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1 Introduction

The spectral radius of a real matrix A is defined by

ρ(A) := max{|λ| : λ is an eigenvalue of A}.

This definition can be extended in various ways to sets of matrices. Due to their numerous

practical applications, these possible extensions have been the object of intense attention

in recent years. In this paper we analyse some of these extensions from a computational

complexity point of view.

Let ‖·‖ be any matrix norm (in the sequel we always assume that matrix norms are submul-

tiplicative, i.e., that ‖AB‖ ≤ ‖A‖‖B‖). The well-known identity ρ(A) = limk→∞ ‖Ak‖1/k

(see for example [HJ, Corollary 5.6.14]) justifies the generalizations of the concept of spec-

tral radius to sets of matrices given next. Let Σ be a set of matrices in Rn×n; the joint

spectral radius ρ(Σ) is defined [RS] by

ρ(Σ) = lim sup
k→∞

ρk(Σ),

where ρk(Σ) = sup{‖A1A2 · · ·Ak‖1/k : each Ai ∈ Σ} for k ≥ 1. It is shown in [DL]

(notice that our notations are different from those used there) that ρ(Σ) ≤ ρk(Σ) for

all k ≥ 1, and therefore the joint spectral radius can be given in the equivalent form

ρ(Σ) = limk→∞ ρk(Σ). Similarly to ρ we define the lower spectral radius ρ(Σ) by

ρ(Σ) = lim inf
k→∞

ρ
k
(Σ),

where ρ
k
(Σ) = inf{‖A1A2 · · · Ak‖1/k : each Ai ∈ Σ} for k ≥ 1.

As for the single matrix case, the quantities ρk(Σ) and ρ
k
(Σ) generally depend on the ma-

trix norm used but the limiting values ρ(Σ) and ρ(Σ) do not. To see this, remember that

any two submultiplicative norms ‖.‖1 and ‖.‖2 are related by α‖A‖1 ≤ ‖A‖2 ≤ β‖A‖1

for some 0 < α < β. For any product A1A2 · · ·Ak one has α1/k‖A1A2 · · ·Ak‖
1/k
1 ≤
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‖A1A2 · · ·Ak‖
1/k
2 ≤ β1/k‖A1A2 · · · Ak‖1/k

1 and by letting k tend to infinity we conclude

that the joint and lower spectral radii are well defined independently of the matrix norm

used.

The joint and lower spectral radii correspond in a certain sense to two extreme cases.

With the joint spectral radius we calculate the largest possible average norm that can

be obtained by multiplying matrices from Σ, whereas with the lower spectral radius we

calculate the lowest possible such norm. We now define an additional quantity that is

intermediate between these two extreme cases. Let us assume that we have a probability

distribution P over the set Σ and that we generate an infinite sequence (Ai)i≥1 of elements

of Σ by picking each matrix Ai randomly and independently according to the assumed

probability distribution P . A probability distribution will be said nontrivial if nonzero

probabilities are attached to all matrices of Σ. The largest Lyapunov exponent (also called

top Lyapunov exponent or asymptotic growth rate) associated with P and Σ is defined by

(see [O], see also [CKN] for a more readable account):

λ(Σ, P ) = lim
k→∞

1
k
E

[
log(‖A1 · · · Ak‖)

]
.

It can be shown that this limit exists and, as for the previous cases, does not depend on

the matrix norm used (see [O] for the a proof of the first of these statements). In order

for our development to be uniform we transform the largest Lyapunov exponent into the

Lyapunov spectral radius ρP (Σ) by defining

ρP (Σ) = eλ(Σ,P ).

Basic inequalities relating ρ, ρP and ρ are given by

ρ(Σ) ≤ ρP (Σ) ≤ ρ(Σ).

