta} \xlongequal{\cong} \Xi_{b^{-1} \eta}: \delta \mapsto b^{-1} \delta b . \tag{10.3}
\end{equation*}
$$

Definition 10.11. Let $\eta \in \partial V$ be standard, and let I_{1}, \ldots, I_{r} be the components of $I:=I_{\eta} \subseteq S \backslash\left\{s_{0}\right\}$. In order to describe the elements of $\Xi_{\eta} \subseteq \prod_{i=1}^{r} \operatorname{Aut}\left(\Gamma_{I_{i}^{\text {ext }}}\right)$, we introduce the following notations, based on the numbering of the vertices of the Dynkin diagram of untwisted affine type $X_{\ell}^{(1)}$ pictured on Figure 9.

- For each $i \in\{1, \ldots, r\}$, we set

$$
I_{j}^{\alpha}:=s_{\min \overline{I_{j}}} \in I_{j} \quad \text { and } \quad I_{j}^{\omega}:=s_{\max } \overline{I_{j}} \in I_{j},
$$

so that I_{j}^{α} and I_{j}^{ω} are the vertices of $\Gamma_{I_{j}} \subseteq \Gamma_{S}$ with smallest and largest index, respectively.

- For each $i \in\{1, \ldots, r\}$ and $s \in I_{i}$, we let

$$
\sigma_{s} \in \widetilde{W}_{I_{i}^{\text {ext }}}^{\eta} / W_{I_{i}^{\mathrm{ext}}}^{\eta} \subseteq \operatorname{Aut}\left(\Gamma_{I_{i}^{\text {ext }}}\right)
$$

denote the unique diagram automorphism mapping $\tau_{i} \in I_{i}^{\text {ext }}$ (cf. Definition 10.7) to s in case s is a special vertex of $\Gamma_{I_{2}^{\text {ext }}}$ (as provided by Lemma 10.1), and denote the identity element of $\operatorname{Aut}\left(\Gamma_{I_{i}^{\text {ext }}}\right)$ otherwise. If $s \in S \backslash I$, we set $\sigma_{s}:=\mathrm{id} \in \widetilde{W}^{\eta} / W^{\eta}$.

- Order I_{1}, \ldots, I_{r} so that $I_{1}^{\alpha} \leq \cdots \leq I_{r}^{\alpha}$, and assume that Γ_{S} is of classical type $X_{\ell}^{(1)} \in\left\{A_{\ell}^{(1)}, B_{\ell}^{(1)}, C_{\ell}^{(1)}, D_{\ell}^{(1)}\right\}$. In this case, we set

$$
\sigma_{i}:=\sigma_{I_{i}^{\alpha}} \quad \text { for all } i \in\{1, \ldots, r\} .
$$

A quick inspection of Figure 9 shows that the vertex I_{i}^{α} of $\Gamma_{I_{i}^{\text {ext }}}$ must in fact be special for any $i \in\{1, \ldots, r\}$, except if $X_{\ell}^{(1)}=C_{\ell}^{(1)}, i=r$ and $\left\{s_{\ell-1}, s_{\ell}\right\} \subseteq I_{r}$. Thus, σ_{i} is always a nontrivial automorphism, except when $X_{\ell}^{(1)}=C_{\ell}^{(1)}, i=r$ and $\left\{s_{\ell-1}, s_{\ell}\right\} \subseteq I_{r}$.

Here is the announced description of Ξ_{η} for $\eta \in \partial V$ standard (for an arbitrary $\eta \in \partial V$, the description of Ξ_{η} then follows from Remark 10.10).

Theorem 10.12. Let $\eta \in \partial V$ be standard, and let I_{1}, \ldots, I_{r} be the components of $I:=I_{\eta}$, ordered so that $I_{1}^{\alpha} \leq \cdots \leq I_{r}^{\alpha}$. Then Ξ_{η} is given, in the notations of Definition 10.11, as follows, depending on the type $X_{\ell}^{(1)}$ of Γ_{S}.
$\left(A_{\ell}^{(1)}\right)$ If $\Gamma_{S \backslash I}$ is of type A_{1}^{r}, then $\Xi_{\eta}=\left\langle\sigma_{i}^{-1} \sigma_{j} \mid 1 \leq i, j \leq r\right\rangle$ has index $\operatorname{gcd}\left\{\left|I_{j}\right|+\right.$ $1 \mid 1 \leq j \leq r\}$ in $\widetilde{W}^{\eta} / W^{\eta}$. Otherwise, $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$.
($\left.B_{\ell}^{(1)}\right)$ If $\bar{S} \backslash \bar{I} \subseteq 2 \mathbb{N}$, then $\Xi_{\eta}=\left\langle\sigma_{1}^{2}, \sigma_{1} \sigma_{j} \mid 2 \leq j \leq r\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}$. Otherwise, $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$.
$\left(C_{\ell}^{(1)}\right)$ If $s_{\ell} \in I$, then $\Xi_{\eta}=\left\langle\sigma_{j} \mid 1 \leq j \leq r-1\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}$. Otherwise, $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$.
$\left(D_{\ell}^{(1)}\right) \bullet I f\left\{s_{\ell-2}, s_{\ell-1}, s_{\ell}\right\} \subseteq I$:
(D1) if $\bar{S} \backslash \bar{I} \subseteq 2 \mathbb{N}$, then $r \geq 2$ and $\Xi_{\eta}=\left\langle\sigma_{1}^{2}, \sigma_{1} \sigma_{j} \mid 2 \leq j \leq r\right\rangle$ has index 4 in $\widetilde{W}^{\eta} / W^{\eta}$.
(D2) otherwise, $\Xi_{\eta}=\left\langle\sigma_{j} \mid 1 \leq j \leq r\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}$.

- If $\left\{s_{\ell-1}, s_{\ell}\right\} \subseteq I$ but $s_{\ell-2} \notin I$:
(D3) if $\bar{S} \backslash \bar{I} \subseteq 2 \mathbb{N}$, then $r \geq 3$ and $\Xi_{\eta}=\left\langle\sigma_{1}^{2}, \sigma_{1} \sigma_{j}, \sigma_{1} \sigma_{r-1} \sigma_{r} \mid 2 \leq j \leq r-2\right\rangle$ has index 4 in $\widetilde{W}^{\eta} / W^{\eta}$.
(D4) otherwise, $r \geq 2$ and $\Xi_{\eta}=\left\langle\sigma_{j}, \sigma_{r-1} \sigma_{r} \mid 1 \leq j \leq r-2\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}$
- If $\left\{s_{\ell-1}, s_{\ell}\right\} \nsubseteq I$:
(D5) if ℓ is even and $\bar{S} \backslash(\bar{I} \cup\{\ell-1, \ell\}) \subseteq 2 \mathbb{N}$ and $\left\{s_{\ell-1}, s_{\ell}\right\} \nsubseteq S \backslash I$, then $\Xi_{\eta}=\left\langle\sigma_{1}^{2}, \sigma_{1} \sigma_{j} \mid 2 \leq j \leq r\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}$.
(D6) otherwise, $\Xi_{\eta}=\widetilde{W^{\eta}} / W^{\eta}$.
$\left(E_{6}^{(1)}\right)$ If $I=\left\{s_{1}, s_{3}, s_{5}, s_{6}\right\} \cup I^{\prime}$ for some $I^{\prime} \subseteq\left\{s_{2}\right\}$, then $\Xi_{\eta}=\left\langle\sigma_{s_{2}}, \sigma_{s_{3}} \sigma_{s_{5}}\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}$. Otherwise, $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$.
$\left(E_{7}^{(1)}\right) \Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$, unless in the following four cases, where Ξ_{η} has index 2 in $\widetilde{W}^{\eta} / W^{\eta}$:
(E1) $I=\left\{s_{2}, s_{5}, s_{6}, s_{7}\right\} \cup I^{\prime}$ for some $I^{\prime} \subseteq\left\{s_{1}, s_{3}\right\}$, in which case $\Xi_{\eta}=$ $\left\langle\sigma_{s_{1}}, \sigma_{s_{3}}, \sigma_{s_{2}} \sigma_{s_{5}}\right\rangle$.
(E2) $I=\left\{s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$, in which case $\Xi_{\eta}=\left\langle\sigma_{s_{3}}\right\rangle$.
(E3) $I=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{7}\right\}$, in which case $\Xi_{\eta}=\left\langle\sigma_{s_{2}} \sigma_{s_{7}}\right\rangle$.
(E4) $I=\left\{s_{2}, s_{3}, s_{4}, s_{5}, s_{7}\right\}$, in which case $\Xi_{\eta}=\left\langle\sigma_{s_{3}}, \sigma_{s_{2}} \sigma_{s_{7}}\right\rangle$.
$\left(E_{8}^{(1)}\right) \Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$.
$\left(F_{4}^{(1)}\right) \Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$.
$\left(G_{2}^{(1)}\right) \Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$.
Remark 10.13. Given $\eta \in \partial V$, Theorem 10.12 (and Remark 10.10) allows to compute $\pi_{\eta}\left(W_{\eta}\right) \subseteq \operatorname{Aut}\left(\Sigma^{\eta}\right)$, as

$$
\begin{equation*}
\pi_{\eta}\left(W_{\eta}\right)=W^{\eta} \rtimes \Xi_{\eta} \subseteq \operatorname{Aut}\left(\Sigma^{\eta}\right) \tag{10.4}
\end{equation*}
$$

The rest of $\S 10.4$ is devoted to the proof of Theorem 10.12. Henceforth, and until the end of $\S 10.4$, we fix a standard $\eta \in \partial V$, and we let I_{1}, \ldots, I_{r} denote the components of $I:=I_{\eta} \subseteq S \backslash\left\{s_{0}\right\}$. If Γ_{S} is of classical type, we moreover order I_{1}, \ldots, I_{r} so that $I_{1}^{\alpha} \leq \cdots \leq I_{r}^{\alpha}$. Finally, note that we may assume I to be nonempty, for otherwise W^{η} is trivial and Theorem 10.12 holds trivially.

The first step in order to prove Theorem 10.12 will be to establish a criterion to check that a given element of $\widetilde{W}^{\eta} / W^{\eta}$ does not belong to Ξ_{η} : this will be achieved in Lemma 10.17 below.

Remark 10.14. Note that if $x \in V$ is a special vertex of Σ, then $x^{\eta}=\pi_{V^{\eta}}(x) \in$ V^{η} is a (special) vertex of Σ^{η}. Recall from $\S 10.1 .5$ that we denoted by

$$
\operatorname{typ}_{\Sigma}(x) \in S \quad \text { and } \quad \operatorname{typ}_{\Sigma^{\eta}}\left(x^{\eta}\right) \in I_{1}^{\mathrm{ext}} \times \cdots \times I_{r}^{\mathrm{ext}}
$$

the cotype of x in Σ and of x^{η} in Σ^{η}, respectively. Recall also from $\S 10.2$ that $m_{j}=m_{s_{j}} \in \mathcal{W}(j \in \bar{S})$ denotes the wall of C_{0} not containing the vertex x_{j} of C_{0} with $\operatorname{typ}_{\Sigma}\left(x_{j}\right)=s_{j}$. Moreover, $\left\{m_{s} \mid s \in S^{\eta}\right\}=\left\{m_{j} \mid j \in \bar{I}\right\} \cup\left\{m_{\tau_{i}} \mid 1 \leq i \leq r\right\}$ is the set of walls of C_{0}^{η}.

In particular, the vertex of C_{0}^{η} of cotype $\left(t_{1}, \ldots, t_{r}\right) \in I_{1}^{\text {ext }} \times \cdots \times I_{r}^{\text {ext }}$ is the unique point $x \in V^{\eta}$ contained in the wall $m_{s} \in \mathcal{W}^{\eta}$ for all $s \in S^{\eta} \backslash\left\{t_{1}, \ldots, t_{r}\right\}$. For instance, $x_{0}=x_{0}^{\eta} \in V^{\eta}$ is the (special) vertex of C_{0} of cotype typ ${ }_{\Sigma}\left(x_{0}\right)=s_{0}$ in Σ, and also the vertex of C_{0}^{η} of cotype $\operatorname{typ}_{\Sigma^{\eta}}\left(x_{0}\right)=\left(\tau_{1}, \ldots, \tau_{r}\right)$ in Σ^{η}, since $x_{0} \in m_{i}$ for all $i=1, \ldots, \ell$.

Recall from $\S 4.1 .4$ the definition of the opposition map op ${ }_{J}: J \rightarrow J$ for J a spherical subset of S.

Definition 10.15. We let $\operatorname{Typ}(S, I)$ denote the smallest subset A of S satisfying the following three properties:
(TYP0) $A \supseteq S \backslash I$.
(TYP1) If $a \in S \backslash\left(I \cup\left\{s_{0}\right\}\right)$, then the sequence $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq S$ defined recursively by $a_{0}:=s_{0}, a_{1}:=a$ and $a_{i+1}:=\mathrm{op}_{a_{i}}\left(a_{i-1}\right)$ for all $i \geq 1$ is contained in A, where we set $\mathrm{op}_{a}(b):=\mathrm{op}_{S \backslash\{a\}}(b)$.
(TYP2) If $a, b \in A$ are special, then $\sigma_{a, b}(A) \subseteq A$, where $\sigma_{a, b}$ is the unique automorphism in $\widetilde{W} / W \subseteq \operatorname{Aut}\left(\Gamma_{S}\right)$ mapping a to b (see Lemma 10.1).
Lemma 10.16. We have $\operatorname{typ}_{\Sigma}(y) \in \operatorname{Typ}(S, I)$ for any special vertex $y \in \pi_{V \eta}^{-1}\left(x_{0}\right)$.
Proof. For an edge $e=\left\{e_{0}, e_{1}\right\}$ of Σ (namely, e_{0}, e_{1} are vertices of Σ contained in a common 1-dimensional closed cell e of Σ), we let $L_{e}:=\operatorname{span}_{V}(e)$ denote its affine span in V, and we let $\left(e_{i}\right)_{i \in \mathbb{Z}} \subseteq L_{e}$ denote the sequence of vertices contained in L_{e}, ordered so that e_{i} and e_{i+1} belong to a same edge for each $i \in \mathbb{Z}$. We then write $\operatorname{typ}_{\Sigma}\left(L_{e}\right):=\left\{\operatorname{typ}_{\Sigma}\left(e_{i}\right) \mid i \in \mathbb{Z}\right\} \subseteq S$ for the set of types of vertices of L_{e}. Note that

$$
\operatorname{typ}_{\Sigma}\left(e_{i \pm 1}\right)=\operatorname{op}_{\operatorname{typ}_{\Sigma}\left(e_{i}\right)}\left(\operatorname{typ}_{\Sigma}\left(e_{i \neq 1}\right)\right)
$$

for all $i \in \mathbb{Z}$ (see §4.1.4). In particular, the sequence $\left(\operatorname{typ}_{\Sigma}\left(e_{i}\right)\right)_{i \in \mathbb{Z}}$ is periodic, and hence $\operatorname{typ}_{\Sigma}\left(L_{e}\right)=\left\{\operatorname{typ}_{\Sigma}\left(e_{i}\right) \mid i \in \mathbb{N}\right\}$.

Let $y \in \pi_{V \eta}^{-1}\left(x_{0}\right)$ be a special vertex, and let $t \in T$ be such that $t x_{0}=y$. Write $S \backslash\left(I \cup\left\{s_{0}\right\}\right)=\left\{s_{i_{1}}, \ldots, s_{i_{m}}\right\}$, where $m \geq 1$ and $i_{1}, \ldots, i_{m} \in\{1, \ldots, \ell\}$. Consider the m edges $e^{k}:=\left\{e_{0}^{k}:=x_{0}, e_{1}^{k}:=x_{i_{k}}\right\}$, for $k=1, \ldots, m$. By Lemma 10.4(2), $\pi_{V^{\eta}}^{-1}\left(x_{0}\right)$ is spanned by the lines $L_{e^{k}}$ for $k=1, \ldots, m$. Moreover, by [Wei09, Proposition 1.24], there exist elements $t_{i_{1}}, \ldots, t_{i_{m}} \in T$ with $t=t_{i_{1}} \ldots t_{i_{m}}$ and such that $t_{i_{k}}$ stabilises $L_{e^{k}}$ for each k.

Note that $\operatorname{typ}_{\Sigma}\left(L_{e^{k}}\right) \subseteq \operatorname{Typ}(S, I)$ for each $k \in\{1, \ldots, m\}$. Indeed, by (TYP0), $\operatorname{typ}_{\Sigma}\left(e_{0}^{k}\right)=s_{0}$ and $\operatorname{typ}_{\Sigma}\left(e_{1}^{k}\right)=s_{i_{k}}$ belong to $\operatorname{Typ}(S, I)$. On the other hand, if $i \geq 1$, then

$$
\operatorname{typ}_{\Sigma}\left(e_{i+1}^{k}\right)=\operatorname{op}_{\operatorname{typ}_{\Sigma}\left(e_{i}^{k}\right)}\left(\operatorname{typ}_{\Sigma}\left(e_{i-1}^{k}\right)\right)
$$

so that the claim follows from the property (TYP1) of $\operatorname{Typ}(S, I)$.
Set $y_{0}:=x_{0}$ and, for each $k \in\{1, \ldots, m\}$, define recursively $y_{k}:=t_{i_{k}} y_{k-1}$ and set $a_{k}:=\operatorname{typ}_{\Sigma}\left(y_{k}\right)$. Thus, $y_{m}=y$. We now show, by induction on k, that a_{k} is special and belongs to $\operatorname{Typ}(S, I)$ for all k, yielding the lemma. For $k=0$, this holds by (TYP0). Assume now that a_{k-1} is special and belongs to $\operatorname{Typ}(S, I)$ for some $k \in\{1, \ldots, m\}$. Then a_{k} is also special since $y_{k}=t_{i_{k}} y_{k-1}$. Moreover, since
$t_{i_{k}} L_{e^{k}}=L_{e^{k}}$ and $x_{0} \in L_{e^{k}}$, the line $t_{i_{1}} \ldots t_{i_{k}} L_{e^{k}}=t_{i_{1}} \ldots t_{i_{k-1}} L_{e^{k}}=L_{t_{i_{1}} \ldots t_{i_{k-1}} e^{k}}$ contains both y_{k-1} and y_{k}. Hence

$$
a_{k} \in \operatorname{typ}_{\Sigma}\left(L_{t_{i_{1}} \ldots t_{i_{k-1}} e^{k}}\right)=\sigma_{a_{0}, a_{k-1}}\left(\operatorname{typ}_{\Sigma}\left(L_{e^{k}}\right)\right)
$$

where $\sigma_{a_{0}, a_{k-1}}$ is the unique automorphism in $\widetilde{W} / W \subseteq \operatorname{Aut}\left(\Gamma_{S}\right)$ mapping a_{0} to a_{k-1} (it is induced by $t_{i_{1}} \ldots t_{i_{k-1}} \in \widetilde{W}$, which maps $y_{0}=x_{0}$ to y_{k-1}). Since $\operatorname{typ}_{\Sigma}\left(L_{e^{k}}\right) \subseteq \operatorname{Typ}(S, I)$, this concludes the induction step by the property (TYP2) of $\operatorname{Typ}(S, I)$.

The second statement of the following lemma will be our main tool to check that a given $\sigma \in \widetilde{W}^{\eta} / W^{\eta}$ does not belong to Ξ_{η}.
Lemma 10.17. Let $x, y \in V$ be special vertices.
(1) If $\operatorname{typ}_{\Sigma}(x)=\operatorname{typ}_{\Sigma}(y)$, then $\operatorname{typ}_{\Sigma^{\eta}}\left(x^{\eta}\right)$ and $\operatorname{typ}_{\Sigma^{\eta}}\left(y^{\eta}\right)$ are in the same $\Xi_{\eta^{-}}$orbit.
(2) If $\operatorname{typ}_{\Sigma}(y) \notin \operatorname{Typ}(S, I)$, then $\operatorname{typ}_{\Sigma^{\eta}}\left(y^{\eta}\right)$ and $\operatorname{typ}_{\Sigma^{\eta}}\left(x_{0}\right)$ are not in the same Ξ_{η}-orbit.

Proof. (1) If $\operatorname{typ}_{\Sigma}(x)=\operatorname{typ}_{\Sigma}(y)$, then there exists $t \in T_{0} \subseteq W_{\eta}$ such that $t x=y$. Hence, $\pi_{\eta}(t) x^{\eta}=y^{\eta}$ by Lemma 10.8(5), yielding (1).
(2) Assume that $\operatorname{typ}_{\Sigma^{\eta}}\left(y^{\eta}\right)$ and $\operatorname{typ}_{\Sigma^{\eta}}\left(x_{0}\right)$ are in the same $\Xi_{\eta^{-}}$-orbit. Then $\pi_{\eta}\left(T_{0}\right) x_{0}$ contains a (special) vertex of Σ^{η} of type $\operatorname{typ}_{\Sigma^{\eta}}\left(y^{\eta}\right)$ (note that $\Xi_{\eta} \cong$ $\pi_{\eta}\left(W_{\eta}\right) / W^{\eta} \cong \pi_{\eta}\left(T_{0}\right) /\left(\pi_{\eta}\left(T_{0}\right) \cap W^{\eta}\right)$ by Lemma 10.8(1)), and since $T_{0} \cap W^{\eta}=$ $T \cap W^{\eta}$ is transitive on the set of special vertices of Σ^{η} of a given type, we find some $t \in T_{0}$ such that $\pi_{\eta}(t) x_{0}=y^{\eta}$. In particular, $x_{0}=\pi_{\eta}\left(t^{-1}\right) \pi_{V^{\eta}}(y)=\pi_{V^{\eta}}\left(t^{-1} y\right)$ by Lemma 10.8(5), that is, $t^{-1} y \in \pi_{V^{\eta}}^{-1}\left(x_{0}\right)$. Lemma 10.16 then implies that $\operatorname{typ}_{\Sigma}(y)=\operatorname{typ}_{\Sigma}\left(t^{-1} y\right) \in \operatorname{Typ}(S, I)$, proving (2).

