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Abstract

Within the framework of ocean general circulation modeling, the present paper de-
scribes an efficient way to discretize partial differential equations on curved surfaces
by means of the finite element method on triangular meshes. Our approach benefits
from the inherent flexibility of the finite element method. The key idea consists in
a dialog between a local coordinate system defined for each element in which inte-
gration takes place, and a nodal coordinate system in which all local contributions
related to a vectorial degree of freedom are assembled. Since each element of the
mesh and each degree of freedom are treated in the same way, the so-called pole
singularity issue is fully circumvented.

Applied to the shallow water equations expressed in primitive variables, this new
approach has been validated against the standard test set defined by Williamson
et al. (1992). Optimal rates of convergence for the PNC1 −P1 finite element pair are
obtained, for both global and local quantities of interest.

Finally, the approach can be extended to three-dimensional thin-layer flows in a
straightforward manner.
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1 Introduction

As the shape of Earth is almost spherical, it is critical for atmosphere and
ocean modeling to develop efficient methods to solve partial differential equa-
tions on the sphere. On the latter, the most intuitive way to discretize a system
of equations is to use spherical coordinates. Unfortunately, this coordinate sys-
tem introduces two singular points, i.e. the poles. At these poles, the North
and East directions are undefined and the metric is singular. Those issues need
to be addressed, for the purposes of geophysical flow modeling.

We focus on the shallow water equations. Indeed, this two-dimensional model
is a key building block for the dynamical core of ocean models. The horizontal
momentum equation for a hydrostatic three-dimensional model is rather simi-
lar to the momentum part of the shallow water equations. Further, a classical
approach in large scale ocean modeling is to resort to mode splitting. The idea
of mode splitting is to use a different time stepping for the two-dimensional
barotropic mode, whose fastest processes are external gravity waves, and the
much slower three-dimensional baroclinic mode, whose fastest processes are in-
ternal waves and advection (Gadd, 1978; Madala, 1981; Blumberg and Mellor,
1987; Killworth et al., 1991; Deleersnĳder and Campin, 1995; Hallberg, 1997;
Higdon and de Szoeke, 1997; Higdon, 2002). In this case, the barotropic mode
equations are the shallow water equations, with some additionnal coupling
terms. This is why the shallow water equations are a relevant benchmark.

The pole problem is an issue that has been addressed in many ways:

• In classical longitude-latitude models, the solution can be filtered, the noise
near the pole being removed, and the constraint on the time step being
weakened (Murray and Reason, 2002).
• The spectral transform method applied to the equations rewritten with vor-

ticity and divergence as prognostic variables rather than the two velocity
components is a popular solution to the “pole problem” in atmospheric sci-
ences. Swarztrauber (1996) reviews these methods. The absence of vector
field, combined with the calculation of derivatives in spectral space, allows
them to be exempt of pole problems. This approach cannot be applied in
complex geometry. Hence, it is unlikely to become popular in ocean model-
ing.
• The use of a scalar expression of the momentum equation such as vorticity-

divergence or streamfunction-velocity potential formulations, combined with
an expression of the spatial operators in terms of a stencil circumvents the
pole problem. Such a formulation using the icosahedral-hexahedral grid can
be found in Sadourny et al. (1968); Heikes and Randall (1995); Thuburn
(1997). For a model in primitive variables, Majewski et al. (2002) use a lo-
cal spherical coordinate system at each gridpoint. The latter approach can
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be seen as a finite-difference counterpart of the present work.
• A lot of implementations use a single global cartesian coordinate system.

Therefore, velocity vectors are expressed with three components rather
than two. These additional degrees of freedom are either deduced from the
other d.o.f. (Priestley, 1992) or constrained by a Lagrange multiplier (Côté,
1988), ensuring that velocity vectors remain tangent to the surface of the
sphere (Swarztrauber et al., 1997; Stuhne and Peltier, 1999; Giraldo, 2000;
Tomita et al., 2001; Giraldo et al., 2002, 2003; Giraldo and Warburton, 2005;
Giraldo, 2006). Further, Stuhne and Peltier (2006) applied this approach to
three-dimensional oceanic flows in the framework of finite volume schemes.
• Splitting the sphere into several domains, each having its own curvilinear

