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Abstract

In this paper, we generalize the notion of persistence, which has been originally introduced for two-dimensional formations, to Rd for d �3,
seeking to provide a theoretical framework for real world applications, which often are in three-dimensional space as opposed to the plane.
Persistence captures the desirable property that a formation moves as a cohesive whole when certain agents maintain their distances from
certain other agents. We verify that many of the properties of rigid and/or persistent formations established in R2 are also valid for higher
dimensions. Analysing the closed subgraphs and directed paths in persistent graphs, we derive some further properties of persistent formations.
We also provide an easily checkable necessary condition for persistence. We then turn our attention to consider some practical issues raised
in multi-agent formation control in three-dimensional space. We display a new phenomenon, not present in R2, whereby subsets of agents
can behave in a problematic way. When this behaviour is precluded, we say that the graph depicting the multi-agent formation has structural
persistence. In real deployment of controlled multi-agent systems, formations with underlying structurally persistent graphs are of interest. We
analyse the characteristics of structurally persistent graphs and provide a streamlined test for structural persistence. We study the connections
between the allocation of degrees of freedom (DOFs) across agents and the characteristics of persistence and/or structural persistence of a
directed graph. We also show how to transfer DOFs among agents, when the formation changes with new agent(s) added, to preserve persistence
and/or structural persistence.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Multi-agent systems have attracted considerable attention
recently as witnessed by the explosion of papers in the area (see
e.g. Baillieul & Suri, 2003; Das, Fierro, Kumar, & Ostrowski,
2002; Eren, Anderson, Morse, Whiteley, & Belhumeur, 2004;
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Gazi & Passino, 2003; Jadbabaie, Lin, & Morse, 2003; Lin,
Francis, & Maggiore, 2005; Marshall, Broucke, & Francis,
1963; Olfati-Saber & Murray, 2002, 2004; Ren & Beard, 2004;
Tanner, Pappas, & Kumar, 2004). As illustrated in these refer-
ences, many control tasks for multi-agent systems require coor-
dinated motion of the agents in well-structured formations and
hence acquisition and maintenance of the formation structure
as well as the distance between nominated pairs of agents. The
phenomena of formation acquisition and maintenance can be
observed in nature in many forms, e.g., flocking birds, school-
ing fish, and swarming bees (see e.g. Hubbard, Babak, Sigurd-
sson, & Magnusson, 2004; Janson, Middendorf, & Beekman,
2005). Motivated by these observations, a significant number of
recent studies have been performed in engineering applications
including UAVs, roving robots, collection of ships, submarines,
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etc (see e.g. Ceccarelli, Di Marco, Garulli, & Giannitrapani,
2005; Ihle, Jouffroy, & Fossen, 2005).

Note here that we distinguish between two formation con-
trol tasks: (i) moving the whole formation from position A to
B; (ii) maintaining the shape of the formation while the whole
formation is moving. These are clearly different problems, and
this paper focuses on (ii). Note that in large biological forma-
tions in nature, it appears very unlikely that all members of
the formation share a common view about where to go. Some
members will just play the role of maintaining the shape, i.e.,
focus on (ii). This is consistent with a common idea in the liter-
ature concerning man-made formations, that some agents have
leadership responsibility (and thus are concerned with moving
the formation from A to B), and the rest (forming the majority)
are followers.

Consequently, one needs to consider the following two ques-
tions in designing control structures and for such multi-agent
systems: what can be measured, and what should be controlled?

Possible measurements include distance to neighbours,
angular information between neighbours, angular information
relative to fixed coordinates, e.g. vertical or north. For the
control schemes, which are the subject of the paper, civil en-
gineering structures give the first clue: if we maintain enough
lengths/distances, we will retain rigidity, even with pinjoints.
This indicates that one can imagine controlling lengths only,
without worrying about active angle control in a formation.
Note also that we do not need to control every single length; ac-
tively controlling some, the rest are consequentially maintained.
By all means, the control effort (as measured by the number of
actively controlled lengths) could be more than the minimum
possible value for safety’s sake, but in general the control effort
should grow linearly with the number of formation elements. It
is yet to be determined what is the best scheme, i.e., one based
on lengths, or lengths and angles, etc. (and the issue of what is
best will naturally depend on the sensor and possibly actuator
settings). We know that if one can control based on lengths,
one can then push the theory out to cope also with angular in-
formation of certain sorts (Eren, Whiteley, Morse, Belhumeur,
& Anderson, 2003).

The problem of maintaining the shape of a moving formation
has been previously studied with graphs depicting the control
architecture as follows (Eren et al., 2004; Olfati-Saber & Mur-
ray, 2002): to each agent corresponds a vertex, and for each
agent (vertex) pair i, j there is an edge (i, j) if the distance
between i and j must be actively maintained. Note there is an
implicit assumption that this is a joint task for both agents,
which is often not the case for autonomous agents. The purpose
of this paper is to focus on lengths/distances with the novel
thrust being to hand the control task to just one agent rather
than both, at the end of a particular length. In the recent control
literature, the characterization of a system of the above type
had started to be attempted under the name of rigidity of a
directed graph (Baillieul & Suri, 2003; Eren, Whiteley, Ander-
son, Morse, & Belhumeur, 2005; Lin et al., 2005; Olfati-Saber
& Murray, 2002), and appears to have been first formalized
using the notion of persistence of a directed graph (Hendrickx,
Anderson, Delvenne, & Blondel, 2005). This term is preferred

because this notion is not equivalent to the simple application
of the definition of rigidity to directed graphs.

In Section 2, the formal definition of persistence given in
Hendrickx, Anderson et al. (2005) is generalized to Rd for
d �3, seeking to provide a theoretical framework for real world
applications, which often are in three-dimensional space as
opposed to the plane. Persistence has the following intuitive
meaning: a formation (and its underlying graph) is persistent
if, provided that all the agents are trying to satisfy their dis-
tance constraints, they can in fact do that, and at the same time,
a consequence of this fact is that the global structure of the
formation is preserved, i.e., when the formation moves, it nec-
essarily moves as a cohesive whole. We will see that rigidity
of the underlying undirected graph is a necessary but not suf-
ficient condition. This will lead us to the notion of constraint
consistence of graph, which is the additional condition for a
rigid graph (formation) to be persistent. Intuitively, a formation
is constraint consistent if every agent is actually able to sat-
isfy all its distance constraints provided that all the others are
trying to do so. We will then argue that a graph is persistent if
and only if it is rigid and constraint consistent. In Section 3, we
generalize some of the main properties of persistent graphs to
three- and higher dimensional graphs, drawing on established
results inR2 (Hendrickx, Anderson et al., 2005).We also define
minimal persistence in Rd for d �3 analogously to minimal
rigidity. We discuss some differences and similarities between
the two notions, and give a characterization of minimally per-
sistent graphs. In Section 4, we reason about the persistence of
closed subgraphs of persistent graphs and use this reasoning
to analyze the directed paths in persistent graphs (Hendrickx,
Fidan, Yu, Anderson, & Blondel, 2005). As results of this anal-
ysis, we present some further properties of persistent graphs
and an easily checkable necessary condition for persistence.

We then use this material to focus on a practical issue
related to persistence. We demonstrate that a persistent for-
mation may suffer from a practical problem where any single
agent can move to a position which satisfies the constraints on
it once all the other agents are fixed but it is not possible to
satisfy all the constraints on all the agents at the same time.
In Section 5, we formally characterize this problem, which
is closely associated with unsafe control of a formation in
practical three-dimensional applications. We then introduce
the notion of a structurally persistent graph, a class of per-
sistent graphs free of the above problem. In real deployment
of control of multi-agent systems, formations with underlying
structurally persistent graphs are of interest. It is established
in Section 5 importantly that in two dimensions, structural
persistence and persistence are equivalent. We also provide a
streamlined test of structural persistence.

In Section 6, we focus on the connections between allocation
of degrees of freedom (DOFs) across agents and the character-
istics of persistence and/or structural persistence of a directed
graph. We also show how to transfer DOFs among agents, when
the formation changes with new agent(s) added, to preserve
persistence and/or structural persistence. We study cycle-free
graphs in R3 and show some more powerful results for this
special case, including the existence of a linear time criterion to
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verify the cycle-free property and to decide persistence, which
automatically assures structural persistence. The paper is ended
with some concluding remarks given in Section 7.

2. Rigidity and persistence

In Hendrickx, Anderson et al. (2005), rigidity, persistence,
and some other related notions have been defined for directed
graphs in R2. In this section, we generalize these definitions
to be applicable for any space Rd , d ∈ {2, 3, . . .}. Some of the
terms we use such as “rigidity” are undirected notions, i.e., no-
tions that are defined for undirected graphs. Notions for undi-
rected graphs can of course also be applied to directed graphs,
e.g., we call a directed graph rigid if and only if its underlying
undirected graph is rigid. Note that, in directed graphs, rigidity
and the other undirected notions are not affected by modifica-
tion of the edge directions.