The second step in order to prove Theorem 10.12 is to establish a criterion allowing to prove that a given element of $\widetilde{W}^{\eta} / W^{\eta}$ belongs to Ξ_{η} : this is achieved in Lemma 10.23 below. We advise the reader to keep the list of Dynkin diagrams of affine type (Figure 9) at hand until the end of $\S 10.4$.
Definition 10.18. For each $s \in S$, let $\mathrm{Nb}(s):=\{a \in S \backslash\{s\} \mid s a \neq a s\}$ denote the set of neighbours of s in Γ_{S}. For $J \subseteq S$, we also set $\mathrm{Nb}(J):=\bigcup_{s \in J} \mathrm{Nb}(s)$.

Lemma 10.19. Let $a \in S$ be special, and let $b \in S$, which we assume to be nonspecial if $b \neq a$. Let $\gamma_{a b}:=\left(a=a_{0}, a_{1}, \ldots, a_{k}=b\right)$ be the unique shortest path in Γ_{S} from a to b (viewed as an ordered subset of S), and set $w_{b a}:=a_{k} \ldots a_{1} a_{0} \in$ W. Assume that all edges of $\gamma_{a b} \backslash\{a\}=\left(a_{1}, \ldots, a_{k}\right)$ are simple edges. Assume, moreover, that $k \neq \ell-1$ in case Γ_{S} is of type $C_{\ell}^{(1)}$.

Let $s \in S \backslash\{a, b\}$. Then $w_{b a} x_{\bar{a}} \notin m_{s}$ if and only if $s \in \mathrm{Nb}\left(\gamma_{a b}\right) \backslash \gamma_{a b}$.
Proof. We first make the following observations:

$$
\begin{gather*}
x_{i} \in m_{j} \text { and } s_{j} x_{i}=x_{i} \text { for all } i, j \in \bar{S} \text { with } i \neq j, \tag{10.5}\\
\operatorname{stm}_{s}=m_{t} \text { for all } s, t \in S \text { such that }(s, t) \text { is a simple edge, } \tag{10.6}\\
\operatorname{tm}_{s}=m_{s} \text { for all } s, t \in S \text { such that }(s, t) \text { is not an edge, } \tag{10.7}\\
a_{i} \ldots a_{1} a_{0} x_{\bar{a}} \in m_{a_{j}} \text { for all } i, j \in\{1, \ldots, k\} \text { with } j<i, \tag{10.8}\\
a_{i} \ldots a_{1} a_{0} x_{\bar{a}} \in m_{a} \text { for all } i \in\{1, \ldots, k\} \text { when }\left(a, a_{1}\right) \text { is a simple edge, } \tag{10.9}\\
a_{i} \ldots a_{1} a_{0} x_{\bar{a}} \notin m_{s} \text { for all } i \in\{0, \ldots, k\} \text { and } s \in \operatorname{Nb}\left(a_{i}\right) \backslash\left\{a, a_{i-1}\right\} \tag{10.10}
\end{gather*}
$$

(where a_{i-1} is omitted if $i=0$). Indeed, (10.5), (10.6) and (10.7) are clear, while (10.8) and (10.9) follow from (10.5), as

$$
\begin{aligned}
a_{i} \ldots a_{1} a_{0} x_{\bar{a}} \in m_{a_{j}} & \Longleftrightarrow a_{j+1} \ldots a_{1} a_{0} x_{\bar{a}} \in m_{a_{j}} \quad \text { by }(10.7) \\
& \Longleftrightarrow a_{j-1} \ldots a_{1} a_{0} x_{\bar{a}} \in m_{a_{j+1}} \quad \text { by }(10.6) \\
& \Longleftrightarrow x_{\bar{a}} \in m_{a_{j+1}} \quad \text { by }(10.7)
\end{aligned}
$$

(with the convention $a_{j-1} \ldots a_{1} a_{0} x_{\bar{a}}:=x_{\bar{a}}$ if $j=0$). We first prove (10.10) when $\left(a_{i}, s\right)$ is a double or triple edge. Note from Figure 9 that there are in this case only 4 possibilities:
(1) Γ_{S} is of type $B_{\ell}^{(1)}, a_{i}=s_{\ell-1}$ and $s=s_{\ell}$. Up to exchanging s_{0} and s_{1}, we may moreover assume that $a=s_{0}$. In that case, we claim that $a_{i} \ldots a_{1} a_{0} x_{\bar{a}} \in m_{\tau}$, where τ is the reflection associated to the root $\delta-\alpha_{\ell}$ (so that $m_{\tau} \cap m_{s}=\varnothing$, yielding (10.10)). We have

$$
\delta-\alpha_{\ell}=\alpha_{0}+\alpha_{1}+2 \sum_{j=2}^{\ell-1} \alpha_{j}+\alpha_{\ell}=s_{\ell-1} s_{\ell-2} \ldots s_{3} s_{2} s_{0} s_{1} s_{2} \ldots s_{\ell-1} \alpha_{\ell}
$$

(see the last paragraph of $\S 10.1 .1$), so that $m_{\tau}=a_{i} \ldots a_{1} a_{0} s_{1} s_{2} \ldots s_{\ell-1} m_{\ell}$. Hence the claim follows from (10.5).
(2) Γ_{S} is of type $C_{\ell}^{(1)}$ and $i=0$ (note that $k<\ell-1$ by assumption). Assume that $a=s_{0}$ (the case $a=s_{\ell}$ being symmetric), so that $s=s_{1}$, and suppose for a contradiction that $s_{0} x_{0} \in m_{1}$. Then $s_{0} x_{0} \in \bigcap_{j \in \bar{S} \backslash\{0\}} m_{j}=\left\{x_{0}\right\}$ by (10.7) and (10.5), a contradiction since $s_{0} x_{0} \neq x_{0}$.
(3) Γ_{S} is of type $F_{4}^{(1)}, a=s_{0}, a_{i}=s_{2}$ and $s=s_{3}$. Suppose for a contradiction that $s_{2} s_{1} s_{0} x_{0} \in m_{3}$. As $s_{2} s_{1} s_{0} x_{0} \in m_{4}$ by (10.7), and $s_{2} s_{1} s_{0} x_{0} \in m_{0} \cap m_{1}$ by (10.8) and (10.9), we then have $s_{2} s_{1} s_{0} x_{0} \in \bigcap_{j \in \bar{S} \backslash\{2\}} m_{j}=\left\{x_{2}\right\}$, a contradiction since $s_{2} s_{1} s_{0} x_{0} \neq x_{2}$ (because x_{0} is special but x_{2} is not).
(4) Γ_{S} is of type $G_{2}^{(1)}, a=s_{0}, a_{i}=s_{2}$ and $s=s_{1}$. Suppose for a contradiction that $s_{2} s_{0} x_{0} \in m_{1}$. Then $s_{2} s_{0} x_{0} \in m_{1} \cap m_{0}=\left\{x_{2}\right\}$ by (10.9), a contradiction since $s_{2} s_{0} x_{0} \neq x_{2}$ (because x_{0} is special but x_{2} is not).

We now prove (10.10) by induction on i assuming that $\left(a_{i}, s\right)$ is a simple edge. If $i=0$, then $a x_{\bar{a}}=a s x_{\bar{a}} \notin m_{s} \Leftrightarrow x_{\bar{a}} \notin m_{a}$ by (10.5) and (10.6), as desired. Let now $i>0$. Note that $\left(a_{j}, s\right)$ is not an edge for all $j=0, \ldots, i-1$ (i.e. since $b \neq a$ in this case, b is non-special and hence Γ_{S} is not of type $A_{\ell}^{(1)}$ and therefore contains no loop). Using (10.5) and (10.6), we then have
$a_{i} \ldots a_{1} a_{0} x_{\bar{a}}=a_{i} \ldots a_{1} a_{0} s x_{\bar{a}}=a_{i} s a_{i-1} \ldots a_{1} a_{0} x_{\bar{a}} \notin m_{s} \Longleftrightarrow a_{i-1} \ldots a_{1} a_{0} x_{\bar{a}} \notin m_{a_{i}}$ which holds by induction hypothesis. This completes the proof of (10.10).

We can now prove the lemma. Let $s \in S \backslash\{a, b\}$. If $s \in \gamma_{a b}$, then $w_{b a} x_{\bar{a}} \in m_{s}$ by (10.8). If $s \notin \mathrm{Nb}\left(\gamma_{a b}\right)$, then $w_{b a} x_{\bar{a}} \in m_{s}$ by (10.7). Finally, assume that $s \in \mathrm{Nb}\left(\gamma_{a b}\right) \backslash \gamma_{a b}$, and let $i \in\{0, \ldots, k\}$ be such that $\left(a_{i}, s\right)$ is an edge (note that i is unique). Then $w_{b a} x_{\bar{a}} \notin m_{s} \Leftrightarrow a_{i} \ldots a_{1} a_{0} x_{\bar{a}} \notin m_{s}$ by (10.7), which holds by (10.10), as desired.

Lemma 10.20. Let $i_{1}, \ldots, i_{d} \in \bar{S}$ be pairwise distinct and such that $\left(s_{i_{1}}, \ldots, s_{i_{d}}\right)$ is a path in Γ_{S}. Set $w:=s_{i_{1}} \ldots s_{i_{d}} \in W$. Assume that the following conditions hold:
(1) $s_{i_{1}} \notin I ;$
(2) $s_{i_{1}} \ldots s_{i_{k-1}} \alpha_{i_{k}}+\theta_{I_{j}} \neq \delta$ for all $k=1, \ldots, d$ and $j=1, \ldots, r$.

Then $\pi_{V^{\eta}}(w x) \in C_{0}^{\eta}$ for all $x \in C_{0}^{\eta}$.
Proof. Set $w_{k}:=s_{i_{1}} \ldots s_{i_{k}}$ for each $k \in\{0, \ldots, d\}$ (with $w_{0}:=1$). Then the set of walls separating C_{0} from $w C_{0}$ (equivalenty, the set of walls crossed by the gallery from C_{0} to $w C_{0}$ of type $\left(s_{i_{1}}, \ldots, s_{i_{d}}\right)$) is given by $\left\{H_{w_{k-1} \alpha_{i_{k}}} \mid 1 \leq k \leq d\right\}$ (see e.g. [AB08, §2.1]). To prove the lemma, it is sufficient to show that none of these walls is a wall of C_{0}^{η}. In other words, we have to show that

$$
H_{w_{k-1} \alpha_{i_{k}}} \notin\left\{H_{\alpha_{j}} \mid j \in \bar{I}\right\} \cup\left\{H_{\delta-\theta_{I_{j}}} \mid 1 \leq j \leq r\right\} \quad \text { for all } k \in\{1, \ldots, d\}
$$

or equivalently, that $w_{k-1} \alpha_{i_{k}} \notin\left\{\alpha_{j} \mid j \in \bar{I}\right\} \cup\left\{\delta-\theta_{I_{j}} \mid 1 \leq j \leq r\right\}$ for all $k \in\{1, \ldots, d\}$ (as all the above roots are positive). As $\operatorname{supp}\left(w_{k-1} \alpha_{i_{k}}\right)=$ $\left\{\alpha_{i_{1}}, \ldots, \alpha_{i_{k}}\right\} \supseteq\left\{\alpha_{i_{1}}\right\}$, this follows from the assumptions (1) and (2).
Lemma 10.21. The height $h(X)$ of the highest root associated to the Dynkin diagram of finite type X is given as follows: $h\left(A_{n}\right)=n, h\left(B_{n}\right)=h\left(C_{n}\right)=2 n-1$, $h\left(D_{n}\right)=2 n-3, h\left(E_{6}\right)=11, h\left(E_{7}\right)=17, h\left(E_{8}\right)=29, h\left(F_{4}\right)=11, h\left(G_{2}\right)=5$. Moreover, $\operatorname{ht}(\delta)=h\left(X_{\ell}\right)+1$.
Proof. As mentioned in $\S 10.1 .1, h(X)$ can be obtained by adding the labels of the vertices of the Dynkin diagram of type X pictured on Figure 5, yielding the first assertion. Since Γ_{S} is of type $X_{\ell}^{(1)}$ and $\delta=\alpha_{0}+\theta_{S_{\Pi}}$, the second assertion holds as well.

Lemma 10.22. Let $a \in S$ be special, and let $b \in S \backslash I$, which we assume to be nonspecial if $b \neq a$. Let $\gamma_{a b}:=\left(a=a_{0}, a_{1}, \ldots, a_{k}=b\right)$ be the unique shortest path in Γ_{S} from a to b (viewed as an ordered subset of S), and set $w_{b a}:=a_{k} \ldots a_{1} a_{0} \in W$. If $b \neq a$, assume, moreover, that we are not in one of the following four cases:
(i) Γ_{S} is of type $B_{\ell}^{(1)}$ and $b=s_{\ell}$.
(ii) Γ_{S} is of type $C_{\ell}^{(1)}$ and $S \backslash \gamma_{a b} \subseteq I$.
(iii) Γ_{S} is of type $F_{4}^{(1)}$ and $b=s_{4}$.
(iv) Γ_{S} is of type $G_{2}^{(1)}$ and $b=s_{1}$.

Then $\pi_{V^{\eta}}\left(w_{b a} x_{\bar{a}}\right) \in C_{0}^{\eta}$.
Proof. If $\gamma_{a b} \cup I_{j} \subsetneq S$ for all $j=1, \ldots, r$ (for instance, if $a=b$, as $|I| \leq \ell-1$ by Lemma 10.4(3)), Lemma 10.20 implies that $\pi_{V^{\eta}}\left(w_{b a} x_{\bar{a}}\right) \in C_{0}^{\eta}$, as in that case $\operatorname{supp}\left(a_{k} \ldots a_{1} \alpha_{\bar{a}}+\theta_{I_{j}}\right) \subsetneq S=\operatorname{supp}(\delta)$ for all $j=1, \ldots, r$.

We may thus assume that $\gamma_{a b} \cup I_{j}=\gamma_{a b} \cup I=S$ for some $j \in\{1, \ldots, r\}$ (in particular, $b \neq a$), that b is not special (in particular, Γ_{S} is not of type $A_{\ell}^{(1)}$), and that we are not in one of the cases (i)-(iv). In particular, since $s_{0} \in \gamma_{a b}$ and b is not special, we must have $a=s_{0}$.

To show that $\pi_{V^{\eta}}\left(w_{b a} x_{0}\right) \in C_{0}^{\eta}$, it is sufficient to check by Lemma 10.20 that

$$
\begin{equation*}
\operatorname{ht}\left(a_{k} \ldots a_{2} a_{1} \alpha_{0}+\theta_{I_{j}}\right)<\operatorname{ht}(\delta) \text { for all } j \in\{1, \ldots, r\} . \tag{10.11}
\end{equation*}
$$

We now prove (10.11) using Lemma 10.21. Set for short $n_{b}:=\operatorname{ht}\left(a_{k} \ldots a_{2} a_{1} \alpha_{0}\right)$.
(1) If Γ_{S} is of type $B_{\ell}^{(1)}$, then $b=s_{i}$ for some $i \in\{2, \ldots, \ell-1\}$ by the assumption (i). But then $\gamma_{a b} \cup I_{j}$ cannot contain both s_{1} and $s_{\ell}(j=1, \ldots, r)$, a contradiction.
(2) If Γ_{S} is of type $C_{\ell}^{(1)}$, then $S \backslash \gamma_{a b} \nsubseteq I$ by the assumption (ii), and hence $\gamma_{a b} \cup I \neq S$, a contradiction.
(3) If Γ_{S} is of type $D_{\ell}^{(1)}$, then $b=s_{i}$ for some $i \in\{2, \ldots, \ell-2\}$. Hence $\gamma_{a b} \cup I_{j}$ cannot contain both s_{1} and $s_{\ell}(j=1, \ldots, r)$, a contradiction.

For the next cases, recall that $I \subseteq S \backslash\left\{s_{0}, b\right\}$ and that b is not special.
(4) If Γ_{S} is of type $E_{6}^{(1)}$, then $n_{b} \leq 4$ and $\max _{j} \operatorname{ht}\left(\theta_{I_{j}}\right) \leq h\left(A_{5}\right)=5$, so that $n_{b}+\max _{j} \operatorname{ht}\left(\theta_{I_{j}}\right) \leq 9<12=\operatorname{ht}(\delta)$.
(5) If Γ_{S} is of type $E_{7}^{(1)}$, then $n_{b} \leq 6$ and $\max _{j} \operatorname{ht}\left(\theta_{I_{j}}\right) \leq \max \left\{h\left(A_{6}\right), h\left(D_{6}\right)\right\}=$ 9 , so that $n_{b}+\max _{j} \operatorname{ht}\left(\theta_{I_{j}}\right) \leq 15<18=\operatorname{ht}(\delta)$.
(6) If Γ_{S} is of type $E_{8}^{(1)}$, then $n_{b} \leq 8$ and $\max _{j} \operatorname{ht}\left(\theta_{I_{j}}\right) \leq \max \left\{h\left(A_{7}\right), h\left(D_{7}\right), h\left(E_{7}\right)\right\}=$ 17, so that $n_{b}+\max _{j} \operatorname{ht}\left(\theta_{I_{j}}\right) \leq 25<30=\operatorname{ht}(\delta)$.
(7) If Γ_{S} is of type $F_{4}^{(1)}$, then $b=s_{i}$ for some $i \in\{1,2,3\}$ by the assumption (iii). But then $n_{b} \leq 5$ and $\max _{j} h t\left(\theta_{I_{j}}\right) \leq \max \left\{h\left(A_{2}\right), h\left(B_{3}\right), h\left(C_{3}\right)\right\}=5$, so that $n_{b}+\max _{j} \operatorname{ht}\left(\theta_{I_{j}}\right) \leq 10<12=\operatorname{ht}(\delta)$.
(8) If Γ_{S} is of type $G_{2}^{(1)}$, then $b=s_{2}$ by the assumption (iv). Hence $n_{b}=2$ and $\max _{j} \operatorname{ht}\left(\theta_{I_{j}}\right) \leq h\left(A_{1}\right)=1$, so that $n_{b}+\max _{j} \operatorname{ht}\left(\theta_{I_{j}}\right) \leq 3<6=\operatorname{ht}(\delta)$.

Recall from Definition 10.11 the definition of the automorphisms σ_{s}.
Lemma 10.23. Let $a \in S$ be special, and let $b \in S \backslash I$, which we assume to be non-special if $b \neq a$. Let $\gamma_{a b}:=\left(a=a_{0}, a_{1}, \ldots, a_{k}=b\right)$ be the unique shortest path in Γ_{S} from a to b (viewed as an ordered subset of S). If $b \neq a$, assume, moreover, that we are not in one of the four cases (i)-(iv) from Lemma 10.22, that $k \neq \ell-1$ in case Γ_{S} is of type $C_{\ell}^{(1)}$, and that $b \neq s_{3}$ in case Γ_{S} is of type $F_{4}^{(1)}$.
(1) The automorphism σ_{s} is nontrivial for all $s \in I \cap \mathrm{Nb}\left(\gamma_{a b}\right) \backslash \gamma_{a b}$.
(2) If $a \notin I$, then $\sigma(a, b):=\prod_{s \in I \cap N b\left(\gamma_{a b}\right) \backslash \gamma_{a b}} \sigma_{s} \in \Xi_{\eta}$.
(3) If $a \in I$, then $\sigma(a, b):=\left(\prod_{s \in I \cap N b\left(\gamma_{a b}\right) \backslash \gamma_{a b}} \sigma_{s}\right) \cdot \sigma_{a}^{-1} \in \Xi_{\eta}$.

Proof. Recall from Lemma 10.17(1) that since $x_{\bar{a}}$ and $w_{b a} x_{\bar{a}}$ are two special vertices of Σ of the same type (where $w_{b a}:=a_{k} \ldots a_{1} a_{0} \in W$), there exists an automorphism $\sigma \in \Xi_{\eta}$ mapping $\operatorname{typ}_{\Sigma^{\eta}}\left(x_{\bar{a}}^{\eta}\right)$ to $\operatorname{typ}_{\Sigma^{\eta}}\left(\pi_{V^{\eta}}\left(w_{b a} x_{\bar{a}}\right)\right)$.

To compute $\operatorname{typ}_{\Sigma^{\eta}}\left(\pi_{V^{\eta}}\left(w_{b a} x_{\bar{a}}\right)\right)$, note that $\pi_{V^{\eta}}\left(w_{b a} x_{\bar{a}}\right)$ is a vertex of the fundamental chamber C_{0}^{η} of Σ^{η} by Lemma 10.22. Hence $\pi_{V^{\eta}}\left(w_{b a} x_{\bar{a}}\right)$ is of type $\left(t_{1}, \ldots, t_{r}\right) \in I_{1}^{\text {ext }} \times \cdots \times I_{r}^{\text {ext }}$ if and only if $\pi_{V^{\eta}}\left(w_{b a} x_{\bar{a}}\right)$ (or equivalently, $w_{b a} x_{\bar{a}}$) belongs to the wall m_{s} for all $s \in S^{\eta} \backslash\left\{t_{1}, \ldots, t_{r}\right\}$ (see Remark 10.14). In other words, if $\left(t_{1}, \ldots, t_{r}\right)$ is the type of $\pi_{V^{\eta}}\left(w_{b a} x_{\bar{a}}\right)$ in Σ^{η}, then for each $j \in\{1, \ldots, r\}$, one of the following holds:

- $w_{b a} x_{\bar{a}} \in m_{s}$ for all $s \in I_{j}$: in that case, $t_{j}=\tau_{j}$;
- $w_{b a} x_{\bar{a}} \notin m_{s}$ for some $s \in I_{j}$: in that case, $t_{j}=s$.

On the other hand, note that all edges of $\gamma_{a b} \backslash\{a\}=\left(a_{1}, \ldots, a_{k}\right)$ are simple edges (if $b=a$, this is clear, and if $b \neq a$, this follows from the fact that b is not special, as well as the assumption that we are not in cases (i), (iii) and (iv) from Lemma 10.22, and that $b \neq s_{3}$ in case Γ_{S} is of type $\left.F_{4}^{(1)}\right)$. Hence Lemma 10.19 implies that if $s \in S \backslash\{a, b\}$, then $w_{b a} x_{\bar{a}} \notin m_{s}$ if and only if $s \in \mathrm{Nb}\left(\gamma_{a b}\right) \backslash \gamma_{a b}$. Therefore, if $j \in\{1, \ldots, r\}$, then $t_{j}=\tau_{j}$, unless if I_{j} contains some $s \in I \cap \mathrm{Nb}\left(\gamma_{a b}\right) \backslash \gamma_{a b}$ (which is then the only such element of I_{j}), in which case $t_{j}=s$.

