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Abstract. We study the following decision problem: is the language recognized by a quantum
finite automaton empty or nonempty? We prove that this problem is decidable or undecidable
depending on whether recognition is defined by strict or nonstrict thresholds. This result is in
contrast with the corresponding situation for probabilistic finite automata, for which it is known
that strict and nonstrict thresholds both lead to undecidable problems.
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1. Introduction. In this paper, we provide decidability and undecidability
proofs for two problems associated with quantum finite automata. Quantum finite
automata (QFA) were introduced by Moore and Crutchfield [MC00]; they are to quan-
tum computers what finite automata are to Turing machines. Quantum automata are
also analogous to the probabilistic finite automata introduced in the 1960s by Rabin
that accept words with a certain probability (see [Rab63], [Rab67]; see also [Paz71] for
a book-length treatment). A quantum automaton A assigns real values ValA(w) to
input words w (see below for a precise description of how these values are computed).
ValA(w) can be interpreted as the probability that on any given run of A on the input
word w, w is accepted by A. Nonisolated cut-point recognition will be considered in
this article: we do not ask for a gap between the set of ValA(w) for accepted words
w and the set of ValA(w) for rejected words w. Associated to a real threshold λ, the
languages recognized by the automaton A with nonstrict and strict threshold λ are

L≥ = {w : ValA(w) ≥ λ} and L> = {w : ValA(w) > λ}.

Many properties of these languages are known in the case of probabilistic and quantum
automata. For instance, it is known that the class of languages recognized by quantum
automata is strictly contained in the class of languages recognized by probabilistic
finite automata [BP02]. For probabilistic automata it is also known that the problem
of determining if L≥ is empty and the problem of determining if L> is empty are
undecidable (see [Paz71, Thm. 6.17, p. 90]). This is true even for automata of fixed
dimensions [BC03]. Decidability problems on QFA were first studied in the paper
by Amano and Iwama [AI99]: is the language recognized by a 1.5-way quantum
automaton empty? The undecidability of this problem was proven, even in the case
of isolated cut-point.
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Table 1

Decidable and undecidable problems for probabilistic and quantum automata.

L≥ = ∅ L> = ∅ L≤ = ∅ L< = ∅
PFA undecidable undecidable undecidable undecidable
QFA undecidable decidable undecidable decidable

In this contribution, we consider the problem of determining for a quantum au-
tomaton A and threshold λ if there exists a word w for which ValA(w) ≥ λ and if there
exists a word w for which ValA(w) > λ. We prove in Theorem 2.1 and Corollary 2.2
that the first problem is undecidable, and in Theorem 3.1 that the second problem
is decidable. For quantum automata it thus makes a difference to consider strict or
nonstrict thresholds. This result is in contrast with probabilistic automata, for which
both problems are undecidable.

Similarly to the languages L≥ and L>, one can define the languages L≤ and L<

and ask whether or not they are empty (of course, emptiness of L≤ is equivalent to
L> being equal to Σ∗). These two problems are known [Paz71] to be undecidable
for probabilistic automata. For quantum automata our decidability results do again
differ depending on whether we consider strict or nonstrict inequalities. Our results
are summarized in Table 1.

Before we proceed with the proofs, we first define what we mean by a QFA. A
number of different quantum automata models have been proposed in the literature
and not all models are computationally equivalent. For the “measure-many” model of
quantum automata introduced by Kondacs and Watrous [KW97] the four problems
of Table 1 are proven undecidable in [Jea02]. The model we consider here is the so-
called measure once quantum finite automaton introduced by Moore and Crutchfield
[MC00]. These automata operate as follows. Let Σ be a finite set of input letters
and let Σ∗ denote the set of finite input words (including the empty word); typical
elements of Σ∗ will be denoted w = w1 · · ·w|w|, where wi ∈ Σ and |w| denotes the
length of w. The QFA A is given by a finite set of n states, n× n unitary transition
matrices Xα (one for each symbol α in Σ), a (row) vector of unit norm s (the initial
configuration), and an n× n orthogonal projection matrix P . Given a word w ∈ Σ∗,
the value of w, denoted ValA(w), is defined by

ValA(w) = ‖sXwP‖2.

