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Abstract. We prove that several problems associated with probabilistic finite au-
tomata are undecidable for automata whose number of input letters and number of
states are fixed. As a corollary of one of our results we prove that the problem of
determining if the set of all products of two 47 × 47 matrices with nonnegative
rational entries is bounded is undecidable.

1. Introduction

In this paper we provide new undecidability proofs for several problems associated with
probabilistic finite automata (PFAs). Probabilistic finite automata accept words with a
certain probability, they were introduced in the 1960s by Rabin as a generalization of
finite deterministic automata [R1] (see also [P3] for a book-length treatment). The first
problem we consider is the emptiness problem: we are given a PFA M and a probability
threshold λ and we are asked if there is a word that is accepted by M with probability ex-
ceeding λ. We show that this problem is undecidable for PFAs with two input letters and
46 states. We then consider problems related to isolated thresholds. A probability thresh-
old is said to be isolated if it cannot be approached arbitrarily closely. One motivation for
considering isolated thresholds follows from the fact that the set of words accepted with
a probability exceeding an isolated threshold is regular. We prove that the problems of
deciding if a given threshold is isolated, and the problem of deciding if a given PFA has
an isolated threshold are both undecidable for automata of fixed dimensions (two input
letters and respectively 420 and 2354 states). In order to derive these two results, we first
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prove that an infinite version of the classical Post correspondence problem is undecidable
for a fixed number of pairs of words. This result appears to be of independent interest.

We now describe our results in some more detail. Let� be a finite set of input letters
and let�∗ denote the set of all finite input words; typical elements of�∗ will be denoted
w = σ1 · · · σN . A deterministic finite automaton partitions the elements of �∗ between
those that it accepts and those that it rejects. A probabilistic finite automaton assigns an
acceptance probability to the elements of �∗. This acceptance probability is obtained
as follows. The probabilistic automaton M is given by a finite set Q of n states, n × n
row-stochastic transition matrices Tσ (one for each symbol σ ∈ �), one initial state,
and one final state (the initial and finite states need not be distinct). At time k = 1 the
system is in its initial state. At a typical time k ≥ 1, the state of the system is equal to
some i ∈ Q, an input letter σ ∈ � is chosen, and the next state is chosen at random and
is equal to j with probability (Tσ )ji. We denote by fM(w) the probability of being in the
final state upon input of the wordw = σ1 · · · σN . Thus, fM(w) is equal to the probability
of going from the initial to the final state after the actions σ1, . . . , σN have been taken;
we say that the automaton accepts the word w with probability fM(w). It is easy to see
that the function fM can be obtained as

fM(w) = πTTwη,

where ·T denotes matrix transposition, Tw = Tσ1 · · · TσN , and π (respectively, η) is a
column vector whose entries are all equal to zero except for the entry whose index is
that of the input state (respectively, output state) which is equal to one.

The emptiness problem for PFAs is the following problem. Assume that we are
given a PFA M and some probability threshold (“cut-point”) λ with 0 ≤ λ ≤ 1. The
set {w ∈ �∗: fM(w) > λ} is the set of words accepted with a probability exceeding
λ. The emptiness problem (also known as the threshold problem or the string existence
problem) is the problem of deciding for a given PFA and a given threshold λ whether
or not this set is empty, i.e., whether or not there is a string that is accepted with a
probability exceeding λ. The emptiness problem has been proved undecidable by Paz
by reduction from a problem on context-free languages (Theorem 6.17 in Chapter III
of [P3]). This context-free problem is proved undecidable in [G] by reduction from
Post’s correspondence problem. The complete reduction can be reconstructed from the
long chain of arguments appearing in these two references.1 Paz was not interested in
deriving bounds on the PFA for which the problem is undecidable. His proof uses on
several occasions a construction which leads to an exponentiation of the number of states.
A conceptually different proof—by reduction from the halting problem for 2-counter
machines—is given in [CL] for the purpose of studying bounded interactive proofs. In
Section 2 we provide a new elementary proof. Our proof is by reduction from Post’s
correspondence problem. In addition from being elementary (it only uses elementary
linear algebra), our reduction has the advantage that it provides bounds on the number
of states of the automaton for which the problem is undecidable; a feature that was not
present in the two previous proofs. More explicitly, we prove in Theorem 2.1 that the
emptiness problems is undecidable for PFAs with two input letters and with 6k+4 states,
where k is any number of pairs of words for which Post’s correspondence problem is