coordinate system appears as an attractive approach. The “cubed sphere”
with six local curvilinear coordinate systems is introduced in several papers
(Ronchi et al., 1996; Taylor et al., 1997; Adcroft et al., 2004; Nair et al.,
2005; Rossmanith, 2006; St-Cyr et al., 2008). A spherical coordinate sys-
tem, with two stereographic caps at the poles is also used in atmosphere
modeling (Lanser et al., 2000). Ocean modelers use several spherical co-
ordinate systems, for instance one rotated for the North-Atlantic and the
Arctic Oceans, in addition to the classical one (Deleersnĳder et al., 1993;
Eby and Holloway, 1994; Coward et al., 1994; Webb et al., 1998).
• Finally, stretched or multipolar grids are often used in oceanography, with

the poles located on dry land (Murray, 1996; Madec and Imbard, 1996;
Roberts et al., 2006). This methodology is efficient for the world ocean, but
cannot be used for simulating atmospheres or truly global oceans (aqua-
planets) such as that of Europa, the moon of Jupiter.

In this paper, an efficient approach to handle partial differential equations on
the sphere is developed for global ocean modeling. Our technique provides
a good compromise between simplicity, efficiency and accuracy. It has been
successfully applied in the development of SLIM (Second-generation Louvain-
la-Neuve Ice-Ocean Model - http://www.climate.be/SLIM). As all general
circulation models, it uses primitive variables as prognostic quantities. We take
advantage of the inherent geometrical flexibility of the finite element method
to generalize the geometrical algorithm to any smooth manifold. The exten-
sion of this method to three-dimensional thin-layer flows is straightforward.
In addition, the method only implies a few modifications in the finite element
algorithm, and allows us to use the same model for both planar and curvi-
linear problems. Finally, the computational overhead to handle the spherical
geometry is almost negligible.

The paper is organized as follows. Section 2 describes the methodology for
dealing with curved geometry. Section 3 is devoted to the validation of the
method on the test cases of Williamson et al. (1992). Finally, section 4 shows
how our finite element scheme behaves for the difficult test case of Smith and Dritschel
(2006).
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2 An efficient methodology to handle PDEs in spherical geometry

The inviscid shallow water equations can be obtained by averaging the in-
compressible Navier-Stokes equations along the vertical direction. The usual
non-conservative form reads:

∂u

∂t
+ u · ∇u + fk× u + g∇η = 0, (1)

∂η

∂t
+∇ · [(h+ η)u] = 0, (2)

where u is the two-dimensional mean velocity, η is the elevation of the free-
surface, f is the Coriolis parameter, k is a unit upward normal vector, g is the
gravitational acceleration and h is the reference depth at rest.

Unlike finite differences, the finite element method does not need a global
coordinate system to derive the discrete matrix operators. If the most obvious
discrete finite difference differential operators on the sphere are directly built
along meridians and parallels, the finite element local matrices, that define
the local discrete differential operators, are usually built in the framework
of a local coordinate system defined for each element. In other words, the
finite elements intrinsically do not exhibit the classical coordinates singularity
issue. The basic principle adopted herein is to write local problems in a local
orthonormal curvilinear system (eξ, eη, eζ) defined for each element. Both eξ
and eη are tangent to the surface of the sphere, while the normal to the surface
is given by eζ . The next step consists in assembling all the local problems in the
global discrete algebraic system. As the local vectorial equations are written
in distinct coordinate systems, it is required to perform suitable change of
variables to rewrite the local contributions in the same coordinate system. As
we cannot use a single coordinate system valid for each point on the sphere,
we define a nodal orthonormal coordinate system (ex, ey, ez) associated with
each vectorial degree of freedom, ex and ey being tangent to the surface. A
key advantage of the finite elements is that the support of a shape function is
limited to only a few elements. Then, this nodal coordinate system needs to
be valid only on the elements where the associated shape function does not
vanish. Finally, a global reference system is needed only to define the position
of the vertices and the components of both local and nodal basis vectors.