In this expression, ‖ · ‖ is the euclidean vector norm, and we use the notation Xw

for the product Xw1 · · ·Xw|w| . For a vector v, the value ‖vP‖2 is the probability for
the quantum state v to be observed in acceptance space. The value ValA(w) can thus
be interpreted as the probability of observing the quantum state in acceptance space
after having applied the operator sequence Xw1 to Xw|w| to the initial quantum state
s.

The rest of the paper is organized as follows. In section 2, we reduce Post’s
correspondence problem to the problem of determining if a quantum automata has
a word of value larger than or equal to a given threshold. Post’s correspondence
problem is undecidable, and this therefore proves our first result. Our reduction uses
an encoding of words in three-dimensional space. In section 3, we prove decidability
of the same problem for strict inequality. For the proof we use the fact that any
compact matrix group is algebraic, and the group we consider can be given an effective
description.
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Complex versus real entries. Throughout the paper we will assume that the
initial state, the unitary matrices Xα, and the projection matrix P have real rather
than complex entries (i.e., these matrices are actually orthogonal). This is not a
significant restriction since any quantum automaton A (with possibly complex entries)
can be simulated by another quantum automaton A′ with real entries by doubling the
number of states. More precisely, let Q be the set of states of A. We replace each
element qj of Q by two states q1

j and q2
j . Let φ : Cn → R2n be the R-linear map which

sends a configuration x =
∑n

j=1(αj + iβj)qj to φ(x) =
∑n

j=1 αjq
1
j +

∑n
j=1 βjq

2
j . We

replace the initial configuration s by s′ = φ(s). Let X be one of the matrices of A.
The rows and columns of A are indexed by elements of Q. Let xjk + iyjk be the entry
at row qj and column qk. Recall that a complex number x + iy can be identified to
the 2 × 2 matrix (

x −y
y x

)
.

It is therefore natural to replace this entry by the 2 × 2 matrix
(
xjk −yjk
yjk xjk

)
.

The two rows and two columns of this matrix are indexed, respectively, by q1
j , q

2
j , q

1
k,

and q2
k. By abuse of notation we also denote by φ the map which sends X to X ′. It is

easy but instructive to check that for any v ∈ Cn and for any n×n complex matrices A
and B the following relations hold: φ(Av) = φ(A)φ(v), φ(AB) = φ(A)φ(B), φ(A∗) =
φ(A)T , and v∗v = φ(v)Tφ(v). Now recall that unitary matrices, orthogonal matrices,
complex matrices of orthogonal projection, and real matrices of orthogonal projection
are, respectively, characterized by the following relations: AA∗ = I, AAT = I, A =
A∗ = A2, and A = AT = A2. It follows that φ sends unitary matrices to orthogonal
matrices, and complex matrices of orthogonal projection to real matrices of orthogonal
projection. The quantum automaton A′ defined by the orthogonal matrices X ′

a =
φ(Xa), the projection matrix P ′ = φ(P ), and the initial configuration s′ satisfies
φ(sXwP ) = s′X ′

wP
′ for any word w. Hence ValA(w) = ValA′(w) for any word w.

2. Undecidability for nonstrict inequality. We prove in this section that
the problem of determining if a quantum automata has a word of value larger than
or equal to some threshold is undecidable. The proof is by reduction from Post’s
correspondence problem (PCP), a well-known undecidable problem. An instance of
PCP is given by a finite alphabet Σ and k pairs of words (ui, vi) ∈ Σ∗ × Σ∗ for
i = 1, . . . , k. A solution to the correspondence is any nonempty word w = w1 · · ·wn

over the alphabet {1, . . . , k} such that uw = vw, where uw = uw1 . . . uwn . This
correspondence problem is known to be undecidable: there is no algorithm that decides
if a given instance has a solution [Pos46]. It is easy to see that the problem remains
undecidable when the alphabet Σ contains only two letters. The problem is also
known to be undecidable for k = 7 pairs [MS05] but is decidable for k = 2 pairs; the
decidability of the cases 2 < k < 7 is not yet known. We are now ready to state our
first result.