1 Theorem 6.17 of [P3] refers to [Ginzburg, 1966]; a reference that is not present in the reference list
given in [P3]. The correct reference is [G].
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undecidable. Post’s correspondence problem is known to be undecidable for seven pairs
and so the emptiness problem is undecidable for 46 states; we do not expect this bound
to be sharp. In fact, we do not even know if there is an effective procedure for the case
of PFAs with two states. By using small variations of our proof we show that the similar
problems of determining if there are words w for which f (w) > λ, f (w) ≤ λ, or
f (w) < λ are all undecidable for PFAs with two input letters and 46 states.

We now describe problems associated with isolated thresholds (“isolated cut-
points”). A probability threshold λ is said to be isolated for some PFA M if there
exists some ε > 0 such that | fM(w)−λ| > ε for allw ∈ �∗. In other words, a threshold
is isolated if it cannot be approached arbitrarily closely by probabilities associated with
input words. The interest for considering isolated thresholds is that the languages they
define are in general less expressive than those associated with arbitrary thresholds. The
language {w ∈ �∗: fM(w) > λ} need not be regular in general but is regular when λ is
isolated (see [R3] for a proof). This naturally raises the question of deciding if a given
threshold is isolated (the threshold isolation problem), and the question of deciding if a
given PFA has an isolated threshold (the isolated threshold existence problem). These
two problems are stated in [R3] and in [P3]. The threshold isolation problem is proved
undecidable in [BMT] (a first incomplete version of the proof appears in [B1]). This result
has been recently rediscovered in [MHC] using a completely different proof technique.2

The proof in [MHC] proceeds by reduction from the halting problem whereas that in
[BMT] uses a reduction from an infinite version of Post’s correspondence problem. In
[BMT] the authors also prove that the isolated threshold existence problem is undecid-
able. None of these proofs provide undecidability for PFAs with a fixed number of states.
In Section 4 we prove that both problems are undecidable for PFAs with a fixed number
of states. In order to fix the number of states, we first prove in Section 3 that the infinite
correspondence problem is undecidable for 105 pairs of words. This result appears to be
of independent interest.

We finally remark that all the above questions can also be phrased in terms of the
range of the function fM associated with the PFA M . For a given PFA M , define the
range of fM by �M = { fM(w): w ∈ �∗}. The emptiness problem is the problem of
deciding if �M contains a value exceeding λ, the threshold isolation problem is the
problem of deciding if there is an open set centered on λ that is not contained in �M ,
and the isolated threshold existence problem is the problem of deciding if the set �M is
dense in the unit interval [0, 1].

The concept of a PFA appears in a number of different contexts. They are used
to study Arthur–Merlin games [BM], [CHPW], space bounded interactive proofs [CL],
rational series and semigroups of matrices [BT2], and Markov decision processes and
planning questions [B2], [MHC], [PT] (see Section 5 of [BT3] for a survey). The results
we prove here have implications for all problems that were proved undecidable by reduc-
tion from one of the problems we consider. In particular, using a reduction that appears
in [BT2], we prove as a corollary of Theorem 2.1 that the problem of determining if the
set of all products of two 47 × 47 matrices with nonnegative rational entries is bounded
is undecidable. This result was so far only known for matrices of unbounded dimensions
and has implications for the stability analysis of switched systems, as explained in [BT2].

2 The author of [MHC] does not seem to be aware of the references [B1] and [BMT].
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2. Threshold Problems

The emptiness problem is the problem of determining, for a given PFA and probability
threshold λ, if there exists a word that is accepted with a probability exceeding λ. We
show that this problem is undecidable for PFAs with two letters and 46 states. Our proof
is by reduction from Post’s correspondence problem on n pairs of words (PCP(n)):

PCP(n)

Instance: A finite alphabet A, n pairs of words (ui , vi ) ∈ A∗ × A∗.
Question: Does there exist some N ≥ 1 and indices i1, . . . , iN ∈ {1, . . . , n} for

which ui1 · · · uiN = vi1 · · · viN ?