Basically, the pole problem arises when a vectorial equation of a vectorial
quantity has to be solved. For notational convenience, we highlight the most
important aspects on a simplified case, without any loss of generality. For
instance, let us only consider the resolution of the momentum equation (1) of
the shallow water model on the sphere. Equation (1) can be written in the
following compact notation:
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f(u) = 0, (3)

where the vector u tangent to the surface is expressed in terms of local or
nodal components:

u = uξeξ + uηeη = uxex + uyey. (4)

In order to switch from the local to the nodal basis, a local linear operator is
defined such as:






ux

uy






︸ ︷︷ ︸

xU

=






ex · eξ ex · eη

ey · eξ ey · eη






︸ ︷︷ ︸

xPξ






uξ

uη






︸ ︷︷ ︸

ξU

. (5)

Conversely, the transformation from the nodal to the local basis is defined by:






uξ

uη






︸ ︷︷ ︸

ξU

=






eξ · ex eξ · ey

eη · ex eη · ey






︸ ︷︷ ︸

ξPx






ux

uy






︸ ︷︷ ︸

xU

. (6)

If both systems are orthonormal curvilinear representations of the same C1

surface, the matrix xPξ is the inverse of ξPx.

In order to solve the nonlinear equation (1), it is common to have recourse to
standard linearization techniques, such as the Newton-Raphson method:

Au = b, (7)

where A is the gradient of f (or a suitable approximation of this gradient).
Equation (7) may be viewed in terms of local components inside each element:






aξξ aξη

aηξ aξξ






︸ ︷︷ ︸

ξAξ






uξ

uη






︸ ︷︷ ︸

ξU

=






bξ

bη






︸ ︷︷ ︸

ξB

. (8)

The same equation can also be expressed in terms of nodal components:
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axx axy

ayx ayy






︸ ︷︷ ︸

xAx






ux

uy






︸ ︷︷ ︸

xU

=






bx

by






︸ ︷︷ ︸

xB

. (9)

To assemble local contributions (8) into a common nodal version, it is required
to transform equation (8) into equation (9). Such a transformation can be
obtained easily by matrix operations, taking advantage of the relations (5-6):

ξAξ ξU = ξB

↓

ξAξ
︷ ︸︸ ︷

ξPx xU = ξB

xPξ ξAξ ξPx
︸ ︷︷ ︸

xU = xPξ ξB
︸ ︷︷ ︸

↓ ↓

xAx xU = xB.

2.1 Finite element formulation

To obtain a discrete algebraic system, it is required to define a piecewise
polynomial approximation of the unknown field. In the local basis, such an
approximation can be written as the linear combination of n local shape func-
tions:

ξU ⋍

n∑

i=1

φi(ξ, η)





ξUi

ηUi






︸ ︷︷ ︸

ξU
h
i

. (10)

On each element, a weak formulation of (8) can be derived through the
Galerkin procedure (Hughes, 2000):

ξA
h
ξ ξU

h = ξB
h, (11)

where ξU
h = [ξU1 ηU1 ξU2 ηU2 . . . ξUn ηUn]

T . For simplicity, let us restrict
ourself to Turner triangles (linear conforming P1 elements). In this case, only
three nodes exist. The length of ξU

h and ξB
h is 6, and the size of the matrix
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ξA
h
ξ is 6 × 6. To obtain the global algebraic system, equation (11) must be

expressed in terms of the nodal components:

ξA
h
ξ ξU

h = ξB
h

↓

ξA
h
ξ

︷ ︸︸ ︷

ξP
h
x xU

h = ξB
h (12)

xP
h
ξ ξA

h
ξ ξP

h
x

︸ ︷︷ ︸
xU
h = xP

h
ξ ξB

h

︸ ︷︷ ︸

↓ ↓

xA
h
x xU

h = xB
h,

where the transformation operator is now given by:

ξP
h
x =










ξPx1

ξPx2

ξPx3










. (13)

The symbol ξPxi denotes the transformation operator from the local basis of
the element onto the nodal basis associated to the ith node of this element.
Then the usual assembling procedure of the finite element method can be
applied.

To consider the general coupled shallow water equations, we just need to define

ξU
h and ξP

h
x as follows:

ξU
h =





















ξU
h
1

E1

ξU
h
2

E2

ξU
h
3

E3





















, ξP
h
x =





















ξPx1

1

ξPx2

1

ξPx3

1





















, (14)

where Ei denote the nodal values of elevation. The diagonal terms equal to
unity corresponds to the elevation degrees of freedom.
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2.2 Selection of the mapping

To obtain the discrete algorithm, we have to choose a local curvilinear co-
ordinate system. The available choices range from the exact discretization of
the surface (spherical triangles) to linear mapping (flat triangles). On the one
hand, the spatial differential operators for spherical triangles must take into
account the variations of the local basis vectors, as the mapping is nonlinear.
These complex expressions can be derived with the help of differential geome-
try theory. An accurate quadrature rule has to be introduced to integrate the
nonlinearities due to the mapping. On the other hand, flat triangles allows
us to use the classical cartesian expressions of differential operators, and low
order quadrature rules are sufficient.

