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Abstract—In this paper, we study the construction and trans-
formation of 2-D persistent graphs. Persistence is a generalization
to directed graphs of the undirected notion of rigidity. Both no-
tions are currently being used in various studies on coordination
and control of autonomous multiagent formations. In the context
of mobile autonomous agent formations, persistence characterizes
the efficacy of a directed formation structure with unilateral dis-
tance constraints seeking to preserve the shape of the formation.
Analogously to the powerful results about Henneberg sequences
in minimal rigidity theory, we propose different types of directed
graph operations allowing one to sequentially build any minimally
persistent graph (i.e., persistent graph with a minimal number of
edges for a given number of vertices), each intermediate graph be-
ing also minimally persistent. We also consider the more generic
problem of obtaining one minimally persistent graph from another,
which corresponds to the online reorganization of the sensing and
control architecture of an autonomous agent formation. We prove
that we can obtain any minimally persistent formation from any
other one by a sequence of elementary local operations such that
minimal persistence is preserved throughout the reorganization
process. Finally, we briefly explore how such transformations can
be performed in a decentralized way.

Index Terms—Graphs, multiagent formation, networks,
persistence, rigidity, robots.

I. INTRODUCTION

THE RECENT progress in the field of autonomous agent
systems has led to new problems in control theory [2], [4],

[19] and graph theory [6], [11], [17]. By autonomous agent, we
mean here any human controlled or unmanned vehicle that can
move by itself and has a local intelligence or computing capacity
such as ground robots, air vehicles, or underwater vehicles.
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Louvain-la-Neuve, Belgium (e-mail: julien.hendrickx@uclouvain.be; vincent.
blondel@uclouvain.be).

B. Fidan, C. Yu, and B. D. O. Anderson are with the Australian National Uni-
versity, Canberra, ACT 2601, Australia, and also with the National Information
and Communications Technology Australia, Canberra, ACT 2601, Australia
(e-mail: baris.fidan@nicta.com.au; brad.yu@nicta.com.au; brian.anderson@
nicta.com.au).

Digital Object Identifier 10.1109/TAC.2008.920239

The results derived in this paper concern autonomous agents
evolving in a 2-D space.

A. Formations and Rigid Graphs

Many applications require the shape of a multiagent formation
to be preserved. For example, target localization by a group of
unmanned airborne vehicles (UAVs) using either angle of arrival
data or time difference of arrival information appears to be best
achieved (in the sense of minimizing localization error) when
the UAVs are located at the vertices of a regular polygon [5].
Other examples of optimal placements for groups of moving
sensors can be found in [16]. This objective can be achieved
by explicitly keeping some interagent distances constant. In
other words, some interagent distances are explicitly maintained
constant so that all the interagent distances remain constant.
The information structure arising from such a system can be
efficiently modeled by a graph, where agents are abstracted
by vertices and actively constrained interagent distances by
edges.

Such a graph is said to be rigid if the corresponding set of dis-
tance constraints is sufficient to maintain the formation shape. In
other words, a graph is rigid if provided that all prescribed dis-
tance constraints are satisfied during a continuous displacement,
all interagent distances remain constant, as shown in Fig. 1. This
property depends, indeed, almost only on the graph of distance
constraints, and not on the particular agents positions and
interagents distance (see [20] for more details on this subject).
Note that this notion of rigidity also represents the rigidity of a
framework where the vertices correspond to joints and the edges
to bars.

B. Formations With Unilateral Distance Constraints

Unlike in the case of frameworks where distance constraints
are guaranteed by the presence of bars between joints, con-
straints on interagent distances in formations have to be main-
tained by means of measurements and control actions. A dis-
tance between two agents can be cooperatively maintained by
the two agents in which case, the rigidity theory can directly be
applied. But, one can also give the full responsibility of main-
taining the constraint to one agent, which has to maintain its
distance from the other constant, this latter agent being unaware
of that fact and taking, therefore, no specific action helping to
satisfy the distance constraint. This unilateral character can be a
consequence of the technological limitations of the autonomous
agents. Some UAVs can, for example, not efficiently sense ob-
jects that are behind them or have an angular sensing range
smaller than 360◦ [3], [8], [18]. Also, some of the authors of
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Fig. 1. Representation of nonrigid graph/formation in (a) and of a rigid one
in (b). The solid structure in (a) can, indeed, be deformed to the dotted structure
without breaking any distance constraint.

Fig. 2. Representation of a persistent graph, i.e., a rigid constraint consistent
graph. This graph corresponds also to a leader–follower formation, where 1 is
the leader and 2 the first follower.

this paper are working with agents in which optical sensors have
blind 3-D cones. It can also be desired to ease the trajectory con-
trol of the formation, as it allows the so-called leader-follower
formations [2], [7], [19]. In such a formation, one agent (leader)
is free of interagent constraints and is only constrained by the
desired trajectory of the formation, and a second agent (first
follower) is responsible for only one distance constraint and can
set the relative orientation of the formation. The other agents
have no decision power and are forced by their distance con-
straints to follow the two first agents. An example of such a
formation is shown in Fig. 2. Finally, it has been argued [2] that
for some classes of control law, having the distance constraints
maintained by both agents can lead to unstable behaviors in
the presence of measurement errors. (It is, however, possible to
avoid such behavior by introducing dead zones at the cost of
limited inaccuracy in the preservation of formation shape [9].)