Theorem 2.1. There is no algorithm that decides for a given automaton A if
there exists a nonempty word w for which ValA(w) ≤ 0, or if there exists one for
which ValA(w) ≥ 1. These two problems remain undecidable even if the automaton is
given by 7 orthogonal matrices in dimension 6.
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Proof. We proceed by reduction from PCP. For our reduction we need to encode
words by orthogonal matrices. We will take matrices that represent rotations of angle
arccos(3/5) on, respectively, the first and third axes:

Xa =
1

5

⎛
⎝3 −4 0

4 3 0
0 0 5

⎞
⎠ , Xb =

1

5

⎛
⎝5 0 0

0 3 −4
0 4 3

⎞
⎠ .

These matrices are orthogonal, XaX
T
a = I = XbX

T
b , and they generate a free

group since a result from Swierczkowski [Sw58, Sw94] ensures that if cosφ ∈ Q, two
rotations of angle φ on orthogonal axes in R3 generate a free group if and only if
cosφ�∈{0,± 1

2 ,±1}.
In addition to that, we now prove that there exists a vector t such that tXu = tXw

implies u = w.
We will use here a method from [Su90]. One can show by induction that for any

reduced matrix product M of k matrices1 taken from the set {Xa, Xb, X
−1
a , X−1

b }, we
have

(3 0 4)M = (x1 x2 x3)/5
k

with x1, x2, x3 ∈ Z, and 5 divides x2 if and only if k = 0 (and then M = I).
The result is obviously true for k = 0, 1. Now, if M = M ′XaXb, then

(3 0 4)M = (x1 x2 x3)/5
kXaXb = (x4 x5 5x3)/5

k+1Xb for some x4, x5, and by
induction hypothesis, 5 does not divide x5. Now (3 0 4)M = (x6 3x5 +20x3 x7)/5

k+2

so that 5 does not divide the second term. The proofs for all the other cases are
similar.

We will now call t the row vector (3 0 4). If tXu = tXv, then tXuX
−1
v = t. As

the second component of t is equal to 0, the product must be trivial, and so u = v.
Given an instance (ui, vi)1≤i≤k of PCP over the alphabet {a, b} and a word w ∈

{1, . . . , k}∗, we construct the matrix

Yw =
1

2

(
Xuw + Xvw

Xuw −Xvw

Xuw
−Xvw

Xvw + Xuw

)
.

These matrices are orthogonal and verify Ywν = YwYν .
A solution of the original PCP problem is a nonempty word w ∈ {1, . . . , k}∗

such that the upper-right block of the matrix Yw is equal to zero. We may use the
previously introduced vector t = (3 0 4) to test this condition. We have

(
t 0

)
Yw =

1

2

(
tXuw + tXvw tXuw − tXvw

)
,

and thus a solution of the PCP problem is a word w such that the last three coordinates
of yYw are equal to zero, where y =

(
t 0

)
. This condition can be tested with a

projection matrix. Defining

P =

(
03 0
0 I3

)

1A product is said to be reduced if no two consecutive matrices in the product are inverse from
each other.
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we have that the solutions of the original PCP problem are the words w for which
y Yw P = 0, which is equivalent to

ValA(w) = ‖yYwP‖2 = 0.

The values taken by ValA(w) are nonnegative and so the problem of determining if
there exists a nonempty word w such that ValA(w) ≤ 0 is undecidable. Notice also
that ‖yYwI‖2 = 1 and so

‖yYw(I − P )‖2 ≤ 1

with equality only for yYwP = 0. Thus, the problem of determining if there exists a
nonempty word w such that ValA(w) ≥ 1 is undecidable too.

Theorem 2.1 deals only with nonempty words. We remove this restriction in the
next result, and we reduce the number of matrices from 7 to 2.

Corollary 2.2. There is no algorithm that decides for a given automaton A
if there exists a word w for which ValA(w) ≤ 0, or if there exists one for which
ValA(w) ≥ 1. These problems remain undecidable even if the automaton is given by
7 orthogonal matrices in dimension 6, or by 2 orthogonal matrices in dimension 42.