If $a \notin I$ (so that $x_{\bar{a}} \in \pi_{V^{\eta}}^{-1}\left(x_{0}\right)$ by Lemma 10.4(2)), then $x_{\bar{a}}^{\eta}=x_{0}$ has type $\left(\tau_{1}, \ldots, \tau_{r}\right)$ in Σ^{η}, and hence σ is the unique automorphism in $\widetilde{W}^{\eta} / W^{\eta}$ mapping
$\left(\tau_{1}, \ldots, \tau_{r}\right)$ to $\left(t_{1}, \ldots, t_{r}\right)$. In particular, σ_{s} is nontrivial for each $s \in I \cap \mathrm{Nb}\left(\gamma_{a b}\right) \backslash \gamma_{a b}$ and $\sigma=\prod_{s \in I \cap \mathrm{Nb}\left(\gamma_{a b}\right) \backslash \gamma_{a b}} \sigma_{s}$, proving (2) and (1) in that case.

Similarly, if $a \in I$ (say $a \in I_{1}$ up to re-indexing the I_{j}), then $x_{\bar{a}}^{\eta}$ has type $\left(a, \tau_{2}, \ldots, \tau_{r}\right)=\sigma_{a}\left(\left(\tau_{1}, \ldots, \tau_{r}\right)\right)$, and hence $\sigma \sigma_{a}$ is the unique automorphism in $\widetilde{W}^{\eta} / W^{\eta}$ mapping $\left(\tau_{1}, \ldots, \tau_{r}\right)$ to $\left(t_{1}, \ldots, t_{r}\right)$. In particular, σ_{s} is nontrivial for each $s \in I \cap \mathrm{Nb}\left(\gamma_{a b}\right) \backslash \gamma_{a b}$ and $\sigma=\left(\prod_{s \in I \cap \mathrm{Nb}\left(\gamma_{a b}\right) \backslash \gamma_{a b}} \sigma_{s}\right) \cdot \sigma_{a}^{-1}$, proving (3) and (1).

We are now ready to prove Theorem 10.12 case by case. Recall from Definition 10.11 the definition of the automorphisms $\sigma_{s}(s \in I)$ and $\sigma_{i}(i \in\{1, \ldots, r\})$.
Lemma 10.24. Assume that Γ_{S} is of classical type, and let $i \in\{1, \ldots, r\}$. Then $\widetilde{W}_{I_{i}^{\text {ext }}}^{\eta} / W_{I_{i}^{\text {ext }}}^{\eta}=\left\langle\sigma_{i}\right\rangle$, unless $i=r$ and one of the following holds:
(1) Γ_{S} is of type $C_{\ell}^{(1)}$ and $\left\{s_{\ell-1}, s_{\ell}\right\} \subseteq I_{r}$. In that case, $\sigma_{i}=\mathrm{id}$ and $\Gamma_{I_{i}^{\text {ext }}}$ is of type $C_{\left|I_{i}\right|}^{(1)}$, so that $\left\langle\sigma_{i}\right\rangle$ has index 2 in $\widetilde{W}_{I_{i}^{\text {ext }}}^{\eta} / W_{I_{i}^{\text {ext }}}^{\eta}$.
(2) Γ_{S} is of type $D_{\ell}^{(1)}$ and $\left\{s_{\ell-3}, s_{\ell-2}, s_{\ell-1}, s_{\ell}\right\} \subseteq I_{r}$. In that case, $\Gamma_{I_{i}^{\text {ext }}}$ is of type $D_{\left|I_{i}\right|}^{(1)}$ and $\left\langle\sigma_{i}\right\rangle$ has index 2 in $\widetilde{W}_{I_{i}^{\text {ext }}}^{\eta} / W_{I_{i}^{\text {ext }}}^{\eta}$.
(3) Γ_{S} is of type $D_{\ell}^{(1)}$ and $I_{r}=\left\{s_{\ell-2}, s_{\ell-1}, s_{\ell}\right\}$. In that case, $\Gamma_{I_{i}^{\text {ext }}}$ is of type $A_{3}^{(1)}$ and $\left\langle\sigma_{i}\right\rangle$ has index 2 in $\widetilde{W}_{I_{i}^{\text {ext }}}^{\eta} / W_{I_{i}^{\text {ext }}}^{\eta}$.
Proof. Note that if $i \neq r$, then I_{i} is of the form $\left\{s_{m}, s_{m+1}, \ldots, s_{m+n}\right\}$ (with $\left.n=\left|I_{i}\right|-1\right), \Gamma_{I_{i}^{\text {ext }}}$ is of type $A_{\left|I_{i}\right|}^{(1)}$, and σ_{i} maps τ_{i} to s_{m}. In particular, σ_{i} has order $\left|I_{i}\right|+1$ and generates $\widetilde{W}_{I_{i}^{\text {ext }}}^{\eta} / W_{I_{i}^{\text {ext }}}^{\eta}$ in this case (see Lemma 10.1(1)). On the other hand, if $i=r$, the same situation occurs, except if Γ_{S} is of type $B_{\ell}^{(1)}$ and $\left\{s_{\ell-1}, s_{\ell}\right\} \subseteq I_{r}$ (but in that case, $\Gamma_{I_{i}^{\text {ext }}}$ is of type $C_{2}^{(1)}$ if $\left|I_{i}\right|=2$ and $B_{\left|I_{i}\right|}^{(1)}$ otherwise, and σ_{i} is the only nontrivial element of $\widetilde{W}_{I_{i}^{\text {ext }}}^{\eta} / W_{I_{i}^{\text {ext }}}^{\eta}$), or if one of the cases (1)-(3) described in the statement of the lemma occurs, as can be seen from a quick inspection of Figure 9. The additional statements in (1)-(3) follow from Lemma 10.1.

Proposition 10.25. Theorem 10.12 holds for Γ_{S} of type $X \in\left\{A_{\ell}^{(1)}, B_{\ell}^{(1)}, C_{\ell}^{(1)}, D_{\ell}^{(1)}\right\}$.
Proof. We will use Lemma 10.23 repeatedly to conclude, in the notations of that lemma, that $\sigma(a, b) \in \Xi_{\eta}$ for various pairs (a, b) (checking that a given pair (a, b) indeed satisfies the hypotheses of Lemma 10.23 is straightforward). We will also use the observations in Lemma 10.24 without further mention.
(1) Assume first that $X=A_{\ell}^{(1)}$. Then for each $j \in\{1, \ldots, r\}$, the set I_{j} is of the form $I_{j}=\left\{s_{m}, s_{m+1}, \ldots, s_{m+n}\right\}$ for some $m \in\{1, \ldots, \ell\}$ (where $n=\left|I_{j}\right|-1$), and we set $a_{j}:=s_{m-1} \in S \backslash I$ and $z_{j}:=s_{m+n+1} \in S \backslash I$ (with the convention $s_{\ell+1}:=s_{0}$).

Then $\sigma\left(a_{j}, a_{j}\right) \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$. If $a_{j}=z_{j-1}$ (with the convention $z_{0}:=z_{r}$), then $\sigma\left(a_{j}, a_{j}\right)=\sigma_{j-1}^{-1} \sigma_{j}$ (with the convention $\sigma_{0}:=\sigma_{r}$); otherwise, $\sigma\left(a_{j}, a_{j}\right)=\sigma_{j}$. In particular, if $a_{j_{0}} \neq z_{j_{0}-1}$ for some $j_{0} \in\{1, \ldots, r\}$ (that is, if $\Gamma_{S \backslash I}$ is not of type A_{1}^{r}), then $\sigma_{j} \in \Xi_{\eta}$ for all j and hence $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$. Assume now that $\Gamma_{S \backslash I}$ is of type A_{1}^{r}, so that

$$
\Xi_{\eta} \supseteq\left\langle\sigma_{j-1}^{-1} \sigma_{j} \mid 1 \leq j \leq r\right\rangle=\left\langle\sigma_{i}^{-1} \sigma_{j} \mid 1 \leq i, j \leq r\right\rangle=: \widetilde{\Xi}_{\eta}
$$

Set $d_{j}:=\left|I_{j}\right|+1$ for each j, and $d:=\operatorname{gcd}\left\{d_{j} \mid 1 \leq j \leq r\right\}$. As σ_{j} has order d_{j} and

$$
\widetilde{\Xi}_{\eta}=\left\{\prod_{j=1}^{r} \sigma_{j}^{e_{j}} \mid e_{j} \in \mathbb{Z}, \sum_{j=1}^{r} e_{j}=0\right\}
$$

the group $\widetilde{\Xi}_{\eta}$ has index d in $\widetilde{W}^{\eta} / W^{\eta}=\left\langle\sigma_{j} \mid 1 \leq j \leq r\right\rangle$, with set of left coset representatives $\left\{\sigma_{1}^{e} \mid 0 \leq e<d\right\}$. It thus remains to check that $\Xi_{\eta} \subseteq \widetilde{\Xi}_{\eta}$, or else that $\sigma_{1}^{e} \notin \Xi_{\eta}$ for each $e \in\{1, \ldots, d-1\}$.

Fix $e \in\{1, \ldots, d-1\}$ (assuming that $d \geq 2$). Since $s_{0} \notin I$ and $\Gamma_{S \backslash I}$ is of type A_{1}^{r}, we have $s_{1} \in I$. Hence $\left\{s_{1}, s_{2}, \ldots, s_{e}\right\} \subseteq I_{1}$ because $\left|I_{1}\right| \geq d-1$. As σ_{1}^{e} is the unique automorphism of $\widetilde{W}^{\eta} / W^{\eta}$ mapping $\left(\tau_{1}, \ldots, \tau_{r}\right)=\operatorname{typ}_{\Sigma^{\eta}}\left(x_{0}\right)$ to $\left(s_{e}, \tau_{2}, \ldots, \tau_{r}\right)=\operatorname{typ}_{\Sigma^{\eta}}\left(x_{e}^{\eta}\right)$, it is sufficient to check by Lemma 10.17(2) that $s_{e}=\operatorname{typ}_{\Sigma}\left(x_{e}\right) \notin \operatorname{Typ}(S, I)$. We claim that the set $A:=\left\{s_{i} \mid i \in \bar{S} \cap d \mathbb{N}\right\}$ satisfies the three properties (TYP0), (TYP1) and (TYP2) from Definition 10.15, and hence contains $\operatorname{Typ}(S, I)$. As $s_{e} \notin A$, this will imply that $s_{e} \notin \operatorname{Typ}(S, I)$, as desired.

Since $\Gamma_{S \backslash I}$ is of type A_{1}^{r}, we have $S \backslash I=\left\{z_{j} \mid 1 \leq j \leq r\right\}$. Since, moreover, $\left|I_{j}\right|+1$ is a multiple of d for each j (and since $z_{r}=s_{0} \in S \backslash I$), we deduce that $\overline{z_{j}} \in d \mathbb{N}$ for each j, and that A satisfies (TYP0). The fact that A satisfies (TYP1) and (TYP2) is now also clear, since for each $a, b \in A$ we have $\mathrm{op}_{a}(b) \in A$ (see Lemma 4.2) and $\sigma_{a, b}(A) \subseteq A$ (in the notations of Definition 10.15).
(2) Assume next that $X=B_{\ell}^{(1)}$. Then for each $j \in\{1, \ldots, r\}$, the set I_{j} is of the form $I_{j}=\left\{s_{m}, s_{m+1}, \ldots, s_{m+n}\right\}$ for some $m \in\{1, \ldots, \ell\}$ (where $n=\left|I_{j}\right|-1$), and we set $a_{j}:=s_{m-1} \in S \backslash I$.
(2a) If $s_{1} \notin I$, then $\sigma\left(s_{1}, a_{j}\right)=\sigma_{j} \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, so that $\Xi_{\eta}=$ $\widetilde{W}^{\eta} / W^{\eta}$ in that case.

Assume now that $s_{1} \in I$.
(2b) If $s_{2} \in I$, then $\sigma\left(s_{0}, s_{0}\right)=\sigma_{1}^{2} \in \Xi_{\eta}$ and $\sigma\left(s_{0}, a_{j}\right)=\sigma_{1} \sigma_{j} \in \Xi_{\eta}$ for all $j \in\{2, \ldots, r\}$. If $s_{2} \notin I$ but $s_{3} \in I$ (so that $a_{2}=s_{2}$), then σ_{1} has order 2 and $\sigma\left(s_{0}, a_{j}\right)=\sigma_{1} \sigma_{j} \in \Xi_{\eta}$ for all $j \in\{2, \ldots, r\}$. And if $s_{2}, s_{3} \notin I$, then $\sigma\left(s_{0}, s_{2}\right)=\sigma_{1} \in \Xi_{\eta}$ and $\sigma\left(s_{0}, a_{j}\right)=\sigma_{1} \sigma_{j} \in \Xi_{\eta}$ for all $j \in\{2, \ldots, r\}$. Thus, in all cases, the group

$$
\widetilde{\Xi}_{\eta}:=\left\langle\sigma_{1}^{2}, \sigma_{1} \sigma_{j} \mid 2 \leq j \leq r\right\rangle
$$

is contained in Ξ_{η}.
(2c) If there is some $i \in\{2, \ldots, \ell-1\}$ such that $s_{i}, s_{i+1} \in S \backslash I$, then choosing a minimal such i we have $\sigma\left(s_{0}, s_{i}\right)=\sigma_{1} \in \Xi_{\eta}$, so that $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$ in that case.

Assume now that $\Gamma_{S \backslash\left(I \cup\left\{s_{0}\right\}\right)}$ has no edge.
(2d) If $\bar{S} \backslash \bar{I} \nsubseteq 2 \mathbb{N}$, then the order $d_{j}:=\left|I_{j}\right|+1$ of σ_{j} is odd for some $j \in$ $\{1, \ldots, r\}$, and hence $\sigma_{1}=\left(\sigma_{1}^{2}\right)^{\frac{d_{j}+1}{2}} \cdot\left(\sigma_{1} \sigma_{j}\right)^{-d_{j}} \in \Xi_{\eta}$. Thus, in that case, $\Xi_{\eta}=$ $\widetilde{W}^{\eta} / W^{\eta}$.
(2e) Finally, assume that $\bar{S} \backslash \bar{I} \subseteq 2 \mathbb{N}$, and let us show that $\Xi_{\eta} \subseteq \widetilde{\Xi}_{\eta}$. Since $\widetilde{\Xi}_{\eta}$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}=\left\langle\sigma_{j} \mid 1 \leq j \leq r\right\rangle$, with set of left coset representatives $\left\{\sigma_{1}^{e} \mid 0 \leq e \leq 1\right\}$, it is sufficient to check that $\sigma_{1} \notin \Xi_{\eta}$.
As σ_{1} is the unique automorphism of $\widetilde{W}^{\eta} / W^{\eta}$ mapping $\left(\tau_{1}, \ldots, \tau_{r}\right)=\operatorname{typ}_{\Sigma^{\eta}}\left(x_{0}\right)$ to $\left(s_{1}, \tau_{2}, \ldots, \tau_{r}\right)=\operatorname{typ}_{\Sigma^{\eta}}\left(x_{1}^{\eta}\right)$, it is sufficient to check by Lemma 10.17 that $s_{1}=$ $\operatorname{typ}_{\Sigma}\left(x_{1}\right) \notin \operatorname{Typ}(S, I)$. We claim that the set $A:=\left\{s_{i} \mid i \in \bar{S} \cap 2 \mathbb{N}\right\}$ satisfies the
three properties (TYP0), (TYP1) and (TYP2) from Definition 10.15, and hence contains $\operatorname{Typ}(S, I)$. As $s_{1} \notin A$, this will imply that $s_{1} \notin \operatorname{Typ}(S, I)$, as desired.

By assumption, A satisfies (TYP0). To see that A satisfies (TYP1), let $a, b \in A$ be distinct, and let us show that $\mathrm{op}_{a}(b) \in A$. If $a=s_{0}$, then $\mathrm{op}_{a}(b)=b \in A$, while $\mathrm{op}_{b}(a)=a \in A$ because the connected component of $\Gamma_{S \backslash\{b\}}$ containing a is of type D_{n} with n even (or of type A_{1} if $b=s_{2}$) - see Lemma 4.2. Similarly, if $a, b \neq s_{0}$, then $\mathrm{op}_{a}(b)=b \in A$ (see Lemma 4.2). Finally, A clearly satisfies (TYP2) since s_{0} is the only special vertex in A.
(3) Assume next that $X=C_{\ell}^{(1)}$. Then for each $j \in\{1, \ldots, r\}$, the set I_{j} is of the form $I_{j}=\left\{s_{m}, s_{m+1}, \ldots, s_{m+n}\right\}$ for some $m \in\{1, \ldots, \ell\}$ (where $n=\left|I_{j}\right|-1$), and we set $a_{j}:=s_{m-1} \in S \backslash I$.
(3a) If $s_{\ell} \notin I$ (so that $\sigma_{r} \neq$ id and $\overline{a_{r}}<\ell-1$), then $\sigma\left(s_{0}, a_{j}\right)=\sigma_{j} \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, so that $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$ in that case.

Assume now that $s_{\ell} \in I$.
(3b) Then $\sigma\left(s_{0}, a_{j}\right)=\sigma_{j} \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r-1\}$, so that Ξ_{η} contains

$$
\tilde{\Xi}_{\eta}:=\left\langle\sigma_{j} \mid 1 \leq j \leq r-1\right\rangle .
$$

The group $\widetilde{W}^{\eta} / W^{\eta}$ coincides with $\widetilde{\Xi}_{\eta} \times\left\langle\sigma_{s_{\ell}}\right\rangle$ (recall that $\sigma_{s_{\ell}}$ is the unique automorphism of $\Gamma_{I_{r}^{\text {ext }}}$ mapping τ_{r} to s_{ℓ}), and hence contains $\widetilde{\Xi}_{\eta}$ as a subgroup of index 2, with set of left coset representatives $\left\{\sigma_{s_{\ell}}^{e} \mid 0 \leq e \leq 1\right\}$. To show that $\Xi_{\eta} \subseteq \widetilde{\Xi}_{\eta}$, we thus have to show that $\sigma_{s_{\ell}} \notin \Xi_{\eta}$.

As $\sigma_{s \ell}$ is the unique automorphism of $\widetilde{W}^{\eta} / W^{\eta}$ mapping $\left(\tau_{1}, \ldots, \tau_{r}\right)=\operatorname{typ}_{\Sigma^{\eta}}\left(x_{0}\right)$ to $\left(\tau_{1}, \ldots, \tau_{r-1}, s_{\ell}\right)=\operatorname{typ}_{\Sigma^{\eta}}\left(x_{\ell}^{\eta}\right)$, it is sufficient to check by Lemma 10.17 that $s_{\ell}=\operatorname{typ}_{\Sigma}\left(x_{\ell}\right) \notin \operatorname{Typ}(S, I)$. But the set $A:=S \backslash\left\{s_{\ell}\right\}$ clearly satisfies the three properties (TYP0), (TYP1) and (TYP2) from Definition 10.15, and hence contains $\operatorname{Typ}(S, I)$. As $s_{\ell} \notin A$, this implies that $s_{\ell} \notin \operatorname{Typ}(S, I)$, as desired.
(4) Assume finally that $X=D_{\ell}^{(1)}$. Then for each $j \in\{1, \ldots, r-1\}$, the set I_{j} is of the form $I_{j}=\left\{s_{m}, s_{m+1}, \ldots, s_{m+n}\right\}$ for some $m \in\{1, \ldots, \ell-1\}$ (where $n=\left|I_{j}\right|-1$), and we set $a_{j}:=s_{m-1} \in S \backslash I$. For $j=r$, we set $a_{j}:=s_{\ell-2} \in S \backslash I$ if $I_{r}=\left\{s_{\ell}\right\}$, and $a_{j}:=s_{m-1} \in S \backslash I$ with $m \in\{1, \ldots, \ell\}$ the minimal index such that $s_{m} \in I_{r}$ if $I_{r} \neq\left\{s_{\ell}\right\}$.

In order to have uniform notations in the computations below, we further set $\widetilde{\sigma}_{j}:=\sigma_{j}$ for all $j \in\{1, \ldots, r\}$, except if $\left\{s_{\ell-1}, s_{\ell}\right\} \subseteq I$ but $s_{\ell-2} \notin I$ (so that $I_{r-1}=\left\{s_{\ell-1}\right\}$ and $I_{r}=\left\{s_{\ell}\right\}$), in which case $r \geq 2$ and we set $\widetilde{\sigma}_{j}:=\sigma_{j}$ for all $j \in\{1, \ldots, r-2\}$ and $\widetilde{\sigma}_{r-1}:=\widetilde{\sigma}_{r}:=\sigma_{r-1} \sigma_{r}$.

We first make a few observations analogous to (2a)-(2d).
(4a) If $s_{1} \notin I$, then $\sigma\left(s_{1}, a_{j}\right)=\widetilde{\sigma}_{j} \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, and hence Ξ_{η} contains the subgroup

$$
\widetilde{\Xi}_{\eta, 1}:=\left\langle\widetilde{\sigma}_{j} \mid 1 \leq j \leq r\right\rangle
$$

(4b) If $s_{1} \in I$, then proceeding as in (2b), we obtain that Ξ_{η} contains the subgroup

$$
\widetilde{\Xi}_{\eta, 2}:=\left\langle\widetilde{\sigma}_{1}^{2}, \widetilde{\sigma}_{1} \widetilde{\sigma}_{j} \mid 2 \leq j \leq r\right\rangle
$$

(4c) If $s_{1} \in I$, and there is some $i \in\{2, \ldots, \ell-1\} \backslash\{\ell-2\}$ such that $\left\{s_{i}, s_{i+1}\right\} \subseteq$ $S \backslash I$, then $\sigma\left(s_{0}, s_{i}\right)=\sigma_{1}=\widetilde{\sigma}_{1} \in \Xi_{\eta}$, so that Ξ_{η} contains $\Xi_{\eta, 1}$ by (4b).
(4d) If $s_{1} \in I$, and the order $d_{j}:=\left|I_{j}\right|+1$ of σ_{j} is odd for some $j \in\{1, \ldots, r\}$ (in particular, $\widetilde{\sigma}_{j}=\sigma_{j}$), then $\widetilde{\sigma}_{1}=\left(\widetilde{\sigma}_{1}^{2}\right)^{\frac{d_{j}+1}{2}} \cdot\left(\widetilde{\sigma}_{1} \widetilde{\sigma}_{j}\right)^{-d_{j}} \in \Xi_{\eta}$ by (4b), so that Ξ_{η} contains $\widetilde{\Xi}_{\eta, 1}$ again by (4b).