Post’s correspondence problem is trivially decidable for one letter alphabets but is un-
decidable when the alphabet contains more than one letter; for a proof of this result
see the original paper [P4] or [HU]. The decidability of PCP(n) does not depend on the
cardinality of A when #A ≥ 2 but depends on the number of pairs of words. The number
of pairs of words for which the problem is undecidable has been successively improved.
It is now known that the case of n = 7 pairs is undecidable, see [MS2]. The decidability
status of PCP(2) was a long standing open problem until it was proved to be decidable
in [EKR] and [P2]. The cases n = 3, . . . , 6 are yet unresolved.

Post’s correspondence problem can also be formulated as follows. Consider k words
ui ∈ A∗ and vi ∈ A∗. To the sequence of indices w = i1i2 · · · iN with i j ∈ {1, . . . , k}
we associate the words uw = ui1 · · · uiN ∈ A∗ and vw = vi1 · · · viN ∈ A∗. Post’s
correspondence problem is the problem of determining if there exists a sequence w of
indices for which the associated words uw and vw are identical.

Theorem 2.1. For a given PFA and a given cut-point 0 ≤ λ ≤ 1, the problems of
deciding if

(1) there exists a word w for which f (w) ≥ λ,
(2) there exists a word w for which f (w) > λ,
(3) there exists a word w for which f (w) ≤ λ,
(4) there exists a word w for which f (w) < λ

are all undecidable. Moreover, these problems remain undecidable for PFAs that have
two letters, and that have 6k +4 states where k denotes any number of pairs of words for
which Post’s correspondence problem is undecidable (Post’s correspondence problem
is undecidable for k = 7 pairs; see [MS2]).

Proof. We give a complete proof only for the first case. The other three cases can be
proved similarly, a sketch of these cases is provided below. The proof is by reduction from
Post’s correspondence problem and proceeds in several steps. We start from an instance
of Post’s correspondence problem. In a first step we use a variation of an encoding
originally due to Paterson [P1] (see also [HK]) to construct a rational series whose terms
are all nonnegative and whose zero terms exactly correspond to the solutions to Post’s
correspondence problem. A series with this property can be obtained by constructing
the series whose coefficients are the square of the coefficients of the series constructed
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in [P1]. Such a construction is described, e.g., in [SS]. We provide a slightly different
proof that has the advantage that the resulting matrices are of dimension six rather than
nine. In a second step we reduce the cardinality of the alphabet to two at the expense
of an increase of the state dimension. In a third step we modify this series to obtain a
series whose terms that are positive are those that correspond to the solutions of Post’s
correspondence problem. In a fourth step we go through a sequence of modifications and
eventually obtain a series whose associated matrices are stochastic, and with canonical
input and output vectors.

Let (ui , vi ) ∈ A∗ ×A∗ (i = 1, . . . , k) be an instance of PCP(k). We assume without
loss of generality that the cardinality of A is equal to two and define A = {1, 2}.
Step 1. We first encode the correspondence problem as a problem for rational series.
Let therefore σ : A∗ → N give the 10-adic representation of words of A∗. To the pair
of words (u, v) ∈ A∗ × A∗ we associate the nonnegative matrix A(u, v) ∈ N

6×6 as
follows:

A(u, v) =




102|u| 0 0 0 0 0

0 10|u|+|v| 0 0 0 0

0 0 102|v| 0 0 0

σ(u)10|u| σ(v)10|u| 0 10|u| 0 0

0 σ(u)10|v| σ(v)10|v| 0 10|v| 0

σ(u)2 2σ(u)σ (v) σ (v)2 2σ(u) 2σ(v) 1



.

Straightforward calculations show that this particular matrix structure is preserved under
matrix multiplication, i.e., γ (u1, v1)γ (u2, v2) = γ (u1u2, v1v2) for all words u1, u2, v1,

v2. We define Ai ∈ N
6×6 by Ai = A(ui , vi ) and Aw = Ai1 · · · AiN for w = i1 · · · iN .