Proof. As in the proof of Theorem 2.1, the undecidability results for the condition
ValA(w) ≥ 1 follow from those for the condition ValA(w) ≤ 0. Hence we supply the
proofs for the latter condition only. We proceed by reduction from the problem
∃w ValA(w) ≤ 0 for 7 matrices in dimension 6, which is undecidable for nonempty
words w as shown in Theorem 2.1. Note that the language of the nonempty w’s
such that ValA(w) ≤ 0 is the union of the seven languages defined by the conditions
ValA(iw) ≤ 0 for possibly empty words w and i ∈ {1, . . . , 7}. Hence the emptiness of
one of these languages (say, the first one) must be undecidable. Thus, the problem
of determining if there exists a word w such that ValA(1w) ≤ 0 is undecidable.2

For each automaton A = ((Yi)i∈{1,...,7}, s, P ) we can now construct the quantum
automaton B = ((Yi)i∈{1,...,7}, y, P ), where y = sY1. Then ValA(1w) ≤ 0 if and only
if ValB(w) ≤ 0.

The following problem is therefore undecidable: given a quantum automaton A
defined by 7 orthogonal matrices in dimension 6, is there a (possibly empty) word w
such that ValA(w) ≤ 0?

Finally, we show how to reduce the number of matrices to 2. We use a construction
from Blondel and Tsitsiklis [BT97] and Blondel and Caterini [BC03]. Given the above
matrices Yi and the projection matrix P , we define

Z0 =

⎛
⎜⎜⎜⎜⎝

Y1 0 . . . 0

0 Y2
. . . 0

...
...

. . .
...

0 0 . . . Y7

⎞
⎟⎟⎟⎟⎠ and Z1 =

⎛
⎜⎜⎜⎜⎝

0 I 0 0

0
. . .

. . . 0
...

...
. . . I

I 0 . . . 0

⎞
⎟⎟⎟⎟⎠ .

When taking products of these two matrices the matrix Z1 acts as a “selecting
matrix” on the blocks of Z0. Let us define x =

(
y 0

)
and

Q =

⎛
⎜⎜⎜⎜⎝

P 0 . . . 0

0 P
. . . 0

...
...

. . .
...

0 0 . . . P

⎞
⎟⎟⎟⎟⎠ .

2It is not difficult to show that the 6 other problems must be undecidable as well.
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We claim that there exists a word w over the alphabet {1, . . . , 7} such that
‖yYwP‖ = 0 if and only if there exists a word ν over {0, 1} such that ‖xZνQ‖ = 0. In-
deed, for any word ν over {0, 1}, xZν is a row vector of block form (0 · · · 0 yYw 0 · · · 0)
for some word w over {1, . . . , 7} (the length of w is equal to the number of 0’s in
ν). Therefore ‖xZνQ‖ = ‖yYwP‖. Conversely, for any word w over {1, . . . , 7} there
exists a word ν over {0, 1} such that xZν is a row vector of block form (yYw 0 · · · 0),
and we therefore have again the equality ‖xZνQ‖ = ‖yYwP‖. To obtain Zν from
Yw, one can for instance replace as in [BT97] each matrix Yi in the product Yw by

Z
−(8−i)
1 Z0Z

(8−i)
1 = Zi−1

1 Z0Z
8−i
1 .

Theorem 2.1 and its corollary deal only with 0/1 thresholds. We prove below
that, whichever threshold 0 < λ ≤ 1 is used, the problem of determining if there
exists a word for which ValA(w) ≥ λ is undecidable. This result follows as a corollary
to the following lemma.

Lemma 2.3. Associated to every QFA A and threshold 0 < λ ≤ 1 we can effec-
tively construct a QFA B such that the language recognized with threshold λ by B is
the language recognized with threshold 1 by A. Moreover, if λ ∈ Q and A has only
rational entries, then B can be chosen with rational entries.