We now proceed with the proof of (4). Assume first that $\left\{s_{\ell-1}, s_{\ell}\right\} \subseteq I$. Then $\Gamma_{I_{r}^{\text {ext }}}$ is of type $A_{1}^{(1)}$ (if $s_{\ell-2} \notin I$), or of type $A_{3}^{(1)}$ (if $s_{\ell-2} \in I$ but $s_{\ell-3} \notin I$), or of type $D_{\left|I_{r}\right|}^{(1)}$ (if $\left.\left\{s_{\ell-2}, s_{\ell-3}\right\} \subseteq I\right)$. In any case, $\widetilde{W}^{\eta} / W^{\eta}$ is generated by its index 2 subgroup $\widetilde{\Xi}_{\eta, 1}$ and by the unique automorphism $\sigma_{s_{\ell}}$ of $\Gamma_{I_{r}^{\text {ext }}}$ mapping τ_{r} to s_{ℓ}.
(4e) We claim that $\sigma_{s_{\ell}} \notin \Xi_{\eta}$. Indeed, as $\sigma_{s_{\ell}}$ is the unique automorphism of $\widetilde{W}^{\eta} / W^{\eta}$ mapping $\left(\tau_{1}, \ldots, \tau_{r}\right)=\operatorname{typ}_{\Sigma^{\eta}}\left(x_{0}\right)$ to $\left(\tau_{1}, \ldots, \tau_{r-1}, s_{\ell}\right)=\operatorname{typ}_{\Sigma^{\eta}}\left(x_{\ell}^{\eta}\right)$, it is sufficient to check by Lemma 10.17 that $s_{\ell}=\operatorname{typ}_{\Sigma}\left(x_{\ell}\right) \notin \operatorname{Typ}(S, I)$. But the set $A:=S \backslash\left\{s_{\ell-1}, s_{\ell}\right\}$ clearly satisfies the three properties (TYP0), (TYP1) and (TYP2) from Definition 10.15, and hence contains $\operatorname{Typ}(S, I)$. As $s_{\ell} \notin A$, this implies that $s_{\ell} \notin \operatorname{Typ}(S, I)$, as desired.
(4f) If $s_{1} \notin I$, then (4a) and (4e) imply that $\Xi_{\eta}=\widetilde{\Xi}_{\eta, 1}$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}$. By (4c) and (4e), the same conclusion holds if $s_{1} \in I$ and $\Gamma_{S \backslash\left(I \cup\left\{s_{0}\right\}\right)}$ has an edge. Similarly, (4d) and (4e) also yield the same conclusion if $s_{1} \in I$ and $\Gamma_{S \backslash\left(I \cup\left\{s_{0}\right\}\right)}$ has no edge and $\bar{S} \backslash \bar{I} \nsubseteq 2 \mathbb{N}$, since in that case $d_{j}=\left|I_{j}\right|+1$ is odd for some $j \in\{1, \ldots, r\}$. This settles the cases (D2) and (D4) of Theorem 10.12.
(4g) Assume now that $\bar{S} \backslash \bar{I} \subseteq 2 \mathbb{N}$ (in particular, $s_{1} \in I$). Then (4b) implies that Ξ_{η} contains $\widetilde{\Xi}_{\eta, 2}$. We claim that $\Xi_{\eta}=\widetilde{\Xi}_{\eta, 2}$ and has index 4 in $\widetilde{W}^{\eta} / W^{\eta}$ (thus settling the cases (D1) and (D3) of Theorem 10.12). In view of (4e), it is sufficient to check that $\sigma_{1}=\widetilde{\sigma}_{1} \notin \Xi_{\eta}$. But this follows exactly as in (2e), with $A:=\left\{s_{i} \mid i \in \bar{S} \cap 2 \mathbb{N}\right\} \backslash\left\{s_{\ell-1}, s_{\ell}\right\}$.

To conclude the proof of (4), we are left with the case $\left\{s_{\ell-1}, s_{\ell}\right\} \nsubseteq I$, which we now investigate. In this case, $\widetilde{\sigma}_{j}=\sigma_{j}$ and $\Gamma_{I_{j}^{e x t}}$ is of type $A_{\left|I_{j}\right|}^{(1)}$ for all $j \in\{1, \ldots, r\}$. In particular, $\widetilde{W}^{\eta} / W^{\eta}=\widetilde{\Xi}_{\eta, 1}$.
(4h) If $s_{1} \notin I$, then (4a) implies that $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$. If $s_{1} \in I$ and either $\Gamma_{S \backslash\left(I \cup\left\{s_{0}, s_{\ell-1}, s_{\ell}\right\}\right)}$ has an edge or $\left\{s_{\ell-1}, s_{\ell}\right\} \subseteq S \backslash I$, then (4c) also implies that $\Xi_{\eta}=$ $\widetilde{W} \widetilde{W}^{\eta} / W^{\eta}$. Finally, if $s_{1} \in I$ and $\Gamma_{S \backslash\left(I \cup\left\{s_{0}, s_{\ell-1}, s_{\ell}\right\}\right)}$ has no edge and $\left\{s_{\ell-1}, s_{\ell}\right\} \nsubseteq S \backslash I$, and either ℓ is odd or $\bar{S} \backslash(\bar{I} \cup\{\ell-1, \ell\}) \nsubseteq 2 \mathbb{N}$, then $d_{j}=\left|I_{j}\right|+1$ is odd for some $j \in\{1, \ldots, r\}$ (i.e. if all d_{j} were even, then $\bar{S} \backslash(\bar{I} \cup\{\ell-1, \ell\}) \subseteq 2 \mathbb{N}$, and thus ℓ would be even, as exactly one of $s_{\ell-1}$ and s_{ℓ} belongs to I and as $\left|I_{r}\right|$ would be odd, a contradiction), so that $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$ by (4d). This settles the case (D6) of Theorem 10.12.
(4i) Assume now that ℓ is even, that $\left\{s_{\ell-1}, s_{\ell}\right\} \nsubseteq S \backslash I$, and that $\bar{S} \backslash(\bar{I} \cup$ $\{\ell-1, \ell\}) \subseteq 2 \mathbb{N}$ (in particular, $\left.s_{1} \in I\right)$. Then Ξ_{η} contains $\widetilde{\Xi}_{\eta, 2}$ by (4 b). We claim that $\Xi_{\eta}=\widetilde{\Xi}_{\eta, 2}$ and has index 2 in $\widetilde{W}^{\eta} / W^{\eta}$ (thus settling the remaining case (D5) of Theorem 10.12). For this, it is sufficient to check that $\sigma_{1} \notin \Xi_{\eta}$. As in (2e), this can be done by checking that $s_{1} \notin \operatorname{Typ}(S, I)$, or else that the set $A:=\left\{s_{i} \mid i \in(\bar{S} \backslash\{\ell-1, \ell\}) \cap 2 \mathbb{N}\right\} \cup\{x\}$ (where x is the only element of $\left\{s_{\ell-1}, s_{\ell}\right\} \cap(S \backslash I)$) satisfies the properties (TYP0), (TYP1) and (TYP2) from Definition 10.15. By assumption, A satisfies (TYP0). To check (TYP1), let $a, b \in A$ be distinct, and let us show that $\mathrm{op}_{a}(b) \in A$. If $a=s_{0}$ or $a=x$, then $\mathrm{op}_{a}(b)=b \in A$ (if $b \in\left\{s_{0}, x\right\}$, this uses the fact that ℓ is even) and $\mathrm{op}_{b}(a)=a \in A$
(this uses the fact that ℓ is even and the definition of A) - see Lemma 4.2. Similarly, if $a, b \notin\left\{s_{0}, x\right\}$, then $\mathrm{op}_{a}(b)=b \in A$ (see Lemma 4.2). Finally, A satisfies (TYP2), as the unique automorphism of \widetilde{W} / W mapping s_{0} to x stabilises $\left\{s_{0}, x\right\}$ (this uses the fact that ℓ is even - see Lemma 10.1(4)).

This concludes the proof of the proposition.
Proposition 10.26. Theorem 10.12 holds for Γ_{S} of type $X \in\left\{E_{6}^{(1)}, E_{7}^{(1)}, E_{8}^{(1)}\right\}$.
Proof. Note that $\Gamma_{I_{j}^{\text {ext }}}$ is of type $A_{\left|I_{j}\right|}^{(1)}$ for all $j \in\{1, \ldots, r\}$, unless if $I_{j} \supseteq$ $\left\{s_{2}, s_{3}, s_{4}, s_{5}\right\}$, in which case $\Gamma_{I_{j}^{\text {ext }}}$ is either of type $D_{\left|I_{j}\right|}^{(1)} \mid$ or $E_{6}^{(1)}$, or $E_{7}^{(1)}$ (recall that $|I| \leq \ell-1$ by Lemma 10.4(3)).

As in the proof of Proposition 10.25, we will use Lemma 10.23 repeatedly to conclude, in the notations of that lemma, that $\sigma(a, b) \in \Xi_{\eta}$ for various pairs (a, b); we will also use the notation $\gamma_{a b}$ for the unique minimal path in Γ_{S} from a to b, and view paths in Γ_{S} as ordered subsets of S.

For each $j \in\{1, \ldots, r\}$, call $\gamma_{j}:=\operatorname{Conv}\left(x_{0}, I_{j}\right) \backslash I_{j}\left(\right.$ where $\operatorname{Conv}\left(x_{0}, I_{j}\right) \subseteq S$ is the convex hull of $\left\{x_{0}\right\} \cup I_{j}$ in Γ_{S}) the path from x_{0} to I_{j}, and let $a_{j} \in S \backslash I$ be the last vertex of γ_{j}. If $\Gamma_{I_{j}^{\text {ext }}}$ is of type $A_{\left|I_{j}\right|}^{(1)}$, we also let σ_{j} denote the unique automorphism of $\widetilde{W}_{I_{j}^{\text {ext }}}^{\eta} / W_{I_{j}^{\text {ext }}}^{\eta}$ mapping τ_{j} to the vertex of I_{j} that is closest to s_{0} in Γ_{S}; hence, in that case, $\widetilde{W}_{I_{j}^{\text {ext }}}^{\eta} / W_{I_{j}^{\text {ext }}}^{\eta}=\left\langle\sigma_{j}\right\rangle$ and $\sigma\left(s_{0}, a_{j}\right)=\sigma_{j}$.

We start with a few observations.
(a) If $s_{4} \in I$ and the irreducible component I_{i} of I containing s_{4} is not of type $D_{\left|I_{i}\right|}$, then $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$. Indeed, in that case, $\sigma\left(s_{0}, a_{j}\right) \in \Xi_{\eta}$ generates $\widetilde{W}_{I_{j}^{\text {ext }}}^{\eta} / W_{I_{j}^{\text {ext }}}^{\eta}$ for each $j \in\{1, \ldots, r\}$ (note that $\widetilde{W}_{I_{i}^{\text {ext }}}^{\eta} / W_{I_{i}^{\text {ext }}}^{\eta}$ is generated by any nontrivial automorphism when I_{i} is of type E_{6} or E_{7}).
(b) If $s_{4} \notin I$ and if $\left\{s_{2}, s_{3}, s_{5}\right\} \backslash \gamma_{s_{0} s_{4}} \nsubseteq I$, then $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$. Indeed, in that case, $\sigma\left(s_{0}, a_{j}\right)=\sigma_{j} \in \Xi_{\eta}$ generates $\widetilde{W}_{I_{j}^{\text {ext }}}^{\eta} / W_{I_{j}^{\text {ext }}}^{\eta}$ for each $j \in\{1, \ldots, r\}$.
(c) If $s_{4} \notin I$ and $\left\{s_{2}, s_{3}, s_{5}\right\} \backslash \gamma_{s_{0} s_{4}} \subseteq I$, and if $\operatorname{gcd}\left(d_{i_{1}}, d_{i_{2}}\right)=1$ (where $d_{j}:=$ $\left|I_{j}\right|+1$ and $I_{i_{1}}, I_{i_{2}}$ are two distinct irreducible components of I, each containing one of the two vertices in $\left.\left\{s_{2}, s_{3}, s_{5}\right\} \backslash \gamma_{s_{0} s_{4}}\right)$, then $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$. Indeed, in that case, $\sigma\left(s_{0}, a_{j}\right)=\sigma_{j} \in \Xi_{\eta}$ generates $\widetilde{W}_{I_{j}^{\text {ext }}}^{\eta} / W_{I_{j}^{\text {ext }}}^{\eta}$ for $j \neq i_{1}, i_{2}$, and $\sigma\left(s_{0}, s_{4}\right)=\sigma_{i_{1}} \sigma_{i_{2}}$ generates $\widetilde{W}_{I_{1}}^{\text {ext }} / W_{I_{i_{1}}^{\text {ext }}}^{\eta} \times \widetilde{W}_{I_{i_{2}}^{\text {ext }}}^{\eta} / W_{I_{i_{2}}^{\text {ext }}}^{\eta}\left(\right.$ as σ_{j} has order $\left.d_{j}\right)$.
(d) If $S \backslash\left(I \cup\left\{s_{0}\right\}\right)$ contains a special vertex x, then $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$. Indeed, if $s_{4} \notin$ I, we may assume by (b) and (c) that $\left\{s_{2}, s_{3}, s_{5}\right\} \backslash \gamma_{s_{0} s_{4}} \subseteq I$ and that $\operatorname{gcd}\left(d_{i_{1}}, d_{i_{2}}\right) \neq$ 1 (keeping the notations of (c)). But in that case, $\sigma\left(s_{0}, a_{j}\right)=\sigma_{j} \in \Xi_{\eta}$ for $j \neq i_{1}, i_{2}$, and $\sigma\left(s_{0}, s_{4}\right)=\sigma_{i_{1}} \sigma_{i_{2}} \in \Xi_{\eta}$, and either $\sigma\left(x, s_{4}\right) \in\left\{\sigma_{i_{1}}, \sigma_{i_{2}}\right\} \cap \Xi_{\eta}$ (if the unique vertex in $\left\{s_{2}, s_{3}, s_{5}\right\} \cap \gamma_{s_{0} s_{4}}$ belongs to $\left.S \backslash I\right)$ or $\sigma\left(x, s_{4}\right) \in\left\{\sigma_{i_{1}} \sigma_{j}^{-1}, \sigma_{i_{2}} \sigma_{j}^{-1}\right\} \cap \Xi_{\eta}$ (if the unique vertex in $\left\{s_{2}, s_{3}, s_{5}\right\} \cap \gamma_{s_{0} s_{4}}$ belongs to I_{j} - note that $j \neq i_{1}, i_{2}$), yielding the claim. On the other hand, if $s_{4} \in I$, then by (a) we may assume that the irreducible component I_{i} of I containing s_{4} is of type $D_{\left|I_{i}\right|}$. But then $\sigma\left(s_{0}, a_{j}\right)=\sigma_{j} \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, and since $\widetilde{W}_{I_{i}^{\text {ext }}}^{\eta} / W_{I_{i}^{\text {ext }}}^{\eta}$ is generated by σ_{i} and $\sigma(x, y) \in \Xi_{\eta}$ (where $y \in S \backslash I$ is the last vertex of the path from x to I_{i}), the claim also follows in that case.

We now proceed with the proof of the proposition, investigating each of the types $E_{6}^{(1)}, E_{7}^{(1)}$ and $E_{8}^{(1)}$ separately. Recall that σ_{s} is defined as the identity in $\widetilde{W^{\eta}} / W^{\eta}$ if $s \in S \backslash I$ (see Definition 10.11).
(1) Assume first that $X=E_{6}^{(1)}$. Suppose that $\Xi_{\eta} \neq \widetilde{W}^{\eta} / W^{\eta}$. Then $\left\{s_{1}, s_{6}\right\} \subseteq I$ by (d). If $s_{4} \in I$, then $\left\{s_{2}, s_{3}, s_{5}\right\} \subseteq I$ by (a) and hence $|I|=\ell$, a contradiction. Hence $s_{4} \notin I$, so that $\left\{s_{3}, s_{5}\right\} \subseteq I$ by (b). Thus, either $I=\left\{s_{1}, s_{3}, s_{5}, s_{6}\right\}$ or $I=\left\{s_{1}, s_{2}, s_{3}, s_{5}, s_{6}\right\}$.
(1a) We claim that $\sigma_{s_{1}} \notin \Xi_{\eta}$. By Lemma 10.17(2), it is sufficient to check that $s_{1} \notin \operatorname{Typ}(S, I)$. But one readily checks that $A:=\left\{s_{0}, s_{2}, s_{4}\right\}$ satisfies (TYP0), (TYP1) and (TYP2), and hence contains $\operatorname{Typ}(S, I)$, as desired.

As $\sigma\left(s_{0}, a_{j}\right) \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, we deduce from (1a) that $\Xi_{\eta}=$ $\left\langle\sigma_{s_{2}}, \sigma_{s_{3}} \sigma_{s_{5}}\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}=\left\langle\sigma_{s_{2}}, \sigma_{s_{3}}, \sigma_{s_{5}}\right\rangle$.
(2) Assume next that $X=E_{7}^{(1)}$. Suppose that $\Xi_{\eta} \neq \widetilde{W}^{\eta} / W^{\eta}$. Then $s_{7} \in I$ by (d).
(2a) Assume first that $s_{4} \notin I$. Then $\left\{s_{2}, s_{5}\right\} \subseteq I$ by (b). If $s_{6} \notin I$, then as $\sigma\left(s_{0}, a_{j}\right) \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, we have $\sigma_{s_{1}}, \sigma_{s_{3}}, \sigma_{s_{2}} \sigma_{s_{5}}, \sigma_{s_{7}} \in \Xi_{\eta}$, and as $\sigma\left(s_{7}, s_{4}\right)=\sigma_{s_{2}} \sigma_{s_{3}} \sigma_{s_{7}}^{-1} \in \Xi_{\eta}$, we deduce that $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$, a contradiction. Thus $s_{6} \in I$, and hence $I=\left\{s_{2}, s_{5}, s_{6}, s_{7}\right\} \cup I^{\prime}$ for some $I^{\prime} \subseteq\left\{s_{1}, s_{3}\right\}$.

We claim that $\sigma_{s_{7}} \notin \Xi_{\eta}$. Indeed, by Lemma 10.17(2), it is sufficient to check that $s_{7} \notin \operatorname{Typ}(S, I)$, or else that $A:=\left\{s_{0}, s_{1}, s_{3}, s_{4}, s_{6}\right\}$ satisfies (TYP0), (TYP1) and (TYP2). Clearly, A satisfies (TYP0) and (TYP2). Moreover, the sequences defined in (TYP1) associated to $s_{1}, s_{3}, s_{4}, s_{6}$ are respectively given by ($s_{0}, s_{1}, s_{0}, s_{1}, \ldots$), $\left(s_{0}, s_{3}, s_{1}, s_{3}, s_{0}, s_{3}, \ldots\right),\left(s_{0}, s_{4}, s_{3}, s_{6}, s_{3}, s_{4}, s_{0}, s_{4}, \ldots\right)$ and $\left(s_{0}, s_{6}, s_{0}, s_{6}, \ldots\right)$, yielding the claim.

As $\sigma\left(s_{0}, a_{j}\right) \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, we conclude that $\Xi_{\eta}=\left\langle\sigma_{s_{1}}, \sigma_{s_{3}}, \sigma_{s_{2}} \sigma_{s_{5}}\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}=\left\langle\sigma_{s_{1}}, \sigma_{s_{3}}, \sigma_{s_{2}}, \sigma_{s_{5}}\right\rangle$.
(2b) Assume next that $s_{4} \in I$. Then $\left\{s_{2}, s_{3}, s_{5}\right\} \subseteq I$ by (a), and $\left\{s_{1}, s_{6}\right\} \nsubseteq I$ because $|I| \leq \ell-1$. Hence $I=\left\{s_{2}, s_{3}, s_{4}, s_{5}, s_{7}\right\} \cup I^{\prime}$ for some $I^{\prime} \subsetneq\left\{s_{1}, s_{6}\right\}$.

We claim that $\sigma_{s_{7}} \notin \Xi_{\eta}$. Indeed, by Lemma 10.17(2), it is sufficient to check that $s_{7} \notin \operatorname{Typ}(S, I)$, or else that $A:=\left\{s_{0}, s_{1}, s_{6}\right\}$ satisfies (TYP0), (TYP1) and (TYP2), which can be seen from the corresponding argument in (2a).

As $\sigma\left(s_{0}, a_{j}\right) \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, we deduce the following description of Ξ_{η} (see Lemma 10.1): if $I^{\prime}=\left\{s_{6}\right\}$, then $\Xi_{\eta}=\left\langle\sigma_{s_{3}}\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}=$ $\left\langle\sigma_{s_{2}}, \sigma_{s_{3}}\right\rangle$. If $I^{\prime}=\left\{s_{1}\right\}$, then $\Xi_{\eta}=\left\langle\sigma_{s_{2}} \sigma_{s_{7}}\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}=\left\langle\sigma_{s_{2}}, \sigma_{s_{7}}\right\rangle$. And if $I^{\prime}=\varnothing$, then $\Xi_{\eta}=\left\langle\sigma_{s_{3}}, \sigma_{s_{2}} \sigma_{s_{7}}\right\rangle$ has index 2 in $\widetilde{W}^{\eta} / W^{\eta}=\left\langle\sigma_{s_{2}}, \sigma_{s_{3}}, \sigma_{s_{7}}\right\rangle$.
(3) Assume finally that $X=E_{8}^{(1)}$. Suppose for a contradiction that $\Xi_{\eta} \neq$ $\widetilde{W}^{\eta} / W^{\eta}$.
(3a) Assume first that $s_{4} \in I$. Then $\left\{s_{2}, s_{3}, s_{5}\right\} \subseteq I$ by (a). If $s_{1} \in I$, then $s_{6} \notin I$ by (a), and since $\sigma\left(s_{0}, a_{j}\right) \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, we have $\Xi_{\eta} \supseteq$ $\left\langle\sigma_{s_{8}}, \sigma_{s_{7}}, \sigma_{s_{5}}\right\rangle=\widetilde{W}^{\eta} / W^{\eta}$ (see Lemma 10.1(4)), a contradiction. Thus, $s_{1} \notin I$. Hence $\sigma\left(s_{0}, s_{1}\right)=\sigma_{s_{2}} \in \Xi_{\eta}$. As $\sigma\left(s_{0}, a_{j}\right) \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, we conclude that $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$, a contradiction.
(3b) Assume now that $s_{4} \notin I$. Then $\left\{s_{2}, s_{3}\right\} \subseteq I$ by (b), and hence $s_{1} \notin I$ by (c). Then $\sigma\left(s_{0}, s_{1}\right)=\sigma_{s_{2}} \in \Xi_{\eta}$ and $\sigma\left(s_{0}, s_{4}\right)=\sigma_{s_{2}} \sigma_{s_{3}} \in \Xi_{\eta}$, so that $\sigma_{s_{2}}, \sigma_{s_{3}} \in \Xi_{\eta}$.

