
5122 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006

On the Complexity of Computing the Capacity of Codes
That Avoid Forbidden Difference Patterns

Vincent D. Blondel, Raphaël Jungers, and Vladimir Protasov

Abstract—Some questions related to the computation of the capacity of
codes that avoid forbidden difference patterns are analysed. The maximal
number of n-bit sequences whose pairwise differences do not contain some
given forbidden difference patterns is known to increase exponentially with
n; the coefficient of the exponent is the capacity of the forbidden patterns.
In this paper, new inequalities for the capacity are given that allow for the
approximation of the capacity with arbitrary high accuracy. The compu-
tational cost of the algorithm derived from these inequalities is fixed once
the desired accuracy is given. Subsequently, a polynomial time algorithm
is given for determining if the capacity of a set is positive while the same
problem is shown to be NP-hard when the sets of forbidden patterns are
defined over an extended set of symbols. Finally, the existence of extremal
norms is proved for any set of matrices arising in the capacity computa-
tion. Based on this result, a second capacity approximating algorithm is
proposed. The usefulness of this algorithm is illustrated by computing ex-
actly the capacity of particular codes that were only known approximately.

Index Terms—Approximation algorithm, capacity of codes, coding
theory, complexity of capacity, joint spectral radius, NP-hardness.

I. INTRODUCTION

In certain coding applications, one is interested in binary codes
whose elements avoid a set of forbidden patterns. In order to minimize
the error probability of some particular magnetic-recording systems,
a more complicated problem arises when it is desirable to find code
words whose differences avoid forbidden patterns.

Let f0; 1gn denote the set of words of length n over f0; 1g
and let u, v 2 f0; 1gn. The difference u � v is a word of length
n over f�1; 0;+1g (as a shorthand, we will use f�; 0;+g in-
stead of f�1; 0;+1g). The difference u � v is obtained from
u and v by symbol-by-symbol subtraction so that, for example,
0110� 1011 = � + 0�. Consider now a finite set D of words over
f�; 0;+g; we think of D as a set of forbidden difference patterns. A
set (or code) C � f0; 1gn is said to avoid the set D if none of the
differences of words in C contain a word from D as subword, that
is, none of the differences u � v with u, v 2 C can be written as
u � v = xdy for d 2 D and some (possibly empty) words x and y
over f�; 0;+g.

We are interested in the largest cardinality, which we denote by
�n(D), of sets of words of length n whose differences avoid the for-
bidden patterns in D. If the set D is empty, then there are no forbidden
patterns and �n(D) = 2n. When D is nonempty, then �n(D) grows
exponentially with the word length n and is asymptotically equal to
2cap(D)n where the scalar 0 � cap(D) � 1 is the capacity of the
set D. The capacity is thus a measure of how constraining a set D

Manuscript received January 9, 2006. The work of V. Blondel and R. Jungers
was sponsored by a Grant ARC “Communauté Francaise de Belgique.” The
work of V. Protasov was supported under Grants RFBR 05-01-00066 and 304.
2003.1 for the leading scientific schools in Russia.

V. Blondel and R. Jungers are with the Department of Mathematical Engi-
neering, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
(e-mail: jungers@inma.ucl.ac.be; blondel@inma.ucl.ac.be.)

V. Protasov is with the Department of Mechanics and Mathematics,
Moscow State University, Moscow, 119992, Russia (e-mail: vladimir_ pro-
tassov@yahoo.com).

Communicated by M. Sudan, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2006.883615

is: the smaller the capacity, the more constraining are the forbidden
difference patterns.

As an illustration consider the set of forbidden patterns
D = f+�;++g. Differences between two words in C =
fu10u20 . . . 0uk : ui 2 f0; 1gg will have a “0” in any succes-
sion of two characters and will therefore not contain any of the
forbidden patterns. From this it follows that �n � 2dn=2e and so
cap(D) � 1=2. One can show in fact that cap(D) = 1=2. This fol-
lows from the next proposition combined with the simple observation
that the capacity of the set D = f+�;++g is identical to the capacity
of the set D = f+�;++;�+;��g.

Proposition 1: The capacity of the set f+;�gm is given by
(m� 1)=m.

Proof: Let Ckm be a code of length km avoiding D. In any given
window of length m, the set of words appearing cannot contain both u
and �u (we use �u to denote the word obtained by inverting the ones and
the zeros in u). This implies that there are at most 2m�1 different words
in any given window of size m. Let us now consider words in Ckm as
a concatenation of k words of length m. There are at most 2(m�1)k

words in Ckm and so cap(D) � (m� 1)=m: Now consider the code

Ckm = fz10z20 . . . 0zk : zi 2 f0; 1gm�1g: (1)

This code satisfies the constraints, and so the bound (m � 1)=m is
reached.

The computation of the capacity is not always that easy. As an
example it is proved in [15] that the capacity of f+++g is given
by log2((1 + (19 + 3

p
33)1=3 + (19 � 3

p
33)1=3)=3)= 0:8791 . . .

and the same reference provides numerical bounds for the capacity of
f0 +�+g for which no explicit expression is known.