In Rd (d ∈ {2, 3, . . .}), a representation of an undirected
graph G= (V , E) with vector set V and edge set E is a function
p : V → Rd . We say that p(i) ∈ Rd is the position of the
vertex i, and define the distance between two representations
p1 and p2 of the same graph by

d(p1, p2) = max
i∈V

||p1(i) − p2(i)||.

A distance set d̄ for G is a set of distances dij > 0, defined for
all edges (i, j) ∈ E. A distance set is realizable if there exists a
representation p of the graph for which ||p(i)−p(j)||=dij for
all (i, j) ∈ E. Such a representation is then called a realization.
Note that each representation p of a graph induces a realizable
distance set (defined by dij =||p(i)−p(j)|| for all (i, j) ∈ E),
of which it is a realization.

A representation p is rigid if there exists � > 0 such that
for all realizations p′ of the distance set induced by p and
satisfying d(p, p′) < �, there holds ||p′(i) − p′(j)|| = ||p(i) −
p(j)|| for all i, j ∈ V . (We say in this case that p and p′
are congruent).1 A graph is said to be generically rigid if
almost all its representations are rigid, in fact if there exists an
open dense set in which all representations are rigid (Whiteley,
1997). Note that the reasons for which we only require almost
all representations to be rigid instead of all of them will be
detailed in Remark 4.

A widely used approach in the analysis of rigidity is the
use of linear algebraic tools such as the rigidity matrix (Tay &
Whiteley, 1985; Whiteley, 1996a, 1997). For a graph G=(V , E)

inRd , the rigidity matrix R(G) of G is defined as the |E|×d|V |
matrix
⎡
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1 The definition of rigidity, involving a quantifier �, is standard (Tay &
Whiteley, 1985; Whiteley, 1996b). Any continuous large perturbation neces-
sarily starts with a small perturbation. If small perturbations not preserving
congruency exist, the same is true for large perturbations. Additionally, focus-
ing on small perturbations allows study of the rigidity problem using linear
algebraic methods, which is not the case for large perturbations.

where each row

[0 · · · 0 pT(i) − pT(j) 0 · · · 0 pT(j) − pT(i) 0 · · · 0]
corresponds to an edge (i, j) ∈ E, pT(i) − pT(j) is a row d-
vector in the d columns corresponding to vertex i. A standard
result is that a graph G with at least d vertices is rigid if and
only if for almost all representations, R(G) has rank d|V | −
d(d + 1)/2, which is the maximum rank an R(G) can have
(Tay & Whiteley, 1985; Whiteley, 1996a, 1997).

Another notion that is widely used in rigidity analysis is min-
imal rigidity. A graph is called minimally rigid if it is rigid and
if there exists no rigid graph with the same number of vertices
and a smaller number of edges. Equivalently, a graph is mini-
mally rigid if it is rigid and if no single edge can be removed
without losing rigidity. These two equivalent definitions of min-
imal rigidity lead to the following theorem, a version of which
is presented as the “Necessary Counts Theorem” in Whiteley
(1996a, 1997).

Theorem 1. If a graph G = (V , E) in Rd (d ∈ {2, 3, . . .})
with at least d vertices is rigid, then there exists a subset E′
of edges such that G′ = (V , E′) is minimally rigid. This also
implies the following:

• |E′| = d|V | − d(d + 1)/2.
• Any subgraph G′′ = (V ′′, E′′) of G′ with at least d vertices

satisfies |E′′|�d|V ′′| − d(d + 1)/2.

Proof. G is rigid if and only if the rigidity matrix R(G) has
rank d|V |−d(d +1)/2. Therefore, there exists a set of d|V |−
d(d + 1)/2 linearly independent rows in the matrix R(G), cor-
responding to a set E′ ⊂ E of d|V | − d(d + 1)/2 independent
edges. Since the submatrix R′ composed of these rows has rank
d|V |−d(d +1)/2, G′ = (V , E′) is rigid. Moreover, since R′ is
full rank, G′ is minimally rigid and |E′| = d|V | − d(d + 1)/2.
Now, assume that there exists a subgraph G′′ = (V ′′, E′′) of G′
for which |E′′| > d|V (E′′)| − d(d + 1)/2. Then the rows of R′
corresponding to the edges in E′′ have to be linearly dependent,
noting that the entries of these rows corresponding to the ver-
tices outside V ′′ are all zero. For otherwise, the matrix R(G′′)
would have a rank greater than d|V ′′| − d(d + 1)/2, which as
mentioned above is impossible for a rigidity matrix. However,
this contradicts the fact that R′ is full-rank. Therefore, each
subgraph G′′ = (V ′′, E′′) of G′ with at least d vertices satisfies
|E′′|�d|V ′′| − d(d + 1)/2. �

Lemma 2. Let G = (V , E) be a minimally rigid graph in Rd

(d ∈ {2, 3, . . .}) and G′ = (V ′, E′) a subgraph of G such that
|E′| = d|V ′| − d(d + 1)/2. Then, G′ is minimally rigid.

Proof. Since G is minimally rigid, the edge set E is linearly
independent. Therefore, E′ ⊆ E is linearly independent as well.
Since |E′| = d|V ′| − d(d + 1)/2, this implies that the rigidity
matrix of G′ = (V ′, E′) is full rank, i.e., G′ is minimally rigid.

�

As mentioned above, rigidity is an undirected notion, and
as noted in Hendrickx, Anderson et al. (2005), rigidity of a



390 C. Yu et al. / Automatica 43 (2007) 387–402

representation implies that if an external observer (or some
physical properties) ensures that the distance between the posi-
tions of any pair of vertices connected by an edge remains con-
stant, then all the sufficiently close realizations of the induced
distance set are congruent to each other. But, in a typical sys-
tem of autonomous agents, there is no such external observer.
Each agent is only aware of its own distance constraints, and
can “move freely” as long as these particular constraints are
satisfied. The system therefore more naturally corresponds to
a directed graph G = (V , E), where each agent corresponds to
a vertex in V, and for each agent (vertex) pair i, j there is a
directed edge

−−→
(i, j) ∈ E from i to j if i has a constraint on the

distance it must actively maintain from j.
For example, agents that have only one constraint can move

along a hyper-sphere centred on the position of the only other
agent of which they are aware. So, it could happen that be-
cause one agent i can lie anywhere on such a hyper-sphere, it
becomes impossible for another agent j to satisfy all its con-
straints, especially if j has d + 1 or more constraints. So, in
order to have a more formal definition of persistence that guar-
antees the control of a system modelled using directed graph,
we first need to characterize the fact that each agent is trying to
keep the distances from its neighbours constant. Let us also fix
desired distances dij > 0, ∀−−→

(i, j) ∈ E and a representation p.

We say that the edge
−−→
(i, j) ∈ E is active if ||p(i)−p(j)||=dij ,

i.e., the actual distance equals what is desired. We also say that
the position of the vertex i ∈ V is fitting for the distance set d̄

if it is not possible to increase the set of active edges leaving
i by modifying the position of i while keeping the positions of
the other vertices unchanged. More formally, given a represen-
tation p, the position of vertex i is fitting if there is no p∗ ∈ Rd

for which the following strict inclusion holds:

{−−→(i, j) ∈ E : ||p(i) − p(j)|| = dij }
⊂ {−−→(i, j) ∈ E : ||p∗ − p(j)|| = dij }. (1)

This condition intuitively means that the agent i cannot satisfy
additional distance constraints without breaking some that it
already satisfies, as shown in the two-dimensional example in
Fig. 1, which is drawn from Hendrickx, Anderson et al. (2005).

A representation of a graph is a fitting representation for a
certain distance set d̄ if all the vertices are at fitting positions
for d̄. Note that any realization is a fitting representation for its
distance set. We can now give a formal definition of persistence:

A representation p is persistent if there exists � > 0 such
that every representation p′ fitting for the distance set induced
by p and satisfying d(p, p′) < � is congruent to p. A graph is
then generically persistent if almost all its representations are
persistent.

Next, we argue that a generically persistent graph inRd (d ∈
{2, 3, . . .}) is always generically rigid, and give a necessary and
sufficient condition for a generically rigid graph to be generi-
cally persistent. This condition is called the generic constraint
consistence of a graph. A representation p is constraint consis-
tent if there exists � > 0 such that any representation p′ fitting
for the distance set d̄ induced by p and satisfying d(p, p′) < �
is a realization of d̄. Intuitively, the constraint consistence of a
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Fig. 1. Suppose that d41 = qd42 = d43 = c. The position of 4 in (a) is not

fitting because it only makes
→

(4, 1) active while there exists a position that

would make both
→

(4, 1) and
→

(4, 3) active. On the other hand, its position in
(b) is fitting because no point can be at the same time at a distance c from
1, 2 and 3.

representation means that if each agent tries to satisfy its dis-
tance constraints (i.e., is at a fitting position), then all the dis-
tance constraints will be satisfied, or equivalently, no agent will
be in a situation where it cannot satisfy some constraint. The il-
lustration of such a situation in R2 can be found in Hendrickx,
Anderson et al. (2005). Again, we say that a graph is generi-
cally constraint consistent if almost all its representations are
constraint consistent.

