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6.1 Introduction

Lake Tanganyika is located on the east of central Africa, and is shared
by four developing countries: Democratic Republic of the Congo, Burundi,
Tanzania and Zambia. It lies between 3◦20′ to 8◦45′ S and 29◦05′ to 31◦15′

E. It is about 650 km long and 50 km wide on average. The mean depth of
the lake is about 570 m, with a maximum depth of 1470 m (Figure 6.1). That
makes it the second deepest lake in the world, the deepest being Lake Baikal
in Russia. Thermal stratification is well marked and present all year long, so
that one can identify two distinct layers: the surface and the bottom layers.
The surface layer is composed of relatively warm water (24-28◦C) while the
bottom layer is composed of cooler water (≈ 23.5◦C). These two layers are
separated by a thermocline, which is a thin layer where the temperature
gradient is maximum. The mean depth of the thermocline is about 50 m.
As the very deep water almost never reaches the surface, the lake can be
categorized as meromictic [Coulter and Spigel, 1991].

This study only focuses on the hydrodynamics. However, it must be
kept in mind that the latter exerts a profound influence on a number of
chemical [Plisnier et al., 1999] and biological [Descy et al., 2005] properties
throughout the lake. It also governs upwelling of nutrients that is essential
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Fig. 6.1. (a) Map of Lake Tanganyika (from Google EarthTM mapping
service), indicating the four neighboring countries. (b) Bathymetry of Lake
Tanganyika (with depths measured in metres) and x- and y-axis of the
Cartesian coordinate system used in the present work.

in maintaining the pelagic food web [O’Reilly et al., 2003]. Water motions
are chiefly forced by the surface wind stress. The region undergoes two
seasons: the dry season (approximately from May to August), characterized
by strong winds mainly blowing northwestward along the main axis of the
lake, and the wet season (approximately from September to April), during
which the winds are generally weaker.

During the dry season, the wind pushes the warmer surface water toward
the northern end of the lake. The thermocline moves upward to compensate
for the loss of water at the south and the warmer water accumulated at the
north is pulled downward by gravity. The thermocline is then tilted down-
ward toward the north and occasionally outcrops in the southern part of
the lake. At the end of the dry season, when the southeasterly winds stop,
the surface and bottom layers slide over each other, and the thermocline
oscillates to reach a new equilibrium. These waves are reflected at the lake
boundaries and gradually transform into standing wave patterns, called in-
ternal seiches. By December, the thermocline reaches its mean level (around
50 m) but keeps oscillating until the beginning of the next dry season and the
onset of the southeasterly winds. The period of these oscillations is about
three to four weeks. Indeed, a fundamental oscillation mode of 25 to 30 days
has been found both from field data [Coulter and Spigel, 1991] and from a
simple model [Mortimer, 1974], and a fundamental mode of about 24 days
has been found from a reduced-gravity model with a seasonal wind stress
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forcing [Naithani et al., 2003]. The presence of rather small internal Kelvin
waves in the lake has been emphasized by [Naithani and Deleersnijder, 2004]
and [Antenucci, 2005].

Herein two types of oscillations are identified: the free and the forced
ones. The free oscillations are related to the seasonal cycle of the surface
wind stress. When a seasonal wind stress is applied over the whole lake (i.e.
a constant wind stress during the dry season and zero wind stress during the
wet season, see Figure 6.2b), the thermocline oscillates about two equilib-
rium states: a tilted thermocline (downward toward the north) during the
dry season and a horizontal one during the wet season [Naithani et al., 2003].
The free oscillations are not a direct response to the seasonal wind stress.
They are due to the alternation between two different equilibrium states
along the year. Therefore, free oscillations can be regarded as triggered by
the seasonal wind stress. The period of the first mode of these free oscil-
lations (which is the only significant mode) is about three to four weeks
[Naithani et al., 2003].