The capacity of codes that avoid forbidden difference patterns was
first introduced and studied by Moision, Orlitsky, and Siegel. In [15],
these authors provide explicit values for the capacity of particular sets
of forbidden patterns and they prove that, in general, the capacity of a
forbidden set D can be obtained as the logarithm of the joint spectral
radius of a set of matrices that have binary entries. The joint spectral
radius, which we formally define below, is a quantity that quantifies the
maximal asymptotic growth rate of products of matrices taken from a
set. This quantity is notoriously difficult to compute and to approxi-
mate. It is known in particular that the problem of computing, or even
approximating, the joint spectral radius of two matrices with binary
entries is a problem that is NP-hard [20] and that the problem of de-
termining if the joint spectral radius of two matrices with nonnegative
entries is greater than one is undecidable [6]. In addition to this, the
size of the matrices constructed in [15] for computing the capacity is
not polynomial in the size of the forbidden set D and so even the con-
struction of the set of matrices is an operation that cannot be performed
in polynomial time. However, as pointed out in [15], the matrices that
arise in the context of capacity computation have a particular structure
and so the capacity could very well be computable in polynomial time.

We provide several results in this paper. All are related to the capacity
computation and its complexity.

We first provide new bounds that relate the capacity of a set of for-
bidden patterns D with the values �n(D), the maximum size of a code
of length n avoiding D. These bounds depend on parameters that ex-
press the number and positions of zeros in the patterns of D. These
new bounds allow us to compute the capacity of any set to any given
degree of accuracy by numerically evaluating �n(D) for some value of
n. The approximation algorithm resulting from these bounds has ex-
ponential growth but provides an a priori guaranteed precision, and so
the computational effort required to compute the capacity to a given

0018-9448/$20.00 © 2006 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006 5123

degree of accuracy can be evaluated before the calculations are actu-
ally performed. As an example, it follows from the bounds we provide
that the capacity of a set of forbidden patterns that does not contain any
0’s can be computed with an accuracy of 90% by evaluating �n(D) for
n = 10 (see Corollary 2).

In Sections II–VII, we provide explicit necessary and sufficient con-
ditions for a set to have positive capacity and we use this condition for
producing a polynomial time algorithm that decides whether or not the
capacity of a set is positive. As explained above, the capacity of a set is
given by the logarithm of the joint spectral radius of a set of matrices
constructed from the forbidden patterns. Our polynomial time algo-
rithm therefore provides a procedure for checking whether or not the
joint spectral radius of these matrices is larger than one. This problem
is known to be undecidable for general matrices.

We then consider the situation where in addition to the forbidden
symbols �, 0, and + the forbidden patterns in D may also include the
symbol�, where� stands for both the symbol + and�. We prove that
in this case the problem of computing the capacity, or even determining
if this capacity is positive, becomes NP-hard.

Finally, we show an algebraic property of the sets of matrices con-
structed in order to compute the capacity: there always exists an ex-
tremal norm for this set. This theoretical result makes it possible to
apply specific algorithms in order to compute the joint spectral radius.
These methods, although non-polynomial, can be more efficient than
general ones, and we use them for computing the capacity of some spe-
cific forbidden sets.

These results allow us to better delineate the capacity computation
problems that are polynomial time solvable from those that are not.
We do however not provide in this paper an answer to the question,
which was the original motivation for the research reported here, as
to whether or not one can compute the capacity of sets of forbidden
patterns over f�; 0;+g in polynomial time. This interesting question
that was already raised in [15], remains unsettled.

II. CAPACITY AND JOINT SPECTRAL RADIUS

Let D be a set of forbidden patterns over the alphabet f�; 0;+g
and consider for any n � 1 the largest cardinality, denoted by �n(D),
of sets of words of length n whose pairwise differences avoid the for-
bidden patterns in D. The capacity of D is defined by

cap(D) = lim
n!1

log2 �n(D)

n
: (2)

Moision et al. show in [15] how to represent codes as products of
matrices. Associated to any set D of forbidden patterns, they construct
a finite set �(D) of matrices for which

�m�1+n = maxfkA1 . . .Ank : Ai 2 �(D)g: (3)

In this expression, the matrix norm used is the sum of the absolute
values of the matrix entries. For sake of conciseness, we do not repro-
duce here the explicit construction of the matrices of �(D) but refer
instead the interested reader to [15] for more details. Let us comment
here on the number and size of the matrices in �(D); these issues are
relevant for the questions raised in this correspondence. If the forbidden
patterns in D have identical length m, then the number of matrices in
�(D) can be doubly exponential in m and all matrices in �(D) have
dimension 2m�1�2m�1. If the forbidden patterns in D have different
lengths, then one can construct a set D0 whose forbidden patterns have
equal length and for which cap(D) = cap(D0). Unfortunately, the
number of patterns in D0 can grow exponentially with the size of D so
that the number of matrices in the set �(D) constructed in [15] is in

fact even worse than in the former case. Capacity approximation algo-
rithms based on the direct computation of the set �(D) will therefore
not be tractable even for small sets D.