We have the following useful equivalences for directed
graphs in any d-dimensional space Rd (d ∈ {2, 3, . . .}), which
have already been established for R2 in Hendrickx, Anderson
et al. (2005).

Theorem 3. A representation in Rd (d ∈ {2, 3, . . .}) is persis-
tent if and only if it is rigid and constraint consistent. A graph
in Rd (d ∈ {2, 3, . . .}) is generically persistent if and only if it
is generically rigid and generically constraint consistent.

The proof of Theorem 3 is identical to the two-dimensional
case presented in Hendrickx, Anderson et al. (2005) and is
omitted.

Remark 4. In our definitions of generic rigidity, persistence
and constraint consistence, a graph has a generic property if
almost all its representations have the property. Some perti-
nent discussion on our use of “generic” and “almost all” can
be found in Hendrickx, Anderson et al. (2005) and Tay and
Whiteley (1985). One reason for using these terms in Rd (d ∈
{2, 3, . . .}) is to exclude the problems arising from having d +1
or more vertices lying on a d1-dimensional hyper-surface where
d1 �d − 1. In the sequel however, we shall frequently assume
the “generic” qualifier applies without explicit use of the word,
when no misunderstanding is likely to occur.

3. Characterization of persistent graphs

In this section, we examine the properties of persistent graphs
in three and higher dimensions. We present the fundamental
results related to persistence and minimal persistence. These
results are comparable to the properties of two-dimensional
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persistent graphs presented in Hendrickx, Anderson et al.
(2005), and hence the corresponding propositions and lemmas
are given as generic ones that are applicable to R2 as well.

3.1. Persistence

We begin characterization of persistent graphs by giving a
lower bound on the number of active edges, and an associated
sufficient condition for a graph to be constraint consistent. In
the sequel, d−

G(i) and d+
G(i) designate respectively the in- and

out-degree of the vertex i in the graph G. When no confusion
is possible about the graph, we will use d−(i) and d+(i). Note
also that the results given in this section and their proofs are very
similar to the two-dimensional case presented in Hendrickx,
Anderson et al. (2005).

Lemma 5. Let p be a representation of a graph G= (V , E) in
Rd (d ∈ {2, 3, . . .}), and i a vertex of this graph. If the posi-
tion p(i) does not lie on any (d − 1)-dimensional hyper-plane
containing d or more of its neighbours, then there exists � > 0
such that in every representation p′ ∈ B(p, ε)�{p̄ : V →
Rd |d(p, p̄)�ε} fitting for the distance set induced by p, the
number of active edges leaving i is at least min(d, d+(i)). Con-
sequently, a graph in which all the vertices have an out-degree
smaller than or equal to d is always generically constraint con-
sistent.

Proof. We follow the same steps as in the proof of Lemma 1
in Hendrickx, Anderson et al. (2005). Let us consider a repre-
sentation p′ fitting for the distance set d̄ induced by p. First, if
the out-degree of the vertex i is less than d then the set of pos-
sible positions that could make all the edges leaving i active is
always non-empty, e.g., this set is equal to Rd for d+(i) = 0,
a circle for d+(i) = d − 1, etc. The position p′(i) will then be
fitting if and only if all the d+(i) = min(d, d+(i)) edges are
active.

Second, if the out-degree of i is greater than or equal to d,
we need the following result, which can be shown using simple
geometric and continuity arguments:

Suppose there are given d + 1 points a1, a2, . . . , ad+1 ∈ Rd

that do not all lie on any (d − 1)-dimensional hyper-plane.
Let dkl denote the distance between each pair ak, al where
k 	= l. There exists an �(a1, a2, . . . , ad+1) > 0 such that for any
a′

1, a
′
2, . . . , a

′
d ∈ Rd satisfying ||ak−a′

k|| < �(a1, a2, . . . , ad+1)

for k = 1, 2, . . . , d, there exists a′
d+1 ∈ Rd such that ||a′

k −
a′
d+1|| = dk(d+1) for k = 1, 2, . . . , d.
We can now show that

�i = min
(i,j1),...,(i,jd )∈E

�(p(i), p(j1), . . . , p(jd)) (2)

satisfies the required condition in the statement of Lemma
5. Let us indeed suppose that there is a representation p′ ∈
B(p, �) such that less than d active edges are leaving i, and
take a set of d edges

−−−→
(i, j1), . . . ,

−−−→
(i, jd), containing the active

edges leaving i if there are any. Observe that by hypothesis,
p(i), p(j1), . . . , p(jd) do not all lie on any (d−1)-dimensional
hyper-plane. By (2), there exists thus a point p∗ such that

||p∗ −p′(jk)||=dik for k =1, . . . , d, or equivalently a pointp∗
such that the strict inclusion (1) holds. The position p′(i) and
the representation p′ are thus not fitting for d̄, which contra-
dicts our hypothesis.

Next, we show the second part of the result. Observe first
that in almost all representations of the graph G, no vertex
has a position lying on any (d − 1)-dimensional hyper-plane
containing d or more of its neighbours. Let us consider such
a representation p of G for which every vertex i has an out-
degree d+(i)�d, and the induced distance set d̄. If we take
�′ < �i , ∀i ∈ V where the �i comes from (2) for each vertex, then
for any representation p′ ∈ B(p, �′) fitting for d̄, each vertex
will be left by min(d, d+(i))=d+(i) active edges, so that all the
edges will be active. Every such p′is thus a realization of d̄, and
the representation p is thus constraint consistent. As we already
mentioned, this can be done for almost all representations of G,
which is therefore also generically constraint consistent. �

The next proposition which is the generalization of Propo-
sitions 1 and 2 in Hendrickx, Anderson et al. (2005) for any
arbitrary dimension d ∈ {2, 3, . . .}, allows us to delete edges
in a persistent (constraint consistent) graph and maintain per-
sistence (constraint consistence).

Proposition 6. A persistent graph in Rd (d ∈ {2, 3, . . .}) re-
mains persistent after deletion of any edge

−−→
(i, j) for which

d+(i)�d + 1. Similarly, a constraint consistent graph in Rd

(d ∈ {2, 3, . . .}) remains constraint consistent after deletion of
any edge

−−→
(i, j) for which d+(i)�d + 1.

Proof (Sketch). We follow the same steps as in the proof of
the like Proposition 1 in Hendrickx, Anderson et al. (2005).
Let G = (V , E) be a persistent graph having a vertex i with
d+(i)�d + 1, and G∗ = (V , E∗) be the graph obtained by
removing an edge

−−→
(i, j) from G. Let us consider a realization p

of G∗ and the induced distance set d̄∗. Observe that p can also be
viewed as a representation of G, and the induced distance set is
then d̄= d̄∗∪{dij }.We assume here that no vertex has a position
that lies on a (d − 1)-dimensional hyper-plane containing d or
more of its neighbours (and thus that Lemma 5 can be applied),
which is the case for almost all realizations. We can first prove
(A) that any fitting representation of G∗ for d̄∗ sufficiently close
to p is also a fitting representation of G for d̄. This then allows
us to prove in (B) the persistence of G∗ in a relatively direct
way. �

An interesting corollary of Proposition 6 concerns the total
number of DOFs, which we also call the total DOF count, in
the graph. The number of degrees of freedom (DOF count) of
a vertex is the maximal dimension, over all generic represen-
tations of the graph, of the set of possible fitting positions for
this vertex. Effectively, the DOF count of the vertex v is equal
to max{d − d+(v), 0}. For example, in R3, the DOF counts
of the vertices with zero, one, and two out-degrees are respec-
tively 3, 2, and 1; all the other vertices have zero DOF. Note
that a vertex with zero DOF can have more than one possible
fitting position. Observe indeed that, in almost all situations in
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Fig. 2. A persistent graph in R3 with all the vertices having out-degree 2
and hence 1-DOF.

Rd , there are two possible fitting positions for a vertex with
out-degree d. However, since this set contains a finite number
of points, its dimension is still 0. The following result provides
a natural bound on the total DOF count, i.e., the sum of the
vertex DOF counts of a persistent graph.

Corollary 7. The total DOF count of a persistent graph in Rd

(d ∈ {2, 3, . . .}) can at most be d(d + 1)/2.

Proof. Observe first that removing an edge leaving a vertex
with an out-degree larger than or equal to d + 1 does not affect
the number of degrees of freedom of this vertex. Let us now
imagine that there exists a persistent graph G=(V , E) for which
this sum is larger than d(d+1)/2. Using recursively Proposition
6, we could obtain a persistent subgraph G∗ = (V , E∗) with the
same total DOF count but without any vertex having an out-
degree exceeding d. In G∗, the DOF count of a vertex i is thus
d−d+(i, G∗). So, if F is the sum of the DOFs on all the vertices
of the graph, we have F = d|V |− |E∗|. F > d(d + 1)/2 would
then mean that |E∗| < d|V | − d(d + 1)/2, which by Theorem
1 is impossible for a persistent (and thus rigid) graph. �

Remark 8. There are d-dimensional persistent graphs having
a total DOF count less than d(d + 1)/2. Fig. 2 shows a three-
dimensional persistent graph each vertex of which has 1-DOF.
The total DOF count for this example is 5, i.e., less than 3(3 +
1)/2.