Post’s correspondence problem is the problem of determining if there exists a word w
and an associated product Aw whose (6, 4)th and (6, 5)th entries are equal. We now
define α = (0 0 0 0 0 1)T and β = (1 − 2 1 0 0 0)T. Then

αT A(u, v)β = σ(u)2 − 2σ(u)σ (v)+ σ(v)2 = (σ (u)− σ(v))2 ≥ 0,

and we have equality to zero in this inequality if and only if u = v. The correspondence
problem is thus equivalent to the problem of deciding if there exists a word w for which
αT Awβ = 0.

Step 2. As a next step, we reduce the number of matrices to two. Let {A1, . . . , Ak}
be the 6 × 6 matrices defined above. Define two 6k × 6k matrices B1, B2 by B1 =
diag(A1, . . . , Ak) (i.e., B1 is block-diagonal with blocks A1, . . . , Ak in that order) and

B2 =
(

0 I6(k−1)

I6 0

)
,

where Ir is the r × r identity matrix. Define then α1 = (αT 0)T and β1 = (βT 0)T.
To w = i1 · · · iN ∈ {1, 2}∗ we associate the matrix Bw = Bi1 · · · BiN and claim that
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αT
1 Bwβ1 ≥ 0 with equality to zero only if there exists a word w for which αT Awβ = 0.

The proof of this claim is analogous to the proof of Theorem 1 in [BT1] and is not
detailed here. It essentially uses the observation that Bk

2 = I6k and

Bi−1
2 B1 Bk−(i−1)

2 = diag(Ai , . . . , Ak, A1, . . . , Ai−1)

for i = 1, . . . , k.

Step 3. We define two new matrices C1,C2 ∈ N
(6k+1)×(6k+1) by C1 = diag(B1, 1) and

C2 = diag(B2, 1). We then let α2 = (αT
1 1)T and β2 = (−βT

1 1)T. Then αT
2 Cwβ2 =

1 − αT
1 Bwβ1 and so αT

2 Cwβ2 ≥ 0 for all words w and there exists a word w for which
αT

2 Cwβ2 > 0 if and only if the correspondence problem has a solution.

Step 4. We finally need to transform our problem into an emptiness problem for a
PFA. Several substeps are needed for this. In a first substep we show how to reduce
our problem to a situation where the vectors α and β are normalized. In a second
subset we reduce the problem to a situation where all matrices have row and column
sum equal to zero. Finally, we use a transformation to obtain stochastic matrices. The
transformations we use are analogous to those used in the proof of the main result
of [T].

(a) We define two new matrices D1, D2 ∈ N
(6k+2)×(6k+2) by

Di =
(

0 αT
2 Ci

0 Ci

)
, α3 = (1 0 · · · 0)T, β3 = (1 βT

2 )
T.

Then αT
3 Dεβ3 = αT

3β3 = 1 (ε denotes the empty word) and αT
3 Dw β3 = αT

2 Cw β2

for w �= ε. Let {β3, v2, v3, . . . , v6k+2} be an orthogonal basis of R
6k+2; such a basis

can be effectively constructed by using the Gram–Schmidt process. Then the vectors
α3, v2, . . . , vN+1 are linearly independent (indeed, assume not, then α3 is a linear com-
bination of the vectors vi and therefore α3β3 must be equal to zero). Hence the matrix

R =



α3

v2

...

vN+1




is nonsingular. Define α4 and β4 by α4 = R−1α4 and β4 = Rβ3. Then

α4 = β4 = (1 0 · · · 0)T.

We further define Ei = RDi R−1 and obtain

αT
4 Ew β4 = αT

3 Dw β3 = αT
2 Cw β2 (w �= ε).
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(b) Next we construct two matrices F1, F2 ∈ N
(6k+4)×(6k+4). The matrices are def-

ined by

Fi =




0 0 0

ti Ei 0

si ri 0




and the entries si , ti , and ri are chosen so that the row and column sums of Fi are equal
to zero. This property is equivalent to Fi 1 = 0 and 1T Fi = 0 where 1 is the vector whose
entries are all equal to one. Every matrix Fw with w �= ε has this property. Denoting
now

α5 = (0 αT
4 0)T and β5 = (0 βT

4 0)T

we obtain

αT
5 Fw β5 = αT

4 Ew β4 = αT
3 Dw β3 = αT

2 Cw β2 (w �= ε).

(c) Let Q denote the matrix whose entries are all equal to one and notice that
Qi = ni−1 Q where n is the dimension of Q. Since the row and column sums of Fw are
equal to zero we have

FwQ = QFw = 0 (w �= ε).