The geometrical error with flat triangles converge at the same rate as the dis-
cretization error when linear interpolations are used. Typically, the derivatives
of the velocity field with respect to the local variables are:

∂u

∂ξ
=

(

∂uξ

∂ξ
+ Γξξξu

ξ + Γξξηu
η

)

eξ +

(

∂uη

∂ξ
+ Γηξξu

ξ + Γηξηu
η

)

eη, (15)

∂u

∂η
=

(

∂uξ

∂η
+ Γξηξu

ξ + Γξηηu
η

)

eξ +

(

∂uη

∂η
+ Γηηξu

ξ + Γηηηu
η

)

eη, (16)

where Γαβγ are the second kind Christoffel symbols. In Appendix A, we show
that those symbols scale as:

Γαβγ ≈
h

r2
, (17)

with r the radius of the sphere (or the local radius of curvature for a more
complex manifold), and h the length of the largest edge. Inspecting the orders
of magnitude of the coefficients in the discretized version of equations (15-16),
we get:

∂u

∂ξ
≈




uξi+1,j − u

ξ
i−1,j

2h
+O

(

h

r2

)

uξi,j +O

(

h

r2

)

uηi,j



 eξ + (. . . ) eη

≈
1

h




uξi+1,j − u

ξ
i−1,j

2
+O

(

h2

r2

)

uξi,j +O

(

h2

r2

)

uηi,j



 eξ + (. . . ) eη. (18)

Thus, in the discrete system, when flat triangles are used, the ratio between
the curvature terms and the dominant terms is of order h2/r2. This means
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that, in the case of flat triangles, where such curvature terms disappears, the
geometrical errors will converge with a quadratic rate, as the discretization
error for linear finite elements. Moreover, as long as r ≫ h, this geometrical
error will be much smaller than the discretization one. In ocean modeling, the
sizes of all elements are always tiny in comparison to Earth radius. Therefore,
when linear finite element are used, flat triangles are sufficient.

For vectorial degrees of freedom defined at nodes, it is now impossible to define
a nodal coordinate system that is coplanar to all local coordinate systems of
neighboring triangles. The most natural definition of the nodal basis located
at a vertex consists in taking ez as a weighted average of the normals of the
surrounding elements, while the two other axes are chosen arbitrarily. This is
the classical definition of the normal to a mesh at a node (Gresho and Sani,
2000, p. 542). The transfer operator xPξ can be defined by equation (5). The
converse transfer operator ξPx defined by equation (6) is not (xPξ)

−1 anymore.
To ensure consistency, xPξ ξPx should be the identity operator, so we define

ξPx = (xPξ)
−1.

For vectorial degrees of freedom defined along the edges, it exists a natural
definition of xPξ. The two triangles sharing a common edge can be unfolded
onto a plane. The nodal basis on the edge is defined so that ex axis is aligned
with the edge, and ey axis is embedded in the plane. Then the transfer matrices
between any of these bases are simply two-dimensional rotation matrices. Then
the following property holds: xP

−1
ξ = xP

T
ξ = ξPx.

To sum up, a simple general methodology to handle curved geometry has
been developed. It can be implemented into standard flat geometry softwares
with only marginal modifications. The whole geometry is fully defined by the
discrete vertices of the mesh. Therefore, such a methodology is valid for any
manifold discretized by the vertices. It must be emphasized that all trian-
gles will be handled in the same way. As a consequence, the pole problem
is completely circumvented. The computational overhead is very small, since
only local matrix/matrix and matrix/vector multiplications are added, as ex-
plained in equation (12). All the conservation properties of the discretization
are preserved.