We have asserted in Proposition 6 that a persistent graph
remains persistent after deletion of any edge

−−→
(i, j) for which

d+(i)�d + 1. Hence after successive deletions, we can thus
reach in this way a persistent graph whose vertices all have
an outgoing degree that is smaller than or equal to d. In the
next theorem, which is analogous to Theorem 3 in Hendrickx,
Anderson et al. (2005) stated for R2, we assert that a graph is
persistent if and only if all the graphs obtained in this way are
rigid.

Theorem 9. A d-dimensional graph is persistent if and only if
all those subgraphs, which are obtained by successively remov-
ing outgoing edges from vertices with out-degree larger than d
until all such vertices have an out-degree equal to d, are rigid.

Proof (Sketch). We follow the similar steps as in the proof
of Theorem 3 in Hendrickx, Anderson et al., 2005. Let us
consider a d-dimensional graph G = (V , E) and �the set of
all the subgraphs S of G satisfying for each vertex i ∈ V ,
d+
S (i) = min(d+

G(i), d). We can prove separately the following
two implications:

• If G is persistent, any S ∈ � is rigid.
Since it is possible to obtain S from G only by removing
edges leaving vertices with an out-degree larger or equal to
d + 1, Proposition 6 guarantees the persistence of S and thus
its rigidity.

• If every S ∈ � is rigid, G is persistent.
Using Theorem 1, having every S ∈ � rigid and hence at
least one rigid subgraph of G implies that G is rigid. Hence,
we just need to, and indeed we can, prove the constraint
consistence of G. �

Theorem 9 provides a non-polynomial time algorithm to
check the persistence of any d-dimensional graph for d ∈
{2, 3, . . .}: it is sufficient to check the rigidity of all subgraphs
obtained by deleting the edges leaving vertices with out-degree
larger than or equal to d + 1 until all the vertices have an out-
degree less or equal to d. An algorithm with a smaller com-
plexity would be useful in the case of large graphs, especially
if there is a high number of vertices with high out-degrees, but
no such algorithm is currently available. More discussions on
determining the persistence of two-dimensional directed graphs
in polynomial time can be found in Hendrickx, Anderson et al.
(2005). We also note the existence of a quadratic time algo-
rithm for the cycle-free graphs in R3 (Yu, Hendrickx, Fidan, &
Anderson, 2005), which can be generalized easily to any d ∈
{2, 3, . . .}.

We also define the notion of minimal persistence, analo-
gously to minimal rigidity defined in Section 2. A persistent
graph inRd (d ∈ {2, 3, . . .}) is said to be minimally persistent if
no single edge can be removed without losing persistence. Ob-
viously then, any persistent graph contains a minimally persis-
tent subgraph with the same vertex set. However, an important
difference between the concepts of minimal rigidity and mini-
mal persistence is that a graph G = (V , E) having a minimally
persistent subgraph G′ = (V , E′) with the same vertex set V is
not necessarily persistent, as shown in the two-dimensional ex-
ample in Fig. 3, which is drawn from Hendrickx, Anderson et
al. (2005). More generally, unlike the case of rigidity, it is pos-
sible to obtain a non-persistent graph by adding edges (without
adding any vertex) to a persistent graph. However, similar to
minimal rigidity, we can show that the number of edges of a
minimally persistent graph is uniquely determined by the num-
ber of its vertices. A necessary condition for a persistent graph
to be minimally persistent, as Proposition 6 implies, is the ab-
sence of a vertex with an out-degree exceeding d. A sufficient
condition, on the other hand, is minimal rigidity. Suppose in-
deed that one removes an edge from a persistent minimally rigid
graph. The obtained graph would by definition not be rigid and
hence not persistent. We can show that this condition is in fact
also necessary.
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a b c

Fig. 3. The two-dimensional graph represented in (a) has a minimally persis-
tent subgraph (b). However, it is not persistent because the subgraph repre-
sented in (c) and obtained via the deletion process of Theorem 9 is not rigid.
In the corresponding multi-agent system, this could arise from a combination
of unfortunate information architecture selections for the three agents of the
cycle.

4. Closed subgraphs and directed paths

In this section, we focus on the directed paths in persistent
graphs and analyse some related properties. As a part of this
analysis, we reason about the persistence of closed subgraphs of
minimally and non-minimally persistent graphs. An important
outcome of our analysis will be an easily checkable necessary
condition (Proposition 16) for persistence.

We begin with defining some notions that we use in the
analysis frequently. Consider a directed graph G = (V , E) in
Rd (d ∈ {2, 3, . . .}) and a subgraph G′ = (V ′, E′) of G. G′
is called a closed subgraph of G if for any vertex i ∈ V ′,−−→
(i, j) ∈ E implies j ∈ V ′ and

−−→
(i, j) ∈ E′. Equivalently, G′

is a closed subgraph of G if there is no directed path in G
starting from a vertex of V ′and containing either a vertex or
an edge that does not belong to G′. The sum of DOF counts∑

v∈V ′ max{d−d+
G(v), 0}, where d+

G(v) denotes the out-degree
of v in the graph G, is called the total DOF count of V ′ with
respect to G and denoted by S(V ′, G). Similarly, d+

G′(v) (for
any v ∈ V ′) and S(V ′, G′) denote, respectively, the out-degree
of v in G′ and the total DOF count

∑
v∈V ′ max{d − d+

G′(v), 0}
of V ′ with respect to G′. Note that if V = V ′, the definition is
consistent with that given just prior to Corollary 7 for the total
DOF count.

Remark 10. For a minimally persistent graph G = (V , E),
there holds S(V, G) = d(d + 1)/2.

Using these notions, we obtain the following propositions,
which provide some criteria to check the existence of a di-
rected path between given two vertices of a minimally or non-
minimally persistent graph, one of which has a positive DOF
count.

Lemma 11. Let G = (V , E) be a minimally persistent graph
in Rd (d ∈ {2, 3, . . .}). Any vertex i that does not belong to a
closed subgraph of G having less than d vertices is connected
by a directed path (leaving i) to any vertex v of G with positive
DOF count, i.e., d+

G(v) < d.

Proof. Suppose to obtain a contradiction that there exists a
vertex pair i, j ∈ V such that (i) i does not belong to any closed

subgraph of G having less than d vertices, (ii) j has a positive
DOF count, and (iii) there is no directed path from i to j. Let
V ′ denote the set of all the vertices k ∈ V such that there is a
directed path from i to k, including the vertex i itself, and E′
the set of all the edges e ∈ E which leave the vertices in V ′.
Obviously, every edge in E′ is incident to two vertices in V ′, i.e.,
V (E′)=V ′. G′ = (V ′, E′) is thus a closed subgraph containing
i, which by hypothesis implies that |V ′|�d. Moreover, since
j /∈ V ′, by definition of V ′ and by the hypothesis (ii), we have
S(V ′, G) < S(V, G) = d(d + 1)/2 using Remark 10. Since G′
is a closed subgraph of G, the DOF count of any v ∈ V ′ is the
same for G and G′. Hence, S(V ′, G′)=S(V ′, G) < d(d +1)/2.
Since every vertex has an out-degree less than or equal to d in
a minimally persistent graph, this leads to the inequality

|E′| =
∑
v∈V ′

d+(v) =
∑
v∈V ′

d − S(V ′, G′)

> d|V ′| − d(d + 1)/2 (3)

which contradicts Theorem 1, where the set E′ above corre-
sponds to E′′ in Theorem 1. Therefore, any vertex i that does
not belong to a closed subgraph of G having less than d ver-
tices has to be connected by a directed path to all the vertices
of G with positive DOF count. �

Remark 12. In Rd (d ∈ {2, 3, . . .}), if a vertex belongs to a
closed subgraph containing less than d vertices, its out-degree
must be smaller than or equal to d − 2.

Next, we extend the result given in Lemma 11 to arbitrary
persistent graphs. In order to make the analysis easier, we in-
troduce the notions of k-maximally connected closed subgraph
and reachability subgraph. Given a directed graph G = (V , E)

in Rd (d ∈ {2, 3, . . .}) and an integer k� |V |, we call a con-
nected closed subgraph Gc of G with less than or equal to k
vertices a k-maximally connected closed subgraph of G if and
only if Gc is not a subgraph of any (other than Gc itself) con-
nected closed subgraph of G with less than or equal to k ver-
tices. Consider a vertex i ∈ V and the set V ′ of all the vertices
that can be reached from i (including the vertex i) by a directed
path in G. Let E′ ⊆ E the set of all the edges e such that e joins
a pair of vertices in V ′. Then, the graph G′ = (V ′, E′) is called
the reachability subgraph of G for i. We note here that a similar
reachability concept is introduced in Krumke and Noltemeier
(2005).

Remark 13. Given a directed graph G= (V , E) be inRd (d ∈
{2, 3, . . .}), for any vertex i ∈ V , the reachability subgraph
of G for i is a closed subgraph of G. Moreover, it is easy to
see that the reachability subgraph of G for the vertex i is the
smallest closed subgraph of G containing i, and equivalently,
the intersection of all the closed subgraphs of G containing i.