A structure of unilateral distance constraints can be repre-
sented using a directed graph, a vertex being connected to
another vertex by a directed edge if the agent corresponding
to the first vertex has to maintain its distance from the agent
represented by the second vertex. The characterization of the
directed information structures that can efficiently maintain the
formation shape has begun to be studied under the name of
“directed rigidity” or “rigidity of a directed graph” [1], [2],
[6]. These works included several conjectures about minimal
directed rigidity, i.e., directed rigidity with a minimal number
of edges for a fixed number of vertices. In [11], Hendrickx
et al. proposed a theoretical framework to analyze these issues,
where the name of “persistence” was used in preference to “di-
rected rigidity,” since the latter notion does not correspond to
the immediate transposition of the undirected notion of rigid-
ity to directed graphs. The intuitive definition of persistence is
the following: an information structure is persistent if, provided
that each agent is trying to satisfy all the distance constraints
for which it is responsible, all the interagent distances remain
constant, and, as a result, the formation shape is preserved. It
is shown in [11] that persistence is actually the conjunction of

Fig. 3. Representation of a constraint consistent graph/formation in (a) and of
a nonconstraint consistent one in (b), in 2-D. One can, indeed, see in (b) that for
almost any uncoordinated continuous displacement of agents 2 and 4 (which
are unconstrained), agent 3 is unable to move in such a way that it maintains
its distances to all of 1, 2, and 4 constant. However, such a situation could not
happen in graph (a).

two distinct notions: rigidity of the underlying undirected graph
(i.e., the graph obtained by ignoring the direction of the edges)
and constraint consistence. Constraint consistence of an infor-
mation structure means that, provided that each agent is trying
to satisfy all its distances constraints, all the agents actually suc-
ceed in doing so. In other words, no agent has an impossible
task, as shown in the example in Fig. 3. Observe that this last
notion strongly depends on the directed structure of the graph,
while rigidity only relies on its underlying undirected graph. An
example of a persistent graph is provided in Fig. 2. For agents
evolving in a 2-D space, a purely combinatorial criterion to
decide persistence is provided in [11].

C. Building Formations With Minimally Persistent Graphs

In this paper, we focus on minimally persistent graphs i.e.,
persistent graphs having a minimal number of edges for a given
number of vertices, and their connections with minimally rigid
graphs. More particularly, we analyze different ways to sequen-
tially build minimally persistent graphs, analogously to the Hen-
neberg sequences for the minimally rigid graphs [14], [20]. It
has, indeed, long been known that every minimally rigid graph
can be obtained from the complete graph on two vertices by
a sequence of two basic operations, as detailed in Section II.
The natural extension of these operations to directed graphs [7]
does not allow one to build all minimally persistent graphs, as
remarked in [11] and reviewed in Section IV-B. For reasons re-
viewed in Section III-B, it is, however, desirable to have a set of
operations for the building of all minimally persistent graphs.
Such a set is, indeed, needed to develop an efficient way to
cope with the loss of one or several agents, as it would allow
adding or removing an agent in a formation in a decentralized
way. A second quite different motivation is that in the presence
of measurement errors, reorganization of a formation may also
be needed to cope with some ill-conditioned system without
modifying the relative positions of the agents. Both issues are
especially relevant if one considers that a formation needs to
evolve dynamically with the external conditions, modifying, for
example, its shape and or its leadership structure.

We prove some characteristics of the operation sets allowing
one to build all minimally persistent graphs, and provide one of
the simplest sets achieving this goal (another set, for which the
number of operations required to build a minimally persistent
graph is uniquely determined by the number of its vertices, can
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be found in [12] and [13]). We also consider the more generic
problem of obtaining one persistent graph from another. From
an autonomous agent point of view, this corresponds to an on-
line reorganization of the agent formation. Note that although
the notion of persistence has been also defined in three or higher
dimensions [22], the present analysis only concerns 2-D persis-
tence, i.e., the persistence of graphs representing the information
structure of a formation evolving in a 2-D space. Extension to
the 3-D case may be difficult; even for undirected graphs, 3-D
Henneberg sequences theory is indeed incomplete.

D. Outline of the Paper

In Section II, we review the main properties of the Hen-
neberg sequences for minimally rigid graphs and of the two
operations—vertex addition and edge splitting—on which it is
based. Section III briefly reviews minimal persistence, and de-
tails the different reasons for which a directed version of Hen-
neberg sequences is desirable. We consider in Section IV the
natural extension of the vertex addition and edge splitting to
directed graphs, and show that although they preserve minimal
persistence, they are not sufficient to build all minimally persis-
tent graphs, and do, therefore, not constitute a complete gener-
alization of Henneberg sequences to directed graphs. We also
show that any set of directed operations based on the undirected
vertex addition and edge splitting operations and allowing one to
build all minimally persistent graphs must contain nonconfined
operations. Nonconfined operations are operations reversing the
directions of edges that are not affected by the corresponding
operation for undirected graphs. In other words, operations that,
in addition to adding or removing vertices and edges, reverse the
directions of one or more edges. This analysis is done by reason-
ing on reverse construction of persistent graphs using reverse
operations. In Section V, we introduce the simplest nonconfined
operation, edge reversal, and show how it can be used to reach
the goal of building all minimally persistent graphs. We see
that, unlike when building minimally rigid undirected graphs
with Henneberg sequences, the required number of operations
is not uniquely determined by the size of the graph. We also
explore the possibility of performing some of the operations in
a decentralized way, something which is of critical importance
from an application point of view. Finally, this paper ends with
the concluding remarks of Section VI. Note that a more detailed
explanation of the undirected and directed versions of the Hen-
neberg operations can be found in [12] and [13], together with
an alternative set of four operations allowing one to obtain all
minimally persistent graphs.

II. MINIMALLY RIGID GRAPHS AND UNDIRECTED

HENNEBERG SEQUENCES

In this section, all graphs are considered as undirected, but in
the rest of this paper, they are always assumed to be directed. Al-
though all the definitions and results of this section are given for
undirected graphs, they can also be applied to directed graphs.
If G is a directed graph, we call the underlying undirected graph
of G the undirected graph obtained by ignoring the directions
of the edges of G.

Fig. 4. Representation of the undirected vertex addition operation in (a) and
of the undirected edge splitting operation in (b).

The intuitive meaning of the undirected notion of rigidity is
explained in the Introduction. For a more formal definition, the
reader is referred to [20] and [11]. In �2 , there exists a com-
binatorial criterion to check if a given graph is rigid (Laman’s
theorem [15], [21]). A minimally rigid graph is a rigid graph
such that no edge can be removed without losing rigidity. A
key intermediate result in Laman’s Theorem proof [15] is the
following criterion.

Proposition 1: A graph G = (V,E) (|V | > 1) is minimally
rigid if and only if |E| = 2|V | − 3 and for all E′′ ⊆ E,E ′′ �= ∅,
there holds |E′′| ≤ 2|V (E ′′)| − 3, where V (E′′) is the set of
vertices incident to E ′′.