Moreover, since ρ(A) = limk→∞ ‖Ak‖1/k, the definitions of ρ, ρP and ρ coincide with the

usual spectral radius when Σ consists of a single matrix.
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Additional definitions similar to those of ρ, ρP and ρ are possible by replacing the norm ap-

pearing in their definitions by a spectral radius. One obtains, for example, the generalized

spectral radius ρ′(Σ) defined by Daubechies and Lagarias [DL] by setting

ρ′(Σ) = lim sup
k→∞

ρ′
k(Σ),

where ρ′
k(Σ) = sup{(ρ(A1A2 · · ·Ak))1/k : each Ai ∈ Σ} for k ≥ 1. Similar definitions lead

to the spectral quantities ρ′ and ρ′
P . It has been conjectured in [DL] and established by

Berger and Wang that the generalized spectral radius ρ′ coincides with the joint spectral

radius ρ when Σ is finite (see [BW, Theorem IV], or [E, Theorem 1] for an elementary

proof). Gurvits has also shown [G2, Theorem B.1] that ρ′ coincides with ρ when Σ is finite.

In the sequel we shall always assume that the set Σ is finite and shall, for convenience,

deal only with the three spectral radii defined in terms of norms.

The generalized spectral radius was introduced in Daubechies and Lagarias [DL] for study-

ing concepts associated to Markov chains, random walks, and wavelets. The logarithm of

the joint spectral radius also appears in the context of discrete linear inclusions where it is

called Lyapunov indicator, see for example [B1]. In systems theoretic terms, the general-

ized spectral radius can be associated with the stability properties of time-varying systems

in the worst case over all possible time variations, or with the stability of “asynchronous”

[T2] or “desynchronised” [K2] systems.

The definition of the lower spectral radius is natural for formalizing control design notions

associated to discrete-time systems. Instead of viewing the order of matrix multiplication

as an externally imposed time variation, we view it as a control action, and we are inter-

ested in the stability properties that can be obtained by choosing control actions in the

best possible way. Despite this natural interpretation, the definition of the lower spectral

radius seems quite recent (the first reference seem to be [G2], see also [BT2] for connec-

tions with control concepts).
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Finally, the largest Lyapunov exponent appears in the context of discrete linear differential

inclusions (see [BGFB] and references therein) and is related to time-varying systems in

which time variations are random. Besides systems-theoretic interpretations, Lyapunov

exponents are pervasive in many areas of applied mathematics such as mathematical de-

mography [C,R2], percolation processes [D], and Kalman filtering [B2]. Other references

and descriptions of applications appear in the yearly conference proceedings [A] and in

the survey [CKN].

We now briefly survey how these quantities can be computed or approximated. By letting

k tend to infinity, the inequalities (with our notations)

ρ′
k(Σ) ≤ ρ(Σ) ≤ ρk(Σ)

proved in [DL, Lemma 3.1] can be used to derive algorithms which compute arbitrarily

precise approximations for ρ(Σ) (see for example [G1] for one such algorithm).

These approximating algorithms can in turn be used in procedures that decide, after

finitely many steps, whether ρ > 1 or ρ < 1 (such procedures are given, e.g., by Brayton

and Tong [BT3] in a system theory context and by Barabanov [B1] in the context of

discrete linear inclusions). These procedures may not terminate when ρ happens to be

equal to 1 The existence of algorithms for computing arbitrarily precise approximations of

ρ does not rule out the possibility that the decision problem “ρ < 1” is undecidable. It is

so far unknown whether this problem, which was the original motivation for the research

reported in this paper, is algorithmically solvable (see [LW] for a discussion of this issue

and for a description of its connection with the finiteness conjecture, see also the discussion

in [G2]). A negative result in this direction is given by Kozyakin who shows [K2] that

the set of pairs of 2 × 2 matrices that have a joint spectral radius less than one is not

semialgebraic.

In our first result (Theorem 1) we show that, unless P = NP , approximating algorithms
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for ρ can not possibly run in polynomial time. More precisely, we show that, unless

P = NP , there is no algorithm that can compute ρ(Σ) with a relative error bounded by

ε > 0, in time polynomial in the size of Σ and ε (see later for more precise definitions).