The forced oscillations are due to the intraseasonal variability of the sur-
face wind stress, which is defined as the difference between the actual wind
stress (Figure 6.2a) and the seasonal wind stress (Figure 6.2b). By means
of a wavelet analysis, it has been shown that, in the region of Lake Tan-
ganyika, this intraseasonal variability of the surface forcing has a period
of three to four weeks [Naithani et al., 2002]. This period is due to the
eastward-propagating low-frequency large-scale convection and circulation
cells, which get their energy from the seasonally migrating intertropical
convergence zone [Madden and Julian, 1971, Madden and Julian, 1994], but
also to cloud-radiation [Krishnamurti and Bhalme, 1976] and evaporation-
wind [Neelin et al., 1987, Lin et al., 2000] feedback processes, and to the in-
teractions between moist convective and dynamical processes [Goswami and Shukla, 1984].
The timescale associated with the intraseasonal variations of the wind forc-
ing is of the same order of magnitude as the period of the free oscilla-
tions. Therefore, the oscillations directly forced by the intraseasonal oscil-
lations of the wind stress tend to have a large amplitude, as was seen by
[Naithani et al., 2002] who identified this near-resonance phenomenon.

Free [Naithani et al., 2003] and forced [Naithani et al., 2002] thermocline
oscillations in Lake Tanganyika have already been studied separately. How-
ever, so far, the relative importance of these two types of response and the
interactions between them have not been investigated. Doing so by means
of the factor separation method is the objective of the present chapter. The
wind stress is split into a seasonal component and an intraseasonal one. This
leads to a decomposition of the thermocline response into a seasonal and an
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Fig. 6.2. (a) Wind stress in the along-lake direction, measured at Mpulungu
in Zambia, every six hours from 1st April 1993 to 31st March 1994, during
the FAO/FINNIDA project “Research for the Management of the Fisheries
on Lake Tanganyika” GCP/RAF/271/FIN. (b) Seasonal wind stress, with
a constant wind stress τc during the dry season and zero wind stress during
the wet season.

intraseasonal response (respectively responsible for the free and forced oscil-
lations) and also a synergistic term, due to the non-linearity of the problem
[Stein and Alpert, 1993]. Therefore, the factor separation method can help
in assessing the relative magnitude of the free and forced oscillations of the
thermocline in Lake Tanganyika.

6.2 Model description

Two-layer models have often been used to simulate wind-induced internal
waves in large, stratified lakes. For example, we may cite studies of Lake
Biwa in Japan [Kanari, 1975], Lake Ontario in Canada [Schwab, 1977], or
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Lake Kinneret in Israel [Antenucci and Imberger, 2001]. The equations of
such models are well known, and references on their design may easily be
found in the literature [Csanady, 1967, Kielmann and Simons, 1984]. With
two-layer models, there are six variables, i.e. the displacement of the free
surface, the displacement of the interface between the two layers, the hori-
zontal velocity components averaged over the surface layer thickness and the
horizontal velocity components averaged over the bottom layer thickness.

When the bottom layer is much thicker than the surface one, relevant sim-
plifications may lead to the reduced-gravity model [Naithani et al., 2003].
The reduced-gravity model is a 1.5-layer model in that it focuses on the
dynamics of the surface layer, without disregarding completely the bottom
one. It has only three variables, i.e. the displacement of the interface be-
tween the two layers and the horizontal velocity components averaged over
the surface layer thickness. The bathymetry is no longer explicitely taken
into account.

Several papers have already shown that a reduced-gravity model is able
to simulate rather well the thermocline oscillations in Lake Tanganyika
[Naithani et al., 2002, Naithani et al., 2003] since stratification is present
all year round and the surface layer is much shallower than the bottom
one, i.e. the thickness of the former is about 10 % of that of the latter
[Coulter and Spigel, 1991].