We now describe the connection between the capacity of D and the
joint spectral radius of �(D). Combining (3) and (2) we deduce that

cap(D) = lim
n!1

log2 �n(D)

n

= lim
n!1

log2 �m�1+n(D)

m� 1 + n

= lim
n!1

log2maxA 2� kA1 . . .Ank

n

= log2 lim
n!1

max
A 2�

kA1 . . .Ank
1=n

:

The quantity limn!1maxA 2� kA1 . . .Ank
1=n appearing in the

last identity is a joint spectral radius. For any compact set of matrices
A, the joint spectral radius of A is defined by

�(A) = lim sup
n!1

sup
A 2A

kA1 . . .Ank
1=n

:

Hence, we have the fundamental relation

cap(D) = log2 �(�(D)):

The joint spectral radius of a set of matrices is a quantity that was intro-
duced by Rota and Strang [19] and that has received intense research
attention in the last decade. For more references on the joint spectral
radius, consult the survey [5].

III. UPPER AND LOWER BOUNDS

In this section, we derive bounds that relate the capacity of a set D
with �n(D). Consider some set D of forbidden patterns and denote by
r1 (respectively, r2) the maximal k for which 0k is the prefix (respec-
tively, suffix) of some pattern in D. No pattern in D begins with more
than r1 zeros and no pattern in D ends with more than r2 zeros. We
also denote by r the maximal number of consecutive zeros in any pat-
tern inD; obviously, r � max(r1; r2). In the next theorem we provide
upper and lower bounds on the capacity cap(D) in terms of �n(D).

Theorem 1: For any n � r1 + r2 we have

log2 �n(D)� (r1 + r2)

n+ r + 1� (r1 + r2)
� cap(D) �

log2 �n(D)

n
: (4)

Proof: Let us first consider the upper bound. The following equa-
tion is straightforward, given any positive integers k, n, and any set of
forbidden patterns D

�kn � �
k
n: (5)

Indeed, considering any word of length kn as the concatenation of k
subwords of length n, for each of these subwords we have at most �n
possibilities. Taking the 1

kn
th power of both sides of this inequality and

taking the limit k ! 1, we obtain

2cap(D) � �
1=n
n

�
n � �n:

Now let us consider the lower bound. The optimal code of length n

contains at least 2�r �r �n(D) words that coincide in the first r1
bits and in the last r2 bits (because there are in total 2r +r different
words of length r1 + r2). Denote the set of strings of all these words
from (r1 + 1)st bit to (n � r2)th bit by C 0. This set contains at least
2�r �r �n(D) different words of length n� r1 � r2. Then for any
l � 1 the code

C = u10
r+1

u20
r+1 . . . 0r+1ul0

r+1
; uk 2 C

0
; k = 1; . . . ; l

5124 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006

avoidsD. The cardinality of this code is at least 2�r �r �n(D)
l

and
the length of its words is N = l(n� r1 � r2 + r+ 1). Therefore, for
any l we have

�N(D) � d2�r �r �n(D)el:

Taking the power 1=N of both sides of this inequality, we get

�N (D)
1=N

� 2�r �r �n(D)
1=(n�r �r +r+1)

which as N ! 1 yields

� � 2�r �r �n(D)
1=(n�r �r +r+1)

:

Now after elementary simplifications we arrive at the lower bound on
cap(D).

Both bounds in Theorem 1 are sharp in the sense that they are both
attained for particular sets D. The upper bound is attained for the set
D = ; and the lower bound is attained, for instance, for the set D =
f0m�1+g. Indeed, in this case r = r1 = m � 1, r2 = 0, and
cap(D) = 0, while �n = 2m�1 for n � m � 1. Here is a direct
proof of this equality, drawn from [15]. Clearly, for all n > m� 1, we
can construct a code of size �n = 2m�1. It happens that for any given
length n this size is maximum. Otherwise, there must be two different
words u and v whose prefixes of length k coincide. In order to avoid the
forbidden pattern, the k + 1th symbols must also be equal, and so on.
But then both words are equal, and we have reached a contradiction.

Corollary 1: LetD be given and let r, r1 and r2 be defined as above.
Then

log2 �n(D)

n
�

1

n
max(r1 + r2; r + 1) � cap(D) �

log2 �n(D)

n
:

Proof: Simply use the fact that the capacity is always less than
one.

These bounds can be used to design an approximation algorithm that
computes the capacity to any desired accuracy by evaluating �n for suf-
ficiently large values of n. In contrast to previously known algorithms
this algorithm has guaranteed computational cost: once the desired ac-
curacy is given, the corresponding computational cost can easily be
computed. As an illustration, consider the case of a set D for which
r1 = r2 = 2 and r = 4. Then, by Corollary 1

log2 �n(D)

n
�

5

n
� cap(D) �

log2 �n(D)

n
(6)

and we can use log2 �n(D)=n as an estimate for cap(D) and choose
a value of n for which (6) provides satisfactory accuracy bounds.

