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Approximating the Spectral Radius of Sets of Matrices in
the Max-Algebra is NP-Hard

Vincent D. Blondel, Stéphane Gaubert, and John N. Tsitsiklis

Abstract—The lower and average spectral radii measure, respectively,
the minimal and average growth rates of long products of matrices taken
from a finite set. The logarithm of the average spectral radius is tradition-
ally called Lyapunov exponent. When one performs these products in the
max-algebra, we obtain quantities that measure the performance of Dis-
crete Event Systems. We show that approximating the lower and average
max-algebraic spectral radii is NP-hard.

Index Terms—Computational complexity, discrete event systems,
max-plus algebra, NP-hard, spectral radius.

I. INTRODUCTION

For all positive real numbersp, the semiringRp is the set of real
nonnegative numbers,R+, equipped with the addition

a+p b
def
=(ap + b

p)1=p (1)

together with the usual multiplication.1 This family of semirings was
introduced independently by Maslov and Pap (see e.g. [19], [21] and
the references therein). It has the following remarkable property: all the
semiringsRp are isomorphic to the ordinary semiringR1 of real non-
negative numbers equipped with the usual operations. Lettingp tend to
1 in (1), we obtain

a+1 b = max(a; b):

The corresponding semiringR1 (the setR+, equipped with+1 and
the usual multiplication) is the max-times semiring or “max-algebra,”
whose role in dynamic programming, discrete event system theory, op-
timal control, and asymptotic analysis is well known (see, e.g., [1], [20],
[19], [15], and [18]). In contrast to the semiringsRp for finite p, this
semiring is not isomorphic toR1. In discrete event systems applica-
tions, the max-algebra more frequently appears in an isomorphic addi-
tive form, the semiringRmax, which is the setR [ f�1g, equipped
with max as addition, and+ as multiplication. The isomorphism is
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1Whenp is an odd integer,R can be embedded in the field(R; + ; �), but
for the decision issues studied here, the specialization to nonnegative elements
is essential.

given byx 7! log x: R1 ! Rmax. To emphasize the parallel with
existing results, we will state all our results in terms ofR1 (see Table
I).

In the sequel, we will use the familiar algebraic notation in the con-
text of the semiringRp, without further comments: e.g., ifA 2 Rr�s

p

andB 2 Rs�t
p ,AB is ther� t matrix with entriesAij = Ai1B1j +p

� � �+p AisBsj . Letk � k denote a (conventional) norm onRr�r. To a
finite set of matricesfA1; � � � ; Alg � R

r�r
p , we associate

�max(A1; � � � ; Al)
def
= lim

k!1
max

i ;���;i 2f1;���;lg
kAi � � �Ai k

1=k

(2a)

�min(A1; � � � ; Al)
def
= lim

k!1
min

i ;���;i 2f1;���;lg
kAi � � �Ai k

1=k

(2b)

�E(A1; � � � ; Al)
def
= a:s: lim

k!1
kAi � � �Ai k

1=k (2c)

where in (2c),i1; i2; � � � is a sequence of independent, identically dis-
tributed, random variables with values inf1; � � � ; lg, drawn with the
uniform distribution, and where “a.s. lim” means that the limit ex-
ists almost surely. The existence and values of all the limits in (2) are
clearly independent of the choice of the norm. In particular, we may
take the normkAk = max1�i�r jAi1j +p jAi2j +p � � � +p jAirj
which satisfieskABk � kAk kBk. Then, by a classical argument,
the existence of the limit (2a) follows easily from the fact that the
sequencewk = maxi ;���;i kAi � � �Ai k is submultiplicative, i.e.,
wk+r � wkwr. The existence of�min is proved by the same argument.
As shown in [6] and [1, Chap. 7], the existence of�E follows from
Kingman’s subadditive ergodic theorem. We will call�max, �min and
�E the upper, lower, andaverage spectral radiusof fA1; � � � ; Alg,
respectively. The logarithm of�E is traditionally called theLyapunov
exponentor Lyapunov indicator. We note that, trivially

�min � �E � �max: (3)