As a corollary we show that it is NP-hard to decide if all possible products of two given

matrices are stable.

The situation for the largest Lyapunov exponent and for the lower spectral radius are

somewhat different from that of the joint spectral radius. Computable upper bounds

for ρP for the case where Σ consists of nonnegative matrices are given in Gharavi and

Anantharam [GA] and analytic solutions are available for special cases (see for example

[LR] for an analytic solution for the case where Σ consists of two 2×2 matrices one of which

is singular). In general, no exact, or even approximate, computational methods other than

simulation seem to be available for computing ρP or ρ. The problem of computing ρP has

been known for at least 20 years, and we quote from Kingman [K1, p. 897] (the same

quotation appears in [C]): “Pride of place among the unsolved problems of subadditive

ergodic theory must go to the calculation of the constant γ (a constant that is equal to the

logarithm of ρP ). In none of the applications described here is there an obvious mechanism

for obtaining an exact numerical value, and indeed this usually seems to be a problem of

some depth.”

In our second result (Theorem 2) we show that no approximating algorithm exists for ρ

and ρP . More precisely, let ρ be any function satisfying

ρ(Σ) ≤ ρ(Σ) ≤ ρP (Σ)

for some nontrivial probability distribution P and for all Σ. We show that the problem of

computing ρ exactly, or even approximately, is algorithmically undecidable. We also show

that, when all the matrices in Σ are constrained to have nonnegative coefficients, then the

problem of computing ρ becomes NP-hard.

If the decision problem “ρ < 1” was decidable for such a function ρ, then the associated
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decision procedure could be used to compute arbitrary precise approximations of ρ. Since

ρ is not computable when ρ ≤ ρ ≤ ρP , we conclude, as a corollary to Theorem 2, that

“ρ < 1” is undecidable for the Lyapunov spectral radius, for the lower spectral radius, and

for all intermediate functions between these two.

For convenience of the exposition we shall restrict our attention in the sequel to pairs of

matrices with integer entries. Our results being negative they equally apply to sets of

k ≥ 2 matrices or to infinite sets, and to matrices with real entries.

A earlier version of this paper appears in the conference proceedings [TB].

2 Approximability of the joint spectral radius

As explained in the introduction, the joint spectral radius can be approximated to arbi-

trary precision. We show in this section that, unless P = NP , approximating algorithms

cannot run in polynomial-time. Following Papadimitriou [P1], we say that a function ρ(Σ)

is polynomial-time approximable if there exists an algorithm ρ∗(Σ, ε), which, for every ra-

tional number ε > 0 and every set of matrices Σ with ρ(Σ) > 0, returns an approximation

of ρ(Σ) with a relative error of at most ε (i.e., such that |ρ∗ − ρ| ≤ ε|ρ|) in time polynomial

in the size of Σ and ε. By “size of Σ and ε” we mean the description size, or “bit size”, of

Σ and ε. For example, if ε is the ratio of two relatively prime numbers p and q, the size of

ε can be taken to be log(pq).

Theorem 1 Unless P = NP , the joint (generalized) spectral radius ρ of two matrices is

not polynomial-time approximable. This is true even for the special case where Σ consists

of two matrices with {0, 1} entries.
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Proof. Our proof proceeds by reduction from the classical SAT problem (see [GJ] for a

definition of SAT), it is inspired from the proof of Theorem 6 in [PT] and it is similar to

the proof of Theorem 2 in [BT1] (however, we were unable to deduce this theorem from

Theorem 2 in [BT1].)

Starting from an instance of SAT with n variables x1, . . . , xn and m clauses C1, . . . , Cm,

we construct two directed graphs G0 and G1. The graphs have identical nodes but have

different edges. Besides the start node s, there is a node uij associated to each clause Ci

and variable xj, a 0-th node u0j associated to each variable xj , and a (n + 1)-th node

ui(n+1) associated to each clause Ci. Edges are constructed as follows: for i = 1, . . . , m

and j = 1, . . . , n there is

• an edge (uij , ui(j+1)) in both G0 and G1 if the variable xj does not appear in clause

Ci;

• an edge (uij , u0j) in G0 and an edge (uij , ui(j+1)) in G1 if the variable xj appears in

clause Ci negatively;

• an edge (uij , u0j) in G1 and an edge (uij , ui(j+1)) in G0 if the variable xj appears in

clause Ci positively.