The easiest way of computing �n is to apply (3), by evaluating the
maximum-normed product of length n �m + 1 of matrices taken in
the set �. Moision et al. mention in [13] an improvement of this brute
force method: The main idea is to compute successively some sets of
matrices ��l, l = 1; 2 . . ., with ��1 = �. These are sets of products of
length l, obtained by computing iteratively all products of a matrix in
��l�1 with a matrix in �, and then removing from the set ��l a matrix
A, if it is dominated by another matrix B in this set, that is, if each
entry of A is less or equal than the corresponding entry of B. For more
information about this algorithm, we refer the reader to [13]. We pro-
pose here an improvement of this method: given the set ��l, one can
directly compute a set ��2l by computing the set ��2

l and then removing
from this set all matrices that are dominated. This small modification
of the algorithm has dramatically improved the computational time for
all the examples on which we have used it.

We may specialize the general bounds of Theorem 1 to sets of par-
ticular interest.

Corollary 2: LetD be given and let r, r1 and r2 be defined as above.
Then

1) If cap(D) = 0 the size of any code avoiding D is bounded above
by the constant 2r +r .

2) If the patterns in D contain no zeros, then

ncap(D) � log2 �n(D) � (n+ 1)cap(D):

3) If none of the patterns in D start or end with a zero, then
ncap(D) � log2 �n(D) � (n + r + 1)cap(D).

IV. POSITIVE CAPACITY CAN BE DECIDED IN POLYNOMIAL TIME

As previously seen by a direct argument, the capacity of the set
f0m�1+g is equal to 0. In this section, we provide a systematic way
of deciding when the capacity of a set is equal to zero. We first provide
a simple positivity criterion that can be verified in finite time and then
exploit this criterion for producing a positivity checking algorithm that
runs in polynomial time. In the sequel, we will use the notation�D to
denote the set of elements that are the opposites to the elements of D,
for example if D = f�+ 0; 0��g then �D = f+� 0; 0 + +g.

Theorem 2: Let D be a set of forbidden patterns of lengths at most
m. Then cap(D) > 0 if and only if there exists a word on the alphabet
f+;�; 0g that does not contain any word of D [�D as subword and
that has a prefix 0m and a suffix +0m�1.

Proof: If the capacity is positive, then for sufficiently largen there
is a code avoiding D of size � 22m�1 + 1. This code has at least two
words u, v with the same m-bit prefix and (m� 1)-bit suffix (because
there are in total 22m�1 different words of the length 2m� 1). Taking
the difference u � v and removing, if necessary, several last zeros we
get an admissible string with a prefix 0m and a suffix �0m�1. If the
first bit in the suffix is +, then the proof is completed, if it is �, then
we apply the same reasoning to v � u.

Conversely, suppose there exists a feasible string d of +, � and 0
of some length n. Clearly, n � 2m. Let u1, u0 2 f0; 1gn�2m+1 be
binary words, for which 0m(u1 � u0)0

m�1 = d. Then for any l � 1
the code

C = ui 0
m�1 . . .ui 0

m�1; ik 2 f0; 1g; k = 1; . . . ; l (7)

avoidsD. The cardinality of this code is 2l. Hence �n(D) is unbounded
and we conclude from Corollary 1 that the capacity is positive.

Corollary 3: If every word in D contains at least two nonzero sym-
bols, then cap(D) > 0.

Proof: For any such set the word d = 0m + 0m�1 is admissible,
and by Theorem 2 the capacity is positive.

Corollary 4: If D consists of one forbidden pattern p of length m,
then its capacity is zero if and only if p has at least m� 1 consecutive
0’s.

Proof: If a pattern p is 0m or +0m�1, then obviously there are
no admissible strings, and by Theorem 2 the capacity is zero. The same
holds for�0m�1, since this is the negation of +0m�1 and for 0m�1�
because of the symmetry. In all the other cases the admissible string
exists and so cap(D) > 0. Indeed, if p has a unique nonzero bit, then
the word d = 0m++0m�1 is admissible, if it has at least two nonzero
bits, then the proof follows from Corollary 3.

We now prove the polynomial-time solvability of the problem of de-
termining whether the capacity of a set D is positive. The proof is con-
structive and is based on the so-called Aho–Corasick automaton that
checks whether a given text contains as a subsequence a pattern taken
from a given set [1]. Let P be a given set of patterns. The transition
graph of the Aho–Corasick automaton for the set P is defined as fol-
lows. First, construct the retrieval tree, or trie, of the set P . The trie of
P is the directed tree of which each vertex has a label representing a
prefix of a pattern in P , and all prefixes are represented, including the
patterns themselves. The label of the root of the tree is the empty string.
Edges have a label too, which is a symbol of the used alphabet. There

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006 5125

is an edge labeled with the symbol a from a vertex s to a vertex t if t
is the concatenation sa.

In order to have an automaton, we complete the trie by adding edges
so that for each vertex s, and each symbol a, there is an edge labeled a
leaving s. This edge points to the vertex of the trie of which the label is
the longest suffix of the concatenation sa. Note that this vertex can be
the root (that is, the empty string) if no vertex in the trie is a suffix of
sa. Finally, the accepting states of the automaton are the vertices whose
labels are patterns of P . This automaton accepts words that contain a
pattern in P and halts whenever this pattern is a suffix of the entered
text.