Whenp = 1, both the upper and average spectral radius are much
studied quantities which are notoriously difficult to compute or approx-
imate in practice. In [22, Th. 1 and 2], it was shown that even in the case
of two matricesA0; A1 with entries inf0; 1g, approximating�max,
�min and�E is NP-hard.2

Using the fact that all the semiringsRp with finite p are isomorphic,
it follows that analogous results hold for all semiringsRp. In [22, Th.
1 and 2] it was also shown that, if we allow the entries ofA0; A1 to
be inZ, there is no algorithm that can distinguish between instances
with �min = 0 from instances with�min = 1, and similarly for�E. In
particular,�min and�E cannot be approximated algorithmically, and
the problem of deciding whether they are zero is undecidable. The sit-
uation for�max is different. Using the inequalities derived in [7], it is
immediate to see that�max can be approximated algorithmically to ar-
bitrary precision. One such algorithm is given in [17].

Whenp = 1, the quantities�max, �min, and�E have been much
studied by the discrete event systems community. As shown in [1],
the Lyapunov exponentlog �E measures thecycle time(inverse of the

2A problemA is NP-hard if it is at least as hard as some NP-complete problem
B, in the sense thatB can be reduced toA in polynomial time. A polynomial
time algorithm for a NP-hard problem would provide polynomial time algo-
rithms for all NP-complete problems, and would imply that the conjecture P6=
NP is false; see [10] for more details. This conjecture is widely believed to be
true.

0018–9286/00$10.00 © 2000 IEEE
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TABLE I
SUMMARY OF COMPLEXITY RESULTSAVAILABLE FOR � ; � ; �

throughput) of random max-plus linear discrete event systems. The
most intuitive particular interpretation of�E is probably the following:
if you “play” in a Tetris game of infinite height, without applying any
control, just letting pieces fall down randomly, you will see, asymptoti-
cally, the heap of pieces grow at a certain mean speed: this speed is pre-
cisely log �E (see [11], [5], [13], [8], and also Section III for details).
The problem of computing�E also arises in Statistical Physics, in the
study of disordered systems (log �E yields the free energy per site, at
zero temperature, for some random one dimensional Ising models [9]).
The study of�E (structural properties, bounds, etc.) is one of the central
themes of [1]. The logarithm of�max was called worst case Lyapunov
exponent in [11], for it measures the worst case cycle time of certain
max-plus linear discrete event systems. For a dual reason, the logarithm
of �min was called optimal case Lyapunov exponent.

Since the maximization operation which is involved in the definition
of �max is somehow compatible with the structure laws of the max-al-
gebra,�max can be computed quite easily: as shown in [11], it coincides
with the spectral radius of the single matrixA = A1 +1 � � � +1 Al,
which can be computed in polynomial time. So far, the basic gen-
eral technique to compute�min and�E consists of using an “induced
Markov chain” construction in the max-algebraic projective space [1,
Section 8.4], [11, Section VII]: when this chain is finite, both�min and
�E can be computed with a number of arithmetic operations which is
polynomial in the number of states of the chain. In some other special
cases,�E can also be computed via generating series techniques [16],
or, as illustrated in [5], by finding a closed form expression for the in-
variant measure of the above mentioned Markov chain, which is denu-
merable, in general. A different approach was used in [2]: we can define
more generally�E in (2c) by taking a sequence of independent, identi-
cally distributed, random variablesi1; � � � ; ik, drawn fromf1; � � � ; lg
with a nonuniform distribution� = (�1; �2; � � � ; �l), where�j is the
probability offi1 = jg.

Under some technical restrictions,�E is an analytic function of
�1; � � � ; �l near� = (1; 0; � � � ; 0), and the coefficients of its power
series expansion can be effectively computed. When this series is still
convergent at� = (1=l; � � � ; 1=l), this gives a way of approximating
the average spectral radius.

The purpose of this paper is to analyze the complexity of computing
�min and�E whenp = 1.