Proof. The idea is to construct B by adding a state to A. Let A be given by the
orthogonal matrices XA

i , the projection matrix PA, and the initial vector sA. Let

XB
i =

(
XA

i 0
0 1

)
,

and define sB =
(√

λ sA
√

1 − λ
)
. If we choose

PB =

(
PA 0
0 0

)
,

we immediately have ValB(w) = λ ValA(w) and the first part of lemma is proven.
The entries

√
λ and

√
1 − λ in general do not need to be rational. It remains to show

how the parameters of B can be chosen rational when those of A are. We therefore
use Lagrange’s theorem to write λ and 1−λ as the sum of the squares of four rational
numbers, say λ = a2

1 + a2
2 + a2

3 + a2
4 and 1 − λ = b21 + b22 + b23 + b24.

Now, if we define

sB =
(
a1s

A a2 · · · a4 b1 · · · b4
)
XB

i =

(
XA

i 0
0 I7

)
PB =

⎛
⎝PA 0 0

0 I3 0
0 0 04

⎞
⎠ ,

we immediately have ValB(w) = a2
1ValA(w)+ a2

2 + a2
3 + a2

4, ‖sB‖2 = 1 and the lemma
is proven.

Combining Lemma 2.3 with Corollary 2.2, we immediately obtain the following.
Corollary 2.4. For any rational λ, 0 < λ ≤ 1, there is no algorithm that

decides if a given quantum automata has a word w for which Val(w) ≥ λ.

3. Decidability for strict inequality. We now prove that the problem of deter-
mining if a quantum automata has a word of value strictly larger than some threshold
is decidable. This result points to a difference between quantum and probabilistic
automata since for probabilistic automata this problem is known to be undecidable.

Once an automaton is given, one can of course always enumerate all possible
words w and halt as soon as one is found for which ValA(w) > λ, and so the problem
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is clearly semidecidable. In order to show that it is decidable, it remains to exhibit a
procedure that halts when ValA(w) ≤ λ for all w.

Let a quantum automata A be given by a finite set of n×n orthogonal transition
matrices Xi, an initial configuration s of unit norm, and a projection matrix P . The
value of the word w is given by ValA(w) = ‖sXwP‖2. Let X be the semigroup
generated by the matrices Xi, X = {Xw : w ∈ Σ∗}, and let f : Rn×n 
→ R be the
function defined by f(X) = ‖sXP‖2. We have that

ValA(w) = f(Xw),

and the problem is now that of determining if f(X) ≤ λ for all X ∈ X . The function
f is a (continuous) polynomial map and so this condition is equivalent to f(X) ≤ λ
for all X ∈ X , where X is the closure of X in Rn×n. The set X has the interesting
property that it is algebraic (see below for a proof), and so there exist polynomial
mappings f1, . . . , fp : Rn×n 
→ R, such that X is exactly the set of common zeros
of f1, . . . , fp. If the polynomials f1, . . . , fp are known, the problem of determining
whether f(X) ≤ λ for all X ∈ X can be written as a quantifier elimination problem

∀X
[
(f1(X) = 0 ∧ · · · ∧ fp(X) = 0) =⇒ f(X) ≤ λ

]
.(3.1)

This is a first-order formula over the reals and can be decided effectively by Tarski–
Seidenberg elimination methods (see [Ren92a, Ren92b, Ren92c, BPR96] for a survey of
known algorithms). If we knew how to effectively compute the polynomials f1, . . . , fp
from the matrices Xi, a decision algorithm would therefore follow immediately. In the
following we solve a simpler problem: we effectively compute a sequence of polynomials
whose zeros describe the same set X after finitely many terms (but we may never know
how many). It turns out that this is sufficient for our purposes. We will use some basic
algebraic geometry. In particular, we will use the Noether (or “descending chain”)
property: in any field, the set of common zeros of a set of n-variate polynomials is
equal to the set of common zeros of a finite subset of these polynomials (see any
textbook on algebraic geometry, for instance, [CLO92, Prop. 1, sect. 4.6]).

Theorem 3.1. Let (Xi)i∈Σ be orthogonal matrices of dimension n and let X be
the closure of the semigroup {Xw : w ∈ Σ∗}. The set X is algebraic, and if the Xi have
rational entries, we can effectively compute a sequence of polynomials f1, . . . , fi, . . .
such that

1. if X ∈ X , fi(X) = 0 for all i;
2. there exists some k such that X = {X : fi(X) = 0, i = 1, . . . , k}.