Let j, k be two distinct vertices of a minimally rigid graph
G = (V,E). A vertex addition operation consists of adding a
vertex i, and connecting it to j and k, as shown in Fig. 4(a). It
follows from Proposition 1 that this operation preserves minimal
rigidity. Moreover, if a vertex i has degree 2 in a minimally
rigid graph, one can always perform the inverse vertex addition
operation by removing it (and its incident edges), and obtain a
smaller minimally rigid graph.

Let j, k, l be three vertices of a minimally rigid graph such
that there is an edge between j and k. An edge splitting op-
eration consists of removing this edge, adding a vertex i and
connecting it to j, k, and l, as shown in Fig. 4(b). This operation
provably preserves minimal rigidity [20]. Consider now a vertex
i connected to three vertices j, k, and l. A reverse edge splitting
consists of removing i and adding one edge among (j, k), (k, l),
and (l, j) in such a way that the graph obtained is minimally
rigid. This operation can be performed on every vertex with
degree 3 in a minimally rigid graph [15], [20], but one cannot
freely choose the edge to be added, as shown on the example in
Fig. 5.

A Henneberg sequence is a sequence of graphs
G2 , G3 , . . . , G|V | with G2 = K2 being the complete graph on
two vertices and where each graph Gi (i ≥ 3) can be obtained
from Gi−1 by either a vertex addition operation or an edge split-
ting operation. Since these operations preserve minimal rigidity
and since K2 is minimally rigid, every graph in such a sequence
is minimally rigid.

Theorem 1: Every minimally rigid graph on more than one
vertex can be obtained as the result of a Henneberg sequence
[20]. Moreover, all intermediate graphs of such a sequence are
minimally rigid.

Authorized licensed use limited to: Paul Van Dooren. Downloaded on August 6, 2009 at 07:40 from IEEE Xplore.  Restrictions apply. 



HENDRICKX et al.: FORMATION REORGANIZATION BY PRIMITIVE OPERATIONS ON DIRECTED GRAPHS 971

Fig. 5. Example of unfortunate added edge selection in reverse edge splitting.
After the removal of vertex 5 from the minimally rigid graph (a), minimal
rigidity can be preserved by the addition of the edge (1, 4), but not of (1, 6), as
shown, respectively, on (b) and (c). In the latter case, the subgraph induced by
1, 2, 3, and 6 contains, indeed, 6 edges and 4 vertices (6 > 2.4 − 3 = 5), and
the edge (3, 4) is only fixed to the graph by one of its vertices.

III. MINIMALLY PERSISTENT GRAPHS

A. Review of Minimal Persistence

Consider a group of autonomous agents represented by ver-
tices of a graph. To each of these agents, one assigns a (possibly
empty) set of unilateral distance constraints represented by di-
rected edges: the notation (i, j) for a directed edge connotes that
the agent i has to maintain its distance to j constant during any
continuous move. The persistence of the directed graph means
that provided that each agent is trying to satisfy its constraints,
the distance between any pair of connected or nonconnected
agents is maintained constant during any continuous move, and,
as a consequence, the shape of the formation is preserved. A
formal definition of persistence is given in [11].

A graph is minimally persistent if it is persistent and if no
edge can be removed without losing persistence. The following
result provides a swift criterion to decide minimal persistence.

Proposition 2: A graph is minimally persistent if and only if
it is minimally rigid and no vertex has an out-degree larger than
2 [11].

We call the number of degrees of freedom of a vertex i the
(generic) dimension of the set in which the corresponding agent
can choose its position when all the other positions are fixed. It,
thus, represents in some sense the decision power of this agent.
In a 2-D space, an agent having two or more distance constraints
to satisfy (out-degree 2) has only up to two possible positions.
It has, therefore, no degree of freedom. An agent having only
one distance constraint to satisfy (out-degree 1) can move on a
circle centered on its neighbor, and has thus one degree of free-
dom. Finally, an agent having no distance constraint to satisfy
(out-degree 0) can move freely in the plane, and has, therefore,
two degrees of freedom. The number of degrees of freedom of a
vertex i in a directed graph is thus given by max (0, 2 − d+(i))
(where d+(i) and d−(i) represent, respectively, the out- and in-
degree of the vertex i). As a consequence of Proposition 2, the
number of degrees of freedom of a vertex i in a minimally persis-
tent graph is 2 − d+(i). The total number of degree of freedom
in a minimally persistent graph G(V,E) is

∑
i∈V (2 − d+(i)) =

2|V | −
∑

i∈V d+(i) = 2|V | − |E|. It follows then from Propo-
sitions 1 and 2 that this number is always 3 in a minimally
persistent graph. This result is consistent with the intuition that
there are indeed three degrees of freedom to choose the position
and orientation of a rigid body in a 2-D space.

B. Applications-Type Motivations for Directed Versions of
Henneberg Sequences

Having a set of operations allowing one to sequentially build
all minimally persistent graphs in a systematic way analogously
to Henneberg sequences for undirected graphs, or to reorganize
any minimally persistent graph into any other, is an interesting
result from a theoretical point of view. But, it also has several
practical implications, which we review in this section.

Such a set, if simple enough, could first provide a decentral-
ized way to add an agent to a formation. This would, for ex-
ample, be relevant in a situation where a few additional agents
are needed to help a formation to cope with an unplanned task.
The dual problem of an agent leaving the formation is equally
relevant. An agent may indeed need to leave the formation once
it has accomplished its task within the formation or to fulfill
a particular temporary mission out of the formation. Also, in
a large formation, the possibility of losing an agent cannot be
excluded due to technical malfunctions or to an hostile action,
for example. This generally leads to a loss of persistence, and
an efficient method is thus needed to reconfigure the formation
in order to recover persistence. This problem is known as the
closing ranks problem and happens to be a particular case of
the splitting problem in which a formation is split in two or
more subsets, each of them potentially needing to reconfigure
its distance constraints in order to be persistent. These issues
are addressed in the undirected case by Eren et al. [6], and
the proposed solution relies on the undirected Henneberg se-
quences. (Actually, a modest extension of the underlying theory
is needed.) Therefore, it is reasonable to suppose that a directed
analogous to Henneberg sequence would be helpful in solving
the directed version of the closing ranks problem.