In Section II we show that, whenp = 1, approximating�min or
�E is NP-hard. Our proof of this result is based on a reworking of the
argument given in [22, Proof of Th. 1]. We build an automaton whose
number of accepting paths measures the number of satisfied clauses
in a given instance of the satisfiability problem SAT. Our proof then
follows from the fact that the satisfiability problem SAT is known to
be NP-complete (see the problem LO1 in [10]) and that the number of
accepting paths in this special automaton determines the spectral radius
of an associated set of matrices.

This argument does not work whenp =1: since+1 is idempotent
(i.e.a+1 a = a), several paths count as one. However, a variant of the
reduction of [4, Proof of Th. 2] can be used to prove that approximating
�min and�E is NP-hard.

In Section III we give a simple, independent, geometrical argument
that shows that computing�min is NP-hard. The argument is based

on an intuitive interpretation of products of matrices in terms of the
height of a heap of pieces. In [12] and [13], it was shown that the total
height of a Tetris-like heap ofk pieces is equal tolog kAi � � �Ai k,
where Ai ; � � � ; Ai are matrices associated to the pieces, and
kAk = maxij Aij . When all the pieces are of height 1,log �min

coincides with the inverse of the largest number of mutually disjoint
pieces. NP-hardness of computing�min then follows from the fact that
computing the largest number of mutually disjoint pieces is a problem
that is known to be NP-hard.

II. REDCUCTION FROMSAT

In the remaining part of the paper, we will assume thatp = 1 and
we will use the matrix normkAk = maxij Aij .

Let� 7! �(�) be a nonnegative function that we wish to compute.
We say that� is polynomial-time approximableif there exists an algo-
rithm which, for every rational numbers�; �0 > 0 and every�, returns
an approximation��(�; �; �0) such thatj�� � �j � �� + �0, in time
polynomial in the description size of�; �0 and�. This allows for both
an absolute and a relative error.

Theorem 1: Unless P= NP, the lower and average spectral radii of
pairs of matrices with entries inf0; 1g are not polynomial-time ap-
proximable.

Proof: LetA1; A2 be square matrices with entries inf0; 1g. We
claim that

�min(A1; A2) = �E(A1; A2) 2 f0; 1g: (4)

Indeed, in the max-algebra, any product of matrices with en-
tries in f0; 1g gives a matrix with entries inf0; 1g. A fortiori,
kAi � � �Ai k 2 f0; 1g for all i1; � � � ; ik. Hence, if none of the
productsAi � � �Ai is 0,�min(A1; A2) = �E(A1; A2) = 1. But if
one of these products is 0, then�min(A1; A2) = 0 and the product
that gives 0 will appear almost surely as a factor of any infinite product
Aj Aj � � � of independent, identically distributed, random matrices,
drawn fromfA1; A2g with the uniform distribution. This implies that
�E(A1; A2) = 0.

Due to (4), it suffices to establish the theorem for�min. Any polyno-
mial time approximation algorithm for�min gives a polynomial time
algorithm for distinguishing the cases�min = 0 and�min = 1. Thus,
in order to establish the theorem, it suffices to show that the problem of
determining whether�min(A1; A2) = 0 is NP-hard, even for the case
of binary matrices. The proof is by reduction from SAT and is inspired
by [4, Proof of Th. 2].

Consider an instance of SAT [10], withn variablesx1; � � � ; xn
and m clausesC1; � � � ; Cm. We can write each clauseCi as
Ci = Ci; 1 or � � � or Ci; n, whereCi; j is eitherxj , or not (xj), or
the Boolean constantfalse.

Let C = C1 and � � � and Cm. For anyy 2 ftrue; falseg and
k 2 f1; � � � ; ng, letMk(y) denote the diagonalm�mBoolean matrix
with diagonal entries

(Mk(y))i; i =
1; if Ci; k(y) = false

0; if Ci; k(y) = true.



1764 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

Then, for allx 2 ftrue; falsegn

M1(x1) � � �Mn(xn) = 0 if and only if x satisfiesC: (5)

Let U denote them � m matrix whose entries are all equal to one.
We now consider thenm � nm matricesA1 = M(false), A2 =
M(true), where

M(y) =

UM1(y)

M2(y)

. . .