We now define Gi = Fi + γ Q for γ ≥ 0 so large that all the entries of the matrices Gi

are positive. Then the matrices Hi defined by

Hi = 1

γ (6k + 4)
Gi

are doubly stochastic. Using

Gw = Fw + γ |w| Q|w| = Fw + γ |w|(6k + 4)|w|−1 Q

for any nonempty word w we also observe that

Hw = 1

γ (6k + 4)|w| Fw + 1

(6k + 4)
Q.

Defining α6 = α5, β6 = β5 we obtain

αT
6 Hwβ6 = 1

γ (6k + 4)|w|α
T
5 Fwβ5 + 1

(6k + 4)

= 1

γ (6k + 4)|w|α
T
2 Cw β2 + 1

(6k + 4)
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for all nonempty word w. Post’s correspondence problem has a solution if and only if
there exists a nonempty word w for which αT

2 Cw β2 > 0. This will be the case if and
only if there exists a nonempty word w for which

αT
6 Hw β6 >

1

6k + 4
.

The matrices H1 and H2 together with the vectors α6 = β6 define a PFA on two letters
and 6k + 4 states. The proof therefore follows by setting λ = 1/(6k + 4).

Step 5. We now briefly comment on the adaptation of this proof for proving the cases
f (w) ≥ λ, f (w) < λ, and f (w) ≤ λ. The only modification that is needed is at step 3.
In the present proof we construct C1,C2 and α2, β2 such that there exists a word w
for which αT

2 Cwβ2 > 0 if and only if the correspondence problem has a solution. We
can easily construct matrices and vectors such that αT

2 Cwβ2 ≥ 0, αT
2 Cwβ2 < 0, and

αT
2 Cwβ2 ≤ 0 if and only if the correspondence problem has a solution.

Let � be a finite set of matrices and let ‖ · ‖ be some matrix norm. We say that the
set � is (product) bounded if the set {‖A1 · · · Ak‖ : Ai ∈ �, i = 1, . . . , k} is bounded.
The undecidability of the emptiness problem for PFAs is used in [BT2] to prove that
product boundedness of sets consisting of two matrices is undecidable. By adapting the
reduction used in [BT2], we easily deduce the following corollary.

Corollary 2.1. The problem of determining if the set of all products of two 47 × 47
matrices with nonnegative rational entries is bounded is undecidable.

The fact that the matrices have rational (and not just integer) entries is crucial here.
Indeed, for matrices with integer entries, product boundedness of � is equivalent to the
finiteness of the semigroup generated by � and the later property is proved decidable
in [J] and [MS1]. Thus, boundedness of the semigroup generated by two matrices is
undecidable when the matrices have rational entries, but is decidable when they have
integer entries.

3. Infinite Post Correspondence

In this section we extend Post’s original correspondence problem to infinite correspon-
dences. It is clear that when a finite correspondence between pairs of words is possible,
then an infinite correspondence is also possible. The converse of this statement is not
true. Consider for instance the following pairs:3 (aab, a) and (aa, baa). The associated
correspondence problem does not have a finite solution but an infinite correspondence is
possible. Several definitions of what is meant by an “infinite correspondence” appear to
be possible. We first show that all definitions we introduce are equivalent and then show
that these infinite correspondence problems (w-PCP(n)) are undecidable for n = 105

3 Personal communication of J. Karhumäki.
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pairs of words. This result will be used in the next section to prove that questions related
to isolated cut-points for PFAs are undecidable for automata of fixed dimension. The
fact that the infinite Post correspondence problem is undecidable is proved in [B1] and
is later mentioned in [R5], but so far it was unknown that the problem is undecidable for
a fixed number of pairs [K]. Compared with the seven pairs of words for which PCP is
undecidable, our bound of 105 appears to be conservative and it seems likely that there
is room for improvement. Our bound is in fact directly related to the size of a small
universal Turing machine and the minimal size of universal computing devices is the
object of ongoing research and regular improvements; see, e.g., [KR].