For i = 1, . . . , m there are edges (s, ui1) in both graphs. The graphs have edges (u0j , u0(j+1))

for j = 1, . . . , n − 1 and have an edge from u0n to s. There are no edges leaving from

(ui(n+1), s) for i = 1, . . . ,m.

Let r denote the total number of nodes (r = (n + 1)(m + 1)). We construct two r × r

matrices A0 and A1. Associated to the graph G0 (respectively, G1) is the r × r matrix

A0 (respectively, A1) whose (i, j)-th entry is equal to 1 if there is an edge from node j to

node i in G0 (respectively G1), and is equal to zero otherwise.

To any given node α we associate a column-vector x(α) of dimension r whose entries are

all zero with the exception of the entry corresponding to the node α which is equal to one.
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We need two observations.

1. Let a partition of the nodes be given by Pn+2 = {s}, Pn+1 = {ui1 : i = 1, . . . , m}, Pn =

{u01, ui2 : i = 1, . . . ,m}, . . . , P2 = {u0(n−1), uin : i = 1, . . . ,m} and P1 = {u0n, ui(n+1) :

i = 1, . . . ,m}. We use `α to denote the index of the partition to which the node α belongs.

Any edge (from G0 or G1) leaving from a node of partition Ph goes to a node of partition

Ph−1. Furthermore, the unique edge leaving from partition P1 goes back to partition Pn+2.

Thus, any path in G0 and G1 that starts from node α either gets to a node ui(n+1), from

which there is no outgoing edge, or it visits node s after `α steps. In matrix terms this

implies the following. Let α be an arbitrary node and let `α be its associated partition

index. If h is a positive integer equal to `α modulo (n+2) and A is a product of h factors

in {A0, A1}, then

Ax(α) = µx(s)

for some nonnegative scalar µ.

2. Let q1, . . . , qn ∈ {0, 1} be a truth assignment of the boolean variables xj and consider

the product Aqn · · ·Aq1. The vector Aqn · · ·Aq1x(ui1) is equal to x(u0n) if the clause Ci

is satisfied and is equal to x(ui(n+1)) otherwise. Let A∗ be any of A0 or A1. There

are no edges leaving from ui(n+1), there is one edge from u0n to s, and there are edges

from s to ui1 for i = 1, . . . ,m. Thus we have A∗x(ui(n+1)) = 0, A∗x(u0n) = x(s), and

A∗x(s) =
∑m

i=1 x(ui1). From this we conclude

A∗Aqn · · ·Aq1A∗x(s) = A∗Aqn · · ·Aq1

m∑

i=1

x(ui1) = A∗

m∑

i=1

Aqn · · ·Aq1x(ui1) = λx(s)

where λ is equal to the number of clauses that are satisfied by the given truth assignment.

With these two observations we now prove the theorem.

Assume first that the instance of SAT is satisfied by the assignment xi = qi for q1, . . . , qn ∈
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{0, 1} and define A by A = A∗Aqn · · · Aq1A∗ with A∗ any of A0 or A1. Since all m clauses

are satisfied we have Ax(s) = mx(s) and thus ρ(A0, A1) ≥ m1/(n+2).