The equations of the reduced-gravity model read:
∂ξ

∂t
+ ∇ · (Hu) = 0 (6.1)

∂

∂t
(Hu) + ∇ · (Huu) = −fez × (Hu)− (εg)H(∇ξ)

+∇ ·
(
Hν(∇u)

)
+
τ

ρ
, (6.2)

where t denotes the time and ∇ is the horizontal spatial derivative vec-
tor operator; ξ is the downward displacement of the thermocline (Figure
6.3), while u is the horizontal velocity vector averaged over the surface layer
thickness H = h+ξ (since the displacement of the free surface is neglected),
h being the surface layer thicknesses at rest (Figure 6.3); f is the Coriolis
parameter; (εg) is the reduced gravity, where g is the gravitational accelera-
tion and ε = ρb−ρ

ρb
is the relative density difference (here equal to 6.3× 10−4

in order to be consistent with former studies); ν is the horizontal eddy vis-
cosity; τ is the surface wind stress vector; ρ and ρb are the constant water
densities in the surface layer an the bottom layer, respectively.

The standard reduced-gravity model rests on the assumptions that the
thermocline is impermeable, implying that the volume of the surface layer
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Fig. 6.3. The parameters and variables of a reduced-gravity model: η is the
upward displacement of the free surface, ξ is the downward displacement of
the thermocline; ρ and ρb are the densities of the surface and bottom layers,
respectively; u and v are the components of u, the velocity vector averaged
over the surface layer; h is the surface layer thickness at rest; H and Hb

are the instantaneous surface and bottom layer thicknesses, respectively.

remains constant. However, some modifications allow to take into account
the water exchanges between the surface and bottom layers, and those due to
precipitation, evaporation and rivers [Gourgue et al., 2007]. This approach
is not resorted to herein, in order to follow the assumptions of the previous
studies [Naithani et al., 2002, Naithani et al., 2003], and because it is not
essential for studying the internal oscillations in the lake.

Since the rivers are not taken into account, the lateral boundary of the lake
can be assumed to be impermeable. Moreover, we make the assumption of a
free slip lateral boundary. The corresponding boundary conditions therefore
read:

un = 0 (6.3)
∂ut
∂n

= 0 , (6.4)

where un and ut denote the horizontal velocity components normal and
tangential to the boundary, respectively, and ∂

∂n the spatial derivative in
the direction normal to the boundary.

To simulate the oscillations of the thermocline, we discretize equations
(6.1) and (6.2) on the unstructured mesh displayed in Figure 6.4, using
the two-dimensional component of the finite element model SLIM (Second-
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Fig. 6.4. Unstructured mesh of Lake Tanganyika used for the present sim-
ulations. There are 2997 triangular elements, whose mean size is about
5 km.

generation Louvain-la-Neuve Ice-ocean Model†). The elevation and veloc-
ity variables are approximated by linear conforming (P1) and linear non-
conforming (PNC1 ) shape functions, respectively. Therefore, the elevation
nodes are situated at the vertices of each triangle of the mesh, and the
velocity nodes at the middle of their edges [Hanert et al., 2005].

Occasionally, the upward displacement of the thermocline can be equal
to the reference thickness of the surface layer. To prevent the thermocline
from outcropping, a wetting-drying algorithm is implemented. When the
water column depth of a node reaches a critical value, which is taken to
be 5 m in this application, the node is considered to be dry. Otherwise,
it is a wet node. The wetting-drying algorithm consists in setting to zero
the fluxes across the edges of a patch made up of all the triangles shar-
ing a dry node. At each time step, we first compute the elevation field
ξ. If there are dry nodes, we modify the velocity fields u and v (of the
previous time step) with the wetting-drying algorithm, before recomputing
the elevation field. This technique is used recursively until there are no
more dry nodes. Then, we compute simultaneously the velocity fields u and
v. This kind of approach was initially introduced for the finite difference
method [Balzano, 1998]. It has already been used in a finite difference model
of Lake Tanganyika [Naithani et al., 2002, Naithani et al., 2003], and it has
been adapted herein to our finite element model [Marchal, 2005].

The initial conditions need no discussion: the numerical results are ana-

† www.climate.be/SLIM
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lyzed several years after the beginning of the simulation, i.e. at a time when
a periodic regime is reached that is independent of the initial values of the
variables.