As $\sigma\left(s_{0}, a_{j}\right) \in \Xi_{\eta}$ for all $j \in\{1, \ldots, r\}$, we conclude that $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$, again a contradiction.

This concludes the proof of the proposition.
Proposition 10.27. Theorem 10.12 holds for Γ_{S} of type $X \in\left\{F_{4}^{(1)}, G_{2}^{(1)}\right\}$.
Proof. As in the proof of Proposition 10.25, we will use Lemma 10.23 repeatedly to conclude, in the notations of that lemma, that $\sigma(a, b) \in \Xi_{\eta}$ for various pairs (a, b).
(1) Assume first that $X=G_{2}^{(1)}$. Then either $I=\left\{s_{1}\right\}$ or $I=\left\{s_{2}\right\}$, and $\widetilde{W^{\eta}} / W^{\eta}$ has order 2. If $I=\left\{s_{2}\right\}$, then $\sigma\left(s_{0}, s_{0}\right)=\sigma_{s_{2}} \in \Xi_{\eta}$, and if $I=\left\{s_{1}\right\}$, then $\sigma\left(s_{0}, s_{2}\right)=\sigma_{s_{1}} \in \Xi_{\eta}$. Thus, in both cases, $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$.
(2) Assume next that $X=F_{4}^{(1)}$. If $s_{3} \in I$, then as $\sigma\left(s_{0}, s_{i}\right) \in \Xi_{\eta}$ for $i \in\{0,1,2\}$ such that $s_{i} \notin I$, we have $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$. Similarly, if $s_{3} \notin I$ and $s_{4} \notin I$, then as $\sigma\left(s_{0}, s_{i}\right) \in \Xi_{\eta}$ for $i \in\{0,1\}$ such that $s_{i} \notin I$, we have $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$. We may thus assume that $I=\left\{s_{4}\right\} \cup I^{\prime}$ for some $I^{\prime} \subseteq\left\{s_{1}, s_{2}\right\}$. Let $I_{1}=\left\{s_{4}\right\}$ and $I_{2}=I^{\prime}$ (if I^{\prime} is nonempty). Then Ξ_{η} contains $\widetilde{W}_{I_{2}^{\text {ext }}}^{\eta} / W_{I_{2}^{\text {ext }}}^{\eta}$, as $\sigma\left(s_{0}, s_{i}\right) \in \Xi_{\eta}$ for $i \in\{0,1\}$ such that $s_{i} \notin I$. To show that $\Xi_{\eta}=\widetilde{W}^{\eta} / W^{\eta}$, it is thus sufficient to see that Ξ_{η} contains an automorphism mapping τ_{1} to s_{4}. Note for this that $y:=s_{3} s_{2} s_{1} s_{0} x_{0} \notin m_{4}$, as

$$
s_{3} s_{2} s_{1} s_{0} x_{0}=s_{3} s_{4} s_{2} s_{1} s_{0} x_{0} \notin m_{4} \Longleftrightarrow s_{2} s_{1} s_{0} x_{0} \notin s_{4} s_{3} m_{4}=m_{3},
$$

which holds by Lemma 10.19. Moreover, $y^{\eta} \in C_{0}^{\eta}$ by Lemma 10.22. As in the proof of Lemma 10.23, we then deduce from Lemma 10.17(1) that $\operatorname{typ}_{\Sigma^{\eta}}\left(x_{0}\right)=\left(\tau_{1}, \tau_{2}\right)$ and $\operatorname{typ}_{\Sigma^{\eta}}\left(y^{\eta}\right)=\left(s_{4}, a\right)$ are in the same $\Xi_{\eta^{-} \text {-orbit for some } a \in I_{2}^{\text {ext }} \text { (where we omit }}$ τ_{2} and a if $\left.I^{\prime}=\varnothing\right)$, as desired.
10.5. Relation between Ξ_{w} and $\Xi_{\eta_{w}}$, and centraliser of an element. Now that we obtained a complete description of Ξ_{η}, we will show that one can replace the subgroup Ξ_{w} by Ξ_{η} in the statement of Theorem 7.17 (see Theorem 10.31 below).

We start with an elementary observation.
Lemma 10.28. Let $w \in W$ be of infinite order, and set $\eta:=\eta_{w} \in \partial V$. Let $v \in W_{\eta}$. Then $v \in \mathcal{Z}_{W}(w)$ if and only if $v_{\eta} \in \mathcal{Z}_{\pi_{\eta}\left(W_{\eta}\right)}\left(w_{\eta}\right)$.

Proof. The forward implication is clear. Conversely, suppose $v_{\eta} \in \mathcal{Z}_{\pi_{\eta}\left(W_{\eta}\right)}\left(w_{\eta}\right)$.
We first claim that for any vector $h \in V$ (based at the origin x_{0}) and any $u \in W_{x_{0}}^{\eta}$, the vector $u h-h$ belongs to V^{η}. Indeed, using the formula $u_{1} u_{2} h-h=$ $u_{1}\left(u_{2} h-h\right)+\left(u_{1} h-h\right)$ for $u_{1}, u_{2} \in W_{x_{0}}^{\eta}$, and the fact that $W_{x_{0}}^{\eta}$ stabilises V^{η}, it is sufficient to prove the claim when $u=r_{m}$ for some $m \in \mathcal{W}_{x_{0}}^{\eta}$ (see Definition 10.2). But in this case, $u h-h=r_{m} h-h \in m^{\perp} \subseteq\left(\bigcap_{m^{\prime} \in \mathcal{W}_{x_{0}}^{\eta}} m^{\prime}\right)^{\perp}=V^{\eta}$, as desired.

By Lemma 10.8(2), we can write $w=w_{x_{0}} t_{h_{w}}$ and $v=v_{x_{0}} t_{h_{v}}$ for some $w_{x_{0}}, v_{x_{0}} \in$ $W_{x_{0}}^{\eta}$ and some vectors $h_{w}, h_{v} \in V$ such that $t_{h_{w}}, t_{h_{v}} \in T_{0}$ (where t_{h} denotes the translation of vector h). By assumption, $v w v^{-1} w^{-1} \in \operatorname{ker} \pi_{\eta}=\left\{t_{h} \mid h \in\left(V^{\eta}\right)^{\perp}\right\}$ (see Lemma 10.8(4)). A straightforward computation (using the formula $u t_{h} u^{-1}=$ $t_{u h}$ for $u \in W_{x_{0}}$ and $h \in V$ a vector) yields that $v w v^{-1} w^{-1}=v_{x_{0}} w_{x_{0}} v_{x_{0}}^{-1} w_{x_{0}}^{-1} \cdot t_{h}$, where

$$
h:=w_{x_{0}} v_{x_{0}} \cdot\left(\left(w_{x_{0}}^{-1} h_{v}-h_{v}\right)-\left(v_{x_{0}}^{-1} h_{w}-h_{w}\right)\right) .
$$

Hence $h \in V^{\eta}$ by the above claim, so that $v_{x_{0}} w_{x_{0}} v_{x_{0}}^{-1} w_{x_{0}}^{-1}=1$ and $h=0$ by Lemma 10.8(2), that is, $v \in \mathcal{Z}_{W}(w)$.

We next prove the following consequence of Theorem 10.12.
Lemma 10.29. Let $\eta \in \partial V$ be standard and set $I:=I_{\eta}$. Let $\sigma, \delta \in \Xi_{\eta}$. Let $K \subseteq I^{\text {ext }}$ be a spherical subset with $\delta(K)=K$, and assume that there exists an element $x \in W^{\eta}$ of minimal length in $W_{\sigma(K)}^{\eta} x W_{K}^{\eta}$ such that $\delta(x)=x$ and $x \Pi_{K}=\Pi_{\sigma(K)}$. Let J be a component of K. Then:
(1) If J is not of type A_{m} for some $m \geq 1$, then $\kappa_{x} \sigma(J)=J$.
(2) If $\delta(J)=J$ and $\left.\delta\right|_{J} \neq \mathrm{id}$, then $\kappa_{x} \sigma(J)=J$.
(3) If J is of type F_{4}, then $\left.\kappa_{x} \sigma\right|_{J}=\mathrm{id}$.

Proof. Let $I_{i}^{\text {ext }}$ be the component of $I^{\text {ext }}$ containing J. Note that $\left.\kappa_{x} \sigma\right|_{K}$ is a diagram automorphism of W_{K}^{η} commuting with $\left.\delta\right|_{K}$ (as Ξ_{η} is abelian and $\delta(x)=x$) and stabilising $K \cap I_{i}^{\text {ext }}$ (as σ and κ_{x} stabilise $I_{i}^{\text {ext }}$). Moreover, J is a component of $K \cap I_{i}^{\text {ext }}$, and hence $\kappa_{x} \sigma(J) \cap J \neq \varnothing \Longrightarrow \kappa_{x} \sigma(J)=J$.

If J is of type D_{5} and is contained in a subset of $I^{\text {ext }}$ of type E_{6}, then $I_{i}^{\text {ext }}$ is of type $E_{n}^{(1)}$ for some $n \in\{6,7,8\}$, and hence J is the only component of $K \cap I_{i}^{\text {ext }}$ of type D_{5}, so that $\kappa_{x} \sigma(J)=J$ in that case. We may thus assume that J is not of type D_{5} inside a subset of type E_{6}.

Lemma 4.12 (applied to $W:=W^{\eta}, \delta:=\delta, J:=\sigma(K), K:=K, x:=x^{-1}$, and $I:=J)$ then implies the following:
(i) If J is not of type A_{m}, then $\kappa_{x}(J)=J$.
(ii) If $\delta(J)=J$ and $\left.\delta\right|_{J} \neq$ id, then $\kappa_{x}(J)=J$.
(iii) If J is of type F_{4}, then $\left.\kappa_{x}\right|_{J}=\mathrm{id}$.

In particular, if J satisfies the assumptions of one of the statements (1), (2), (3), then

$$
\sigma(J) \cap J \neq \varnothing \Longrightarrow \kappa_{x} \sigma(J) \cap J \neq \varnothing \Longrightarrow \kappa_{x} \sigma(J)=J \Longrightarrow \sigma(J)=J
$$

and it is sufficient to show that $\sigma(J) \cap J \neq \varnothing$ (and $\left.\sigma\right|_{J}=\mathrm{id}$ for (3)).
If J is of type F_{4}, then $I_{i}^{\text {ext }}$ must be of type $F_{4}^{(1)}$, and hence $\left.\sigma\right|_{I_{i}^{\text {ext }}}=$ id, yielding (3). We now prove (1) and (2). Assume for a contradiction that $\sigma(J) \cap J=\varnothing$.
(1) If J is not of type A_{m}, then one of the following two possibilities occurs:
(1a) J contains a subset of type D_{4} and $I_{i}^{\text {ext }}$ is of type $D_{n}^{(1)}$ for some $n \geq 5$ (as J and $\sigma(J)$ are disjoint subsets of $I_{i}^{\text {ext }}$ both containing a subset of type D_{4}). In particular, Γ_{S} is of type $D_{\ell}^{(1)}$ and $\left\{s_{\ell-2}, s_{\ell-1}, s_{\ell}\right\} \subseteq I$. The cases (D1), (D2) of Theorem 10.12 then imply that $\left.\sigma\right|_{I_{i}^{\text {ext }}}$ stabilises each of the two subsets of $I_{i}^{\text {ext }}$ of type D_{4}, a contradiction.
(1b) J contains a double edge and $I_{i}^{\text {ext }}$ is of type $C_{n}^{(1)}$ for some $n \geq 4$ (as J and $\sigma(J)$ are disjoint subsets of $I_{i}^{\text {ext }}$ both containing a double edge). In particular, Γ_{S} is of type $C_{\ell}^{(1)}$ and $s_{\ell} \in I$. The case $\left(C_{\ell}^{(1)}\right)$ of Theorem 10.12 then implies that $\left.\sigma\right|_{I_{i}^{\mathrm{ext}}}=\mathrm{id}$, again a contradiction. This proves (1).
(2) Assume finally that $\delta(J)=J$ and $\left.\delta\right|_{J} \neq$ id. Since $\sigma(J) \cap J=\varnothing$ by assumption, (1) implies that J is of type A_{m} for some $m \geq 2$. As $\left.\sigma\right|_{I_{i}^{\text {ext }}}$ and $\left.\delta\right|_{I_{i}^{\text {ext }}}$ are distinct nontrivial elements of $\widetilde{W}_{I_{i}^{\text {ext }}} / W_{I_{i}^{\text {ext }}}$ that are not inverse to one another, they generate a subgroup of order at least 4. Moreover, the fact that $\delta(J)=J$ and $\left.\delta\right|_{J} \neq \mathrm{id}$ rules out the possibility that $I_{i}^{\text {ext }}$ is of type $A_{n}^{(1)}$ by Lemma $10.1(1)$. We conclude that $I_{i}^{\text {ext }}$ is of type $D_{n}^{(1)}(n \geq 5)$ - see again Lemma 10.1. But then Γ_{S}
is of type $D_{\ell}^{(1)}$ and $\left\{s_{\ell-2}, s_{\ell-1}, s_{\ell}\right\} \subseteq I$, and the cases (D1), (D2) of Theorem 10.12 imply that $\left.\sigma\right|_{I_{i}^{\text {ext }}}$ and $\left.\delta\right|_{I_{i}^{\text {ext }}}$ are contained in a common subgroup of $\widetilde{W}_{I_{i}^{\text {ext }}} / W_{I_{i}^{\text {ext }}}$ of order 2 , a contradiction.

Here is finally the key proposition to establish Theorem 10.31.
Proposition 10.30. Let $w \in W$ be of infinite order, and set $\eta:=\eta_{w} \in \partial V$. Let $C, D \in \operatorname{CombiMin}(w)$ and $\sigma \in \Xi_{\eta}$ be such that $\sigma\left(I_{w}(C)\right)=I_{w}(D)$. Then $\sigma \in \Xi_{w}$.
Proof. Assume first that η is standard. Since $C^{\eta}, D^{\eta} \in \operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$ by Proposition 6.19, the elements $\pi_{w_{\eta}}\left(C^{\eta}\right), \pi_{w_{\eta}}\left(D^{\eta}\right) \in W^{\eta} \delta_{w}$ are cyclically reduced and conjugate in W^{η}. Lemma 4.10 (applied to $(W, S):=\left(W^{\eta}, S^{\eta}\right)$ and $\left.\delta:=\delta_{w}\right)$ then yields some $x \in W^{\eta}$ of minimal length in $W_{I_{w}(D)}^{\eta} x W_{I_{w}(C)}^{\eta}$ and such that $\delta_{w}(x)=x$ and $x \Pi_{I_{w}(C)}=\Pi_{I_{w}(D)}$.

In view of Lemma 10.29 (applied with $K:=I_{w}(C)$, so that $\sigma(K)=I_{w}(D)$), we are in a position to apply Proposition 4.8 with $(W, S):=\left(W_{I_{w}(C)}^{\eta}, I_{w}(C)\right)$, $\delta:=\left.\delta_{w}\right|_{I_{w}(C)}, \sigma:=\left.\kappa_{x} \sigma\right|_{I_{w}(C)}$, and $w:=\pi_{w_{\eta}}\left(C^{\eta}\right) \delta_{w}^{-1}$ (note that the conjugacy class of $\pi_{w_{\eta}}\left(C^{\eta}\right)$ in $W_{I_{w}(C)}^{\eta}$ is cuspidal by Proposition 4.7(1)). We conclude that $\kappa_{x} \sigma\left(\pi_{w_{\eta}}\left(C^{\eta}\right)\right)$ and $\pi_{w_{\eta}}\left(C^{\eta}\right)$ are conjugate in $W_{I_{w}(C)}^{\eta}$.

In particular, there exists $u \in W^{\eta}$ such that $\sigma \pi_{w_{\eta}}\left(C^{\eta}\right) \sigma^{-1}=u \pi_{w_{\eta}}\left(C^{\eta}\right) u^{-1}$. Then $u^{-1} \sigma$ commutes with $\pi_{w_{\eta}}\left(C^{\eta}\right)$, and hence writing $C^{\eta}=a C_{0}^{\eta}$ for some $a \in$ W^{η}, the element $a u^{-1} \sigma a^{-1}=a u^{-1} \sigma(a)^{-1} \cdot \sigma$ commutes with w_{η}. Lemma 10.28 then implies that $a u^{-1} \sigma(a)^{-1} \cdot \sigma \in \pi_{\eta}\left(\mathcal{Z}_{W}(w)\right)$, so that $\sigma \in \Xi_{w}$, as desired.

If now η is arbitrary, we let b, I be as in Proposition 10.5(6), so that $\bar{\eta}:=b^{-1} \eta$ is standard and $S^{\bar{\eta}}=b^{-1} S^{\eta} b$. Note that $\bar{\eta}=\eta_{\bar{w}}$ where $\bar{w}:=b^{-1} w b$, and that $\bar{C}:=b^{-1} C$ and $\bar{D}:=b^{-1} D$ belong to CombiMin (\bar{w}). Moreover, by Remarks 10.6 and 10.10, we have $\Xi_{\bar{\eta}}=b^{-1} \Xi_{\eta} b$ (and $\Xi_{\bar{w}}=b^{-1} \Xi_{w} b$), while $I_{\bar{w}}(\bar{C})=b^{-1} I_{w}(C) b$ and $I_{\bar{w}}(\bar{D})=b^{-1} I_{w}(D) b$ (see Lemma 7.3). We have just proved that $\bar{\sigma}:=b^{-1} \sigma b \in \Xi_{\bar{w}}$, and hence also $\sigma \in \Xi_{w}$ in this case.

Recall from Definition 7.13 the definition of the graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$, for $w \in W$ with $\operatorname{Pc}(w)=W$. Recall also from Remark 10.6 that $\Xi_{\eta_{w}}$ is abelian. In particular, we may define the quotient graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{\eta_{w}}$ as in Definition 7.13, which is itself a quotient graph of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ as $\Xi_{w} \subseteq \Xi_{\eta_{w}}$. Proposition 10.30 implies that these last two graphs in fact coincide.

Theorem 10.31. Let $w \in W$ be of infinite order, and set $\eta:=\eta_{w} \in \partial V$. Assume that w_{η} is cyclically reduced. Then

$$
\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}=\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{\eta} .
$$

Proof. We have to show that if two vertices I, J of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ are in a same $\Xi_{\eta^{-}}$ orbit, then they are also in a same Ξ_{w}-orbit. But as the vertices of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ are of the form $I_{w}(C)$ with $C \in \operatorname{CombiMin}(w)$ by Lemma 7.16, this follows from Proposition 10.30.

As an additional consequence of the above results, we obtain the following description of Ξ_{w} inside Ξ_{η}.

Proposition 10.32. Let $w \in W$ be of infinite order, and set $\eta:=\eta_{w} \in \partial V$. Assume that w_{η} is cyclically reduced. Let $\sigma \in \Xi_{\eta}$. Then the following assertions are equivalent:
(1) $\sigma \in \Xi_{w}$.
(2) There exists $u \in W^{\eta}$ such that $u \sigma \in \mathcal{Z}_{\pi_{\eta}\left(W_{\eta}\right)}\left(w_{\eta}\right)$.
(3) $\sigma\left(I_{w}\right)=I_{w}(D)$ for some $D \in \operatorname{CombiMin}(w)$.
(4) $\sigma\left(I_{w}\right)$ is a vertex of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$.

Proof. (1) $\Leftrightarrow(2)$: If (1) holds, then $\sigma=u^{-1} v_{\eta}$ for some $u \in W^{\eta}$ and $v \in \mathcal{Z}_{W}(w)$, and hence $u \sigma=v_{\eta} \in \mathcal{Z}_{\pi_{\eta}\left(W_{\eta}\right)}\left(w_{\eta}\right)$. Conversely, assume that (2) holds, and let $v \in W_{\eta}$ be such that $\sigma=v_{\eta}$. Then $u v \in \mathcal{Z}_{W}(w)$ by Lemma 10.28, and hence $\sigma=\delta_{u v} \in \Xi_{w}$.
$(1) \Leftrightarrow(3)$: If (1) holds, then $\sigma\left(I_{w}\right)=I_{w}\left(v C_{0}\right)$ for some $v \in \mathcal{Z}_{W}(w)$ by Lemma 7.4. Conversely, $(3) \Rightarrow(1)$ follows from Proposition 10.30.
$(3) \Leftrightarrow(4)$: This follows from Lemma 7.16.
We conclude this subsection with the following description of the centraliser of an infinite order element of W, whose relevance follows from the above explicit description of Ξ_{w}. Recall from Remark 10.13 that $\pi_{\eta}\left(W_{\eta}\right)=W^{\eta} \rtimes \Xi_{\eta}$ for any $\eta \in \partial V$. In particular, there is a natural projection map $\pi_{\eta}\left(W_{\eta}\right) \rightarrow \Xi_{\eta}$.