The goal of persistence is to maintain the shape of a forma-
tion during its displacement. This must, however, not hide the
possible need for this shape to be modified due to a varying
external environment. Suppose, for example, that a formation
has to traverse a narrow passage to avoid a dangerous zone such
as mountains or a fire, or to avoid the detection range of some
radars. The formation width needs to be reduced, as represented
in Fig. 6(a), but it might be desirable to conserve its length.
Such a shape modification can lead to instabilities inside the
formations. An agent i having distance constraints toward two
agents j and k has theoretically a position uniquely determined
(up to an axial symmetry) by the positions of j and k. But, in
a real and noisy environment, determining the position of i can
become an ill-conditioned problem if the angle ˆjik becomes
too small, as represented in Fig. 7. Due to a shape modification,
an initially sound formation can become ill-conditioned, as in
Fig. 6(a). This problem could be prevented by imposing some
stability ensuring conditions on the new agent relative positions.
However, in several cases, a simple reorganization of the dis-
tance constraint structure can reimprove the conditioning of the
formation systems without modifying the relative positions of
the agents, as presented in Fig. 6(b).

Finally, a shape modification or variation in the external en-
vironment can also lead to the necessity of modifying the for-
mation leadership without necessarily modifying the undirected
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Fig. 6. (a) Formation needing to reduce the width of its shape in order to go
through a narrow passage. As a result, the distance constraints sets of agents 3
and 4 become ill-conditioned. This can be solved by reorganizing the structure
of constraints without modifying formation shape (b).

Fig. 7. Representation of an agent with an ill-conditioned set of constraints.
Small positions variations or measurement errors x̂j − xj , x̂k − xk can cause
large modifications of the desired position of i.

Fig. 8. Representation of two minimally persistent formations having the same
undirected constraints. However, (b) is much better conditioned that (a) as the
smallest angle between two constraints for which the same agent is responsible
is much larger than in (a).

structure of the distance constraints. This could be the case for
simple control reasons, as in the example represented in Fig. 8.
Or, it might happen that in the course of the formation move-
ment, some agents get an easier or more accurate access to in-
formation that could or should influence the formation’s desired
path. Without necessarily influencing the undirected structure of
the formation, it would then be beneficial to provide this agent
with some decision power or degree of freedom, that is, to have
the agent actively maintain less than two constraints.

IV. NATURAL EXTENSION OF THE HENNEBERG OPERATIONS

A. Definition of the Operations

Let j, k be two distinct vertices of a minimally persistent
graph G = (V,E). A directed vertex addition [7], [10] consists
of adding a vertex i and two directed edges (i, j) and (i, k), as
shown in Fig. 9(a). A reverse (directed) vertex addition consists
of removing a vertex with an out-degree 2 and an in-degree 0
from a minimally persistent graph.

Lemma 1: The directed vertex addition and reverse directed
vertex addition operations preserve minimal persistence.

Proof: From an undirected point of view, both operations
preserve minimal rigidity. Moreover, the directed vertex addition

Fig. 9. Representation of (a) directed vertex addition and (b) edge splitting.

operation adds a vertex with out-degree 2 without affecting
other vertex out-degrees, and the reverse directed vertex addition
operation removes a vertex without affecting other vertex out-
degrees. It follows then from Proposition 2 that both operations
preserve minimal persistence.

Let (j, k) be a directed edge in a minimally persistent graph
and l a distinct vertex. A directed edge splitting [7], [10] consists
of adding a vertex i, an edge (i, l), and replacing the edge (j, k)
by (j, i) and (i, k), as shown in Fig. 9(b). Let now i be a vertex
with out-degree 2 and in-degree 1, call j the vertex left by an
edge arriving at i, and k, l the other neighbors of i, its neighbors
j, k, and l. The reverse directed edge splitting operation consists
of removing i and its incident edges, and adding either (j, k)
or (j, l) (k and l being interchangeable) in such a way that the
graph obtained is minimally rigid.

Lemma 2: The directed edge splitting and reverse directed
edge splitting operations preserve minimal persistence.

Proof: From an undirected point of view, the edge splitting
operation preserves minimal rigidity. It follows from its def-
inition that the reverse directed edge splitting operation also
does. Again, these operations add or remove a vertex with out-
degree 2 without affecting the other vertex out-degrees. So, it fol-
lows from Proposition 2 that both operations preserve minimal
persistence.

We denote by S the set of operations containing the directed
vertex addition operation and the directed edge splitting op-
erations and by S−1 the operation set containing their reverse
versions (the same convention is used in the sequel for all opera-
tion sets). The smallest minimally persistent graph on more than
one vertex consists of two vertices connected by one directed
edge; its minimal persistence follows directly from Propositions
2 and 1. We refer to this graph as a leader-follower pair, the
leader being the vertex with an out-degree 0. Since the oper-
ations in S preserve minimal persistence, any graph obtained
by performing a sequence of directed vertex addition or edge
splitting operations on an initial leader-follower pair is mini-
mally persistent. The following result establishes that to any
minimally rigid graph corresponds a minimally persistent graph
that can be obtained in that way, as already argued in [11].

Proposition 3: It is possible to assign directions to the edges of
any minimally rigid graph such that the obtained directed graph
is minimally persistent and can be obtained by performing a
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Fig. 10. Class of graphs on which no reverse vertex addition or edge splitting
can be performed.

sequence of operation in S on an initial leader-follower pair.
Moreover, all intermediate graphs are minimally persistent.

Proof: Let G be a minimally rigid (undirected) graph. By
Theorem 1, it can be obtained by performing a sequence of undi-
rected vertex additions and edge splittings on K2 . By performing
the same sequence of the directed version of these operations on
an initial leader-follower pair, one obtains a directed graph hav-
ing G as an underlying undirected graph. Moreover, since this
initial seed is minimally persistent and since the directed ver-
sions of both vertex addition and edge splitting preserve minimal
persistence, the obtained graph and all the intermediate graphs
are minimally persistent.