If 0k 2 D or +0k 2 D, k � m, then, by Theorem 2, cap(D) = 0.
If this is not the case, we construct the graph of the automaton of
Aho–Corasick for the set P = D [(�D) [f+0m�1g. We then re-
move any vertex labeled with a pattern in P (i.e., a state reached when
a suffix of the text entered is in the set P) except the vertex labeled
f+0m�1g. The size of the constructed graph is polynomial in the size
and the number of the forbidden patterns. Let us now denote q0 the
state reached after entering the word 0m. This state is well defined since
0m does not contain any forbidden pattern, and hence no state reached
after entering any prefix of the string 0m was removed from the pri-
mary automaton. We also denote q+0 the state corresponding to
the suffix +0m�1 for the entered text (i.e., the accepting state corre-
sponding to the pattern +0m�1 in the Aho–Corasick automaton). We
have the following criterion for zero-capacity.

Theorem 3: The capacity of a set D is positive if and only if there
is a path from q0 to q+0 in the graph constructed above.

Proof: If cup(D) > 0, by Theorem 2, there exists a word d,
beginning withm zeros, and ending with+0m�1, that avoidsD[�D.
Hence, entering this word in the automaton, the finite state will be (well
defined and will be) the vertex labeled +0m�1, because the vertices
removed from the original automaton of Aho-Corasick do not make
any problem, since we do not reach the vertices labeled with forbidden
patterns. On the other hand, a path in the constructed graph represents
an acceptable word, since it does not pass through any removed vertex,
and hence no suffix of any prefix of this word will be in the forbidden
set.

Moreover, a shortest path will give the shortest acceptable word,
since the length of the path is equal to the length of the represented
word.

Corollary 5: The problem of determining whether or not the ca-
pacity of a given set of forbidden patterns is positive can be solved in
polynomial time.

Proof: Aho shows in [1] that the automaton is constructible in
polynomial time. The determination of the state q0 and the computa-
tion of the shortest path are obviously polynomially feasible.

Corollary 6: If for a setD of forbidden patterns there are admissible
words, then the length of a shortest admissible word does not exceed
2M +2m, where m is the maximal length of all patterns in D and M
is the sum of the lengths of each forbidden pattern.

Proof: The number of vertices of the graph does not exceed 2M+
m + 1. Indeed, for each pattern of length l in D [�D we add to the
automaton at most l states, since there are no more than l prefixes of this
pattern. We still add the pattern f+0m�1g (maximum m new states),
and the root. If there is a path connecting two given vertices, this path
can be chosen so that its length (in terms of number of vertices) will not
exceed the total number of vertices (if it does not pass through the same
vertex twice). Every edge of this path adds one bit to the admissible
string. The initial length of the string ism (we start from 0m), therefore
the total length of the admissible word is at most 2M + 2m.

Proposition 2: If the capacity is positive, then cap(D) >
1=(2M +m), where m is the maximal length of all patterns in D and
M is the sum of the lengths of each forbidden pattern.

Proof: If cap(D) > 0, then there is an admissible string of length
n � 2M + 2m (Corollary 6). Consider the code given by (7). Its size
is 2l and the length of its words is at most

Nl = l(2M + 2m�m) = l(2M +m):

Therefore

cap(D) = lim
l!1

log2 �N
Nl

� lim
l!1

log2 2
l

l(2M +m)

=
1

2M +m
:

V. POSITIVE CAPACITY IS NP-HARD FOR EXTENDED SETS

We now consider the situation where forbidden patterns are allowed
to contain the � symbol. The symbol � is to be understood in the fol-
lowing sense: whenever it occurs in a forbidden pattern, both the occur-
rences of + and of � are forbidden at that particular location. So, for
example, avoiding the forbidden set f0�+�g is equivalent to avoiding
the set f0+++; 0++�; 0�++; 0�+�g. All results obtained for
forbidden patterns over f�; 0;+g have therefore their natural coun-
terparts in the situation where the forbidden patterns are defined over
the alphabet f�; 0;+;�g. In particular, the results of Section III do
transfer verbatim and the bounds derived in Theorem 1 are valid ex-
actly as stated there. We now prove a complexity result of capacity
computation in this setup.

Theorem 4: The problem of determining if the capacity of a set of
forbidden patterns over f0;+;�;�g is equal to 0 is NP-hard.

Proof: The proof proceeds by reduction from the Not-All-Equal
3SAT problem that is known to be NP-complete (see [10]). In the Not-
All-Equal 3SAT problem, we are givenm binary variables x1; . . . ; xm
and n clauses that each contain three literals (a literal can be a variable
or its negation), and we search a truth assignment for the variables such
that each clause has at least one true literal and one false literal.