Theorem 14. Let G= (V , E) be a persistent graph inRd (d ∈
{2, 3, . . .}) having at least d vertices. If a vertex v ∈ V belongs
to a closed subgraph of G containing less than d vertices, the
out-degree of v has to be smaller than or equal to d−2. For the
set Vc of all such vertices v, we have |Vc|�d −1. On the other
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hand, any vertex v′ ∈ V that does not belong to any closed
subgraph of G having less than d vertices is connected by a
directed path (leaving v′) to all the vertices of G with positive
DOF count.

Proof. It is easy to see from the definition of closed subgraph
that if v ∈ V belongs to a closed subgraph containing less than
d vertices, then d+(v)�d−2. In order to show that |Vc|�d−1,
consider the set �d = {Ḡi = (V̄i , Ēi), i = 1, . . . , n̄} of all the
(d − 1)-maximally connected closed subgraphs of G. By ap-
plying the definition of a k-maximally connected closed sub-
graph, it is not hard to verify that Vc = ⋃n̄

i=1V̄i and hence

|Vc| � v̄
�= ∑n̄

i=1|V̄i |. Let us consider an arbitrary Ḡi . Since Ḡi

is a closed subgraph of G, using the definition of total DOF
count and Remark 12 we obtain

S(V̄i, G) = S(V̄i, Ḡi) = d|V̄i | − |Ēi |. (4)

Moreover, since the number of edges in Ḡi can at most be
the one of the complete graph with

∣∣V̄i

∣∣ vertices, we have∣∣Ēi

∣∣ �
∣∣V̄i

∣∣ (∣∣V̄i

∣∣ − 1
)
/2, which together with (4) implies that

S(V̄i, G)�(d + 1/2)|V̄i | − |V̄i |2/2. (5)

Taking the summation of (5) over �d , we obtain

n̄∑
i=1

S(V̄i, G)�(d + 1/2)v̄ −
n̄∑

i=1

|V̄i |2/2.

Since |V̄i |�d − 1, ∀i, we have

n̄∑
i=1

|V̄i |2 � max |V̄j |
j

n̄∑
i=1

|V̄i |�(d − 1)v̄

and hence

n̄∑
i=1

S(V̄i, G)�(d + 1/2)v̄ − (d − 1)v̄/2

= (d/2 + 1)v̄. (6)

On the other hand, since there can be at most d(d+1)/2 degrees
of freedom in G, we have

n̄∑
i=1

S(V̄i, G)�d(d + 1)/2. (7)

(6) and (7) yield that d(d + 1)/2�(d/2 + 1)v̄, i.e., v̄�d −
d/(d +2). Noting that v̄ is integer, this implies |Vc|� v̄�d −1.

Finally, to prove the last statement of the theorem, consider
a vertex k ∈ V with a positive DOF count in G. Since G is per-
sistent, by Proposition 6 and definition of minimal persistence,
there exists a minimally persistent subgraph G′ = (V , E′) of G,
having the same vertex set V as G. Moreover, since G′ is ob-
tained by removing some edges from G, k has a positive DOF
count in G′ as well. Suppose v′ is as in the theorem statement.
If v′ does not belong to a closed subgraph of G′ with less than
d vertices, then because of Lemma 11 there exists a directed
path from v′ to k in G′ and thus in G.

Let us now suppose that v′ belongs to a closed subgraph of G′
with less than d vertices. By the hypothesis of the theorem, the
reachability subgraph of G for v′ has to have at least d vertices
since it is a closed subgraph of G. In other words, at least d
vertices (including the vertex v′) can be reached from v′ by a
directed path in G. Among these d vertices, as we just observed
in the first part of this proof, there is at least one vertex ṽ that
does not belong to a closed subgraph of G′ having less than
d vertices. The vertex ṽ is thus connected to k by a directed
path in G′ and a fortiori in G, again because of Lemma 11, and
hence there is a directed path from v′ to k in G via ṽ. �

The following corollary, which immediately follows from
Theorem 14, gives a more explicit criterion to check the exis-
tence of a directed path between given two vertices of a per-
sistent graph in R3, one of which has a positive DOF count.

Corollary 15. Let G = (V , E) be a persistent graph in R3

having at least three vertices. Any vertex i is connected by a
directed path (leaving i) to all the vertices of G with positive
DOF count unless one of the following holds:

(1) i is a “leader”, i.e., d+(i) = 0.
(2) i is a “first follower”, i.e., d+(i) = 1 and there exists a

j ∈ V such that
−−→
(i, j) ∈ E and d+(j) = 0.

Using Theorem 14, we reach the following easily checkable
necessary condition for persistence.

Proposition 16. Let G = (V , E) be a persistent graph in Rd

(d ∈ {2, 3, . . .}) with at least d vertices. Then all the closed
subgraphs of G having more than d − 1 vertices are persistent
(and hence every closed subgraph of G for d = 2 is persistent).

Proof. We consider two cases based on the out-degrees of the
vertices in V. In Case 1, we consider the persistent graphs
G= (V , E) such that no vertex v ∈ V has an out-degree larger
than d2 and in Case 2, the proof of which builds on the proof
of Case 1, we consider the persistent graphs with at least one
vertex having out-degree larger than d.

• Case 1: G = (V , E) is a persistent graph in Rd with at least
d vertices such that no vertex v ∈ V has an out-degree larger
than d. Let G′ = (V ′, E′) be an arbitrary closed subgraph of
G containing more than d −1 vertices. The hypothesis of the
proposition together with Lemma 5 imply that no vertex in G′
has an out-degree larger than d and thus that G′ is constraint
consistent. It remains then to prove the rigidity of G′.
Since G is rigid, due to Theorem 1, there exists an E∗ ⊆ E

such that G∗ = (V , E∗) is minimally rigid, and hence (i)
|E∗|=d|V |−d(d +1)/2 and (ii) |E∗∗|�d|V (E∗∗|−d(d +
1)/2) for any E∗∗ ⊆ E∗. Let us consider E′∗ the restriction
of E∗ to G′, i.e., E′∗=E∗∩E′ and the graph G′∗=(V ′∗, E′∗)

2 There are persistent graphs in Rd which are not minimally persistent
but have all the vertices with out-degree less than or equal to d. Such a graph
in R3 is shown in Fig. 2.
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where V ′∗ = V (E′∗). We are going to prove that G′∗ is
minimally rigid, which will imply the rigidity of G′. We have
V ′∗ = V (E′∗) ⊆ V (E′) = V ′ and hence |V ′∗|� |V ′|. Since
E′∗ ⊆ E∗ and G∗ is minimally rigid, Theorem 1 implies that
|E′∗|�d|V ′∗| − d(d + 1)/2�d|V ′| − d(d + 1)/2.

If we prove that |E′∗| cannot be less than d|V ′| − d(d +
1)/2, we will have |E′∗| = d|V ′∗| − d(d + 1)/2 = d|V ′| −
d(d + 1)/2, implying that V ′∗ = V ′ and G′∗ is minimally
rigid, and hence that G′ is rigid and persistent, because of
Lemma 2 and the fact that G′∗ is a subgraph of G∗, which
is minimally rigid.

Let us now suppose to obtain a contradiction that
|E′∗| < d|V ′| − d(d + 1)/2. Since E∗ = (E∗ ∩ E′) ∪
(E∗ ∩ (E\E′)) = E′∗ ∪ (E∗ ∩ (E\E′)), this implies that
|E∗|� |E′∗| + |E∗ ∩ (E\E′)|� |E′∗| + |E\E′| < d|V ′| −
d(d+1)/2+|E\E′|. To compute |E\E′|, consider the closed
subgraph G′ = (V ′, E′). Since V ′ has at least d vertices,
because of Theorem 14, it contains at least one vertex i that
does not belong to any closed subgraph of G having less than
d − 1 vertices. Therefore, because of Theorem 14, there ex-
ists a path from this vertex i to any vertex of G with a positive
DOF count. Since the subgraph G′ containing i is closed, this
means that all the vertices of G with a positive DOF count
are also in G′, or in other words, all the vertices of V \V ′
have an out-degree d. Therefore and again using the fact that
G′ is closed, it follows that |E\E′| = d|V \V ′| and hence
|E∗| < d|V ′| − d(d + 1)/2 + d|V \V ′| = d|V | − d(d + 1)/2,
which contradicts the equality |E∗| = d|V | − d(d + 1)/2.
Hence |E′∗| cannot be less than d|V ′| − d(d + 1)/2 and the
proof is complete for Case 1.