Proposition 10.33. Let $w \in W$ be of infinite order, and set $\eta:=\eta_{w} \in \partial V$. Then:
(1) the map $\mathcal{Z}_{\pi_{\eta}\left(W_{\eta}\right)}\left(w_{\eta}\right) \rightarrow \Xi_{\eta}$ has kernel $\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right)$ and image Ξ_{w}.
(2) $\mathcal{Z}_{\pi_{\eta}\left(W_{\eta}\right)}\left(w_{\eta}\right)=\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right) \rtimes \Xi_{w}$.
(3) there is an exact sequence

$$
1 \rightarrow T_{\eta} \rtimes \mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right) \rightarrow \mathcal{Z}_{W}(w) \rightarrow \Xi_{w} \rightarrow 1
$$

where $T_{\eta}:=\left\{t_{h} \in W \mid\left(W_{x_{0}} \cap W^{\eta}\right) . h=h\right\}$.
Proof. The kernel of $\mathcal{Z}_{\pi_{\eta}\left(W_{\eta}\right)}\left(w_{\eta}\right) \rightarrow \Xi_{\eta}$ is $W^{\eta} \cap \mathcal{Z}_{\pi_{\eta}\left(W_{\eta}\right)}\left(w_{\eta}\right)=\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right)$ and its image coincides with Ξ_{w} since $\mathcal{Z}_{\pi_{\eta}\left(W_{\eta}\right)}\left(w_{\eta}\right)=\pi_{\eta}\left(\mathcal{Z}_{W}(w)\right)$ by Lemma 10.28. Hence (1) holds, and (2) follows from (1).

By (1), the map $\mathcal{Z}_{W}(w) \rightarrow \Xi_{w}$, which is the composition of π_{η} with the map $\mathcal{Z}_{\pi_{\eta}\left(W_{\eta}\right)}\left(w_{\eta}\right) \rightarrow \Xi_{w}$, is surjective and has kernel $\operatorname{ker} \pi_{\eta} \rtimes \mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right)$ (note that $\operatorname{ker} \pi_{\eta} \subseteq \mathcal{Z}_{W}(w)$ by Lemma 10.28). Since ker $\pi_{\eta}=T_{\eta}$ by Lemma 10.8(4), (3) follows as well.
10.6. The standard splitting in W of an element. Throughout this subsection, we fix an element $w \in W$ of infinite order, and we set $\eta:=\eta_{w} \in \partial V$.

Recall from $\S 8$ (and Example 8.2) that we defined the $P_{w}^{m i n}$-splitting of w, where $P_{w}^{\min }=\operatorname{Fix}_{W}(\operatorname{Min}(w))$. In this subsection, we compare this splitting with the standard splitting of w as an affine isometry of V (in the sense of [BM15, 3.4]), and we show how it can be used to compute I_{w} and δ_{w} (see Proposition 10.42), by proving an analogue of Lemma 9.24 in the affine setting.
Definition 10.34. We call the $P_{w}^{\min }$-splitting $w=w_{\text {tor }} w_{\infty}$ of w (with $w_{\text {tor }}=$ $w_{\text {tor }}\left(P_{w}^{\min }\right)$ and $\left.w_{\infty}=w_{\infty}\left(P_{w}^{\min }\right)\right)$ the standard splitting in W of w.

Recall from [BM15, 3.4] that w also possesses a standard splitting $w=u t_{\mu}$ as an affine isometry of V, with $u \in \operatorname{Isom}(V)$ of finite order (the elliptic part of w) satisfying $\operatorname{Fix}(u)=\operatorname{Min}(w)$, and $t_{\mu} \in \operatorname{Isom}(V)$ a translation of vector μ commuting with u (the translation part of w). Note, however, that u, t_{μ} need not preserve the underlying simplicial structure of V, and hence need not belong to W.

Example 10.35. Assume that W is the affine Coxeter group of type $A_{2}^{(1)}$, with set of simple reflections $S=\left\{s_{0}, s_{1}, s_{2}\right\}$, and set $w:=s_{0} s_{1} s_{2}$. The Davis complex of W is the tessellation of the Euclidean plane by congruent equilateral triangles pictured on Figure 1 from $\S 1$, and w is a glide reflection along the axis L represented on that picture. In particular, the elliptic part of w is the orthogonal reflection across L, and hence does not belong to w (or even to $\operatorname{Aut}(\Sigma)$). On the other hand, $w_{\text {tor }}=1$ and $w_{\infty}=w$ as $\operatorname{Min}(w)=L$ and hence $P_{w}^{\min }=\operatorname{Fix}_{W}(L)=\{1\}$.

We first observe that when the elliptic and translation parts of w belong to W, then both standard splittings of w coincide. More generally, we show how the standard splitting in W of w can be computed from its standard splitting as an affine isometry of V.
Lemma 10.36. Let $w=u t_{\mu}$ be the standard splitting of w as an affine isometry of V, with elliptic part $u \in \operatorname{Isom}(V)$ and translation part t_{μ}.
(1) If $t_{\mu}, u \in W$, then $w_{\infty}=t_{\mu}$ and $w_{\text {tor }}=u$.
(2) Writing $\operatorname{Fix}_{W}(\operatorname{Fix}(u))=v W_{I} v^{-1}$ for some $I \subseteq S$ and some $v \in W$ of minimal length in $v W_{I}$, and letting $w_{I} \in W_{I}$ be such that $w_{I}^{-1} v^{-1} w v$ is of minimal length in $W_{I} v^{-1} w v$, we have $w_{\text {tor }}=v w_{I} v^{-1}$.
Proof. (1) Assume that $t_{\mu}, u \in W$. Since $\operatorname{Fix}(u)=\operatorname{Min}(w)$, certainly $u \in P_{w}^{\min }$. On the other hand, if L is a w-axis, then L is also a translation axis for t_{μ}. As the walls of $P_{w}^{\min }$ contain L, they are stabilised by t_{μ}, and hence t_{μ} is $P_{w}^{\min }$-reduced. Therefore, $w_{\text {tor }}=u$ and $w_{\infty}=t_{\mu}$ by Proposition 8.7.
(2) $\operatorname{As} \operatorname{Fix}(u)=\operatorname{Min}(w)$, we have $P_{w}^{\min }=v W_{I} v^{-1}$. Moreover, $v^{-1} w v \in N_{W}\left(W_{I}\right)$ and $n_{I}:=w_{I}^{-1} v^{-1} w v \in N_{I}$, so that the claim follows from Lemma 8.9.
Corollary 10.37. Assume that the elliptic part u of w belongs to W. Then:
(1) $P_{w}^{\min }=\operatorname{Pc}(u)$.
(2) if u is cyclically reduced, then w is cyclically reduced.

Proof. By Lemma 10.36, $u=w_{\text {tor }} \in P_{w}^{\min }$ and w_{∞} is a translation of V. In particular, $\operatorname{Pc}(u) \subseteq P_{w}^{\min }$ and $P_{w}^{\min }=\operatorname{Fix}_{W}(\operatorname{Fix}(u))$. But as $\operatorname{Pc}(u)$ is a spherical parabolic subgroup, it is the fixer of a point $x \in V$ (and $x \in \operatorname{Fix}(u)$ as $u \in \operatorname{Pc}(u)$), so that $\operatorname{Pc}(u)=\operatorname{Fix}_{W}(x) \supseteq \operatorname{Fix}_{W}(\operatorname{Fix}(u))=P_{w}^{\min }$. This proves (1).

Since w_{∞} is a translation, it is straight (see e.g. [Mar14, Lemma 4.3]), and hence cyclically reduced by [Mar14, Lemma 4.1]. Assume now that u is cyclically reduced. Then $\mathrm{Pc}(u)$ is standard (see e.g. [CF10, Proposition 4.2]), and hence $P_{w}^{\min }$ is standard by (1). Since w_{∞} centralises $P_{w}^{\min }$ (as it stabilises each wall in \mathcal{W}^{η}, and hence each wall of $P_{w}^{\text {min }}$), Lemma 8.10(2) then implies that w is cyclically reduced, yielding (2).

Note that, while w_{∞} need not be a translation, $w_{\infty}^{n}\left(\right.$ and w^{n}) is always a translation for some $n \geq 1$ (e.g., $n=\left|W_{x_{0}}\right|$), as follows from the decomposition $W=W_{x_{0}} \ltimes T_{0}$. The following elementary observation is then a useful criterion to check whether an element is straight.

Lemma 10.38. Let $n \in \mathbb{N}$ be such that w^{n} is a translation. Then w is straight if and only if $\ell\left(w^{n}\right)=n \ell(w)$.
Proof. The forwad implication is clear. Conversely, since w^{n} is straight and $\ell\left(w^{n}\right)=n \ell(w)$, we have $n \ell\left(w^{m}\right) \geq \ell\left(w^{m n}\right)=m \ell\left(w^{n}\right)=m n \ell(w)$ and hence $\ell\left(w^{m}\right)=m \ell(w)$ for any $m \in \mathbb{N}$, as desired.

Our next goal is to show how the standard splitting in W of w can be used to compute I_{w} and δ_{w} (see Proposition 10.42 below). To this end, we first need to show that the sets $\operatorname{Min}(w) \subseteq V$ and

$$
\operatorname{Min}_{V^{\eta}}\left(w_{\eta}\right):=\operatorname{Fix}_{V^{\eta}}\left(w_{\eta}\right) \subseteq V_{\eta},
$$

as well as their subsets of regular points, correspond to one another under the projection map $\pi_{V^{\eta}}: V \rightarrow V^{\eta}$.
Lemma 10.39. We have $\pi_{V^{\eta}}(\operatorname{Min}(w))=\operatorname{Min}_{V^{\eta}}\left(w_{\eta}\right)$.
Proof. Let $x \in \operatorname{Min}(w)$, and let $L_{x} \subseteq \pi_{V^{\eta}}^{-1}\left(x^{\eta}\right)$ be the w-axis through x. Then $w x \in L_{x}$, so that $w_{\eta} x^{\eta}=\pi_{V^{\eta}}(w x)=x^{\eta}$ by Lemma 10.8(5), and hence $x^{\eta} \in$ $\operatorname{Min}_{V^{\eta}}\left(w_{\eta}\right)$. Conversely, if $w_{\eta} x^{\eta}=x^{\eta}$ for some $x \in V$, then $\pi_{V^{\eta}}(w y)=w_{\eta} x^{\eta}=x^{\eta}$ for all $y \in \pi_{V^{\eta}}^{-1}\left(x^{\eta}\right)$, and hence w stabilises the nonempty closed convex set $\pi_{V \eta}^{-1}\left(x^{\eta}\right)$. Therefore, $\pi_{V^{\eta}}^{-1}\left(x^{\eta}\right)$ contains a point $y \in \operatorname{Min}(w)$, as desired.

Recall from Definition 6.22 the definition of w-regular points.
Lemma 10.40. We have $\pi_{V^{\eta}}\left(\operatorname{Reg}_{V}(w)\right)=\operatorname{Reg}_{V^{\eta}}\left(w_{\eta}\right)$, and any w-essential point $x \in \pi_{V^{\eta}}^{-1}\left(\operatorname{Reg}_{V^{\eta}}\left(w_{\eta}\right)\right) \cap \operatorname{Min}(w)$ is w-regular.
Proof. Note that $\operatorname{Fix}_{W^{\eta}}(x)=\operatorname{Fix}_{W^{\eta}}\left(x^{\eta}\right)$ for any $x \in V$. Hence if $x \in \operatorname{Reg}_{V}(w)$, then $x^{\eta} \in \operatorname{Min}\left(w_{\eta}\right)$ by Lemma 10.39 and

$$
\begin{aligned}
\operatorname{Fix}_{W^{\eta}}\left(x^{\eta}\right) & =\operatorname{Fix}_{W^{\eta}}(x)=\operatorname{Fix}_{W}(x) \cap W^{\eta}=\operatorname{Fix}_{W}(\operatorname{Min}(w)) \cap W^{\eta} \\
& =\operatorname{Fix}_{W^{\eta}}(\operatorname{Min}(w))=\operatorname{Fix}_{W^{\eta}}\left(\pi_{V^{\eta}}(\operatorname{Min}(w))\right)=\operatorname{Fix}_{W^{\eta}}\left(\operatorname{Min}\left(w_{\eta}\right)\right)
\end{aligned}
$$

(where the last equality again follows from Lemma 10.39), so that $x^{\eta} \in \operatorname{Reg}_{V^{\eta}}\left(w_{\eta}\right)$. Thus, $\pi_{V^{\eta}}\left(\operatorname{Reg}_{V}(w)\right) \subseteq \operatorname{Reg}_{V^{\eta}}\left(w_{\eta}\right)$.

Conversely, if $x \in \operatorname{Min}(w)$ is w-essential, then $\operatorname{Fix}_{W}(x)$ fixes the w-axis through x, and hence $\operatorname{Fix}_{W}(x)=\operatorname{Fix}_{W^{\eta}}(x)$. If, moreover, $x^{\eta} \in \operatorname{Reg}_{V^{\eta}}\left(w_{\eta}\right)$, we then have

$$
\begin{aligned}
\operatorname{Fix}_{W}(x) & =\operatorname{Fix}_{W^{\eta}}(x)=\operatorname{Fix}_{W^{\eta}}\left(x^{\eta}\right)=\operatorname{Fix}_{W^{\eta}}\left(\operatorname{Min}\left(w_{\eta}\right)\right) \\
& =\operatorname{Fix}_{W^{\eta}}\left(\pi_{V^{\eta}}(\operatorname{Min}(w))\right)=\operatorname{Fix}_{W^{\eta}}(\operatorname{Min}(w)) \subseteq \operatorname{Fix}_{W}(\operatorname{Min}(w)),
\end{aligned}
$$

so that $\operatorname{Fix}_{W}(x)=\operatorname{Fix}_{W}(\operatorname{Min}(w))$ and $x \in \operatorname{Reg}_{V}(w)$. This proves the second statement of the lemma.

Finally, note that if $y \in \operatorname{Min}\left(w_{\eta}\right)$, then $y=x^{\eta}$ for some $x \in \operatorname{Min}(w)$ by Lemma 10.39, which we may assume to be w-essential (as $\pi_{V \eta}^{-1}(y)$ contains the w-axis through $x)$. Hence $\pi_{V^{\eta}}\left(\operatorname{Reg}_{V}(w)\right) \supseteq \operatorname{Reg}_{V \eta}\left(w_{\eta}\right)$, thus concluding the proof of the lemma.

Lemma 10.41. Let P be a w-parabolic subgroup, and let $w=w_{\text {tor }} w_{\infty}$ be the P splitting of w, with $w_{\text {tor }}:=w_{\text {tor }}(P)$ and $w_{\infty}:=w_{\infty}(P)$. Assume that there exists a point $x \in \operatorname{Min}(w)$ with $P=\operatorname{Fix}_{W}(x)$ such that $x^{\eta} \in C_{0}^{\eta}$. Then $\delta_{w}=\pi_{\eta}\left(w_{\infty}\right)$ and $w_{\eta}=w_{\text {tor }} \delta_{w}$.
Proof. Note first that x is w-essential, as the walls of R_{x} (i.e. of P) all belong to \mathcal{W}^{η}. Since $x^{\eta} \in C_{0}^{\eta}$, Lemma 6.16(3) implies that the restriction of $\pi_{\Sigma^{\eta}}$ to R_{x} is a cellular isomorphism onto a w_{η}-stable residue R_{x}^{η} of Σ^{η} containing C_{0}^{η}.

Let $C:=\operatorname{proj}_{R_{x}}\left(C_{0}\right)$, so that $C^{\eta}=C_{0}^{\eta}$ by Lemma 6.16(1). Since $\operatorname{Stab}_{W}\left(R_{x}\right)=$ P, the chambers C_{0} and $w_{\infty} C_{0}$ lie on the same side of every wall of R_{x}. Since w_{∞} stabilises this set of walls (i.e. normalises P), and since C, C_{0} lie on the same side of every wall of R_{x}, so do $w_{\infty} C_{0}$ and $w_{\infty} C$. In particular, $C=\operatorname{proj}_{R_{x}}\left(w_{\infty} C\right)$. As
$x \in \operatorname{Min}\left(w_{\infty}\right)$ by Lemma 8.4, Lemma 6.16(2) (applied with $x:=w_{\infty} x, y:=x$ and $\left.C:=w_{\infty} C\right)$ then implies that $C^{\eta}=\pi_{\Sigma^{\eta}}\left(w_{\infty} C\right)$. Therefore,

$$
\pi_{\eta}\left(w_{\infty}\right) C_{0}^{\eta}=\pi_{\eta}\left(w_{\infty}\right) C^{\eta}=\pi_{\Sigma^{\eta}}\left(w_{\infty} C\right)=C^{\eta}=C_{0}^{\eta}
$$

and since $w_{\text {tor }} \in P \subseteq W^{\eta}$, we conclude that $\delta_{w}=\pi_{\eta}\left(w_{\infty}\right)$ and $w_{\eta}=w_{\text {tor }} \delta_{w}$.
We can now prove an affine analogue of Lemma 9.24.
Proposition 10.42. Let $w=w_{\text {tor }} w_{\infty}$ be the standard splitting in W of w. Assume that w_{η} is cyclically reduced. Then the following assertions hold:
(1) $w_{\infty} \in W_{\eta}$ and $\delta_{w}=\pi_{\eta}\left(w_{\infty}\right)$. In particular, if η is standard, then δ_{w} is the unique diagram automorphism of $I_{\eta}^{\text {ext }}$ such that $\delta_{w}(s)=w_{\infty} s w_{\infty}^{-1}$ for all $s \in I_{\eta}$.
(2) $w_{\text {tor }} \in W^{\eta}$ and $w_{\eta}=w_{\text {tor }} \delta_{w}$. In particular, I_{w} is the smallest δ_{w}-invariant subset of S^{η} containing $\operatorname{supp}_{S^{\eta}}\left(w_{\text {tor }}\right)$.
Proof. Since $C_{0}^{\eta} \in \operatorname{CombiMin}_{\Sigma^{\eta}}\left(w_{\eta}\right)$, Proposition 6.12 and Lemma 10.40 yield a w-regular point $x \in V$ with $x^{\eta} \in C_{0}^{\eta}$. The proposition then follows from Lemma 10.41 (for the second claim in (1), note that δ_{w} is determined by its restriction to I_{η}).

The following remark is the affine analogue of Remark 9.25.
Remark 10.43. Let $w \in W$ be of infinite order, and assume that w is straight. Let $w=w_{\text {tor }} w_{\infty}$ be the standard splitting in W of w. Then w is cyclically reduced and $w_{\text {tor }}=1$ by Corollary 8.11. In particular, w_{η} is cyclically reduced by Proposition 6.19. Moreover, $I_{w}=\varnothing$ by Proposition 10.42 , so that $\mathcal{O}_{w}^{\min }=\operatorname{Cyc}(w)$ by Theorem B. We thus recover [Mar21, Theorem A(3)] (or [HN14, Theorem A(3)]) for W of irreducible affine type.

As illustrated by Proposition 10.42, it is useful to be able to choose as distinguished representative of the conjugacy class \mathcal{O}_{w} an element w such that w_{η} is cyclically reduced and η is standard. This yields to the following definition.
Definition 10.44. We call w standard if w_{η} is cyclically reduced and η is standard, that is,

$$
P_{w}^{\infty}:=\operatorname{Fix}_{W}\left(\left[x_{0}, \eta\right)\right)=W_{x_{0}} \cap W^{\eta}
$$

is standard (equivalenty, $P_{w}^{\infty}=W_{I_{\eta}}$ - see Definition 10.3).
We now show how a standard element v of \mathcal{O}_{w} with $\operatorname{Cyc}(w)=\mathrm{Cyc}_{\text {min }}(v)$ can be obtained from any cyclically reduced w.
Lemma 10.45. Assume that $w \in W$ is cyclically reduced. Write $P_{w}^{\infty}=a_{w} W_{I} a_{w}^{-1}$ for some $I \subseteq S \backslash\left\{s_{0}\right\}$ and some $a_{w} \in W_{x_{0}}$ of minimal length in $a_{w} W_{I}$. Then $v:=a_{w}^{-1} w a_{w}$ is standard and $w \in \operatorname{Cyc}(v)$.

Proof. For this proof, we let η denote $\eta_{v} \in \partial V$ instead of η_{w}. Note first that $P_{v}^{\infty}=W_{I}$, as $\left[x_{0}, \eta\right)=a_{w}^{-1}\left[x_{0}, \eta_{w}\right)$. By assumption, $C:=a_{w}^{-1} C_{0} \in \operatorname{CombiMin}(v)$, and $C_{0}=\operatorname{proj}_{R_{I}}(C)$.

Since $\operatorname{Stab}_{W}\left(R_{I}\right)=P_{v}^{\infty}$, the set of walls of R_{I} is $\mathcal{W}_{x_{0}}^{\eta}$. Since $C_{0}, C \in R_{x_{0}}$ are not separated by any wall of R_{I}, we deduce that $C_{0}^{\eta}=C^{\eta}$. Since $C^{\eta} \in$ CombiMin $_{\Sigma^{\eta}}\left(v_{\eta}\right)$ by Proposition 6.19, this implies in particular that v_{η} is cyclically reduced, and hence v is standard. Moreover, $v=\pi_{v}\left(C_{0}\right) \rightarrow \pi_{v}(C)=w$ by Proposition 6.21, yielding the lemma.

We conclude this subsection with an elementary observation allowing to compute P_{w}^{∞} and I_{η}.
Lemma 10.46. If $t \in \operatorname{Isom}(V)$ is a translation in the direction η, then $P_{w}^{\infty}=$ $\left\langle s \in S^{W} \cap W_{x_{0}}\right|$ sts $\left.=t\right\rangle$. In particular, if P_{w}^{∞} is standard, then

$$
I_{\eta}=\left\{s \in S \backslash\left\{s_{0}\right\} \mid s t s=t\right\} .
$$

Proof. This follows from the fact that if $t \in \operatorname{Isom}(V)$ is a translation in the direction η, then $\left[x_{0}, \eta\right)$ is contained in a translation axis L of t, and hence a reflection $s \in S^{W}$ belongs to P_{w}^{∞} if and only if s fixes $\left[x_{0}, \eta\right)$ if and only if s fixes L if and only if $s \in W_{x_{0}}$ and t commutes with s.
Remark 10.47. One can for instance take t in Lemma 10.46 to be the translation part of the standard splitting of w as an affine isometry of V, or else $t:=w^{n}$ where $n:=\left|W_{x_{0}}\right|$.
Remark 10.48. If $w=u t$ for some $u \in W^{\eta}$ and $t \in W$ normalising $I_{\eta}^{\text {ext }}$ (and $P_{w}^{\infty}=W_{I_{\eta}}$ is standard), then $\delta_{w}: I_{\eta}^{\text {ext }} \rightarrow I_{\eta}^{\text {ext }}: s \mapsto t s t^{-1}$ and $w_{\eta}=u \delta_{w}$.