Proof. We first prove that X is algebraic. It is known (see, e.g., [OV90]) that
every compact group of real matrices is algebraic. In fact, the proof of algebraicity
in [OV90] reveals that any compact group G of real matrices of size n is the zero set
of

R[X]G = {f ∈ R[X] : f(I) = 0 and f(gX) = f(X)∀ g in G};

i.e., G is the zero set of the polynomials in n×n variables which vanish at the identity
and are invariant under the action of G. We will use this property later in the proof.

To show that X is algebraic, it suffices to show that X is compact and is a group.
The set X is obviously compact (bounded and closed in a normed vector space of finite
dimension). Let us show that it is a group. It is in fact known that every compact
subsemigroup of a topological group is a subgroup. Here is a self-contained proof in
our setting: For every matrix X, the sequence Xk admits a subsequence that is a
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Cauchy sequence, by compactness. Hence for every ε there exists k > 0 and l > k + 1
such that ‖Xk − X l‖ ≤ ε, that is, ‖X−1 − X l−k−1‖ ≤ ε (recall that ‖AB‖ = ‖B‖
if A is orthogonal and if ‖.‖ is the operator norm associated to the euclidean norm).
Hence, X−1 is in the set and the first part of the theorem is proven. For notational
convenience, we will denote the group X by G in the remainder of the proof.

For the second part of the theorem, we will prove that we can take

{fi} = {f ∈ Q[X] : f(I) = 0 and f(XjX) = f(X)∀ j in Σ}.

In other words, this is the set Q[X]G of rational polynomials which vanish at the
identity and are invariant under the action of each matrix Xj . It is clear that this set
is recursively enumerable. We claim that G is the zero set of the fi’s. By Noetherianity
the zero set of the fi’s is equal to the zero set of a finite subset of the fi’s, so that
the theorem follows immediately from this claim. To prove the claim, we will use the
fact that G is the zero set of R[X]G. Note that

R[X]G = {f ∈ R[X] : f(I) = 0 and f(XjX) = f(X)∀ j in Σ}.

(A polynomial is invariant under the action of G if and only if it is invariant under
the action of all the Xj .) This observation implies immediately that each fi is in
R[X]G, so that the zero set of the fi’s contains the zero set of R[X]G. The converse
inclusion follows from the fact that any element P of R[X]G can be written as a linear
combination of some fi’s. Indeed, let d be the degree of P and let Ed be the set of
real polynomials in n×n variables of degree at most d. The set Vd = Ed ∩R[X]G is a
linear subspace of Ed defined by a system of linear equations with rational coefficients
(those equations are f(I) = 0 and f(XjX) = f(X) for all j ∈ Σ). Hence there exists
a basis of Vd made up of polynomials with rational coefficients, that is, of elements of
{fi}. This completes the proof of the claim, and of the theorem.

We may now apply this result to quantum automata.
Theorem 3.2. The two following problems are decidable:
(i) Given a quantum automaton A and a threshold λ, decide whether there exists

a word w such that ValA(w) > λ.
(ii) Given a quantum automaton A and a threshold λ, decide whether there exists

a word w such that ValA(w) < λ.
Proof. We show only that problem (i) is decidable. The argument for problem

(ii) is essentially the same.
As pointed out at the beginning of this section, it suffices to exhibit an algorithm

which halts if and only if ValA(w) ≤ λ for every word w. Consider the following
algorithm:

• enumerate the fi’s;
• for every initial segment f1, . . . , fp, decide whether (3.1) holds, and halt if it

does.
It follows from property (1) in Theorem 3.1 that ValA(w) ≤ λ for every word w if the
algorithm halts. The converse follows from property (2).