3 Validation with the shallow water equations

The methodoloy developed above is validated using the PNC1 − P1 discretiza-
tion, applied to the shallow water equations. The non-conforming linear shape
functions PNC1 for velocities, and conforming linear ones P1 for elevation are
illustrated in figure 1. The velocity nodes are located at the mid-edge points,
and the elevation ones on the vertices. This pair of elements is well suited for
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shallow water flows (Hanert et al., 2005). It enjoys attractive mathematical
properties in terms of spurious elevation modes, that could appear in a mixed
discretization of the steady state shallow water equations (Le Roux et al.,
2005; Hanert and Legat, 2006). In addition, the shape functions for veloci-
ties are orthogonal, so the blocks of the mass matrix corresponding to the
velocities are diagonal. It is particularly advantageous for an explicit time in-
tegration, without any mass lumping. The linear system is nondiagonal only
for elevation nodes, which account only a seventh of the whole set of degrees
of freedom. As the nonconforming linear shape functions are discontinuous
on the edges, this approximation can be viewed as a hybrid choice between
continuous and discontinuous approximations. In short, this element seems to
combine most advantages of both continuous and discontinuous approaches.
On the one hand, the discontinuous character allows us to stabilize the mo-
mentum equation with an approximate Riemann solver. On the other hand,
sharing the same mid-edge value allow us to implement diffusive second order
terms in a straightforward manner (Hanert et al., 2004, 2005).

Figure 1. Conforming (left), and non-conforming (right) linear triangular shape
functions. The former is used for the elevation, while the latter is resorted to the
velocity components.

Within the framework of the SLIM project, the time integration is performed
by a family of so-called IMEX Runge-Kutta methods, where the linear terms
can be treated implicitly (Ascher et al., 1997). In this case, the time step is
only constrained by the usual Courant-Friedrichs-Lewy condition associated
with advective terms. In most oceanic flows, such a condition is much less
stringent than the stability condition related to the external gravity waves if
we use a fully explicity time integrator. The ratio between explicit and semi-
implicit time steps is of the order of the Froude number. However, as all the test
cases evaluated here are highly advective, the advantage of semi-implicit time-
stepping is much smaller. As we want to evaluate the spatial discretization,
explicit Runge-Kutta time-stepping schemes have been used, so that the stable
time step ensure that the errors due to the time discretization are small.

Five of the seven standard test cases defined by Williamson et al. (1992, here-
after W92) are considered. The two remaining test cases are dropped because
implementation of complicated source terms will be needed, or it will involve
an initial condition problem for the atmosphere that is of no major interest
for ocean modeling. All papers related to the shallow water equations on the

10



sphere include validation results based on these test cases which can be now
viewed as a de facto benchmark. Numerical solutions can be easily compared
to analytical ones or to numerical reference results. To perform mesh refine-
ment analysis, we consider four meshes deduced from the icosahedron, where
the faces are recursively divided into four triangles and then projected onto the
sphere. The meshes shown in figure 2 are made of almost equilateral triangles,
with nearly uniform edge length.

Figure 2. Meshes based upon the icosahedron, with each face recursively refined 3,
4, 5 and 6 times. The number of triangles are respectively 1280, 5120, 20480 and
81920.

3.1 W92 test case 1: advection of a cosine bell of tracer

Solving accurately the advection of a cosine bell on the sphere is a quite good
test of the ability of a numerical scheme to represent efficiently any velocity
field, anywhere on the sphere. The advection equation is the equation for el-
evation (2) with a uniform depth and a nondivergent velocity field constant
in time. Using a single spherical coordinate system, the velocity field of this
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problem exhibits discontinuities for both North and East component at the
poles. The finite element method naturally circumvents this issue. Calcula-
tions are performed with an initial tracer field defined as a cosine bell, with
values between 0 and 1000. This bell is advected with a constant velocity
field corresponding to a solid body rotation. The orientation of the velocity
field is tilted of 0.05 radian to avoid any effect of symmetry. PNC1 elements are
used. Advection is stabilized using upwind fluxes, as described in Hanert et al.
(2004). The initial condition and the solution obtained after one revolution
cannot be distinguished in figure 3. It can also be observed that the L2 error
norm converges at the optimal quadratic rate.

Initial condition Solution

Convergence analysis

100 1000

1

100
2.126 

Max edge length (km)

L 2 E
rr

or

-3.81 Error field 5.88

Figure 3. Advection of a cosine bell. Graphical comparison between the initial con-
dition and the numerical solution after one revolution, on a mesh of 81920 triangles
(top left). Error distribution on this mesh exhibits small amplitude wiggles (right),
and the convergence plot of the L2 error illustrates the observed quadratic rate of

convergence (bottom left). L2 error is defined as
√
∫

Ω(ch − c)2dΩ/
∫

Ω 1dΩ.