B. Insufficiency of the Natural Extension

We now show that the operations in S do not allow one to
grow all minimally persistent graphs from an initial seed. Con-
sider the graph in Fig. 10 for n > 1. This graph is minimally
rigid as its undirected structure can be obtained from K2 by per-
forming 2n − 1 undirected vertex additions, connecting each
new vertex i to i − 1 and i − 2. Moreover, no vertex has an
out-degree larger than 2; by Proposition 2, it is, thus, minimally
persistent. If this graph could be obtained by performing an
operation in S on a smaller minimally persistent graph, then it
would be possible to reobtain this smaller graph by applying an
operation inS−1 . Observe that no vertex has an in-degree 0; it is,
thus, impossible to perform a reverse vertex addition operation.
Moreover, only the vertex 2n satisfies the required conditions
about the in- and out-degree in order to offer the possibility of
removal by a reverse edge splitting operation. Applying this re-
verse operation would consist of removing 2n and adding either
the edge (2n + 1, 2n − 1) or the edge (2n − 2, 2n − 1). But,
the opposite edges (2n − 1, 2n + 1) and (2n − 1, 2n − 2) are
already present in the graph, so that adding (2n + 1, 2n − 1)
or (2n − 1, 2n + 1) would create a cycle of length 2. It fol-
lows from a direct application of Proposition 1 that a graph
containing such a cycle is never minimally rigid, and therefore,
never minimally persistent. Note that adding (2n − 2, 2n + 1)
or (2n + 1, 2n − 2) would restore the graph rigidity, but the
operation would then not be a reverse directed edge splitting
such as defined earlier, and would not be out-degree preserv-
ing for the vertices remaining in the graph, and would then not
necessarily preserve minimal persistence. In the first case, the
out-degree of 2n − 2 would, indeed, be increased to 3, pre-
venting the graph obtained from being (minimally) persistent.
The possibility of using such operations is further explored in
Section IV-C. Furthermore, since this reasoning holds for any
n > 1, we have an infinite class of graphs on which none of the
two reverse operations in S−1 can be performed. (A minimally

persistent graph in which one vertex has two degrees of freedom
and the another one, one degree of freedom and which cannot
be obtained from a smaller minimally persistent graph by an
operation in S, can be found in [11].) As a consequence, it is not
possible to build every minimally persistent graph by perform-
ing a sequence of operations in S on some seed graph taken in
a finite set of graphs. Observe also that unlike in the case of
undirected reverse operations for minimally rigid graphs, there
are vertices in minimally persistent graphs that cannot be re-
moved by a reverse (directed) edge splitting even though they
satisfy the degree condition, i.e., they have an out-degree 2 and
an in-degree 1.

C. Necessary Involvement of External Edges

It is shown in the previous sections that the immediate gen-
eralizations to directed graphs of the undirected vertex addi-
tion and edge splitting operations are not sufficient to build
all minimally persistent graphs. These operations are designed
to preserve the out-degree of the already existing vertices, so
that they can be performed (preserving minimal persistence) on
any minimally persistent graph, regardless of the out-degree of
the vertices to which the added vertex is connected. But, one
could imagine other generalizations of the undirected opera-
tions, which would, for example, increase some out-degree, and
therefore, could only be applied under restricted conditions. For
example, one can contemplate adding a vertex i with in-degree
and out-degree 1, and edges (i, j) and (k, i). As a result, the
out-degree of k is increased by 1. This operation preserves min-
imal persistence if and only if k has a degree of freedom before
the addition, that is, if the out-degree of k is smaller than 2 be-
fore the addition. In the sequel, we adopt the terms generalized
vertex addition and generalized edge splitting for any operation
that is equivalent to a vertex addition or an edge splitting from
an undirected point of view. An operation is said to be confined
if it only affects edges that are involved in the corresponding
undirected operation. In other words, an operation is confined if
it only consists of addition or deletion of edges and vertices, and
not in the reversion of edges directions, these reversions having
indeed no undirected counterparts. For example, both operations
in S are confined. We now prove that it is impossible to obtain
all minimally persistent graphs by applying a sequence of con-
fined generalized vertex additions or edge splitting operations
to an initial leader-follower seed.

Proposition 4: If a set exists of generalized vertex additions
and edge splittings, allowing one to build all minimally persis-
tent graphs from an initial leader-follower seed, such a set must
contain a nonconfined edge splitting.

Proof: Suppose that one wants to remove a vertex without
losing persistence from the provably minimally persistent graph
represented in Fig. 11 using a generalized reverse edge splitting
or reverse vertex addition. The only ones that can be removed are
those with (undirected) degree 2 or 3, and they are shown with
a label “+”. As they have undirected degree 3, a generalized
reverse edge splitting operation would be needed. Suppose now
that one wants to use a confined version of this operation. One
would then remove one of the vertices with a label “+” and
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Fig. 11. Minimally persistent graph, no vertex of which can be removed with-
out losing persistence by a reverse (generalized) vertex addition or a confined
(generalized) reverse edge splitting. The symbol “∗” represents one degree of
freedom. Vertices that are candidates to be removed by a reverse generalized
edge splitting are labelled “+”.

connect two of its neighbors by a directed edge. Observe that
among the three pairs of neighbors of any vertex with a label
“+,” two are already connected, and the last pair contains two
vertices with an out-degree 2. Adding an edge between a pair of
neighbors of the removed vertex without reversing the direction
of any other edge would, thus, imply the presence of either a
vertex with out-degree 3, which, by Theorem 2, is impossible in
a minimally persistent graph, or of a cycle of length 2, which,
by Proposition 1, cannot appear in a minimally rigid graph.
This removal should, therefore, be performed by a nonconfined
reverse generalized edge splitting.

Such a set of operations containing nonconfined edge splitting
and allowing one to build all minimally persistent graphs start-
ing from a leader-follower seed can be found in [12] and [13].
Since one vertex is added at each operation, the number of op-
erations required to obtain a graph G = (V,E) is |V | − 2. The
existence of confined operations that would not be equivalent
to vertex addition or edge splitting, but that would, however,
preserve minimal persistence and allow one to build all mini-
mally persistent graphs with |V | vertices in |V | − 2 operations
starting with a leader-follower seed remains an open question.
Such operations would have to be proved to preserve minimal
rigidity.