Indeed, if $t \in W$ normalises $I_{\eta}^{\text {ext }}$, then it stabilises the set of walls of C_{0}^{η}, and hence $\pi_{\eta}(t)$ stabilises C_{0}^{η}, yielding the claim.

10.7. Theorem D and Corollary E, concluded.

Theorem 10.49. Theorem D holds.
Proof. Let $w \in W$ with $\operatorname{Pc}(w)=W$ (that is, of infinite order), and let us prove the statements (1)-(7) of Theorem D.
(1) and (3) follow from Proposition 10.5.
(2) follows from Lemma 10.45 and Proposition 10.5(6).
(4) The first assertion follows from Example 8.2 and Proposition 8.7, and the second from Lemma 10.36.
(5) follows from Proposition 10.42.
(6) follows from Lemma 10.28 and Proposition 10.33.
(7) follows from Theorem 10.12, Theorem 10.31 and Proposition $10.32(1) \Leftrightarrow(4)$.

Here is the example needed for the proof of Corollary E(3).
Example 10.50. Let W be the affine Coxeter group of type $A_{4 n+1}^{(1)}$ for some $n \geq 1$, and denote as usual by $S=\left\{s_{0}, s_{1}, \ldots, s_{4 n+1}\right\}$ its set of simple reflections. Let $L \subseteq V$ be the affine line spanned by $\left\{x_{0}, x_{2 n+1}\right\}$ (where x_{i} is as in $\S 10.2$), and let $\eta \in \partial V$ be the direction of the geodesic ray based at x_{0} and containing $x_{2 n+1}$. Thus, η is standard, and $I_{\eta}=S \backslash\left\{s_{0}, s_{2 n+1}\right\}$ (see Figure 10 for the case $n=2$).

The components of I_{η} are $I_{1}=\left\{s_{1}, \ldots, s_{2 n}\right\}$ and $I_{2}=\left\{s_{2 n+2}, \ldots, s_{4 n+1}\right\}$, and hence $I_{1}^{\text {ext }}=I_{1} \cup\left\{\tau_{1}\right\}$ and $I_{2}^{\text {ext }}=I_{2} \cup\left\{\tau_{2}\right\}$ are both of type $A_{2 n}^{(1)}$ by Theorem D(3). Denoting, as in Definition 10.11, by $\sigma_{i} \in \operatorname{Aut}\left(\Gamma_{I_{i}}^{\mathrm{ext}}\right)(i=1,2)$ the automorphism of $\Gamma_{I_{i}}^{\text {ext }}$ of order $2 n+1$ mapping τ_{i} to s_{1} if $i=1$ and to $s_{2 n+2}$ if $i=2$, the group Ξ_{η} is generated by $\sigma_{1}^{-1} \sigma_{2}$ (see Theorem 10.12).

Let $t \in T_{0}$ be any translation with axis L and such that $\eta_{t}=\eta$ (see e.g. [Wei09, Proposition 1.24]). Let also $u \in \operatorname{Fix}_{W}(L) \subseteq W_{x_{0}}$ be any cyclically reduced element with $\operatorname{Pc}(u)=W_{I_{\eta} \backslash\left\{s_{2 n}, s_{4 n+1}\right\}}$ (for instance, one can take $u=s_{1} s_{2} \ldots s_{2 n-1}$. $\left.s_{2 n+2} s_{2 n+3} \ldots s_{4 n}\right)$, so that $\operatorname{Fix}(u)$ is the affine span of $\left\{x_{0}, x_{2 n}, x_{2 n+1}, x_{4 n+1}\right\}$. Finally, set $w:=u t$.

$$
\mathcal{K}_{\mathrm{id}}^{0}\left(I_{w}^{1}\right)
$$

Fig. 10. Example 10.50 with $n=2$.
Note that u is the elliptic part of w and t is its translation part, and hence $w=t u$ is also the standard splitting in W of w by Lemma 10.36. In particular, w is cyclically reduced by Corollary 10.37. Note also that $\eta_{w}=\eta$ is standard, and hence w is standard by Proposition 6.19. Finally, since $\pi_{\eta}(t)=$ id, Proposition 10.42 implies that $\delta_{w}=$ id and $I_{w}=I_{\eta} \backslash\left\{s_{2 n}, s_{4 n+1}\right\}$.

The vertex set of the graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)=\mathcal{K}_{\mathrm{id}}^{0}\left(I_{w}\right)$ coincides with

$$
\left\{\sigma_{1}^{i} \sigma_{2}^{j}\left(I_{w}\right)=\sigma_{1}^{i}\left(I_{w} \cap I_{1}^{\mathrm{ext}}\right) \cup \sigma_{2}^{j}\left(I_{w} \cap I_{2}^{\mathrm{ext}}\right) \mid 0 \leq i, j \leq 2 n\right\}
$$

and hence the quotient graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}=\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{\eta}$ (see Theorem $\mathrm{D}(7)$) can be identified with $\mathcal{K}_{\mathrm{id}}^{0}\left(I_{w}^{1}\right)$, where $I_{w}^{1}:=I_{w} \cap I_{1}^{\text {ext }}=\left\{s_{1}, \ldots, s_{2 n-1}\right\}=I_{1}^{\text {ext }} \backslash\left\{\tau_{1}, s_{2 n}\right\}$ corresponds to the class of I_{w} in $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$. Its vertex set is then given by

$$
\left\{J_{i}:=\sigma_{1}^{i}\left(I_{w}^{1}\right) \mid 0 \leq i \leq 2 n\right\},
$$

and it has an edge between J_{i} and J_{i+1} for each $i \in\{0, \ldots, 2 n\}$ (where $J_{2 n+1}:=$ I_{w}^{1}), as $J_{i} \stackrel{I^{\text {ext }} \backslash\left\{s_{i}\right\}}{\leftrightharpoons} J_{i+1}$ for $i \neq 0$ and $J_{0} \stackrel{I_{1}^{\text {ext }} \backslash\left\{\tau_{1}\right\}}{\leftrightharpoons} J_{1}$ (see Figure 10 for the case $n=2$, where s_{i} is simply denoted i). Note that the spherical paths in $\mathcal{K}_{\mathrm{id}}^{0}\left(I_{w}^{1}\right)$ have length at most 1, that is, the graphs $\overline{\mathcal{K}}_{\text {id }}^{0}\left(I_{w}^{1}\right)$ and $\mathcal{K}_{\text {id }}^{0}\left(I_{w}^{1}\right)$ (and hence $\overline{\mathcal{K}}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ and $\left.\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}\right)$ coincide. Since $\mathcal{K}_{\mathrm{id}}^{0}\left(I_{w}^{1}\right)$ is a cycle of length $2 n+1$, we conclude that $\overline{\mathcal{K}}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ has $2 n+1$ vertices and diameter n.

Theorem 10.51. Corollary E holds.
Proof. The existence of the graph isomorphism $\bar{\varphi}_{w}$ is provided by Theorem 7.20. The statement (1) is then a consequence of Theorem 9.6, since it implies that every path in $\mathcal{K}_{\delta_{w}}=\mathcal{K}_{\delta_{w}, W^{\eta}}$ is spherical. The statement (2) is clear as well, since the number of vertices of $\mathcal{K}_{\mathrm{id}, W^{\eta}}$ is an upper bound for the diameter of $\mathcal{K}_{\mathcal{O}_{w}}^{t}$. The statement (3) follows from Example 10.50.
10.8. Computing $\mathcal{K}_{\mathcal{O}_{w}}$: a summary. This subsection is the analogue of $\S 9.6$ in the affine setting.
10.8.1. A further algorithm. Before reviewing the steps to compute $\mathcal{K}_{\mathcal{O}_{w}}$ from an infinite order element $w \in W$, we mention one last algorithm, to check whether w is a translation, and which is easily implemented in CHEVIE (see §9.6.1).

Algorithm F. There is a function AffineRootAction in CHEVIE, taking as input the triple (W, w, x), where $x \in V \approx \mathbb{R}^{|S|-1}$ is a vector in the basis $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ of simple roots of $W_{x_{0}}$, and giving as output the vector $w x \in V$.

In particular, one can check whether an element $w \in W$ is a translation, that is, whether AffineRootAction $\left(W, w, \alpha_{i}\right)-\alpha_{i}$ is independent of $i \in\{1, \ldots, \ell\}$.
10.8.2. Steps to compute $\mathcal{K}_{\mathcal{O}_{w}}$. Let $w \in W$ be of infinite order. Here are the steps to follow in order to compute $\mathcal{K}_{\mathcal{O}_{w}}$:
(1) Up to modifying w inside $\operatorname{Cyc}(w)$, one can assume that w is cyclically reduced (see Algorithm A from §9.6.1).
(2) Up to further modifying w without changing $\mathrm{Cyc}_{\text {min }}(w)$, we may then assume that w is standard, say $P_{w}^{\infty}=W_{I}$ for some $I \subseteq S \backslash\left\{s_{0}\right\}$:
(a) Compute $a_{w} \in W_{x_{0}}$ and $I \subseteq S$ such that $P_{w}^{\infty}=a_{w} W_{I} a_{w}^{-1}$ using Lemma 10.46 and Remark 10.47.
(b) Choose a_{w} so that it is of minimal length in $a_{w} W_{I}$. Then $w^{\prime}:=a_{w}^{-1} w a_{w}$ is standard and $w^{\prime} \rightarrow w$ by Lemma 10.45.
(3) Compute the Dynkin diagram associated to $I^{\text {ext }}$, as in Definition 10.7.
(4) Compute the standard splitting $w=w_{\text {tor }} w_{\infty}$ in W of w, with the help of Lemma 10.36.
(5) Compute $\delta_{w} \in \operatorname{Aut}\left(W^{\eta_{w}}, I^{\text {ext }}\right)$ and $I_{w} \subseteq I^{\text {ext }}$ using Proposition 10.42:
(a) δ_{w} is the unique diagram automorphism of $I^{\text {ext }}$ such that $\delta_{w}(s)=$ $w_{\infty} s w_{\infty}^{-1}$ for all $s \in I$.
(b) I_{w} is the smallest δ_{w}-invariant subset of $I^{\text {ext }}$ containing $\operatorname{supp}_{I^{\text {ext }}}\left(w_{\text {tor }}\right)$.
(In some circumstances, it might be easier, instead of performing the steps
(4) and (5), to directly compute δ_{w} and I_{w} using Remark 10.48).
(6) Compute $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ using Lemma 4.2.
(7) Compute $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}=\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{\eta_{w}}$ (see Theorem 10.31) using Theorem 10.12. This yields $\mathcal{K}_{\mathcal{O}_{w}}$ by Theorem B.

10.9. Examples.

Example 10.52. Consider the Coxeter group W of affine type $D_{7}^{(1)}$, with set of simple reflections $S=\left\{s_{i} \mid 0 \leq i \leq 7\right\}$ as on Figure 11 .

Let $\theta:=\theta_{S \backslash\left\{s_{0}\right\}}$ be the highest root associated to $S \backslash\left\{s_{0}\right\}$: its components in the basis of simple roots are given in Figure 5 (see $\S 10.1 .1$), and hence $\theta=x \alpha_{7}$, where $x:=s_{2} s_{1} s_{3} s_{2} s_{4} s_{3} s_{5} s_{4} s_{6} s_{5} \in W$. In particular, $r_{\theta}=x s_{7} x^{-1}$. Note that, in the notation of $\S 10.2$, the reflections r_{θ} and $s_{0}=r_{\delta-\theta}$ have parallel fixed walls, and hence $t:=s_{0} r_{\theta}$ is a translation. Moreover, as $s \theta=\theta$ (and $s \delta=\delta$) for all $s \in I:=S \backslash\left\{s_{0}, s_{2}\right\}$, the translation t centralises W_{I}, and hence admits the affine span of $\left\{x_{0}, x_{2}\right\}$ as a translation axis (where x_{i} is as in $\S 10.2$).

Let $u \in W_{I} \subseteq W_{x_{0}}$ be cyclically reduced. Then $w:=u t$ is the standard splitting in W of w by Lemma 10.36, and w is cyclically reduced by Corollary 10.37. In particular, w is standard, as $\eta:=\eta_{w}=\eta_{t}$ is standard and w_{η} is cyclically reduced by Proposition 6.19. Thus, $P_{w}^{\infty}=P_{t}^{\infty}=W_{I}$ and $I=I_{\eta}$. Moreover, since $\pi_{\eta}(t)=\mathrm{id}$, Proposition 10.42 implies that $\delta_{w}=\mathrm{id}$ and $I_{w}=\operatorname{supp}(u) \subseteq I$.

Let $I_{1}=\left\{s_{1}\right\}$ and $I_{2}=\left\{s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$ be the components of I. Then $I_{1}^{\text {ext }}=$ $I_{1} \cup\left\{\tau_{1}=r_{\delta-\alpha_{1}}\right\}$ is of type $A_{1}^{(1)}$, and $I_{2}^{\text {ext }}=I_{2} \cup\left\{\tau_{2}=r_{\delta-\theta_{I_{2}}}\right\}$ is of type $D_{5}^{(1)}$. The labels in Figure 5 (see §10.1.1) allow to compute $\delta-\theta_{I_{2}}=s_{2} s_{1} s_{3} s_{2} \alpha_{0}$, and hence

$$
\tau_{2}=s_{2} s_{1} s_{3} s_{2} s_{0} s_{2} s_{3} s_{1} s_{2}
$$

Fig. 11. Example 10.52
Denote, as in Definition 10.11, by σ_{1} the diagram automorphism of $\Gamma_{I_{1}^{\text {ext }}}$ of order 2 mapping τ_{1} to s_{1}, and by σ_{2} the diagram automorphism of $\Gamma_{I_{2}^{\text {ext }}}$ of order 2 which permutes nontrivially each of the sets $\left\{\tau_{2}, s_{3}\right\}$ and $\left\{s_{6}, s_{7}\right\}$. Then the group Ξ_{η} is generated by $\sigma_{1} \sigma_{2}$ (see Theorem 10.12(D1)).
(1) Choose now $u=s_{3} s_{4} s_{5} s_{6}$, so that $I_{w}=\left\{s_{3}, s_{4}, s_{5}, s_{6}\right\}$. The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has 4 vertices, $I_{3456}:=I_{w}, I_{3457}:=\left\{s_{3}, s_{4}, s_{5}, s_{7}\right\}, I_{\tau 457}:=\left\{\tau_{2}, s_{4}, s_{5}, s_{7}\right\}$, and $I_{\tau 456}:=\left\{\tau_{2}, s_{4}, s_{5}, s_{6}\right\}$, forming a cycle, in that order (and these are the only edges of $\left.\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)\right)$. The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}=\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{\eta}$, on the other hand, has only two vertices, $\left[I_{w}\right]$ and $\left[I_{3457}\right]$.

Set $L:=\left\{s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$, so that $I_{3457}=\operatorname{op}_{L}\left(I_{w}\right)$. Then the second part of Theorem B implies that $\varphi_{w}^{-1}\left(\left[I_{w}\right]\right)=\operatorname{Cyc}(w)$ and $\varphi_{w}^{-1}\left(\left[I_{3457}\right]\right)=\operatorname{Cyc}\left(w^{\prime}\right)$, where

$$
w^{\prime}:=w_{0}(L) w w_{0}(L) \stackrel{L}{\leftrightharpoons} w .
$$

(2) Choose next $u=s_{1} s_{3} s_{4} s_{5} s_{6}$, so that $I_{w}=\left\{s_{1}, s_{3}, s_{4}, s_{5}, s_{6}\right\}$. The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has again 4 vertices, $I_{3456}:=I_{w}, I_{3457}:=\left\{s_{1}, s_{3}, s_{4}, s_{5}, s_{7}\right\}, I_{\tau 457}:=$ $\left\{s_{1}, \tau_{2}, s_{4}, s_{5}, s_{7}\right\}$, and $I_{\tau 456}:=\left\{s_{1}, \tau_{2}, s_{4}, s_{5}, s_{6}\right\}$, and is pictured on Figure 11 (with the same notational convention as on Figure 8, and writing simply τ for $\left.\tau_{2}\right)$. Since $\sigma_{1} \sigma_{2}\left(I_{w}\right)=\left\{\tau_{1}, \tau_{2}, s_{4}, s_{5}, s_{7}\right\}$ is not one of these vertices, $\Xi_{w}=\{1\}$ by Theorem $\mathrm{D}(7)$. Hence $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ coincides with $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ in this case (as well as with the tight conjugation graph $\left.\overline{\mathcal{K}}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}\right)$.

As before, $\varphi_{w}^{-1}\left(\left[I_{w}\right]\right)=\operatorname{Cyc}(w)$ and $\varphi_{w}^{-1}\left(\left[I_{3457}\right]\right)=\operatorname{Cyc}\left(w_{3457}\right)$, where

$$
w_{3457}:=w_{0}(L) w w_{0}(L) \stackrel{L}{\leftrightharpoons} w \quad \text { with } L:=\left\{s_{1}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right\} .
$$

Set now $L_{1}:=\left\{s_{1}, \tau_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\}$, so that $I_{\tau 456}=\mathrm{op}_{L_{1}}\left(I_{3456}\right)$. Set

$$
a_{1}:=s_{2} s_{1} s_{3} s_{2} s_{4} s_{3} s_{5} s_{4} s_{6} s_{5}
$$

and observe that $a_{1}\left(s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{6}\right) a_{1}^{-1}=\left(\tau_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{1}\right)$, so that $W_{L_{1}}^{\eta}=$ $a_{1} W_{K_{1}} a_{1}^{-1}$, where $K_{1}:=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{6}\right\}$. Note also that a_{1} is of minimal length in $a_{1} W_{K_{1}}$. Moreover, $a_{1}^{-1} u a_{1}=s_{6} s_{1} s_{2} s_{3} s_{4}$ is cyclically reduced, and $a_{1}^{-1} t a_{1}$ is a translation centralising $\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{6}\right\}$ (as t centralises I). In particular, we conclude as before that $w_{1}:=a_{1}^{-1} w a_{1}$ is cyclically reduced. The second part of Theorem B then implies that $\varphi_{w}^{-1}\left(\left[I_{\tau 456}\right]\right)=\operatorname{Cyc}\left(w_{\tau 456}\right)$, where

$$
w_{\tau 456}:=w_{0}\left(K_{1}\right) w_{1} w_{0}\left(K_{1}\right),
$$

and that $w \rightarrow w_{1} \stackrel{K_{1}}{\leftrightharpoons} w_{\tau 456}$.
Finally, set $L_{2}:=\left\{s_{1}, \tau_{2}, s_{3}, s_{4}, s_{5}, s_{7}\right\}$, so that $I_{\tau 457}=\operatorname{op}_{L_{2}}\left(I_{3457}\right)$. Let a_{2}, K_{2} be respectively obtained from a_{1}, K_{1} by exchanging the roles of s_{6} and s_{7}, so that $W_{L_{2}}^{\eta}=a_{2} W_{K_{2}} a_{2}^{-1}$ and a_{2} is of minimal length in $a_{2} W_{K_{2}}$. The same argument as
before then yields that $w_{2}:=a_{2}^{-1} w_{3457} a_{2}$ is cyclically reduced, that $\varphi_{w}^{-1}\left(\left[I_{\tau 457}\right]\right)=$ $\operatorname{Cyc}\left(w_{\tau 457}\right)$ where

$$
w_{\tau 457}:=w_{0}\left(K_{2}\right) w_{2} w_{0}\left(K_{2}\right),
$$

and that $w_{3457} \rightarrow w_{2} \stackrel{K_{2}}{\leftrightharpoons} w_{\tau 457}$.
Example 10.53. Consider the Coxeter group W of affine type $E_{7}^{(1)}$, with set of simple reflections $S=\left\{s_{i} \mid 0 \leq i \leq 7\right\}$ as on Figure 12.

Set $J_{1}:=\left\{s_{i} \mid 1 \leq i \leq 5\right\}$ and $J_{2}:=\left\{s_{i} \mid 2 \leq i \leq 7\right\}$, and consider the element $x:=s_{0} w_{0}\left(J_{1}\right) w_{0}\left(J_{2}\right) s_{7} \in W$. Then x normalises $J:=\left\{s_{2}, s_{3}, s_{4}, s_{5}, s_{7}\right\}$ (more precisely, conjugation by x permutes s_{2} and s_{5}, and fixes s_{3}, s_{4}, s_{7}), as follows from Lemma 4.2. One checks (see Algorithm F) that x^{2} is a translation commuting with $I:=\left\{s_{1}\right\} \cup J=S \backslash\left\{s_{0}, s_{6}\right\}$. In particular, since $\left|I_{\eta}\right| \leq|S|-2$ where $\eta:=\eta_{x}$, Lemma 10.46 implies that $I_{\eta}=I$.

Let $I_{1}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$ and $I_{2}=\left\{s_{7}\right\}$ be the components of I. Then $I_{1}^{\text {ext }}=$ $I_{1} \cup\left\{\tau_{1}=r_{\delta-\theta_{I_{1}}}\right\}$ is of type $D_{5}^{(1)}$, and $I_{2}^{\text {ext }}=I_{2} \cup\left\{\tau_{2}=r_{\delta-\alpha_{7}}\right\}$ is of type $A_{1}^{(1)}$. We claim that $x I^{\text {ext }} x^{-1}=I^{\text {ext }}$. Indeed, since $x \delta=\delta$ and $x s_{7} x^{-1}=s_{7}$, we have $x \tau_{2} x^{-1}=\tau_{2}$. On the other hand, the labels in Figure 5 (see §10.1.1) allow to compute $\delta-\theta_{I_{1}}=y \alpha_{7}$, where $y:=s_{6} s_{5} s_{4} s_{0} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}$. Hence $\tau_{1}=y s_{7} y^{-1}$, and one checks that $x s_{1} x^{-1}=\tau_{1}$ (so that $x \tau_{1} x^{-1}=x^{2} s_{1} x^{-2}=s_{1}$), yielding the claim.