Suppose that we are given a set of clauses. We construct a set of
forbidden patterns D such that cap(D) > 0 if and only if the instance
of Not-All-Equal 3SAT has a solution. The first part of D is given by

f(0� 0); (0��0); . . . ; (0�m�1 0)g: (8)

Words over f�; 0;+g that avoid these patterns are exactly those words
for which any two consecutive zeros are either adjacent or have at least
m symbols + or � between them. We use these m symbols as a way
of encoding possible truth assignments for the variables.

We then add to D two patterns for every clause. These patterns are
of length m and are entirely composed of symbols �, except for the
positions corresponding to the three variables of the clause, which we
set to + if the clause contains the variable itself, or to � if the clause
contains the negation of the variable. We also add the opposite of this
pattern; this last pattern is not necessary for the proof but preserves the
symmetry of the construction.

For example, if the instance of Not-All-Equal 3SAT consists of the
two clauses (x1; �x3; x4) and (�x2; x4; x5), the corresponding setD will
be D = f(0� 0); (0��0); (0��� 0); (0����0);(+��+
�); (� � + � �); (� � � + +); (� + � � �)g. Such a set D has
always a length polynomial in the number of clauses and the number
of variables.

We now prove that there is a solution to the instance of Not-All-
Equal 3SAT if and only if cap(D) > 0. First, suppose that there exists
a satisfying truth assignment for x and denote it by f!1; . . . ; !mg.

5126 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006

Associated to any k � 1 we construct a code of length k(m + 1)
containing 2k words as follows:

Ck(m+1) = f0!0!0!0 . . . 0!0!; 0!0!0!0. . . 0!0�!;
0!0!0!0. . . 0�!0!; . . . ; 0�!0�!0�!0 . . . 0�!0�!g

where ! = !1 . . .!m.
Any difference between two words in this code is a word of the form

0z10z20 . . . 0zk where for every 1 � i � k, zi is either a sequence of
m 0’s or a word of length m over f�;+g. Because ! satisfies the in-
stance of Not-All-Equal 3SAT, these words avoid the setD constructed
above. Moreover, the cardinality of Ck(m+1) is 2k and hence

cap(D) � lim
k!1

log2 2 =
1

m+ 1
> 0: (9)

For the reverse implication, assume now that cap(D) > 0. The ca-
pacity is positive, and so one can find two words whose differences
contain a 0 and a +. But then since this difference must avoid the first
part of the forbidden pattern, for a codeC large enough, there must exist
two words in the code whose difference contains a word over f�;+g of
length m. But this sequence avoids also the second part of D, and thus
it represents an acceptable solution to our instance of Not-All-Equal
3SAT.

Note that a similar proof can be given if we replace the symbol “�”
in the statement of the theorem by a symbol that represents either +,
�, or 0.

VI. EXTREMAL NORMS AND COMPUTING THE CAPACITY

A classical way to estimate a joint spectral radius consists of com-
puting successive upper bounds on it by applying the following well-
known inequality:

�
n(�) � max fkA1 . . .Ank : Ai 2 �g

that holds for any norm, and any length n of the products. One could
then hope that for a well-chosen norm, the joint spectral radius would
be already obtained for n = 1, that is, for the set of matrices itself. This
is the concept of extremal norm, which we now define properly. A norm
k � k in d is called extremal for a family of operators A1; . . . ; Ar if
kAik � �(fA1; . . . ; Arg) for all i = 1; . . . ; r. The unit ball M of this
norm is called the extremal convex body.

The notion extremal is justified by the fact that � is the smallest pos-
sible value such that the norms of all the operators A1; . . . ; Ar do not
exceed this value. The above inequality, which holds for any norm, for
extremal norms becomes an equality (for all n � 1). If M is the unit
ball corresponding to an extremal norm (an extremal body), AiM �
�M . On the other hand, any convex body M (convex compact with
nonempty interior centrally symmetric with respect to the origin) pos-
sessing this property generates an extremal norm. It suffices to take the
Minkowski norm defined by this body: kxk = inf � > 0; 1

�
x 2M .

Thus, there is a natural one-to-one correspondence between extremal
norms and extremal bodies.

The existence of an extremal norm can simplify many problems re-
lated to the joint spectral radius, see [2], [16] and [18] for details. How-
ever, not every set of matrices possesses an extremal norm. The corre-
sponding counterexamples are simple and well known. Sufficient con-
ditions for the existence of an extremal norm can be found in [2], [16],
[17]. For the matrices arising in the context of the capacity computa-
tion, however, these conditions are not always satisfied. Nevertheless,
it turns out that in the case of capacity computation, the matrices do in
fact always possess an extremal norm.

Theorem 5: For any set D of forbidden patterns the set �(D) pos-
sesses an extremal norm.