• Case 2: G = (V , E) is a persistent graph in Rd with at
least d vertices such that at least one vertex v ∈ V has
an out-degree larger than d. Let G′ = (V ′, E′) be a closed
subgraph of G having more than d − 1 vertices. From
Theorem 9, we know that G′ is persistent if and only if any
subgraph G′′ obtained by removing edges leaving vertices
with out-degree larger than or equal to d + 1 until all the
vertices have out-degree smaller than or equal to d are
rigid. Let us consider such a G′′, and build a graph G∗
by adding all the vertices of V \V ′, and for each added
vertex j in V \V ′, adding min{d, d+

G(j)} of the outgoing
edges from vertex j appearing in G. One can see that G∗
can be obtained from G by removing certain edges leaving
vertices with d+ �d + 1 until all vertices have d+ �d.
Since G is persistent, because of Proposition 6, we have
that G∗ is persistent. One can also see that G′′ is a closed
subgraph of G∗: if there was an edge leaving G′′ and
arriving in G∗\G′′, the same edge would leave G′ and
arrive in G\G′, which would contradict the hypothesis
that G′ is a closed subgraph. Since all the vertices of G∗
have d+ �d, we can apply the arguments in Case 1 to
guarantee that G′′ is persistent, and therefore rigid. This
can be done for all G′′, and G′ is thus persistent. �

InR3, Proposition 16 leads to the following corollary, which
indicates that all the closed subgraphs of a persistent graph

except (possibly) a specific subgraph are persistent. The corol-
lary also presents a necessary and sufficient condition for a
graph to have all its closed subgraphs persistent.

Corollary 17. Let G be a persistent graph in R3 with at least
three vertices. Then any closed subgraph G′ of G is persistent
unless G′ consists of two disconnected vertices. In other words,
G has a non-persistent closed subgraph if and only if it contains
two vertices each having 3 DOFs.

5. Structural persistence

In this section, we focus on a subtle property of the persistent
graphs. It gives rise to a problem in contemplating the task of
maintaining the shape of a formation. This problem appears
when any single agent can move to a position which satisfies
all the constraints on it once all the other agents are fixed, but
it is not possible to satisfy all the constraints on all the agents
at the same time.

Consider a persistent graph G = (V , E) in Rd (d ∈
{2, 3, . . .}), and let p be a representation with distance set d̄.
Consider nearby representations p′, with d(p, p′) < �. In these
nearby representations, there may exist a subset Ṽ ⊂ V for
which there are positions that are fitting for d̄, whatever are the
positions of the vertices of Ṽ ⊂ V , but for certain positions
of the vertices in Ṽ , there exists no position assignment for
the vertices in V \Ṽ such that each vertex in V \Ṽ is simulta-
neously fitting. For example, consider the three-dimensional
persistent graph Ḡ shown in Fig. 4(a), an associated set d̄ of
desired lengths dij > 0 for all the edges

−−→
(i, j), and a realization

p̄ of d̄ in agreement with Fig. 4(a). Identify Ṽ with {1, 2}.
Since the vertices 1 and 2 have zero out-degrees, they are at
fitting positions for any representation of the graph, whatever
the positions of 3, 4, 5 are. However, there are representations
of Ḡ arbitrarily close to p̄ (namely, those where the distance
between vertices 1 and 2 differs from the value in p̄) where
the vertices 3, 4, and 5 cannot be at fitting positions at the
same time. From the perspective of formations, in the forma-
tion represented by Ḡ, there exist two leaders, 1 and 2, which
are allowed to move freely in R3 without any constraint.
This freedom, however, makes it impossible in some cases
for the agents 3, 4, and 5 to simultaneously meet all the dis-
tance constraints on them, although Ḡ is persistent, according

1

2

3 4

5

a b 1
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G2 G2

Fig. 4. (a) A persistent graph in R3 which is not structurally persistent.
(b) A structurally persistent graph in R3.
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Fig. 5. A practically closed subgraph in R2.

to the definition given in Section 2. In such a case, we will say
that Ḡ fails to be structurally persistent. In comparison, the
formation represented by Fig. 4(b) is structurally persistent, as
shown in the sequel.

The existence of such persistent but not structurally persis-
tent graphs in three- and higher dimensional spaces makes it
necessary to analyse persistent graphs further and introduce the
new concept of structural persistence that will be defined in
this section. In R2, however, there is no persistent graph that
is not structurally persistent, as explained later in Theorem 21.
To proceed with the analysis, let us consider a persistent graph
G = (V , E) in Rd (d ∈ {2, 3, . . .}) with a representation p.
Let d̄ be the set of distances corresponding to p. G fails to be
structurally persistent if there exists a non-empty vertex sub-
set Ṽ ⊂ V , a constant ε̄ > 0 and a mapping pε indexed byε,
{pε : Ṽ → Rd |0 < ε� ε̄} such that for any ε� ε̄ the following
conditions hold:

(1) d(p(i), pε(i))�ε, ∀i ∈ Ṽ .
(2) For all i ∈ Ṽ ,pε(i) is a fitting position with respect to d̄,

irrespective of the positions of the vertices in V \Ṽ .
(3) There exist no fitting representation p′ : V → Rd in

B(p, ε)�{p̄ : V → Rd |d(p, p̄)�ε}, with respect to d̄,
such that p′(i) = pε(i), ∀i ∈ Ṽ .

If there exists no such subset for a persistent graph, then the
graph is said to be structurally persistent. To analyse this
concept further, we introduce a further notion: for a given
directed graph G = (V , E), a subgraph G′ = (V ′, E′) is a
practically closed subgraph of G if for any vertex i ∈ V ′,
d+
G′(i)� min{d, d+

G(i)}, where d+
G′(i) denotes the number of

outgoing edges incident to the vertex i of a graph G′. We
remark that a closed subgraph is always a practically closed
subgraph, since each vertex of it satisfies the criterion defined
above.

In the two-dimensional example shown in Fig. 5, where V ′=
{1, 2, 3}, G′ is a practically closed subgraph of G but not a
closed subgraph of G. All the outgoing edges of 1 and 2 in G
remain in the subgraph G′. Vertex 3, on the other hand, has two
outgoing edges in G′ (making G′ a practically closed subgraph)
and another one not in G′. From a perspective of formations
where vertices denote agents and edges denote awareness and
distance constraints, in G, although 3 is aware of 4, it may
not be able to react to correctly maintain its distance from 4
because its position is locked by the constraints with respect to
the vertices 1 and 2.

The relation between structural persistence and practically
closed subgraphs is examined in the following propositions.

Proposition 18. Consider a persistent graph G=(V , E) inRd

(d ∈ {2, 3, . . .}) with a representation p and a set d̄ of distances
corresponding to p. Let G′=(V ′, E′) be a subgraph of G where
V ′ is a non-empty vertex subset of V. Then, G′ is a practically
closed subgraph of G if and only if there exist a constant ε > 0
and a mapping pε̄ indexed by ε̄,{pε̄ : V ′ → Rd |0 < ε̄�ε} such
that for any ε̄�ε the following conditions hold:

(1) d(p(i), pε̄(i))� ε̄, ∀i ∈ V ′, for all pε̄ in the mapping set.
(2) For all i ∈ V ′, pε̄(i) is a fitting position with respect to

d̄, irrespective of the positions of the vertices in V \V ′.

Proof. Suppose that G′ is not a practically closed sub-
graph of G. Then, there exists a vertex i0 in V ′ such that
d+
G′(i0) < min{d, d+

G(i0)}, i.e., i0 has less than d neighbours in
V ′ and a non-empty set of neighbours in V \V ′. Consider a
mapping p′ : V ′ → Rd . If we are allowed to change the posi-
tion of a vertex i in V without modifying the positions of the
others, we can generically (i.e., for almost all representations
p) make up to d edges leaving i active (if the edges leaving i
are less than d in number, all of them can be made active). The
position p′(i0) can thus be fitting only if it satisfies at least one
distance constraint towards avertex in V \V ′, which depends on
the positions of the vertices in V \V ′. Hence, it is not possible
to find a mapping pε̄ that satisfies (ii) for any ε̄ > 0.

Conversely, let us suppose that we have a practically closed
subgraph G′ ⊂ G. Let p′ be a representation of G′, fitting
temporarily just for the distance set induced by the restriction
of p to G′, and consider it as a part of a representation p̄

(i.e., p′(i) = p̄(i) for all i ∈ V ′) of G. Suppose further that
d(p, p̄) < �. It remains to show that p̄ is fitting in G (with
respect to d̄). Given any i0 ∈ V ′, if there exists no edge from i0
to V \V ′, then p̄(i0) = p′(i0) is obviously fitting for any such
p̄. If there exists at least one edge from i0 to V \V ′, then, by
definition of practically closed subgraph, there exist at least d
edges in E′ leaving from i0. Since the position of i0 is fitting in
G′, at least d of the edges

−−−→
(i0, j) ∈ E′ are active. This means

(generically) that there exists an ε > 0 such that for d(p, p̄)�ε

and d(p, p′)�ε, there is only one position for i0, i.e., p′(i0) to
satisfy all the constraints on i0 following from the active edges
in G′. So considering G and p̄, there is no position other than
p̄(i0) that would satisfy all the constraints that p̄(i0) already
satisfies in G′. p̄(i0) is thus a fitting position, whatever the
positions of the neighbours of i0 in V \V ′ are. �

Proposition 19. Consider a persistent graph G=(V , E) inRd

(d ∈ {2, 3, . . .}) with a representation p and a set d̄ of distances
corresponding to p. G is structurally persistent if and only if
every non-empty practically closed subgraph of G is persistent.