In Theorems 3.1 and 3.2 we have assumed that our orthogonal matrices have
rational entries, mostly because the undecidability results of section 2 already hold
for rational entries. It is not hard to relax this hypothesis. For instance, it is clear
from the proofs that Theorems 3.1 and 3.2 can be generalized to matrices with real
algebraic entries. Even more generally, one may allow “arbitrary” real entries by
proceeding as follows. Let K be the subfield of R generated by the entries of our
matrices. We may give a transcendence basis B of K and represent the entries as
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algebraic numbers over B. This purely algebraic information is sufficient to compute
the sequence of polynomials (fi) in Theorem 3.1. We also need to decide for every
initial segment whether (3.1) holds. After quantifier elimination, this amounts to
computing the sign of a finite number of polynomial functions of the elements of B.
In order to do this we need only assume that we have access to an oracle which for any
element x of B and any ε > 0 outputs a rational number q such that |x− q| < ε (such
an oracle can be effectively implemented if the entries are computable real numbers).
We use the algebraic information to determine whether a polynomial takes the value
zero, and if not we use approximations to determine its sign.

In the proof of Theorem 3.2 we have bypassed the problem of explicitly computing
a finite set of polynomials defining X . It is in fact possible to show that this problem
is algorithmically solvable [DJK03]. This implies in particular that the following two
problems are decidable:

(i) Decide whether a given threshold is isolated.
(ii) Decide whether a given QFA has an isolated threshold.

A threshold λ is said to be isolated if

∃ε > 0 ∀w ∈ Σ∗ |ValA(w) − λ| > ε.

It is known that these two problems are undecidable for probabilistic automata [Ber75,
BMT77, BC03].

The algorithm of [DJK03] for computing X also has applications to quantum
circuits: this algorithm can be used to decide whether a given set of quantum gates is
complete (complete means that any orthogonal transformation can be approximated
to any desired accuracy by a quantum circuit made up of gates from the set). Much
effort has been devoted to the construction of specific complete sets of gates [DBE95,
BBC+95], but no general algorithm for deciding whether a given set is complete was
known.

Finally, we note that the proof of Theorem 3.2 does not yield any bound on the
complexity of problems (i) and (ii). We hope to investigate this question in future
work.
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[Jea02] E. Jeandel, Indécidabilité sur les automates quantiques, Master’s Thesis, 2002; available
online from http://perso.ens-lyon.fr/emmanuel.jeandel/publis.html.

[KW97] A. Kondacs and J. Watrous, On the power of quantum finite state automata, in Pro-
ceedings of the 38th Annual Symposium on Foundations of Computer Science, IEEE,
Los Alamitos, 1997, pp. 66–75.

[MC00] C. Moore and J. Crutchfield, Quantum automata and quantum grammars, Theoret.
Comput. Sci., 237 (2000), pp. 257–306.

[MS05] Y. Matiyasevich and G. Sénizergues, Decision problems for semi-Thue systems with
a few rules, Theoret. Comput. Sci., 330 (2005), pp. 145–169.

[OV90] A. Onishchik and E. Vinberg, Lie Groups and Algebraic Groups, Springer, Berlin,
1990.

[Paz71] A. Paz, Introduction to Probabilistic Automata, Academic Press, New York, 1971.
[Pos46] E. L. Post, A variant of a recursively unsolvable problem, Bull. Amer. Math. Soc., 52

(1946), pp. 264–268.
[Rab63] M. O. Rabin, Probabilistic automata, Inform. Control, 6 (1963), pp. 230–245.
[Rab67] M. O. Rabin, Mathematical theory of automata, in Proc. Sympos. Appl. Math. 19, AMS,

Providence, RI, 1967, pp. 153–175.
[Ren92a] J. Renegar, On the computational complexity and geometry of the first-order theory of

the reals. I, J. Symbolic Comput., 13 (1992), pp. 255–299.
[Ren92b] J. Renegar, On the computational complexity and geometry of the first-order theory of

the reals. II, J. Symbolic Comput., 13 (1992), pp. 301–327.
[Ren92c] J. Renegar, On the computational complexity and geometry of the first-order theory of

the reals. III, J. Symbolic Comput., 13 (1992), pp. 329–352.
[Su90] F. E. Su, The Banach-Tarski Paradox, Minor Thesis, 1990.
[Sw58] S. Swierczkowski, On a free group of rotations of the Euclidean space, Nederl. Akad.

Wetensch. Proc. Ser. A, 20 (1958), pp. 376–378.
[Sw94] S. Swierczkowski, A class of free rotation groups, Indag. Math. (N.S.), 5 (1994),

pp. 221–226.