Proof: Let �(D) be the set of matrices corresponding to D. For
a given point x � 0 let

O(x) = �
�n

A1 . . .Anx; Ai 2 �(D); n � 0

be the normalized orbit of the point x under the action of all possible
products of the operators in �. The product of length zero is defined as
the identity operator, so the set O(x) contains x. Now define a set M
as follows

M = Conv O(ej);O(�ej); j = 1; . . . ; 2m�1

where e1; . . . ; e2 are the canonical basis vectors in 2 , and
Conv denotes the convex hull. The set M is obviously convex, cen-
trally symmetric with respect to the origin, and possesses a nonempty
interior (because it contains the cross-polytope with the vertices
f�ej ; j = 1; . . . ; 2m�1g whose interior is nonempty). Moreover,
Corollary 1 implies that the setO(x) is bounded for any x. To see this,
replace � by 2cap(D) in Corollary 1 and recall that �n is, by definition
of the set �, the maximal norm of products of length n � (m� 1) of
matrices taken in �. Therefore M is bounded. So M is a convex body
that possesses the property AiM � �M; i = 1; . . . ; r. Therefore it
generates an extremal norm, and the theorem follows.

The very existence of an extremal norm for a set of matrices makes
it possible to apply a geometric algorithm for computing a joint spec-
tral radius with a given relative accuracy. We now briefly describe this
algorithm; for all technical details we refer the reader to [16]. For the
sake of simplicity, we consider the case of two matrices, the case of an
arbitrary number of matrices is treated in the same way.

The algorithm. Suppose operators A0, A1 acting in d possess an
extremal norm; one needs to find a number �� such that j� ��j

�
<

"; where " > 0 is a given accuracy. Consider a sequence of convex
polytopes fPkg produced as follows:

P0 = (x1; . . . ; xd) 2 d
; jxij � 1

is a cross-polytope. For any k � 0 the polytope Pk+1 is an arbitrary
polytope possessing the following properties. It is symmetric with re-
spect to the origin, has at most q(") = Cd" vertices, where Cd is
an effective constant depending only on d, and (1�") �APk � Pk+1 �
�APk , where �AX = ConvfA0X;A1Xg.

After

N =
3
p
d ln c

c

"

steps the algorithm terminates. The value �� = (vN+1)
1=(N+1) gives

the desirable approximation of the joint spectral radius. Here vk is the
biggest distance from the origin to the vertices of the polytope Pk , c1,
c2 are lower and upper bounds of the values f��kmax fkA1 . . .Akkg,
k 2 g. In our case the values c1, c2 can be taken directly from The-
orem 1.

Each step requires us taking the convex hull of two polytopes having
at most q(") vertices and requires the approximation of one polytope
with 2q(") vertices by a polytope with q(") vertices with accuracy
". Both operations are known to be polynomial w.r.t. 1

"
[16] (the di-

mension d is fixed). The computational complexity of this algorithm is
C � "� , where C is some constant and d = 2m�1. Therefore the
algorithm is applicable for small values of m, say, for m � 6.

The complexity of this algorithm is exponential with respect to m,
as the one proposed in Section III that approximates the capacity by
successive estimations of �n. The advantages of one algorithm over
the other appears in numerical computation of the capacity. In many

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006 5127

cases the approximation of invariant bodies by polytopes can lead to
the exact value of the joint spectral radius. Suppose that by numerical
observations we conjecture that � is attained by some product �n =
Ai . . .Ai , i.e., � = �(�n)

1=n. If during the calculations we find
a polytope P such that �AP � �(�n)

1=nP , then it occurs that � =
�(�n)

1=n. As the polytope P we take P = Pk = Convf �Ajv �
�Ajv; j = 0; . . . ; kg for some integer k, where v is the eigenvector of
�n corresponding to the largest by modulo eigenvalue (we assume that
this is real and unique).

Let us illustrate this method by computing the exact values of the
capacity for several codes. In Examples 1 and 2, we find the values of
capacities that were approximated in [15]. Example 3 deals with a code
with m = 4.

Example 1:

cap(f0 + +g)=log
2
�(A0)=log

2

p
5 + 1

2
=0:69424191 . . . :

The eigenvector is v = 2;
p
5� 1; 2;

p
5� 1

T
. The algorithm ter-

minates after five steps, the polytope P = P5 has 32 vertices.
Example 2:

cap(f0 +�g) = log
2
�(A0) = log

2

p
5 + 1

2
:

The algorithm terminates after four steps: v = (2;
p
5�1;p5�1; 2)T ,

P = P4, the polytope has 40 vertices.
Example 3:

cap(f+++�g) = log
2

3 + 2
p
5 + 1

2

= log
2

�(A0A1) = 0:90053676 . . . :

The algorithm terminates after eleven steps, the polytope P = P11 has
528 vertices.

As illustrated in many applications it is quite often the case that the
joint spectral radius is attained by some finite product. We say in these
cases that the set of matrices possess the finiteness property. It was con-
jectured that all sets of matrices have the finiteness property: this is the
well known finiteness conjecture which has been disproved in [7], [8],
and [12]. Nevertheless, we conjecture here that the sets of matrices with
binary entries, and, in particular, those constructed in order to compute
a capacity do always possess the finiteness property. Numerical results
in [11], [15], and in this paper seem to support this conjecture.