Proof. Suppose that G fails to be structurally persistent; then
the three conditions of the definition of failure of structural
persistence are satisfied for some Ṽ = V ′, say, � > 0 and a
mapping set {pε̄ : V ′ → Rd |0 < ε̄�ε}. By Proposition 18, the
holding of the first two conditions implies that there is a non-
empty practically closed subgraph G′ = (V ′, E′) of G. Now if
G′ is persistent, pε̄ is congruent to the restriction pV ′ of p to V ′,
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i.e., pε̄ can be obtained from pV ′ applying a unique Euclidean
transformation (rotation and translation). Applying the same
transformation on the whole representation p will then give a
representation p′ that is congruent to p (and thus fitting for d̄)
and satisfying p′(i) = pε̄(i) for all i ∈ V ′. This contradicts
Condition 3 of the definition of failure of structural persistence.
Hence if G fails to be structurally persistent, it contains at
least one non-empty practically closed subgraph which is not
persistent.

Conversely, if there exists a practical closed subgraph G′ that
is not persistent then there exist a constant ε > 0 and a mapping
set {pε̄ : V ′ → Rd |0 < ε̄�ε} such that for any 0 < ε̄�ε, pε̄ is
fitting (for the restriction of d̄ to E′) but not congruent to the
restriction pV ′ of p to V ′. Note that pε̄ satisfies Conditions 1 and
2 of the definition of structural persistence failure. Moreover,
there exists no representation p′ of G fitting for d̄ and at the
same time satisfying p′(i) = pε̄(i) for all i ∈ V ′. If it were the
case, the persistence of G implies that such a representation
would be congruent to p, and thus that pε̄ would be congruent
to pV ′ , which contradicts the hypothesis. Hence Condition 3 for
the failure of structural persistence is also satisfied implying
that G is not structurally persistent. �

Proposition 19 states that a graph is not structurally persistent
if and only if it contains a practically closed subgraph that is
not persistent. Development of this notion leads to the follow-
ing proposition, which gives another necessary and sufficient
condition for a persistent graph to be structurally persistent.

Proposition 20. Let G = (V , E) be a persistent graph in Rd .
G is structurally persistent if and only if every closed subgraph
of G with less than d vertices is persistent.

Proof. If there is a non-persistent closed subgraph G′ of G
with less than d vertices, then G′ is also a non-persistent practi-
cally closed subgraph of G which implies G is not structurally
persistent. Conversely, assume G has no non-persistent closed
subgraph with less than d vertices. Consider an arbitrary prac-
tically closed subgraph G′ = (V ′, E′) of G, and the graph G′′
obtained from G by removing all the edges leaving V ′ and ar-
riving at V \V ′. By definition of a practically closed subgraph,
any such edge e has to leave a vertex in V ′ which has at least
d outgoing edges arriving at V ′. Therefore, by Proposition 6,
removal of e does not affect persistence. Thus the persistence
of G implies the persistence of G′′. Observe also that no closed
subgraph on less than d vertices is affected or created by the
removal of the edges e leaving V ′ and arriving at V \V ′, since
such a subgraph contains only vertices with out-degree smaller
than d −1. Since G has no non-persistent closed subgraph with
less than d vertices, by Proposition 16, this implies that all the
closed subgraphs of G′′ are persistent. Since G′ is by construc-
tion a closed subgraph of G′′, this implies that G′ is persistent.
Hence, from Proposition 19, we have that G is structurally per-
sistent. �

The following theorems, which are two main results of the
section, and which immediately follow from Proposition 20,

give more explicit necessary and sufficient condition for two-
and three-dimensional persistent graphs to be structurally per-
sistent. Theorem 22, moreover, gives more insight for the prob-
lem encountered in the example in Fig. 4.

Theorem 21. Any persistent graph G ∈ R2 is structurally
persistent.

Proof. By Proposition 20, a persistent graph in R2 is struc-
turally persistent if and only if it contains no non-persistent
closed subgraph with less than two vertices, i.e., no non-
persistent closed subgraph with one vertex. The result follows
then by the observation that a graph having only one vertex is
always persistent. �

Theorem 22. A persistent graph G = (V , E) in R3 is struc-
turally persistent if and only if there is at most one leader in G.

Proof. From Proposition 20, we have that G is structurally
persistent if and only if there is no non-persistent closed sub-
graph of G with less than three vertices. Observing that in
R3, the only possible non-persistent closed subgraph with less
than three vertices is the edgeless subgraph composed of two
vertices each having 3 DOFs, we see that for G, having no
non-persistent closed subgraph with less than three vertices is
equivalent to having at most one leader. Hence, the result im-
mediately follows. �

Next, we seek to provide a streamlined test for structural
persistence. The test starts by looking at vertices with posi-
tive DOF. There may be another way of doing this. We shall
adopt as a hypothesis that the graph of interest is known to be
persistent.

Lemma 23. A graph G = (V , E), |V |�d is rigid in d dimen-
sions if and only if it is a complete graph, i.e., its undirected
structure is K|V |.

Proof. The condition is sufficient since a complete graph is
trivially always rigid. Let us now prove that the condition
is necessary. Consider a rigid realization on |V |�d vertices.
The positions of these vertices (almost always) define a |V |-
dimensional subspace of Rd . Since the realization is rigid in
Rd , it must also be rigid in this subspace. We must then have
|E|� |V ||V |− |V |(|V |+ 1)/2 =|V |(|V |− 1)/2, which is only
possible if G is the complete graph. �

Corollary 24. Let G be a persistent graph. A closed subgraph
of G on d or fewer vertices is persistent if and only if it is a
complete graph.

Proof. Observe that since there are at most d vertices in the
subgraph, all the out-degrees are smaller than d. The subgraph
is thus always constraint consistent. By Lemma 23, it is then
rigid (and thus persistent) if and only if it is a complete graph.
�
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   G’
Fewer than d
vertices 

Not complete

G= (V, E) 

…
…

Remainder
of G

…
…

Fig. 6. General form of a persistent graph G which is not structurally persistent
in Rd . G′ contains all the vertices that belong to at least one closed subgraph
on less than d vertices.

Theorem 25. Let G = (V , E) be a persistent graph and Vc be
the set of vertices that belong to at least one closed subgraph
on less than d vertices. G is structurally persistent if and only
if its restriction to Vc is a complete graph.

Proof. Consider all the closed subgraphs on less than d ver-
tices. By definition of a closed subgraph and of Vc, their union
Gc is a closed subgraph with Vc as vertex set. By Theorem 14,
we know that |Vc|�d − 1. Gc is thus a closed subgraph on
less than d vertices. Observe also that Gc is the restriction of
G to Vc (as is the case for any closed subgraph). We have thus
to prove that G is structurally persistent if and only if Gc is a
complete graph. Suppose first that Gc is not a complete sub-
graph. By Corollary 24, it is then not persistent. Since there
is in this case a non-persistent closed subgraph on less than d
vertices, G is not structurally persistent. The condition is thus
necessary. Conversely, as shown in Fig. 6, suppose that G is
not structurally persistent. There exists by Proposition 20 a non
persistent closed subgraph G′=(V ′, E′) on less than d vertices.
By Corollary 24, G′ is thus not a complete graph. By defini-
tion of Vc, V ′ is a subset of Vc. Moreover, by the definition of
a closed subgraph, if two vertices of V ′ are not connected in
G′, they are not connected in G nor in Gc. So, if G′ is a non-
complete graph, so is Gc. We have thus proved that G is struc-
turally persistent if and only if Gc is a complete graph. �

As depicted in Fig. 4(a), where one can verify that Vc={1, 2}
and Ec is an empty edge set, this means the closed subgraph
Gc = (Vc, Ec) is not a complete graph and |Vc| < 3, hence by
Theorem 25 the corresponding G is not structurally persistent.
In contrast, Vc is empty for the graph G in 4(b), hence G is
structurally persistent.

It is not difficult to conceive an algorithm for verify-
ing/detecting Vc, and for checking its completeness. The al-
gorithm is based on building the reachability graphs for those
vertices with out-degree at most d − 2 (Krumke & Noltemeier,
2005).

6. Assurance of structural persistence in R3

In Section 5, we have seen that for a directed graph, per-
sistence is not enough to ensure structural persistence, which

G=(V, E)

V1

{i }

d -n

n

…
…

G’ = (V ’ , E’ )

V2

Fig. 7. A directed d-vertex addition.

is obviously desirable in three dimensional formations. The
example depicted in Fig. 4 demonstrates that the way DOFs
happen to be allocated to the vertices of a directed graph can
determine structural persistence or otherwise; we will study this
phenomena more systematically in this section. In an applica-
tion scenario, this corresponds to giving/restricting the auton-
omy of certain agents (abstracted as DOF of vertices) of the
formation (Yu, Fidan, & Anderson, 2005).

We first study the properties of the directed version of
Henneberg-like vertex addition (Eren et al., 2005; Hendrickx,
Anderson et al., 2005) in three and higher dimensions, which
is an abstraction of the event that new agents join a formation,
one at a time. We give examples of applying such operations to
manipulate DOF allocation of persistent graphs, in particular,
in R3.