Mn�1(y)

Mn(y)U

(the blocks which are not shown are zero). We claim that

C is not satisfiable) �min(A1; A2) = 1

C is satisfiable) �min(A1; A2) = 0:

In order to establish our claim, note first that for allk, and for all
Boolean sequencesy of lengthkn, M(y1) � � �M(ykn) is a block di-
agonal matrix with diagonal blocks

B1; k =UM1(y1) � � �Mn(yn)UUM1(yn+1) � � �Mn(ykn)U

(6a)

B2; k =M2(y1) � � �UM1(yn)M2(yn+1) � � �UM1(ykn)

(6b)
...

Bn; k =Mn(y1)U � � �Mn�1(yn)Mn(yn+1) � � �Mn�1(ykn):

(6c)

Assume thatC is not satisfiable. Using (5), we get thatB1; k = 1
for all possible Boolean sequencesy of lengthkn. This implies that
�min(A1; A2) = 1.

Next, assume thatC is satisfied by the Boolean sequencex1 � � � xn,
and consider the infinite sequence of periodn + 1:

y = x1 � � � xn]x1 � � � xn]x1 � � � xn] � � � ;

where] can take an arbitrary Boolean value. Fork = n + 1, each
of then products that giveB1; k; � � � ; Bn; k in (6) contains a factor
of the formM1(x1) � � �Mn(xn). SinceM1(x1) � � �Mn(xn) = 0 we
conclude that�min(A1; A2) = 0.

Remark: It is not known whether the statement of the theorem re-
mains valid if we require that the matrices have positive entries, or have
a fixed, large enough, dimension.

III. REDUCTION FROMSET PACKING

In discrete event systems applications, the quantity of interest is the
logarithm of�min, rather than�min. In this section we show that the
following problem is NP-hard.

Problem (COMPUTING�min).:
Instance: MatricesA1; � � � ; Al 2 f0; 1; 2g

n�n, a rational numberq.

Fig. 1. A sequence of pieces and its associated heap.

Question: Doeslog2 �min(A1; � � � ; Al) < q?
Theorem 2: COMPUTING �min is NP-hard.

Proof: The proof is based on a simple geometrical argument that
involves a Tetris-like heap of pieces.

Consider a horizontal axis withn � 1 slots labeledf1; 2; � � � ; ng.
A piece is a solid, possibly disconnected, block of height one occupying
some of the slots. Consider now a set of piecesA = fa1; � � � ; alg
each pieceai being defined by the subsetR(ai) � f1; 2; � � � ; ng of
slots it occupies. To an ordered sequence of piecesw = ai � � � ai
we associate a heap by piling up the pieces in the given order on a
horizontal ground. Pieces are only subject to vertical translations and
occupy the lowest possible position that is above the ground and above
the pieces previously piled up. The height of a heapw on sloti is de-
noted byhi(w). The heighth(w) of a heapw = ai � � � ai is the
largest of the heights on all slots. For instance, whenn = 3, A =
fa1; a2; a3g, R(a1) = f1; 2g; R(a2) = f3g; R(a3) = f1; 3g, and
w = a1a3a2a1a3, we obtain the heap with heighth(w) = 4 depicted
on the right of Fig. 1.

To k � 1, we associate the lowest possible height of a heap ofk
pieces taken fromA

�k = minfh(ai � � � ai ) j ai ; � � � ; ai 2 Ag:

We claim that the limit

� = lim
k!+1

�k
k

is equal to1=M , whereM is equal to the maximal number of pieces
in a heap of height one. Indeed, a heapw with k pieces has at most
M pieces per height level, and thusk � h(w) � M . This implies
that�k=k � 1=M . Moreover, ifz is a heap of height one withM
pieces, the heapw obtained by repeatingk-timesz satisfiesh(w) = k
and containskM pieces. Thus,�kM=kM � 1=M , and the claim is
established.

For instance, for the piecesa1; a2, anda3 depicted in Fig. 1, the set
of heaps of height one isfa1; a2; a3; a1a2g, and� = 1=2.