V. PURELY DIRECTED OPERATION

We have shown that unless we use operations that are not
equivalent to Henneberg sequence operations from an undi-
rected point of view, the use of nonconfined operations is re-
quired to be able to build all minimally persistent graphs. We,
therefore, now introduce the edge reversal operation, the sim-
plest possible nonconfined operation, which is neutral from an
undirected point of view, as it only reverses the direction of
one edge. We, then, define two macrooperations that help us to
prove two properties. First, edge reversal operations are suffi-
cient to obtain any minimally persistent graph from any other
one having the same underlying undirected graph. Second, edge
reversal operations combined with those in S are sufficient to
obtain any minimally persistent graph from a unique initial seed.

Fig. 12. Implementation of the path reversal by a sequence of edge reversals.
The symbol “*" represents one degree of freedom.

A. Edge Reversal

Let (i, j) be an edge such that j has, at least, one degree
of freedom, i.e., d+(j) = 0 or d+(j) = 1. The edge reversal
operation consists of replacing the edge (i, j) by (j, i). As a
consequence, one degree of freedom is transferred from j to i.
This operation is its autoinverse and preserves minimal persis-
tence since it does not affect the underlying undirected graph
and the only increased out-degree d+(j) remains no greater
than 2. From an autonomous agent point of view, j transfers its
decision power or a part of it to i.

B. Path Reversal

Given a directed path P between a vertex i and a vertex j
such that j has a positive number of degrees of freedom, a path
reversal consists of reversing the directions of all the edges of
P . As a result, j loses a degree of freedom, i acquires one, and
there is a directed path from j to i. Moreover, the number of
degrees of freedom of all the other vertices remain unchanged.
Note that i and j can be the same vertex, in which case, the
path either has a trivial length 0 or is a cycle. In both of these
situations, the number of degrees of freedom is preserved for
every vertex.

The path reversal can easily be implemented with a sequence
of edge reversals: since j has a degree of freedom, one can
reverse the last edge of the path, say (k, j), such that j loses one
degree of freedom, while k acquires one. One can then iterate
this operation along the path until i, as shown in Fig. 12. At
the end, i has an additional degree of freedom, j has lost one,
and all the edges of the paths have been reversed. Note that
the sequence of edge reversals can usually not be performed
in another order, for the condition requiring the availability of
a degree of freedom would not be satisfied. The final result
would be the same, but all the intermediate graphs would not
necessarily be minimally persistent.

The following lemma, which is a particular case of a result
available in [22], implies that a path reversal operation allows
the transfer of a degree of freedom from any vertex having at
least one degree of freedom to any other vertex having less than
two of them.
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Fig. 13. Implementation of cycle reversal. The “∗” represents one degree of
freedom.

Lemma 3: Let G be a minimally persistent graph, i and j two
vertices of G with d+(i) ≥ 1 and d+(j) ≤ 1. Then, there is a
directed path from i to j.

C. Cycle Reversal

A cycle reversal consists of reversing all the edges of a di-
rected cycle. This operation does not affect the number of de-
grees of freedom of any vertex nor the underlying undirected
graph, and preserves, therefore, minimal persistence.

A cycle reversal on a minimally persistent graph can be im-
plemented by a sequence of edge reversals. Let us first suppose
that there is a vertex i in the cycle that has at least one degree
of freedom. In that case, the cycle reversal is just a particular
case of the path reversal, with i = j. We now assume that no
vertex in the cycle has a degree of freedom. Let l be a vertex
in the cycle, and m a vertex that does not belong to the cycle
but has a degree of freedom. By Lemma 3, it follows that there
exists a directed path from l to m. Let i be the last vertex in this
path belonging to the cycle. There is trivially a path P from i to
m such that every other vertex of this path does not belong to
the cycle. The implementation of a cycle reversal by three path
reversals is then represented in Fig. 13. One begins by reversing
the path P into P ′ such that i acquires a degree of freedom.
As explained earlier, the cycle can then be reversed since it is
a particular case of path reversal, and finally, one reverses the
path P ′ back to P such that the degree of freedom acquired by
i is retransmitted to m.

Remark 1: Both cycle reversal and path reversal are their au-
toinverse, as is the case for edge reversal. Moreover, the fact that
they can be implemented using only edge reversals is another
way to show that they preserve minimal persistence.

It follows from Lemma 3 that one can arbitrarily reposition
degrees of freedom using path reversals. The following result
implies that two minimally persistent graphs having the same
underlying undirected graph and the same positions for their
degrees of freedom (all vertices having, therefore, the same out-
degree in the two graphs) can differ only by cycles of opposite
edges, and its proof provides a greedy algorithm to find such a
cycle.

Lemma 4: Let GA = (V,EA ) and GB = (V,EB ) be two
graphs having the same underlying undirected graph and such
that every vertex has the same out-degree in both graphs. If an
edge of GA has the opposite direction to that in GB , then it
belongs to a cycle of such edges in GA .

Proof: Suppose that (i0 , i1) ∈ EA and (i1 , i0) ∈ EB (i.e.,
this edge has opposite directions in GA and GB ), then there

exists at least one vertex i2 �= i0 such that (i1 , i2) ∈ EA

and (i2 , i1) ∈ EB . For if the contrary holds, we would have
d+(i1 , GA ) = d+(i1 , GB ) − 1, which contradicts our hypoth-
esis. Repeating this argument recursively, we obtain a (infi-
nite) sequence of vertices i0 , i1 , i2 , . . . such that for each j ≥ 0,
(ij , ij+1) ∈ EA and (ij+1 , ij ) ∈ EB . Since there are only a fi-
nite number of vertices in V , at least one of them will appear
twice in this sequence. By taking the subsequence of vertices
(and induced edges) appearing in the infinite sequence between
any two of its occurrences, we obtain then a cycle of edges of
GA having opposite directions to those in GB . This cycle does
not necessarily contain (i0 , i1). But, if it does not, we can reap-
ply the same argument to G′

A ,G′
B obtained from GA and GB

by removing the edges of the cycle found. (i0 , i1) has indeed an
opposite direction in G′

A to that in G′
B , and these graphs satisfy

the other hypotheses of the Lemma. Moreover, they contain less
edges than GA,GB . Therefore, by doing this recursively, we
eventually obtain a cycle containing (i0 , i1) since the number
of edges in the graphs is finite.

D. Three Primitive Operations

Using the results of the two previous subsections, we can now
show the following proposition.