3.2 W92 test cases 2 and 3: zonal geostrophic flows

Williamson’s two next benchmarks are steady-state solutions to the nonlinear
inviscid shallow water equations. In the first case, the velocity field corresponds
to a solid body rotation along the axis of rotation of the Earth, whereas in
the second case, it is nonzero only for latitude ranging between 30◦South
and 90◦North. The elevation is defined so that it balances the Coriolis and
advection terms of the momentum equation. W92 recommends to compute
the error after five physical days. The results of a convergence analysis on
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both flows are detailed in figure 4. The optimal rate of convergence for this
linear finite element pair in L2 norm is observed for both elevation and velocity
fields.

100 1000

0.01

1

100

2.005 

1.910 

Max edge length (km)

L 2 E
rr

or
s

100 1000

0.01

1

100

2.649 

2.356 

Max edge length (km)

L 2 E
rr

or
s

Figure 4. Convergence analysis for test case 2 (left) and test case 3 (right). L2

error norms on the elevation η (dots) and velocities u (squares) after five days of
simulation on the different meshes built upon the icosahedron (figure 2). L2 errors

are defined as
√
∫

Ω(ch − c)2dΩ/
∫

Ω 1dΩ.

3.3 W92 test case 5: zonal flow over an isolated mountain

This is the first unsteady test case evaluated. The initial condition is similar
to the one of test case 2: a solid body rotation velocity field, with the elevation
in geostrophical balance. The only difference is the bathymetry: a seamount
conical in the longitude-latitude representation is added, centered on a point
with latitude 30◦North. The radius of the seamount at its base is 20◦, and its
height is roughly a third of the fluid mean depth. The flow is going eastward.

In figure 5, our solution is compared to a very high resolution one from the
German Weather Service. They simulate this benchmark with a spectral trans-
form shallow water model, based on the NCAR’s model (Jakob-Chien et al.,
1995) (model truncation: T-426, 1280x640 gridpoints, time-step of 90 s) 1 . We
use our finest mesh with 81920 triangles. The time step is 90 s. The spectral
model has a hyperviscous dissipation term ∇4 (with coefficient 4.97 × 1011

m4/s), whereas our model does not have any explicit dissipation term, the
subgrid-scale features being filtered out by the upwinding of the numerical
scheme. The finite element model has 286720 degrees of freedom, while the
spectral model has in its grid component more than two million of unknowns.
Thus, the spectral solution should be much more resolved than the finite ele-
ment one.

The difference plots exhibits the Gibbs phenomenon around the mountain,

1 Data are available at http://icon.enes.org/swm/stswm/node5.html
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which is specific to spectral methods, and due to the sharp edges of the cone.
The amplitude of the difference field is less than one percent of the initial range
of elevation. It is believed that the pattern of the difference field is mainly the
wiggles due to the spectral method, since this pattern does not change between
our two finest meshes, whereas scalar diagnostics do converge. Indeed, figure
6 shows that the maximum and minimum values of elevation converge both
at the optimal quadratic rate. Further, the error on the total energy of the
system after five days, illustrated in figure 7, converges at an higher rate than
expected.

3.4 W92 test case 6: Rossby-Haurwitz waves

This test case has been widely used for model intercomparison. It consists of
slow waves, which are steadily evolving solutions of the nondivergent barotropic
vorticity equations (Haurwitz, 1940). The initial patterns of elevation and ve-
locities are shown in figure 8. When this flow was chosen as a test case by W92,
it was thought to be stable for the inviscid nonlinear shallow water equations.
In fact, Thuburn and Li (2000) showed that it is dynamically unstable, the
wave pattern breaking down if initially perturbed.

Figure 9 compares our solution to a reference one. The latter was obtained by
the German Weather Service by means of the model that was also used in test
case 5, with T-511 resolution (1536x768 grid points), and a 90 s time step.
Our model was used with a 60 s time step, on the icosahedral grid refined six
times.