Assume now that the instance of SAT is not satisfiable. Let yi =
∑

α∈Pi
x(α) for i =

1, . . . , n+2 and consider the vector max norm ‖ · ‖. Let A be a product of n+2 factors in

{A0, A1}. Since the instance of SAT is not satisfiable we have ‖Ayi‖ ≤ (m−1)‖yi‖ = m−1

for i = 1, . . . , n + 2. Let now e denote the vector whose entries are all equal to one. Then

e =
∑n+2

i=1 yi and Ae =
∑n+2

i=1 Ayi. The nonzero entries of Ayi are at the same place as the

nonzero entries of yi. Hence, ‖Ae‖ = ‖
∑

Ayi‖ = maxi ‖Ayi‖ ≤ m − 1. The entries of A

are all nonnegative and so ‖A‖ = ‖Ae‖ for the max row sum matrix norm. Thus we have

‖A‖ ≤ m− 1 whenever A is a product of n+2 factors in {A0, A1}. From this we conclude

that ρ(A0, A1) ≤ (m − 1)1/(n+2).

Suppose now that ρ∗(Σ, ε) is an algorithm which, for every ε > 0 and Σ with ρ(Σ) > 0,

returns an approximation of ρ(Σ) with |ρ∗ − ρ| ≤ ε|ρ|. By running this algorithm on the

pair of {0, 1} matrices A0, A1 obtained from the instance and on a sufficiently small ε (e.g.,

we can take ε < (m/(m − 1))1/(n+2) − 1), we are able to distinguish ρ(A0, A1) ≥ m1/(n+2)

from ρ(A0, A1) ≤ (m − 1)1/(n+2). The algorithm thus allows us to decide the instance

of SAT. Since all transformation are performed in polynomial time, the algorithm cannot

possibly run in time polynomial in the size of Σ and ε unless P = NP . 2

Remarks:

1. Since the problem remains NP-hard when the matrices have {0, 1} entries, a corollary

of the theorem is the following:

Corollary 1 Unless P = NP , the joint (or generalized) spectral radius of two n× n ma-

trices, with {0, 1} entries, is not approximable with relative error 10−k (k positive integer)

in a number of operations polynomial in n and k.
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2. If a polynomial-time algorithm was available for checking the stability of all products

of two given matrices, then the algorithm could be used to approximate the joint spectral

radius in polynomial time. Thus we have:

Corollary 2 Consider all possible products of two given real matrices A0 and A1. It is

NP-hard to decide if all products are stable. This is true even if the matrices have {0, 1}

entries.

3. As indicated by a reviewer it may be possible to improve the theorem by proving that,

for a suitably small constant ε, and unless P = NP , no polynomial time approximation

algorithm of relative error ε exists for ρ. Such a result would have to be derived from

negative results on the approximability of the MAX-SAT problem.

4. L. Gurvits has kindly communicated to us that he has also proved Corollary 2 using a

different reduction (unpublished).

3 Approximability of the lower spectral radius and the

Lyapunov exponent

In this section we show that the lower spectral radius and the Lyapunov spectral radius,

and intermediate quantities between these two, cannot be approximated by an algorithm.

Let ρ be a quantity that we wish to compute and let us fix some positive constants K and

L with L < 1. Consider an algorithm which on input Σ outputs a number ρ∗(Σ). We say

that this algorithm is a (K,L)-approximation algorithm if for every Σ we have

|ρ∗ − ρ| ≤ K + Lρ.

This definition allows for an absolute error of K and a relative error of L. Despite the

latitude allowed by this definition, we show below that (K,L)-approximation algorithms

do not exist for the Lyapunov and the lower spectral radii.
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In order to prove our result we shall need the following definition. We say that a set of ma-

trices Σ is mortal if there exists some k ≥ 1 and matrices Ai ∈ Σ such that A1A2 · · · Ak = 0.

The following result can be found in [BT1] (see, in particular, Theorem 1, Theorem 2, and

Remark 2 after Theorem 1) and builds on an earlier result by Paterson [P2].

Proposition. Mortality of two integer matrices of size n×n is undecidable for n = 6np+6

where np is any number of pairs of words for which Post’s correspondence problem is un-

decidable. (We may take np = 7, see below.)

Post’s correspondance problem is a classical undecidable problem on words (for a descrip-

tion of the problem and a proof of its undecidability see, e.g., Hopcroft and Ullman [H]).