Proposition 5: By applying a sequence of edge reversals to
a given minimally persistent graph, it is possible to obtain any
other minimally persistent graph having the same underlying
undirected graph. Moreover, all the intermediate graphs are then
minimally persistent.

Proof: Let GA and GB be two minimally persistent graphs
having the same underlying undirected graph. Suppose that there
is a vertex i that has less degrees of freedom in GA than in GB .
Since, at most, three vertices have positive degree of freedom,
there are, at most, three such vertices i. And, since the total
number of degrees of freedom is 3 in all minimally persistent
graphs, there exists a vertex j that has more degree(s) of freedom
in GA than in GB . In GA , i has thus necessarily less than two
degrees of freedom and j has at least one degree of freedom.
It follows then from Lemma 3 that there exists a directed path
from i to j in GA . The reversal of this path transfers a degree
of freedom from j to i without affecting the number of degrees
of freedom of the other vertices. Doing this at most two more
times, the two graphs will have the same positions for their
degrees of freedom.

We now show that the following algorithm, which uses only
cycle reversals, transforms, then, GA into GB .

while ∃ e having opposite direction in GA to that in GB do
Select a cycle C of such edges
Reverse C in GA

end do

Existence of C when GA �= GB : This is a direct consequence
of Lemma 4 since both graphs have the same underlying undi-
rected graph and since all the vertices have the same out-degrees
in both of them.

End of the algorithm: At each step of the loop, the number
of edges having opposite directions in GA and GB is strictly
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Fig. 14. Example of obtaining a minimally persistent graph by applying a
sequence of operations in T on a leader-follower seed. The graph G is obtained
from the leader–follower seed by successively performing three vertex additions
(a), reversing the path P (b), and reversing the cycle C (c).

reduced because all the edges for which directions are changed
in GA initially had an opposite direction in GB (and because
Proposition 1 forbids the presence of cycles of length 2 in a
minimally persistent graph). Since there are only a finite number
of edges, the algorithm finishes, and all the edges have, then,
the same directions in both graphs.

The result of this proposition follows, then, from the fact that
both path reversal and cycle reversal can be implemented by a se-
quence of edge reversals, which preserves minimal persistence.

From an autonomous agent formation perspective, suppose
that a reorganization of the distance constraints distribution
needs to be performed, and that this reorganization preserves
the structure of constraints from an undirected point of view,
i.e., the reorganization only involves changes of some direc-
tions. Proposition 5 implies that this can be done by a sequence
of local degree of freedom transfers, in such a way that during
all the intermediate stages, the formation shape is guaranteed to
be maintained.

Let T be the set of operations containing vertex addition,
edge splitting, and edge reversal. We can now state our main
result that every minimally persistent graph can be obtained by
performing operations in T on an initial leader-follower seed.

Theorem 2: Every minimally persistent graph can be ob-
tained by applying a sequence of operations in T to an initial
leader-follower seed. Moreover, all the intermediate graphs are
minimally persistent.

Proof: Consider a minimally persistent graph G. This graph
is also minimally rigid. By Proposition 3, there exists, thus,
a (possibly different) minimally persistent graph having the
same underlying undirected graph that can be obtained by
performing a sequence of operations in S ⊂ T on an initial
leader-follower seed. By Proposition 5, G can then be ob-
tained by applying a sequence of edge reversals on this last
graph. Moreover, since all the operations in T preserve min-
imal persistence, all the intermediate graphs are minimally
persistent.

To illustrate Theorem 2, consider the graph G represented in
the right-hand side of Fig. 14(c), which is the graph of Fig. 10
with n = 2. As explained in Section IV-B, it cannot be obtained
by applying a vertex addition or an edge splitting on a smaller
minimally persistent graph. However, by Theorem 2, it can be
obtained by applying a sequence of operations in T on an initial
leader-follower seed. Let us take 1 and 2 as, respectively, leader
and follower of this initial seed. One can begin by adding 3,
4, and 5 using three vertex additions as shown in Fig. 14(a).
The graph obtained has the same underlying undirected graph
as G, but the degrees of freedom are not allocated to the same
vertices. By reversing the path (5, 4, 2, 1) using a sequence of
edge reversals, one can then transfer one degree of freedom
from 1 to 5, as shown in Fig. 14(b) such that in the obtained
graph, all vertices have the same number of degrees of freedom
(and therefore, same out-degree) as in G. As stated in Lemma
4, any edge of this graph that does not have the same direction
as in G belongs to a cycle of such edges. The only such cycle
here is C. By reversing it using a sequence of edge reversals,
one finally obtains the graph G, as shown in Fig. 14(c). Note
that consistently with Theorem 2, all the intermediate graphs
are minimally persistent.

Corollary 1: Every minimally persistent graph can be trans-
formed into any other minimally persistent graph using only
operations in T ∪ T −1 .

Proof: Let GA and GB be two minimally persistent graphs.
Since GA can be obtained by applying a sequence of operations
in T on a leader-follower pair, the leader-follower pair can
be reobtained from GA by applying the reverse versions of
these operations (which are all in T −1) in the reverse order. By
Theorem 2, one can then obtain GB from this leader-follower
pair by a sequence of operations in T .

The method proposed in the proof of Corollary 1 is generally
not optimal in terms of the number of operations. Note also
that unlike in the case of undirected Henneberg sequences, the
number of operations to build a minimally persistent graph is not
uniquely fixed by its number of vertices, although it is bounded
in O(|V |2), as explained in [12] and [13].

Remark 2: Observe that the three operations in T are basic op-
erations that can be performed locally. They can, thus, easily be
implemented in a local way on an autonomous agent formation.
It might, however, be possible to improve this basic character
using, for example, an operation such as an edge reorientation,
i.e., an operation consisting of changing the arrival vertex of
an edge. As shown in Fig. 15, a vertex addition operation and
an edge reorientation operation can indeed implement an edge
splitting operation that could thus be discarded. However, this
would require an efficient and simple criterion to determine
when such an edge reorientation operation can be performed,
and no such criterion is presently available.

E. Transforming a Formation in a Decentralized Way

The graph depicting a formation’s distance constraints is, by
essence, a nonlocal concept. Therefore, reorganizing a forma-
tion into another formation requires a global view. However,
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Fig. 15. Implementation of the edge splitting by a vertex addition and an edge
reorientation. The vertex i is first added with two out-going edges by vertex
addition, and the edge (j, k) is then reoriented and becomes (j, i).

several more local modifications can be done in a totally decen-
tralized way.