Consider now the following NP-hard problem (see the problem SP3
in [10]).

Problem (SET PACKING).:
Instance: a collectionC of finite sets, a positive integerK � jCj.

Question: doesC contain at leastK mutually disjoint sets?
Modulo some changes of notation, this result can be rephrased in our

framework by saying that, for a given set of piecesA = fa1; � � � ; alg
and a positive integerK � jAj = l, the problem of determining ifK
is larger than the maximal number of pieces in a heap of height one, is
NP-hard. Since� = 1=M an analogous statement is possible for�.

To conclude, we describe a connection between heights of heaps of
pieces and norms of products of matrices in the semiringR1. To a
pieceak 2 A occupying the slotsR(ak) � f1; 2; � � � ; ng we asso-
ciate the matrixAk 2 f0; 1; 2g

n�n whose entries are identical to the
entries of the identity matrix, with the exception of the elements(Ak)ij
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which are set to 2 wheneveri; j 2 R(ak). It is shown in [13] that the
heighth(w) of the heapw = ai � � � ai is given by

h(w) = log
2
kAi � � �Ai k:

From this it follows that

� = lim
k!1

min
i ;���;i 2f1;���;lg

log
2
kAi � � �Ai k

= log
2
�min(A1; � � � ; Al):

Since the instance of COMPUTING �min is constructed from the in-
stance of SET PACKING in polynomial time, it follows that COMPUTING

�min is NP-hard.

IV. CONCLUSION

Of course, the interest of the NP-hardness results of this paper is
mostly theoretical: Theorems 1 and 2 show that there is little hope
to find a polynomial algorithm to compute�E or �min. But the situ-
ation seems much simpler in the case of the max-algebra,R1, than in
the case of the usual algebra(R; +; �). For instance, as summarized
in Table I, the problem of approximating�max, which is NP-hard in
(R; +; �) becomes polynomially solvable inR1. Moreover, in this
paper, we only proved that in the semiringR1, approximating�min

or �E is NP-hard: this is a weak “impossibility” result, by comparison
to the fact that the corresponding problems in(R; +; �) are unde-
cidable. Indeed, unlike in the usual algebra(R; +; �), in the max-al-
gebra,�min and�E can be approximated (with an exponential execu-
tion time), at least in some important special cases [16], [11], [14], and
[2]. Improving and generalizing these algorithms, as well as identifying
new examples of exactly solved models, is certainly an interesting re-
search direction.
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A Linear Programming Approach to Constrained Robust
Predictive Control

Y. I. Lee and B. Kouvaritakis

Abstract—A receding horizon predictive control algorithm for systems
with model uncertainty and input constraints is developed. The proposed
algorithm adopts the receding horizon dual-mode (i.e., free control moves
and invariant set) paradigm. The approach is novel in that it provides a
convenient way of combining predictions of control moves, which are op-
timal in the sense of worst case performance, with large target invariant
sets. Thus, the proposed algorithm has large stabilizable set of states corre-
sponding to a cautious state feedback law while enjoying the good perfor-
mance of a tightly tuned but robust control law. Unlike earlier approaches
which are based on QP or semidefinite programming, here computational
complexity is reduced through the use of LP.

Index Terms—Input saturation, linear programming, model uncertainty,
worst case minimization.

I. INTRODUCTION

The receding horizon dual-mode paradigm provides an effective
means of handling control problems for systems with physical limits
on actuation (e.g., [1], [2], [7]–[9], and [12]). The basic idea here is
to use a finite numberN of feasible free control moves to steer the
state into a target set, which is feasible and invariant with respect to
a feedback control gainF .

The feasible and invariant set is defined as a set of states for which a
state feedback controlu = Fx satisfies physical limits and makes the
state remain in the set. Thus, for any initial states which already lie in-
side a target set,u = Fx guarantees closed-loop stability. Initial states
which lie outside the target set can be steered into the set through the
use of theN free control moves; thus theN free control moves provide
degrees of freedom with which to enlarge the set of stabilizable initial
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