6.3 Wind stress forcing decomposition

Surface wind measurements were made from 1st April 1993 to 31th March
1994 at Mpulungu by the FAO/FINNIDA project “Research for the Manage-
ment of the Fisheries on Lake Tanganyika” GCP/RAF/271/FIN. Mpulungu
is situated at the south end of the lake in Zambia. Following former stud-
ies, we assume that this pointwise wind stress may be applied to the entire
lake surface [Naithani et al., 2002]. Therefore, the surface wind stress vector
τ (t) is a function of time only. Its components are τx(t) and τy(t), following
the x and y axis of Figure 6.1b, respectively (the y-axis is in the along-lake
direction, from south to north). The component τx(t) of the surface forcing
may be neglected, for it is much smaller than τy(t), and because of the nar-
rowness of the lake [Naithani et al., 2002]. Accordingly, τy(t) is assumed to
be the actual wind stress (Figure 6.2a).

In order to evaluate the relative importance of the free and forced ther-
mocline responses, the actual wind stress is split into two parts:

τy(t) = τs(t) + τi(t) , (6.5)

where τs(t) is the seasonal wind stress (triggering the free oscillations), and
τi(t) is the intraseasonal variability of the wind stress (causing the forced
oscillations). The seasonal wind stress is made up of a constant wind stress
τc during the dry season, and zero wind stress during the wet season, as
shown in Figure 6.2b. It is thus defined by three parameters, the beginning
and the duration of the dry season, and the value of the constant wind
stress during the dry season τc. The values of these parameters (given in
Figure 6.2b) are determined by minimizing the integral of the least square
difference between the functions τy(t) and τs(t).

6.4 Thermocline response decomposition

The downward displacement of the thermocline, ξ(t, x, y), is defined as
the thermocline response to the actual wind stress forcing τy(t). We call it
the complete thermocline response, and it can be decomposed as follows:

ξ(t, x, y) = ξsno(t, x, y) + ξso(t, x, y)︸ ︷︷ ︸
ξs(t, x, y)

+ ξi(t, x, y) + ξsyn(t, x, y) , (6.6)
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where

• the seasonal response ξs(t, x, y) is the thermocline response to the
seasonal wind stress τs(t) ;
• the intraseasonal response ξi(t, x, y) is the thermocline response to

the intraseasonal variability of the wind stress τi(t) ;
• the synergistic term ξsyn(t, x, y) is due to the non-linearity of the

model [Stein and Alpert, 1993].

The seasonal response ξs cannot be considered as purely oscillatory. In-
deed, the thermocline oscillates about two equilibrium positions: a tilted
thermocline (downward toward the north) during the dry season, and a hor-
izontal one during the wet season, as is explained in Appendix A. Therefore
the seasonal response ξs is split into two parts:

• the reference non-oscillating part of the seasonal response ξsno(t, x, y)
is made up of two equilibrium states: it is the time-independent
response to τc during the dry season, and it is zero during the wet
season;
• the oscillating part of the seasonal response ξso(t, x, y) represents

the oscillations of the seasonal response about these two equilibrium
states.

The components ξ, ξs and ξi are computed by means of the reduced-
gravity model, using τy, τs and τi, respectively, as wind stress forcing. The
dry season part of ξsno is obtained by means of the reduced-gravity model
using τc as wind stress, and its wet season part is zero. The other components
ξsyn and ξso are deduced from them since ξsyn = ξ−ξs−ξi and ξso = ξs−ξsno.

Only two of these contributions may be regarded as oscillations: ξso and
ξi are now defined as the free and forced thermocline oscillations, respec-
tively. For the Reader’s convenience, ξsno will be termed the non-oscillating
seasonal response. The name and symbol of all the thermocline responses
are gathered in Table 6.1. We now define several tools to analyze all these
contributions.

Width-average

The thermocline responses can be averaged over the lake width:

ξ(t, y) =

∫ w2(y)

w1(y)
ξ(t, x, y) dx∫ w2(y)

w1(y)
dx

. (6.7)
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ξ total response
ξs seasonal response
ξsno non-oscillating seasonal response
ξso free oscillations (i.e. oscillating seasonal response)
ξi forced oscillations (i.e. intraseasonal response)
ξsyn synergistic term

Table 6.1. Meaning of the symbols associated with the various
components of the thermocline reponse to the wind forcing.