As seen in the plots of the right panel, the 4-periodic shape of the difference
field evolves toward a 2-periodic shape. This can be understood easily. As ex-
plained by Thuburn and Li (2000), the flow is unstable to small perturbations.
The spectral method does not trigger this instability because of its high degree
of symmetry: truncation errors will always be 4-periodic, since both the grid
and the initial condition are 4-periodic. This is why the spectral model keeps
the 4-periodic wave pattern so long: only rounding errors excite the instability.
The icosahedral mesh is only 2-periodic. Therefore, the truncation errors are
2-periodic. Hence, they excite the 2-periodic component of the unstable mode,
which is seen on figure 9. The difference field is an image of the asymmetry of
the mesh.
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Spectral solution

PNC
1
− P1 solution 0

6.4

After 5 days

Spectral solution

PNC
1
− P1 solution 0

7

After 10 days

Spectral solution

PNC
1
− P1 solution 0

6.2

After 15 days

Figure 5. Comparison of the elevation field with reference solution from the German
Weather Service for test case 5. The fields are presented in longitude-latitude pro-
jection. Left panel: spectral solution on top, and finite element solution on bottom.
The interval between contourlines is 50m, the dashed lines are contourlines under
the mean level, and the solid lines are contourlines above the mean level. Right
panel: visualization of the absolute value of the difference between the reference
solution and the finite element solution. The colormaps for the difference range in
[0; 6.4], [0; 7] and [0; 6.2] (white is 0, black is maximum).
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Figure 6. Convergence of the difference between reference solution and finite element
solution for minimum (left) and maximum (right) values of elevation for test case
5 of W92.
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Figure 7. Fraction of total energy lost by the scheme for test case 5 of W92. Left:
time series for the four meshes, right: convergence after 15 physical days.

0 m elevation 2560 m

0 m/s velocity 100 m/s

Figure 8. Initial elevation (left) and velocity (right) fields for test case 6 of W92.
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Figure 9. Comparison of the elevation field with reference solution from the German
Weather Service for test case 6. The fields are presented in longitude-latitude pro-
jection. Left panel: spectral solution on top, and finite element solution on bottom.
The interval between contourlines is 50m, the dashed lines are contourlines under
the mean level, and the solid lines are contourlines above the mean level. Right
panel: visualization of the absolute value of the difference between the reference
solution and the finite element solution. The colormaps for the difference ranges in
[0; 3.1], [0; 36] and [0; 69] (white is 0, black is maximum).
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4 Perturbed Rossby-Haurwitz waves

As the Rossby-Haurwitz flow of W92 is unstable to small perturbations (Thuburn and Li,
2000), Smith and Dritschel (2006) proposed a small variation of it, so that the
instability is initially excited, and the numerical methods behave in a deter-
ministic way. A small perturbation is added to the initial elevation field. This
perturbation is defined as :

H
(xx0 + yy0 + zz0)

40r2
, (19)

with H the mean fluid height (i.e. 9523 m), (x, y, z) the coordinates of the
point in the global Cartesian frame of reference with origin at the center of the
sphere, (x0, y0, z0) a specific point located at latitude 40◦North and longitude
50◦East, and r is the radius of the Earth.

The advantage of this test case over its W92 counterpart is that it is repro-
ducible: Thuburn and Li (2000) showed that for the classical Rossby-Haurwitz
test case, the flow is unstable, and thus the behavior of the simulation is
completely dependent on the way the numerical scheme excites the unstable
mode(s).

Figure 10 compares our solution to that of Smith and Dritschel (2006), who
used a contour-advective semi-Lagrangian method on a 256x256 grid, with a
108 s time-step. By contrast, our simulation was carried out with the same
configuration as for initial Rossby-Haurwitz waves test case, i.e. with the icosa-
hedral grid refined six times and a 60 s time-step. The flow pattern is relatively
well represented, but the difference with respect to the reference solution is not
negligible (the maximum differences after 5, 10 and 15 days are respectively
42, 147 and 221 m). This is probably due to a bias either in the reference
solution or in our initial condition. To ensure that our method converges to a
unique solution, we have considered as exact solution the result of a simula-
tion carried out on the icosahedral mesh refined seven times (counting 327680
triangles), and observed how scalar diagnostics converge. This is illustrated in
figure 11. We see that the maximum and minimum values of elevation con-
verge both at an acceptable rate. Further, the error on the total energy of the
system after fifteen days, illustrated in figure 12, converges at a higher rate
than expected.