On the decidability side, it is unknown if, as for the finite case, the case of two
pairs of words is decidable [K]. Recently it was shown that the existence of an infinite
solution is decidable for the particular case of marked morphisms; see [HH]. Marked
morphisms correspond to the situation where the pairs of words (ui , vi ) are such that no
two words ui start with the same letter, and similarly for vi . This result is close to giving
the decidability for two pairs of words, but does not quite do so.

Related to these questions, we also mention here that in [R5] Ruohonen has studied
variations of Post’s correspondence problem for different set-ups; in particular, doubly
infinite words, doubly infinite powers of words, and circular words.

Let A and B be finite alphabets. An instance of the infinite Post correspondence
problem is a couple (h, g) of functions h, g: B → A+. Every function f : B → A+

can be naturally extended to a morphism f : BN → AN and the infinite correspondence
problem is then the problem of determining if there exists a word w for which f (w) =
g(w). In order to introduce other extensions of Post’s correspondence problem to infinite
words we need one more definition. The longest common prefix of two words u, v ∈ A∗

is denoted by u ∧ v and is given by w ∈ A∗ with wi = ui = vi (i = 1, . . . , |w|) and
u|w|+1 �= v|w|+1 or |w| = |u| or |w| = |v|. This operation can also be extended to infinite
words.

Theorem 3.1. Let B be an alphabet of n letters, let A be a finite alphabet, and let
h, g: B → A+. Then the following are equivalent:

(1) ∃W ∈ BN such that h(W ) = g(W );
(2) #{⋃w∈B∗ h(w) ∧ g(w} = +∞;
(3) ∀L ∈ N, ∃wL ∈ B∗, |h(wL) ∧ g(wL)| ≥ L .

When these conditions are satisfied, we say that the infinite correspondence problem has
a solution.

Proof. Let h, g be two functions B → A+.
(1) ⇒ (2) Let W ∈ BN be such that h(W ) = g(W ). Then the map N → A∗: N �→

h(W0 · · · WN−1) ∧ g(W0 · · · WN−1) is strictly increasing and the result follows.
(2) ⇒ (3) Suppose (3) is false, that is ∃L0 ∈ N,∀w ∈ B∗, |h(w) ∧ g(w)| < L0.

Then the set {⋃w∈B∗ h(w) ∧ g(w)} is finite. This contradicts (2).
(3) ⇒ (1) There exists a sequence (wn)n≥0 such that ∀n ∈ N, |h(wn)∧g(wn)| ≥ n.

Since BN is compact as a metric space with the discrete topology, it follows that there
exists a convergent subsequence (wni )i≥0. We define limi→∞wni = W ∈ BN. Since
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the morphisms h and g are continuous, it follows that h(W ) = limi→∞ h(wni ) =
limi→∞ g(wni ) = g(W ) and so h(W ) = g(W ).

Since all the above definitions are equivalent, we choose one of them and state the
infinite Post correspondence problem as follows:

ω-PCP(n)

Instance: Let A be a finite alphabet, let B be an alphabet of size at most n, and let
(h, g) be two morphisms B → A+.

Question: Does there exists an infinite sequence W ∈ BN such that h(W ) = g(W )?

It is possible to define a “left” infinite Post correspondence problem, in which we
ask for the existence of a left-infinite word rather than a right-infinite word. Contrary to
the finite case for which it is equivalent to proceed from the left or from the right, in the
infinite case there are instances for which only one of the correspondences has a solution,
e.g., the instance (a, ab), (b, a) has a right-infinite correspondence (abababa · · ·) but
no left-infinite correspondence since the last letters in the words of any given pair are
always different. Nevertheless, the right and the left infinite problems are computationally
equivalent, as we can easily reduce one to the other using the reversal map which to a
word w = w1 · · ·wl associates its mirror w̃ = wl · · ·w1.