In a recent contribution Matiyasevich and Sénizergues [M] have shown that Post’s cor-

respondance problem is undecidable as soon as np ≥ 7. Thus we can take np = 7, and

mortality of pairs of 48 × 48 integer matrices is undecidable. We are now able to prove

our theorem. The proof essentially uses the fact that any (K,L)-approximation algorithm

can be used to decide mortality of matrices.

Theorem 2 Let np be a number of pairs of words for which Post’s correspondance

problem is undecidable. Fix any K > 0 and L with 0 ≤ L < 1. Let ρ be a function

defined on pairs of matrices and assume that ρ(Σ) ≤ ρ(Σ) ≤ ρP (Σ) for some nontrivial

probability distribution P and for all pairs Σ.

1. There exists no (K, L)-approximation algorithm for computing ρ. This is true even

for the special case where Σ consists of one (6np + 7) × (6np + 7) integer matrix and one

(6np + 7) × (6np + 7) integer diagonal matrix.

2. For the special cases where Σ consists of two integer matrices with {0, 1} entries,

there exists no polynomial time (K,L)-approximation algorithm for computing ρ unless
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P = NP .

Proof. Let K > 0 and 0 ≤ L < 1 be given and ρ be as above. Suppose that there exists

a (K,L)-approximation algorithm for ρ and let Σ be an arbitrary family of n × n integer

matrices.

We claim that the (K,L)-approximation algorithm can be used to decide whether or not

Σ is mortal. This will establish the theorem.

We form a family Σ′ of (n+1)× (n+1) matrices as follows. For each A ∈ Σ, we construct

B ∈ Σ′ by letting B = diag{cA, d}, where c and d are positive constants satisfying

K + d(L + 1) < (1 − L)c − K.

Suppose that Σ is mortal. Then, it is easily seen that ρ(Σ′) = ρP (Σ′) = d and thus

ρ(Σ′) = d. In this case, applying a (K,L)-approximation algorithm to Σ′, would give a

result ρ∗ bounded by ρ∗ ≤ K + (L + 1)d.

Suppose now that Σ is not mortal. The matrices in Σ′ have integer entries that are either

equal to zero, or are larger than c. Since Σ is not mortal, any product of k matrices

has some entry whose magnitude is at least ck and it follows that ρ(Σ′) ≥ c and thus

ρ(Σ′) ≥ c. In this case, applying a (K, L)-approximation algorithm to Σ′, would give a

result ρ∗ satisfying ρ − ρ∗ ≤ Lρ + K or ρ∗ ≥ (1 − L)ρ − K ≥ (1 − L)c − K .

Having chosen c and d so that K+d < (1−L)c−K , the result of the (K,L)-approximation

algorithm applied to Σ′ allows us to determine whether Σ is mortal or not.

The mortality problem is undecidable even for the case where Σ consists of two (6np +

6) × (6np + 6) integer matrices. The fact that one of the matrices may be taken diagonal

follows from the observation that the Lyapunov exponent and lower spectral radius are

left unchanged by similarity transformation of the matrices, combined with the fact that

the matrices used in the paper [P2], to which [BT1] refers, are all diagonalisable. The first

part of the theorem is therefore proved.

For proving the second part of the theorem, we invoke the same reduction and use the
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fact that checking whether two matrices with {0, 1} entries are mortal is an NP-complete

problem. 2

Remarks:

1. Note that the matrices in Σ are not irreducible. It is not clear whether a similar nega-

tive result can be obtained if we restrict the set Σ to irreducible matrices.

2. If an algorithm was available for checking the presence of a stable matrix in the set of

all products of two given matrices, then the algorithm could be used to approximate the

lower spectral radius. Thus we have:

Corollary 3 Consider all possible products of two given real matrices A0 and A1. It is

undecidable to decide if one of the products is stable. This is true even if the two matrices

are integer, of size 49 × 49, and one of them is diagonal.
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