The lake width is determined by w1(y) on the left and w2(y) on the right
(Figure 6.5). Figure 6.6 presents the width-averaged annual cycles of the
complete thermocline response ξ and its four contributions: the non-oscillating
seasonal response ξsno, the free oscillations ξso, the forced oscillations ξi, and
the synergistic term ξsyn. The complete response is clearly oscillating, and
the thermocline is more tilted downward toward the north during the dry
season, which is why we have introduced ξsno. The free oscillations seem
to be only significant at the season changes. This is not the case with the
forced oscillations that are present all year long, even if they are larger dur-
ing the dry season. It has to be noted here that the relatively quick damping
of the free oscillations is mainly due to the viscosity ν, which is chosen to
be equal to 3 m2/s here in order to be consistent with the former stud-
ies [Naithani et al., 2002, Naithani et al., 2003]. The synergistic term is not
negligible and is also of an oscillating nature.

Average over a specific region

The thermocline responses can be averaged over a specific region Ωi:

ξ̂(t) =

∫
Ωi

ξ(t, x, y) dxdy∫
Ωi

dxdy
. (6.8)

We define a southern and a northern region (Figure 6.5). Figure 6.7 presents
the mean annual cycles of four thermocline responses (ξ, ξsno, ξso and ξi)
in these two regions. In the south (resp. in the north), all the oscillating
responses present thirteen local minima (resp. maxima) per year, corre-
sponding to an oscillation period of about 28 days, which is consistent with
the above-mentioned three- to four-week oscillation period. Figure 6.7 also
shows that the amplitude of the forced oscillations is much larger than that
of the free ones (which are only significant at the season changes, as men-
tioned previously). Moreover the forced oscillations are more likely to fit the
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Fig. 6.5. A width-averaged response ξ(t, y) is computed over the lake width
that depends on y. This width is determined by w1(y) on the left and w2(y)
on the right. A response averaged over the southern and northern regions
of the lake are averaged over the regions below a third and above the two
thirds of the lake length, respectively.

complete response than the free ones. The complete thermocline response ξ
seems to be essentially made up of both the non-oscillating seasonal response
ξsno and the intraseasonal response ξi.

Average over the whole lake - the concept of mean amplitude

Since the surface layer volume is constant, the average of a thermocline
response over the whole lake is zero. We then introduce the concept of
mean amplitude that uses the absolute value of the thermocline responses.
We define the mean amplitude of a thermocline response as follows:

ξ̃(t) =

∫
Ω
|ξ(t, x, y)| dxdy∫

Ω
dxdy

, (6.9)

where Ω is the whole lake surface. The annual mean amplitude (i.e. ξ̃

averaged over the whole year) of the free and forced oscillations are equal
to 7.87 m and 18.75 m, respectively. The mean amplitude of the forced
oscillations is thus, on average, more than twice as large as that of the free
ones.

Figure 6.8 presents the evolution of the mean amplitude of the free and
forced oscillations and their ratio. The forced oscillations are present all year
round. Their mean amplitude is maximum during the dry season and then
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(a) ξy [m]

y
[k

m
]

t [days]

= (b) ξsno

+ (c) ξso

+ (d) ξi

+ (e) ξsyn

Fig. 6.6. Annual cycles of the width-averaged complete response (a), the
width-averaged non-oscillating seasonal response (b), the width-averaged
free oscillations (c), the width-averaged forced oscillations (d), and the
width-averaged synergistic term (e).

decreases during the wet season. Their amplitude is always larger than that
of the free oscillations, except at the season changes when the amplitude
of the free oscillations strongly increases before decreasing exponentionally.
Except at the season changes, the mean amplitude of the forced oscillations
is over twice as large as that of the free oscillations, and even more so during
the dry season (about five times on average).