As for the classical proof that PCP is undecidable, we prove that ω-PCP is undecid-
able by reduction from a modified version of the problem in which we impose the first
letter of the solution word. We obtain our result by combining the proof of Bertoni [B1]
with a universal Turing machine encoding and sharp bounds on small universal Turing
machines taken from [R4].

Theorem 3.2. ω-PCP(105) is undecidable.

Proof. The proof proceeds in two steps. First, from a small universal Turing machine
U and an input x to U , we construct two morphisms h and g such that there exists a
infinite word W whose first letter is given and such that h(W ) = g(W ) if and only if
U halts on x . In this construction the cardinality of the morphisms’ alphabet does not
depend on x . In a second step we reduce this modified correspondence problem with n
rules to ω-PCP with n + 1 rules.

Step 1. We use a variation of the universal Turing machine with ten states and three
letters given by Rogozhin (see [R4]). It is easy to see how to modify this machine to obtain
a machine U with the following features. The machine has ten states {q1, . . . , q10} with
q1 the starting state. The tape alphabet has four letters (0, 1, b, and #) and the transition
function of the machine is given by some function

δ: {q1, . . . , q10} × {0, 1, b, #} → {q1, . . . , q10} × {0, 1, b, #} × {L , R}.

There are 40 state/symbol combinations for which this function needs to be defined. In
19 cases the resulting image has an R instruction; in 20 cases it has an L instruction, and
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in one case the transition function is not defined; this case corresponds to the machine
being in a halting state. Consider now an input word y ∈ {0, 1, b}∗ to the machine. Let
U start in state q1 with its head on the first letter of y and with the rest of the tape filled
with #. The problem of determining if U ever enters the state/symbol combination for
which δ is not defined is undecidable.

We now describe how to construct morphisms that simulate U . We use words
of {q1, . . . , q10, 0, 1, b}∗ to encode state/tape content combinations. Thus for exam-
ple the word 01bq71101b0 means that the machine is in state q7, the tape content is
· · · #01b1101b0# · · · , and the machine reads the symbol 1 (i.e., the symbol immedi-
ately to the right of the head). The morphisms h, g take value in the set of words
{q1, . . . , q10, 0, 1, b, #}∗ and are defined as follows.

Starting correspondence: Let y ∈ {0, 1, b}∗ be the input word to the machine. Then
we set

h(1) = # and g(1) = #q1 y#. (1)

Propagation correspondences:

h(2) = g(2) = 0,

h(3) = g(3) = 1,
(2)

h(4) = g(4) = b,

h(5) = g(5) = #.

Instruction correspondences: For each instruction of the type δ(q, X) = (p, Y, R), we
define

h( j) = qX and g( j) = Yp (3)

and for each instruction of the type δ(q, X) = (p, Y, L) and for each Z ∈ {0, 1, b, #}
we define

h( j) = ZqX and g( j) = pZY. (4)

There is 1 starting correspondence, 4 propagation correspondences, 19 (right) in-
struction correspondences, and 4 × 20 (left) instruction correspondences. This leads to
a total of 104 correspondences. Note that this total number of correspondences does not
depend on the input word y. If the machine U does not halt on y, then it is clear how to
construct an infinite word W that appropriately simulates this. On the other hand, if the
machine halts on y, then the correspondence is no longer possible once the machine has
halted and there exists no infinite word W for which f (W ) = g(W ).

Step 2. We reduce the problem obtained above with n rules to ω-PCP(n + 1). The
reduction is similar to the standard reduction of the modified Post correspondence prob-
lem MPCP(n) to PCP(n + 2) in the finite case; see, e.g., [HU]. Let h, g: C → �+ with
C = {c1, . . . , cn}. Let b̄ be a symbol not in�. We define the alphabets B = C ∪ {c0} and
A = � ∪ {b̄}, and the right and left morphisms L and R defined on � by

L: � → A+, L(d) = b̄d, R: � → A+, R(d) = db̄.