5 Conclusions

In this article, we propose an original solution for solving PDEs on the sphere
— or on any other curved manifold. Taking advantage of the geometrical
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PNC1 − P1 solution Solution of Smith and Dritschel (2006)

After 5 days

After 10 days

After 15 days

Figure 10. Comparison of the results for the modified Rossby-Haurwitz waves test
case. The fields are presented in longitude-latitude projection. Reference solution
of Smith and Dritschel (2006) (left) and our finite element solution (right). The
interval between contourlines is 100m, the dashed lines are contourlines under the
mean level, and the solid lines are contourlines above the mean level.

flexibility inherent to the finite element method, the presented methodology
consists in a clever dialogue between a local and a nodal coordinate systems.
As all elements are handled in the same way, the pole singularity issues are
completely circumvented.

In order to assess the methodology, we show how to easily convert a finite
element code operational in planar geometry into an efficient PDEs solver in
spherical geometry, with a very small computational overhead. We proof that
this new solver is able to reproduce accurately the solutions of the traditional
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Figure 11. Convergence of the difference between reference solution and finite el-
ement solution for minimum (left) and maximum (right) values of elevation for
perturbed Rossby-Haurwitz waves test case after five days.
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Figure 12. Fraction of total energy lost by the scheme for perturbed Rossby-Haur-
witz waves test case. Left: time series for the four meshes, right: convergence after
15 physical days.

test case flows for the shallow water equations. We observe optimal rates of
convergence on both elevation and velocity fields on steady state flows, as well
as on different diagnostics for unsteady flows. Our solution of complex flows
compares well with published results.

If the article mainly focuses on two-dimensional horizontal flows, the exten-
sion the three-dimensional case is rather straightforward. As explained by
White et al. (2008b,a), our three-dimensional finite element model uses prisms
as three-dimensional elementary unit. They are obtained by vertically extrud-
ing a two-dimensional triangular mesh. Section 2 showed that all the integrals
are computed in the local coordinate system eξ, eη, eζ . If the extrusion of the
mesh is realized in the local coordinate system, aligned with the local vertical
direction eζ , all the previous considerations are valid, if we consider the three-
dimensional vector quantity as the combination of a two-dimensional vector
tangent to the surface with a scalar value, which is its normal component.
Note that we have implicitly assumed that we deal with a thin layer of fluid,
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since the extrusion is achieved along a constant direction within the triangle
(parallel extrusion), rather than extrusion toward the center of the sphere.
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A Scaling of second kind Christoffel symbols

Consider a sphere of radius r. For each flat triangle, we define a local cartesian
basis eξ, eη, eζ , with eξ and eη parallel to the plane of the triangle. To make
the derivation of metric terms easier, the origin of this cartesian basis is the
center of the sphere. There exists an isomorphism x(ξ) transforming the flat
triangle into the spherical triangle (as illustrated in figure A.1):

x(ξ) =
r

‖ξ‖
ξ. (A.1)

6

eξ

eη

eζ

ξ

6

eξ

eη

eζ

x

-
x(ξ)

Figure A.1. The isomorphism turning a flat triangle into a spherical one.

Using this isomorphism, we can deduce the covariant basis of the spherical
triangle:

gξ =
∂x(ξ)

∂ξ
=
r

‖ξ‖

(

eξ − ξ
ξ

‖ξ‖2

)

,

gη =
∂x(ξ)

∂η
=
r

‖ξ‖

(

eη − η
ξ

‖ξ‖2

)

,

gζ =
ξ

‖ξ‖
.

In the case of a curved surface embedded into the three-dimensional space,
the second kind Christoffel symbols Γγαβ (with α, β, and γ being ξ or η) can
be computed from:
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∂gα
∂β

=
∑

γ=ξ,η

Γγαβgγ + nαβgζ , (A.2)

where nαβ are coefficient that need not to be computed, as they are related to
the component normal to the surface. For our specific application, this leads
to:

Γξξξ = −2
ξ

‖ξ‖2
, Γξξη = Γξηξ =

η

‖ξ‖2
, Γξηη = 0,

Γηξξ = 0, Γηξη = Γηηξ = −
ξ

‖ξ‖2
, Γηηη = −2

η

‖ξ‖2
.

Therefore, the estimation of the order of magnitude for these symbols is
straightforward:

ξ ∈ [0; h],

‖ξ‖ =
√

(r′)2 + ξ2 ≈ r,

Γγαβ ≈
h

r2
,

for α, β and γ being ξ or η. Of course, the asymptotic assumption h ≪ r is
always valid in ocean modeling.

O

ξ

r′

ξ(ξ)

ξ = 0 ξ = h

r

Figure A.2. A one-dimensional illustration of the different terms involved in the
calculation of Christoffel symbols.
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