The annual mean amplitude of the synergistic term is equal to 13.40 m.
Therefore, the synergistic term ξsyn is not negligible. This is partly due
to the non-linearity of the reduced-gravity model equations. The wetting-
drying algorithm, which prevents the thermocline from outcropping, also
adds some non-linearity to the model. Moreover, the seasonal and intrasea-
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Fig. 6.7. Annual cycles of the complete response (solid black), the non-
oscillating seasonal response (dashed black), the free oscillations (solid
gray) and the forced oscillations (dashed gray), averaged over the southern
(a) and northern (b) regions of the lake. These regions are defined as the
ones below a third and above the two thirds of the lake length, respectively
(Figure 6.5).

sonal responses are often out of phase, which is likely to increase the ampli-
tude of the synergistic term.

Selecting the most realistic reponse components

Is the complete thermocline response mainly composed of the non-oscillating
seasonal response ξsno, the free oscillations ξso, the forced oscillations ξi, or
a combination of several of these three thermocline responses? There are
seven possible combinations, composed of one, two or three terms taken
among ξsno, ξso and ξi. We call a signal the difference between the complete
response ξ and one of these combinations. That the mean amplitude of a
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given signal is small indicates that the associated combination is a good
approximation of the complete response. Table 6.2 presents the mean am-
plitude of the signals related to the seven possible combinations. It shows
that the four combinations containing ξsno are the best ones. So the non-
oscillating seasonal response is essential to describe the complete response.
According to this method, the best combination is ξsno + ξi. The free oscil-
lations ξso are not only useless to describe the complete response, but the
approximation to the complete response gets worse when ξso is added.

signal amplitude

ξ − (ξsno + ξi) 13.12 m
ξ − (ξsno + ξso + ξi) 13.4 m

ξ − ξsno 16.75 m
ξ − (ξsno + ξso) 18.39 m

ξ − ξi 22.74 m
ξ − ξso 23.27 m

ξ − (ξso + ξi) 23.43 m

Table 6.2. Mean amplitude of the different signals composed of the
difference between ξ and the various combinations of ξsno, ξso
and ξi.

6.5 Conclusion

A hydrodynamic model was built that reproduces rather well the results
of former simulations of the thermocline oscillations in Lake Tanganyika.
Former studies established the presence of free oscillations with a period of
three to four weeks [Naithani et al., 2003], and noted that the thermocline
oscillations are also due to forced oscillations with the same three- to four-
week period [Naithani et al., 2002] (the period of theses forced oscillations
are due to the intraseasonal variability of the wind stress in the region of
the lake). But no comparison between the two oscillation types had been
achieved so far. We showed that, in Lake Tanganyika, the forced oscillations
of the thermocline are significantly larger than their free counterparts: their
mean annual amplitude is more than twice as large. It was also seen that
combining the non-oscillating seasonal response of the thermocline (which
is tilted downward toward the north during the dry season and horizontal
for the rest of the year) and the forced oscillations yields a response that is
closer to the complete one than any other response combination.
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Appendix A Seasonal response decomposition

As illustrated by Figure 6.2b, the seasonal component of the surface wind
stress is defined to be

τs(t) =

{
τc during the dry season
0 during the wet season

, (6.10)

where τc is a positive constant. The response of the thermocline to this wind
forcing, i.e. the seasonal thermocline response ξs, is made up of an oscillat-
ing part ξso and a non-oscillating one ξsno. The latter is the steady-state
response to the seasonal wind stress. Accordingly, it obeys the momentum
equation

εg (h+ ξsno)
∂ξsno
∂y

=
τs
ρ
, (6.11)

Then, it is readily seen that the seasonal non-oscillating thermocline dis-
placement is zero during the wet season (i.e. the thermocline is horizontal)
and is equal to the following expression during the dry season

ξsno(t, x, y) = −h+

√
2 τc (y + Y )

εg ρ
, (6.12)

where Y is a constant whose value must guarantee that the volume of the
surface layer remains time-independent. In other words, this constant is
such that the integral of ξsno over the surface of the lake Ω is zero, implying
that Y must satisfy∫

Ω
h dxdy =

∫
Ω

√
2 τc (y + Y )

εg ρ
dxdy . (6.13)
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