242 V. D. Blondel and V. Canterini

We then define an instance (h′, g′) of ω-PCP(n + 1) with h′ and g′: B → A+ by

g′(c0) = L(g(c1)) and h′(c0) = b̄R(h(c1)) (5)

and

g′(c) = L(g(c)) and h′(c) = R(h(c)) for all c ∈ C. (6)

If Z ∈ CN is an infinite word such that h(c1 Z) = g(c1 Z), then obviously h′(c0 Z) =
g′(c0 Z). Conversely, if Y ∈ BN is such that h′(Y ) = g′(Y ), then clearly (5) implies that
Y0 = c0 and h(c1Y1Y2 · · ·) = g(c1Y1Y2 · · ·). Since the problem obtained in Step 1 has
104 correspondences this one has 105 correspondences.

4. Threshold Isolation Problems

In this final section we consider two questions related to isolated thresholds. A probability
threshold λ is said to be isolated for a PFA M if there exists some ε > 0 such that
| fM(w)− λ| > ε for all w ∈ �∗. Bertoni et al. have proved (see [B1] and [BMT]) that
the question of deciding if a given threshold is isolated (the isolation threshold problem)
and the question of deciding if a given PFA has an isolated threshold (the isolated
threshold existence problem) are both undecidable. We show that they are undecidable
even if the PFA has a fixed number of states.

Theorem 4.1. ω-PCP(n) is reducible to the isolation threshold problem for PFAs with
two letters and 4n states and is reducible to the isolated threshold existence problem
for PFAs with two letters and 22n + 44 states. Since w-PCP(105) is undecidable, the
isolation threshold problem is undecidable for PFAs with two letters and 420 states, and
the isolated threshold existence problem is undecidable for PFAs with two letters and
2354 states.

Proof. Let h, g: B → A∗ be morphisms. Define n = |B| and let q ≥ |A|. For clarity of
the presentation and without loss of generality we assume that q = 9. Letρ: A∗ → [0, 1]
be defined by ρ(ε) = 0 and

ρ(ai1 · · · ail ) =
l∑

j=1

i j (10) j−l−1. (7)

Let Ah (respectively, Ag) be the probabilistic automaton that generates the probabilistic
event ϕ = ρ ◦ f (respectively, ψ = ρ ◦ g). The probabilistic automaton Ah can be given
by the following two-states automaton on n letters:

(
1

0

)
, Ah(b) =

(
1 − ϕ(b) ϕ(b)

1 − ϕ(b)− 10|h(b)| ϕ(b)+ 10|h(b)|

)
,

(
0

1

)
, (8)
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and similarly for Ag . It is clear from the construction that 0 is isolated in the set⋃
w∈B∗(ϕ(w)−ψ(w)) if and only if there does not exist W ∈ BN such that h(W ) = g(W ).

The function e = 1
2 + (ϕ − ψ)/2 can be obtained by the following probabilistic

four-states automaton E on n letters:




1
2

0
1
2

0


 , E(b) =

(
Ah(b) 0

0 Ag(b)

)
,




0

1

1

0


 . (9)

Then 0 is isolated for ϕ − ψ if and only if 1
2 is isolated for E . We now construct an

automaton on two letters whose range is identical to that of E . From the second step
of the proof of Theorem 2.1, it is easy to see how to construct two matrices A, T of
size 4n × 4n and two 4n-dimensional vectors η, ν such that the following equality
holds:

⋃
w∈B∗

e(w) =
⋃

w′∈{A,T }∗
ηTw′ν.

Moreover A, T, η, ν obviously define a 4n-states PFA on two letters for which 1
2 is an

isolated cut-point if and only if 0 is isolated for ϕ − ψ . This shows that ω-PCP(n)
is reducible to the problem of deciding if λ = 1

2 is not isolated for a probabilis-
tic finite 4n-states automaton on two letters and so the first part of the proof is
complete.

To prove the second part of the statement of the theorem, notice that the proof given
in [BMT] is by reduction from ω-PCP, and that is obviously working in the bounded
case. The proof in [BMT] gives a PFA on n + 2 letters and 22 states. Using the same
technique as above for obtaining a PFA on two letters we finally obtain a PFA on two
letters and with 22n + 44 states.
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