Adding an agent by an operation corresponding to a vertex
addition in the underlying graph is the simplest of those. It suf-
fices for a new agent arriving in the neighborhood of a formation
to sense two agents and to maintain its distances toward them
constant. This agent can, of course, choose its relative position
and its neighbors in such a way that its system of constraints is
not ill-conditioned.

The edge splitting operation can also be performed in a de-
centralized way, as a combination of a vertex addition and an
edge reorientation (see Fig. 15). Suppose that an agent i has
just joined a formation by means of a vertex addition and that
another agent j has sensed this new presence and is willing to
redirect one of its present edges (j, k) toward i, i.e., to maintain
constant its distance toward i instead of its distance toward one
of its present neighbors. j can ask i if k is one of its neighbors
and redirect its constraints once it receives a positive answer.
Note that this requires the ability for j and i to communicate
and to identify (possibly temporarily) other agents in a unique
and common way.

Edge reversal is an almost trivial operation if the agents have
a 360◦ sensing range and if they are able to identify themselves
in a unique way. It suffices for an agent i that is connected to an
agent j having a degree of freedom to ask this agent j to actively
maintain the distance between i and j. Suppose now that some
agent i needs to increase its number of degrees of freedom.
Lemma 3 guarantees the existence of a directed path from i to
all vertices with positive number of degrees of freedom. Such a
path can be found and can be reversed in a decentralized way
using a depth-first research on the graph. One has, however, to
be cautious to select only one degree of freedom to bring back
to i and not all three of them. We propose the following sim-
ple decentralized algorithm to demonstrate how this problem
can be solved. Real applications would require more advanced
algorithms in order, for example, to handle simultaneous con-
current demands or to choose “wisely” the degree of freedom to
be transferred. This degree of freedom could, for example, be
chosen according to a criterion such as its present localization,
or numbers could be given to degrees of freedom to identify
them in a unique way.

We suppose that the agent initially issuing a demand for
a degree of freedom assigns a unique number to this de-
mand demand ID, for example, by juxtaposing its number
agent ID and its local present time. For all agents except the
one issuing the demand, received(demand ID) is initially set

to FALSE. The agent issuing the demand just needs to apply
the following procedure with its own identification number as
second argument to one of its neighbors, and then, to the second
one if the first demand is unsuccessful.

The algorithm should contain a procedure allowing an agent
to cope with two different but simultaneous demands. Suppose
that two agents ask i for a degree of freedom (the demands
having different demand ID); i should have a way to decide,
for example, to which one it provides the degree of freedom and
to which agent it denies this service.

The problem of removing an agent is more intricate. An agent
having out-degree 2 and in-degree 0 can leave the formation
without affecting its persistence, but this already requires each
agent to know in which directed constraint it is involved. If the
agent has an in-degree 1, it cannot leave the formation without
warning the agent of which it is a neighbor, and verifying if
rigidity and persistence of the formation would be preserved
after its departure. Since rigidity is a global notion, this cannot
be easily done in a decentralized way.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have extended the Henneberg sequence con-
cept to directed graphs using three operations allowing the build-
ing of all minimally persistent graphs. We also exposed some
natural restrictions to these extensions, the main one being the
impossibility of building all minimally persistent graphs using
only confined generalized vertex additions or edge splittings.
The existence of a set of confined operations not relying ex-
clusively on Henneberg operations and allowing one to build
all minimally persistent graphs remains, however, open. An im-
provement in the simplicity of the proposed operation set could
come from the use of the edge reorientation, which would consist
of changing the arrival point of an edge. However, the conditions
under which minimal rigidity is preserved by this operation are
not yet known.
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From an autonomous agent point of view, our results provide
a systematic approach to sequentially obtain or reorganize a
minimally persistent agent formation. We explored briefly how
such reorganization could be done in a decentralized way.

Finally, one of the main motivations for obtaining a directed
version of Henneberg sequences was to develop tools for prac-
tical issues such as the merging of formations and the closing
ranks problem. The undirected versions of these problems are
indeed addressed using the undirected Henneberg theory. It re-
mains now to see how our results can be efficiently used to
address their directed version.
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versité catholique de Louvain during 2005, at Yale

University during 2006 and 2007, and at the National Institute of Informatics,
Japan, in 2008. His current research interests include antonomous formations,
multi-agents systems, sensor networks, and graph theory.

Dr. Yu is the recipient of the 2008 ARC Australian Postdoctoral Fellowship,
the 2006 Chinese Government Award for Outstanding Students Abroad, the
2005 Australian Government’s Endeavour Asia Award, and the Undergraduate
Scholarship from the Republic of Singapore.

Authorized licensed use limited to: Paul Van Dooren. Downloaded on August 6, 2009 at 07:40 from IEEE Xplore.  Restrictions apply. 



HENDRICKX et al.: FORMATION REORGANIZATION BY PRIMITIVE OPERATIONS ON DIRECTED GRAPHS 979

Brian D. O. Anderson (M’66–SM’74–F’75–LF’07)
was born in Sydney, Australia. He received degrees in
mathematics and electrical engineering from Sydney
University, Sydney, N.S.W., Australia, and the Ph.D.
degree in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 1966.

He is currently a Distinguished Professor at the
Australian National University, Canberra, Australia,
and also a Distinguished Researcher at National In-
formation and Communications Technology (ICT)
Australia. His current research interests include de-

centralized control and adaptive control.
Dr. Anderson was the recipient of the 1992 Bode Prize of the IEEE Control

System Society, the 1997 IEEE Control Systems Award, and the 2001 IEEE
James H. Mulligan, Jr., Education Medal. He was the President of the Inter-
national Federation of Automatic Control (IFAC) from 1990 to 1993 and the
Australian Academy of Sciences from 1998 to 2002. He is a Fellow of IFAC
and of the Royal Society, and a Foreign Associate of the United States National
Academy of Engineering.

Vincent D. Blondel received the M.Sc. degree in
mathematics from Imperial College, London, U.K.,
in 1990 and the Ph.D. degree in applied mathe-
matics from the Université catholique de Louvain,
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