Let us consider a persistent graph G = (V , E) in Rd (d ∈
{2, 3, . . .}) where |V |�d. A directed d-vertex addition, DVA
(d, n) as depicted in Fig. 7 where n ∈ {0, . . . , d}, transforms G
to another persistent graph G′ = (V ′, E′) where V ′ = V ∪ {i},
E′ = E ∪ {−−→(i, k) : ∀k ∈ V1} ∪ {−−→(j, i) : ∀j ∈ V2}, V1, V2 ⊆
V, V1 ∩ V2 = ∅, |V1| = d − n, |V2| = n, and DOF(j)�1, ∀j ∈
V2,3 provided that the vertices of V1 ∪ V2 do not lie in any
q-dimensional affine hyperplane where q < d.

We note that from Lemma 5, constraint consistence is pre-
served with the directed d-vertex addition defined above. More-
over, from the following lemma which is drawn from Whiteley
(1996a, 1997), we see that the rigidity is also preserved.

Lemma 26 (Whiteley (1996a, 1997)). A graph obtained by
adding one vertex to a graph G = (V , E) in Rd and d edges
from this vertex to other vertices of G is generically rigid if and
only if G is generically rigid.

Hence by Theorem 3, the graph obtained after applying a
directed d-vertex addition on a persistent graph inRd is persis-
tent, i.e., the d-directed vertex addition defined above preserves
the persistence of the graphs.

3 Non-existence of V2 means the corresponding DVA(d, n) cannot be
performed for the graph.
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L FF

SF

B1
B2

B3a b

Fig. 8. The two directed triangular seeds.

Remark 27. Consider a persistent graph G=(V , E) inRd . Let
G′ = (V ′, E′) be the graph obtained by applying the operation
DV A(d, n) to G, where V ′ = V ∪ {i}. Then we have:

(1) DOFG′(i) = n.
(2) DOFG′(j)�DOFG(j), ∀j ∈ V .
(3) DOFG(j) − DOFG′(j) ∈ {0, 1}, ∀j ∈ V .
(4) S(V, G) = S(V ′, G′).

In the remaining part of this section, we only consider R3,
although results can be easily expanded to higher dimensions.
As a more convenient nomenclature in R3, we use the term
directed trilateration operation, abbreviated DT(·), DT(n) in
place of directed 3-vertex addition or DVA(3, n).

An undirected graph formed by a sequence of trilateration op-
erations starting with an initial undirected triangle, often called
a trilateration graph, is guaranteed to be generically rigid in
R3 and globally rigid in R2 (Eren et al., 2004). Note that a
seed with three vertices is needed to initiate a trilateration se-
quence. However, two different directed triangular seeds can
start a directed trilateration operation in R3 as defined in Fig.
8(a) and (b) are called the leader-first follower-second follower
(L − FF − SF ) and the balanced triangle (B1B2B3 as three
“co-leaders”) seeds, respectively.

Remark 28. The leader-first follower-second follower seed
is analogous to the leader-follower structure defined for a
two-dimensional cycle-free graph (Hendrickx, Anderson et al.,
2005). The set of DOF counts of the seed vertices is {3, 2, 1}.
The balanced triangle is nothing more than a directed triangle
(cycle) in a cyclic graph and the corresponding DOF count set
is {2, 2, 2}.

Specifically in the application to three-dimensional agent for-
mations, note the meanings of the DT(i) operation for different
i can be interpreted as follows:

• DT(3) means election of a new leader.
• DT(2) may result in either breaking/restoring the balanced

control structure, or election of a new first-follower.
• DT(1) may also result in either breaking/restoring the bal-

anced control structure at more a detailed level, or cre-
ation/change of second follower.

• DT(0) preserves the control structure and no decision has to
be made by pre-existing agents.

Noting that in a three-dimensional persistent graph, there are
at most six DOFs (as opposed to at most three DOFs in the

3, 2, 1, 0, 0 … 2, 2, 2, 0, 0…

3,1,1,1,0,0 … 2, 2,1,1,0,0 …

2,1,1,1,1,0,0 … 

1,1,1,1,1,1,0,0…

3, 0, 0, 0, 3, 0, 0 …

Legend:

DT(1)

DT(2)

DT(3)

Fig. 9. The state transition diagram for directed trilaterations.

R2 case) to be allocated among the vertices, we can list the
following six types of DOF allocation which we call DOF
allocation states S1–S6 defined in terms of DOF counts of
vertices as follows:

S1 = {3, 2, 1, 0, 0, . . .}, S2 = {2, 2, 2, 0, 0, . . .},
S3 = {3, 1, 1, 1, 0, 0, ...}, S4 = {2, 2, 1, 1, 0, 0, . . .},
S5 = {2, 1, 1, 1, 1, 0, 0, . . .}, S6 = {1, 1, 1, 1, 1, 1, 0, 0, . . .}

Further, we define a transient type of DOF assignment
S0 = {3, 3, 0, 0, ...}, which can (only) be obtained by apply-
ing a DT(3) operation to S3. S0 is named “transient” because
it apparently allows two leaders simultaneously in a forma-
tion, corresponding to failure of structural persistence and
we want the DOF assignment to avoid this state. (An exam-
ple of a graph that is in transient state S0 can be seen in
Fig. 4).

We study the transformational relationship between the pos-
sible distribution of DOFs by applying the appropriate DT(·)
operation using the “state transition diagram” shown in Fig. 9.
We have the following observations:

• Starting from any one of the two directed triangular seeds,
we can build any graph with any of S0–S6 by adding at most
three vertices using directed trilateration.
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• Any desired DOF reallocation pattern (with no allocation to
a specific vertex) can be achieved by at most four directed
trilaterations starting with any of the six types of DOF allo-
cation.

• Any desired DOF reallocation pattern excluding S0 can be
achieved by at most three directed trilaterations starting with
any other DOF allocation (excluding S0).

The observed results above give an upper bound on the number
of agents required in order to perform a system reconfiguration
operation, such as replacement or elimination of leaders/first-
follower/second-follower, or change to balanced cooperative
control by three “co-leaders”. It also gives the possible conse-
quences in a closing ranks problem4 , where the lost agent has
a certain positive number of DOFs .

Remark 29. A cycle-free graph in R3 having more than 2
vertices is persistent if and only if it has a closed subgraph
which is the leader-first follower-second follower triangle, and
every other vertex has an out-degree larger than or equal to
3 (Yu et al., 2005). Refer to the state transition diagram in
Fig. 9: the cycle-free and persistent properties require that the
formation always has the DOF assignment of 3,2,1,0,0,..., i.e.
stays in state S1 in the process of building these cycle-free
persistent graphs. This requirement eliminates the possibility of
having a “transient” type DOF assignment, i.e., a state S0, that
creates a loss of structural persistence. Hence we can conclude
that all cycle-free persistent graphs in R3 are also structurally
persistent.

7. Concluding remarks

In this paper, we have generalized the notion of persistence
given in Hendrickx, Anderson et al. (2005) for two-dimensional
directed graphs to dimensions higher than two, seeking to pro-
vide a theoretical framework for real world applications, which
often are in three-dimensional space. We have verified that
many of the properties already established for persistent graphs
in R2 are valid for higher dimensions as well. We have con-
sidered the directed paths in persistent graphs, derived some
further properties of such graphs in three or higher dimensions,
and given an easily checkable necessary condition (Proposition
16) for persistence.

Additionally, we have exposed and analysed a concept of
structural persistence; failure of structural persistence arises
roughly when any one vertex of a graph can satisfy all its
constraints, but a subset of vertices cannot do so simultane-
ously. We have defined structurally persistent graphs, noting
that for d=2, structural persistence is not different from persis-
tence. We have studied the connection between the allocation of
DOF across agents and the characteristics of persistence and/or
structural persistence of a directed graph. We have proposed

4 The closing ranks problem for a given rigid formation which has lost
a single agent, is to find new links between some agent pairs which when
introduced cause the resulting formation to again be rigid.

directed d-vertex addition operations for Rd . We have also
shown how to reallocate DOF among agents when the formation
changes agent addition, to preserve persistence and/or structural
persistence. Finally, we presented some results about cycle-free
persistent graphs in R3 which guarantee structural persistence.

The framework we presented in this paper leads to a new
area of research and many open problems. For example, it ap-
pears to be important to seek systematic ways of constructing
structurally persistent formations. It is essential to recast some
of the existing problems posed using the notion of rigidity
within the light of structural persistence. These problems in-
clude closing ranks, splitting and merging, formation manoeu-
ver, etc. (Eren et al., 2004). Another potential focus is the real
world implementation/deployment challenges for such forma-
tions. One challenge, among many other prominent problems,
is to determine in what way we can ensure a level of robust-
ness of sustaining structural persistence in the event of agent
loss(es), link failure, or a combination of both. A closing ranks
problem for a formation losing an agent now becomes one of
restoring redundancy of structural persistence by adding fur-
ther links. Yet another problem is to identify actual control laws
which can be used to assure retention of structural persistence
and inter-agent distances.
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