VII. CONCLUSION

One way to compute the capacity of a set of forbidden patterns is
to compute the joint spectral radius of a set of matrices. In practice,
this leads to a double difficulty: first, the size of the matrices is ex-
ponential in the size of the set of forbidden patterns, and second, the
joint spectral radius is in general NP-hard to compute. We show in this
paper that the simpler problem of checking the positivity of the ca-
pacity of a set defined on f+;�; 0g is polynomially decidable but that
the same problem becomes NP-hard when defined over the alphabet
f+;�; 0;�g. We also provide bounds that allow faster computation
of the capacity. Finally we prove the existence of extremal norms for
the sets of matrices arising in the capacity computation and present
a geometrical algorithm for capacity computation which we illustrate
with several numerical examples. Even if this latter result allows to
use algorithms that have proved to be quite efficient in practice, the

approach that consists of computing the joint spectral radius of the ma-
trices defined in [15] cannot lead to a polynomial algorithm because of
the exponential size of the sets of matrices.

ACKNOWLEDGMENT

The authors would like to thank Noga Alon and Alexander Razborov,
both from the Institute for Advanced Study (Princeton, NJ), for pro-
viding an initial proof of a result that is essentially equivalent to the
statement of Theorem 3. The proof presented here is different and is
based on the Aho–Corasick automaton. We also express our thanks to
a student of Moscow State University, E. Shatokhin, for implementing
the algorithm introduced in this correspondence and for the numerical
computation of the Examples 1–3.

REFERENCES

[1] A. V. Aho, “Algorithms for finding patterns in strings,” in Handbook of
Theoretical Computer Science (vol. A): Algorithms and Complexity.
Cambridge, MA: MIT Press, 1990, pp. 255–300.

[2] N. Barabanov, “Lyapunov indicators of discrete inclusions. Part I, II
and III,” (in Russian) Avtomat i Telemekh., vol. 2, pp. 40–46, 1988.

[3] M. A. Berger and Y. Wang, “Bounded semigroups of matrices,” J.
Linear Algebra Appl., vol. 166, pp. 21–27, 1992.

[4] V. D. Blondel and Y. Nesterov, “Computationally efficient approxima-
tions of the joint spectral radius,” SIAM J. Matrix Anal., vol. 27, no. 1,
pp. 256–272, 2005.

[5] V. D. Blondel and J. N. Tsitsiklis, “A survey of computational com-
plexity results in systems and control,” Automatica, vol. 36, no. 9, pp.
1249–1274, 2000.

[6] ——, “The boundedness of all products of a pair of matrices is unde-
cidable,” Syst. Contr. Lett., vol. 41, no. 2, pp. 135–140, 2000.

[7] V. D. Blondel, J. Theys, and A. A. Vladimirov, “An elementary coun-
terexample to the finiteness conjecture,” SIAM J. Matrix Anal., vol. 24,
no. 4, pp. 963–970, 2003.

[8] T. Bousch and J. Mairesse, “Asymptotic height optimization for topical
IFS, tetris heaps, and the finiteness conjecture,” J. Math. Amer. Soc.,
vol. 15, no. 1, pp. 77–111, 2002.

[9] I. Daubechies and J. C. Lagarias, “Sets of matrices all infinite products
of which converge,” Linear Algebra Appl., vol. 161, pp. 227–263, 1992.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability—A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman,
1979.

[11] R. Jungers, “NP-Completeness of the Computation of the Capacity of
Constraints on Codes,” Master’s thesis, Université Catholique de Lou-
vain-La-Neuve, Louvain-La-Neuve, Belgium, 2005.

[12] V. Kozyakin, “A dynamical systems construction of a counterexample
to the finiteness conjecture,” in Proc. 44th IEEE Conf. Decision and
Control (ECC 2005), 2005.

[13] B. E. Moision, A. Orlitsky, and P. H. Siegel, “On codes with local joint
constraints,” 2004, unpublished manuscript.

[14] B. E. Moision, A. Orlitsky, and P. H. Siegel, “Bounds on the rate
of codes which forbid specified difference sequences,” in Proc. 1999
IEEE Global Telecommun. Conf. (GLOBECOM ’99), Dec. 1999.

[15] ——, “On codes that avoid specified differences,” IEEE Trans. Inf.
Theory, vol. 47, no. 1, pp. 433–422, Jan. 2001.

[16] V. Protasov, “The joint spectral radius and invariant sets of linear oper-
ators,” Fundamentalnaya i Prikladnaya Matematika, vol. 2, no. 1, pp.
205–231, 1996.

[17] ——, “On the asymptotics of the partition function,” Sb. Math., vol.
191, no. 3–4, pp. 381–414, 2000.

[18] ——, “The geometric approach for computing the joint spectral ra-
dius,” in Proc. 44th IEEE Conf. Decision and Control (ECC 2005),
2005.

[19] G. C. Rota and C. Strang, “A note on the joint spectral radius,” Indag.
Math., vol. 22, pp. 379–381, 1960.

[20] J. Tsitsiklis and V. Blondel, “The Lyapunov exponent and joint spectral
radius of pairs of matrices are hard—when not impossible—to compute
and to approximate,” Math. Contr., Signals, Syst., vol. 10, no. 31, pp.
40–40, 1997.