Let $\sigma_{s_{1}}, \sigma_{s_{2}}, \sigma_{s_{7}}$ be as in Definition 10.11: with the notational convention taken in Lemma 10.1, $\sigma_{s_{1}}, \sigma_{s_{2}} \in \operatorname{Aut}\left(\Gamma_{I_{1}^{\text {ext }}}\right)$ have cycle decomposition $\sigma_{s_{1}}=\left(\tau_{1}, s_{1}\right)\left(s_{2}, s_{5}\right)$ and $\sigma_{s_{2}}=\left(\tau_{1}, s_{2}, s_{1}, s_{5}\right)$, while $\sigma_{s_{7}} \in \operatorname{Aut}\left(\Gamma_{I_{2}^{\mathrm{ext}}}\right)$ has cycle decomposition $\sigma_{s_{7}}=$ $\left(\tau_{2}, s_{7}\right)$. Then $\delta_{x}=\pi_{\eta}(x)=\sigma_{s_{1}}=\left(\sigma_{s_{2}} \sigma_{s_{7}}\right)^{2}$ by Remark 10.48 , while $\Xi_{\eta}=\left\langle\sigma_{s_{2}} \sigma_{s_{7}}\right\rangle$ by Theorem 10.12(E3).

Let now $u \in W_{I}$, and set $w:=u x^{n}$ for some $n \geq 1$. Since $u \in W^{\eta}$, we have $\eta_{w}=\eta$ and $\delta_{w}=\delta_{x}^{n}=\sigma_{s_{1}}^{n}$, while $w_{\eta}=u \delta_{x}^{n}$, so that I_{w} is the smallest $\sigma_{s_{1}}^{n}$-invariant subset of $I^{\text {ext }}$ containing $\operatorname{supp}(u) \subseteq I$. We now make various choices of (n, u) such that w_{η} is cyclically reduced.
(1) Choose first $n=1$ and $u=s_{4}$. Then $\delta_{w}=\sigma_{s_{1}}$ and $I_{w}=\left\{s_{4}\right\}$. The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has two vertices, $\left\{s_{4}\right\}$ and $\left\{s_{3}\right\}$, while the graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}=$ $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{\eta}$ has only one vertex. In particular, $\mathcal{O}_{w}^{\min }=\mathrm{Cyc}_{\text {min }}(w)$.
(2) Choose next $n=1$ and $u=s_{4} s_{7}$. Then $\delta_{w}=\sigma_{s_{1}}$ and $I_{w}=\left\{s_{4}, s_{7}\right\}$. In this case, the graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has two vertices, $I_{w}=\left\{s_{4}, s_{7}\right\}$ and $\mathrm{op}_{L}\left(I_{w}\right)=$ $\left\{s_{3}, s_{7}\right\}$ (where $L:=\left\{s_{3}, s_{4}, s_{7}\right\}$), and coincides with $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$. One checks (see Algorithm A) that w is cyclically reduced. The second part of Theorem B then implies that $\varphi_{w}^{-1}\left(I_{w}\right)=\operatorname{Cyc}(w)$ and $\varphi_{w}^{-1}\left(\mathrm{op}_{L}\left(I_{w}\right)\right)=\operatorname{Cyc}\left(w^{\prime}\right)$, where

$$
w^{\prime}:=w_{0}(L) w w_{0}(L) \stackrel{L}{\leftrightharpoons} w .
$$

(3) Choose next $n=2$ and $u=s_{1} s_{4} s_{5}$. Then $\delta_{w}=\mathrm{id}$ and $I_{w}=\left\{s_{1}, s_{4}, s_{5}\right\}$. The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has 8 vertices, and is pictured on Figure 12 (with the same notational convention as on Figure 8, and writing simply τ for τ_{1}). The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$, on the other hand, has only two vertices, $\left[I_{w}\right]$ and $\left[\left\{s_{1}, s_{3}, s_{5}\right\}\right]$, and we have $\left\{s_{1}, s_{3}, s_{5}\right\}=\mathrm{op}_{L}\left(I_{w}\right)$ with $L:=\left\{s_{1}, s_{3}, s_{4}, s_{5}\right\}$.

Since x^{2} is a translation, w is cyclically reduced by Corollary 10.37. The second part of Theorem B then implies that $\varphi_{w}^{-1}\left(\left[I_{w}\right]\right)=\operatorname{Cyc}(w)$ and $\varphi_{w}^{-1}\left(\left[\operatorname{op}_{L}\left(I_{w}\right)\right]\right)=$ $\operatorname{Cyc}\left(w^{\prime}\right)$, where

$$
w^{\prime}:=w_{0}(L) w w_{0}(L) \stackrel{L}{\leftrightharpoons} w .
$$

$\Gamma_{S} \quad \underset{0}{\circ}-{ }_{1}^{\circ}-\underset{3}{\circ}-\stackrel{1}{0}_{0}^{\circ}-\underset{5}{\circ}-\underset{6}{\circ}-\underset{7}{\circ}$
$\Gamma_{I^{\text {ext }}}$

(3)(4) $\mathcal{K}_{\delta_{\boldsymbol{w}}}^{0}\left(\boldsymbol{I}_{\boldsymbol{w}}\right)$

(4) $\mathcal{K}_{\boldsymbol{\delta}_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$

Fig. 12. Example 10.53
(4) Finally, choose $n=2$ and $u=s_{1} s_{4} s_{5} s_{7}$. Then $\delta_{w}=$ id and $I_{w}=\left\{s_{1}, s_{4}, s_{5}, s_{7}\right\}$. The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ has 8 vertices, and is the same as the one pictured on Figure 12 (adding s_{7} to each vertex). The graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$, on the other hand, has this time 4 vertices, with representatives $I_{145}=I_{w}, I_{135}, I_{123}, I_{124}$ (where $\left.I_{i j k}:=\left\{s_{i}, s_{j}, s_{k}, s_{7}\right\}\right)$, and is pictured on Figure 12. Note also that the tight conjugation graph $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ is the complete graph on this set of vertices.

As in (3), w is cyclically reduced. Consider the subsets $L_{1345}, L_{1245}, L_{1235}$ of $I^{\text {ext }}$, where $L_{i j k l}:=\left\{s_{i}, s_{j}, s_{k}, s_{l}, s_{7}\right\}$, so that

$$
I_{135}=\mathrm{op}_{L_{1345}}\left(I_{w}\right), \quad I_{124}=\mathrm{op}_{L_{1245}}\left(I_{w}\right), \quad \text { and } \quad I_{123}=\mathrm{op}_{L_{1235}}\left(I_{135}\right) .
$$

The second part of Theorem B then implies that $\varphi_{w}^{-1}\left(\left[I_{w}\right]\right)=\operatorname{Cyc}(w)$, while $\varphi_{w}^{-1}\left(\left[I_{135}\right]\right)=\operatorname{Cyc}\left(w_{135}\right)$ and $\varphi_{w}^{-1}\left(\left[I_{124}\right]\right)=\operatorname{Cyc}\left(w_{124}\right)$, where

$$
w_{135}:=w_{0}\left(L_{1345}\right) w w_{0}\left(L_{1345}\right) \stackrel{L_{1345}}{\leftrightharpoons} w \quad \text { and } \quad w_{124}:=w_{0}\left(L_{1245}\right) w w_{0}\left(L_{1245}\right) \stackrel{L_{1245}}{\leftrightharpoons} w .
$$

Similarly, $\varphi_{w}^{-1}\left(\left[I_{123}\right]\right)=\operatorname{Cyc}\left(w_{123}\right)$, where

$$
w_{123}:=w_{0}\left(L_{1235}\right) w_{135} w_{0}\left(L_{1235}\right) \stackrel{L_{1235}}{\leftrightharpoons} w_{135} .
$$

Index of notions

Atomic, 58
Centraliser degree, 61
Combinatorial minimal displacement set, 32
Core, 59
Core splitting, 59
Cuspidal, 23
Cyclic shift, 20
Cyclic shift class, 20
Cyclically reduced, 20
w-decreasing gallery, 32
δ-conjugacy class, 23
Elementarily tightly conjugate, 28
Elliptic part, 91
w-essential, 18, 50
Indivisible, 58
K-conjugation, 29, 30
w-parabolic subgroup, 50
P-reduced, 50
w-regular point, 41
w-residue, 18
Spherical path, 30
P-splitting, 51
Standard
direction $\eta, 72$
element of $W, 55,94$
Standard splitting, 91
Straight, 51
Structural conjugation graph, 30
Tight conjugation graph, 30
Translation part, 91
Transversal complex, 19
Weakly indivisible, 60

Index of symbols

Symbols
\xrightarrow{s} (cyclic shift by s) 20
\rightarrow (sequence of cyclic shifts) 20
$\stackrel{K}{\leftrightharpoons}$ (K-conjugation) 29, 30
$[I]$ (equivalence class of I in the quotient $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$) 46
\bar{s} (defined by $\overline{s_{i}}:=i$) 69
$\bar{I}($ set of \bar{s} with $s \in I)$ 69
A
$\operatorname{Aut}(\Sigma)_{\eta}($ stabiliser of η in $\operatorname{Aut}(\Sigma))$ 19
C
$C(\eta)$ (connected component of $X \backslash \bigcup_{m \in \mathcal{W}^{\eta}} m$ containing C) 19
C^{η} (chamber of Σ^{η} corresponding to C) 19
$\operatorname{CombiMin}(w), \operatorname{CombiMin}_{\Sigma}(w)($ combinatorial minimal displacement set of $w)$ 32
$\operatorname{Cyc}(w)($ cyclic shift class of $w)$ 20
$\mathrm{Cyc}_{\text {min }}(w)$ (cyclically reduced elements of $\left.\operatorname{Cyc}(w)\right)$ 20
D
$\mathrm{d}_{\mathrm{Ch}}^{\Sigma^{\eta}}\left(\right.$ chamber distance in $\left.\Sigma^{\eta}\right)$ 19
δ_{u} (transversal diagram automorphism induced by u) 42
G
Γ^{η} (gallery in Σ^{η} corresponding to Γ) 37
Γ_{S} (Dynkin diagram) 21
$\Gamma_{S}^{\text {Cox }}$ (Coxeter diagram) 14
I
$I_{\eta}\left(\right.$ defined by $\operatorname{Fix}_{W}\left(\left[x_{0}, \eta\right)\right)=W_{I_{\eta}}$ in case η is standard $)$ 72
$I_{\eta}^{\text {ext }}$ (affine extension of I_{η}) 73
$I_{i}^{\text {ext }}$ (affine extension of I_{i} by τ_{i}) 73
I_{j}^{α} (vertex of $\Gamma_{I_{j}}$ with smallest index) 75
I_{j}^{ω} (vertex of $\Gamma_{I_{j}}$ with largest index) 75
$I_{w}(C)$ (transversal support corresponding to $\pi_{w}(C)$) 43
I_{w} (same as $I_{w}\left(C_{0}\right)$) 43
K
κ_{v} (conjugation by v) 20
$\mathcal{K}_{\delta}, \mathcal{K}_{\delta, W}$ (graph with vertex set \mathcal{S}_{δ}) 30
$\mathcal{K}_{\delta}^{0}(I)$ (connected component of I in \mathcal{K}_{δ}) 30
$\overline{\mathcal{K}}_{\delta}^{0}(I)$ (connected component of I in $\overline{\mathcal{K}}_{\delta}$) 30
$\overline{\mathcal{K}}_{\delta}, \overline{\mathcal{K}}_{\delta, W}$ (version of \mathcal{K}_{δ} with more edges) 30
$\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right) / \Xi_{w}$ (quotient graph of $\mathcal{K}_{\delta_{w}}^{0}\left(I_{w}\right)$ by the action of Ξ_{w}) 46
$\mathcal{K}_{\mathcal{O}}$ (structural conjugation graph associated to \mathcal{O}) 30
$\mathcal{K}_{\mathcal{O}}^{t}$ (tight conjugation graph associated to \mathcal{O}) 30
M
$m_{i}\left(\right.$ wall fixed by $\left.s_{i}\right)$ 71
N
$\mathrm{Nb}(J)$ (neighbours of J in Γ_{S}) 78
$\mathrm{Nb}(s)$ (neighbours of s in Γ_{S}) 78
N_{I} (subgroup of the normaliser of W_{I} in W) 23
\widetilde{N}_{I} (subgroup of the normaliser of W_{I} in $\operatorname{Aut}(\Sigma)$) 23
O
op_{K} (opposition map in W_{K}) 22
\mathcal{O}_{w} (conjugacy class of w) 20
$\mathcal{O}^{\text {min }}$ (cyclically reduced elements of \mathcal{O}) 20
P
$\mathrm{Pc}(H)$ (parabolic closure of H) 14
π_{η} (transversal action map of W_{η} on Σ^{η}) 19
$\pi_{\Sigma^{\eta}}$ (natural poset morphism from Σ to Σ^{η}) 19
$\pi_{V^{\eta}}$ (orthogonal projection onto V^{η}) 71
π_{w} (parametrisation of conjugates of w by chambers) 32
$P_{w}^{\max }$ (largest spherical parabolic normalised by w) 54
$P_{w}^{\min }($ pointwise fixer of $\operatorname{Min}(w))$ 50
R
$\operatorname{Reg}_{X}(w)$ (set of w-regular points in X) 41
$R_{J}(C)$ (J-residue containing C) 16
R_{σ} (residue corresponding to the simplex σ) 16
R_{x} (residue corresponding to the point $x \in X$) 17
S
$\mathcal{S}_{\delta}($ set of δ-invariant spherical subsets of $S)$ 30
S^{η} (simple reflections of W^{η}) 19
Σ^{η} (transversal complex to Σ in the direction η) 19
σ_{i} (short for $\sigma_{I_{i}^{\alpha}}$ for classical types) 75
σ_{s} (either identity or diagram automorphism of $\Gamma_{I_{i}^{\mathrm{ext}}}$ mapping τ_{i} to s) 75
$\sigma_{x_{0}, \eta}$ (spherical simplex containing a germ of $\left[x_{0}, \eta\right)$ at x_{0}) 72
$\operatorname{supp}(w), \operatorname{supp}_{S}(w)$ (support of $\left.w\right)$ 14, 15
T
T (translations in $\operatorname{Aut}(\Sigma))$ 70
T_{0} (translations in W) 71
τ_{i} (added vertex in the affine extension of I_{i}) 73
$\operatorname{Typ}(S, I)$ (smallest subset of S satisfying (TYP0)-(TYP2)) 77
$\operatorname{typ}_{\Sigma}(v)$ (cotype of v in Σ) 70
V
V^{η} (orthogonal complement of $\bigcap_{m \in \mathcal{W}_{x_{0}}^{\eta}} m$ in V) 71
W
$w_{0}(K)$ (longest element of W_{K}) 22
$w_{\text {tor }}(P)$ (torsion part of w wrt P) 51
w_{c} (core of w) 59
$\mathcal{W}(C, D)$ (set of walls separating C from D) 16
w_{η} (transversal action of w on $\left.\Sigma^{\eta}\right)$ 19
\mathcal{W}^{η} (set of walls in the direction η) 19
W^{η} (subgroup generated by the reflections wrt a wall in \mathcal{W}^{η}) 19
W_{η} (stabiliser of η in W) 19
$w_{\text {tor }}(P)$ (straight part of w wrt P) 51
\widetilde{W} (extended Weyl group of W) 70
$\mathcal{W}_{x_{0}}$ (walls containing x_{0}) 71
$\mathcal{W}_{x_{0}}^{\eta}$ (walls of \mathcal{W}^{η} containing x_{0}) 71
X
x^{η} (image of x under $\pi_{V^{\eta}}$) 71
x_{i} (vertex of cotype s_{i} of the fundamental alcove) 71
Ξ_{η} (set of δ_{u} with $u \in W_{\eta}$) 42
Ξ_{w} (set of δ_{u} with $u \in \mathcal{Z}_{W}(w)$) 42
$x^{\perp_{\eta}}$ (unit vector in the direction η) 72
Z
$\mathcal{Z}_{W^{\eta}}\left(w_{\eta}\right)$ (centraliser of w_{η} in $\left.W^{\eta}\right)$ 44
$\mathcal{Z}_{W}(w)($ centraliser of w in $W)$ 32

References

[AB08] Peter Abramenko and Kenneth S. Brown, Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008, Theory and applications.
[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.
[BM15] Noel Brady and Jon McCammond, Factoring Euclidean isometries, Internat. J. Algebra Comput. 25 (2015), no. 1-2, 325-347.
[Bou68] Nicolas Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.
[Bri99] Martin R. Bridson, On the semisimplicity of polyhedral isometries, Proc. Amer. Math. Soc. 127 (1999), no. 7, 2143-2146.
[CF10] Pierre-Emmanuel Caprace and Koji Fujiwara, Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal. 19 (2010), no. 5, 12961319.
[CH16] Dan Ciubotaru and Xuhua He, The cocenter of the graded affine Hecke algebra and the density theorem, J. Pure Appl. Algebra 220 (2016), no. 1, 382-410.
[CL11] Pierre-Emmanuel Caprace and Jean Lécureux, Combinatorial and group-theoretic compactifications of buildings, Ann. Inst. Fourier, Grenoble 61 (2011), no. 2, 619672.
[CM13] P.-E. Caprace and T. Marquis, Open subgroups of locally compact Kac-Moody groups, Math. Z. 274 (2013), no. 1-2, 291-313.
[Coh94] Arjeh Marcel Cohen, Recent results on Coxeter groups, Polytopes: abstract, convex and computational (Scarborough, ON, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 440, Kluwer Acad. Publ., Dordrecht, 1994, pp. 1-19.
[Dav98] Michael W. Davis, Buildings are CAT(0), Geometry and cohomology in group theory (Durham, 1994), London Math. Soc. Lecture Note Ser., vol. 252, Cambridge Univ. Press, Cambridge, 1998, pp. 108-123.
[Deo82] Vinay V. Deodhar, On the root system of a Coxeter group, Comm. Algebra 10 (1982), no. 6, 611-630.
[Deo89] , A note on subgroups generated by reflections in Coxeter groups, Arch. Math. (Basel) 53 (1989), no. 6, 543-546.
[DL11] M. J. Dyer and G. I. Lehrer, Reflection subgroups of finite and affine Weyl groups, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5971-6005.
[GAP20] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.11.0, 2020, https://www.gap-system.org.
[GHL $\left.{ }^{+} 96\right]$ Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, and Götz Pfeiffer, CHEVIE - a system for computing and processing generic character tables, vol. 7, 1996, Computational methods in Lie theory (Essen, 1994), pp. 175-210.
[GKP00] Meinolf Geck, Sungsoon Kim, and Götz Pfeiffer, Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra 229 (2000), no. 2, 570-600.
[GP93] Meinolf Geck and Götz Pfeiffer, On the irreducible characters of Hecke algebras, Adv. Math. 102 (1993), no. 1, 79-94.
[GP00] , Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000.
[He07] Xuhua He, Minimal length elements in some double cosets of Coxeter groups, Adv. Math. 215 (2007), no. 2, 469-503.
[He20] , Private communication, Sept. 9, 2020.
[HN12] Xuhua He and Sian Nie, Minimal length elements of finite Coxeter groups, Duke Math. J. 161 (2012), no. 15, 2945-2967.
[HN14] , Minimal length elements of extended affine Weyl groups, Compos. Math. 150 (2014), no. 11, 1903-1927.
[HN15] , P-alcoves, parabolic subalgebras and cocenters of affine Hecke algebras, Selecta Math. (N.S.) 21 (2015), no. 3, 995-1019.
[How80] Robert B. Howlett, Normalizers of parabolic subgroups of reflection groups, J. London Math. Soc. (2) 21 (1980), no. 1, 62-80.
[Kac90] Victor G. Kac, Infinite-dimensional Lie algebras, third ed., Cambridge University Press, Cambridge, 1990.
[Kra09] Daan Krammer, The conjugacy problem for Coxeter groups, Groups Geom. Dyn. 3 (2009), no. 1, 71-171.
[LS79] G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), no. 1, 41-52.
[Lus77] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101-159.
[Mar14] Timothée Marquis, Conjugacy classes and straight elements in Coxeter groups, J. Algebra 407 (2014), 68-80.
[Mar19] , On geodesic ray bundles in buildings, Geom. Dedicata 202 (2019), 27-43.
[Mar21] _ Cyclically reduced elements in Coxeter groups, Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 2, 483-502.
[Mat64] Hideya Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris 258 (1964), 3419-3422.
[Mic15] Jean Michel, The development version of the chevie package of gap3, J. Algebra 435 (2015), 308-336.
[MPW15] Bernhard Mühlherr, Holger P. Petersson, and Richard M. Weiss, Descent in buildings, Annals of Mathematics Studies, vol. 190, Princeton University Press, Princeton, NJ, 2015.
[Nos11] G. A. Noskov, Asymptotic behavior of word metrics on Coxeter groups, Doc. Math. 16 (2011), 373-398.
[NR03] G. A. Niblo and L. D. Reeves, Coxeter groups act on CAT(0) cube complexes, J. Group Theory 6 (2003), no. 3, 399-413.
[Tit69] Jacques Tits, Le problème des mots dans les groupes de Coxeter, Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1, Academic Press, London, 1969, pp. 175185.
[Wei09] Richard M. Weiss, The structure of affine buildings, Annals of Mathematics Studies, vol. 168, Princeton University Press, Princeton, NJ, 2009.

UCLouvain, IRMP-MATH, Chemin du Cyclotron 2, Bte L7.01.02, 1348 Louvain-la-Neuve, Belgium

Email address: timothee.marquis@uclouvain.be

[^0]: 2010 Mathematics Subject Classification. 20F55, 20E45.
 Key words and phrases. Coxeter groups, Conjugacy classes, Cyclic shifts.
 *F.R.S.-FNRS Research Associate; supported in part by the FWO and the F.R.S.-FNRS under the EOS programme (project ID 40007542).

[^1]: ${ }^{1}$ In [He20], X. He informed me that he generalised the result that "cuspidal classes never fuse" in [GP00, Theorem 3.2.11] to arbitrary Coxeter groups, and that one may also deduce Proposition A from this result with Lemma 4.13 in this paper.

