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Gravity  
waves on 
a froggy 
planet 

Building a general method for irregular manifolds 

•  The method is independent of the manifold 
•  It must be easy to implement 
•  It must be robust to handle such a funny benchmark 



Slim : a multi-scale model for the 
ocean, coaslines and rivers 

www.climate.be/slim 

Outline 

•  Meshing the ocean on the sphere 
•  Solving PDE’s on the ocean with high-order DG 
•  Numerical challenges 



Are adaptive unstructured-grid 
models coming of age ? 

Reduced-gravity simulation of a baroclinic 
eddy in the Gulf of Mexico. 

This simulation is several orders of magnitude 
cheaper than a constant resolution one of the 
same accuracy ! (Bernard, 2007) 

•  Numerical models of marine systems should be able to explicitly 
represent the broadest possible range of scales. 

•  Increasing the resolution everywhere is not the best option as this 
often results in a very inefficient use of the computational resources. 

•  The idea is to increase the resolution where and when it is needed  !  



Structured grid … 
•  Finite differences are easy to implement 
•  Programming is easy 
•  Well known in the world of oceanography 
•  Bad representation of the coastlines 
•  Difficult to enhance locally the resolution 
•  Poles singularity 

…versus unstructured grid 
•  Numerical methods are more complicated 
•  Programming is more complicated 
•  Not well known in the world of oceanography 
•  Accurate representation of the coastlines 
•  Enhancing the resolution is flexible 
•  No singular points 



Now, let us simulate 
the Fukushima’s tsunami… 



Mass balance 



Momentum balance 



Wave Equation 

Waves are (very) fast ! 

Gravity 9,81 m/s 
Average depth of Pacific 4000 m 

Linear 
Shallow Water  
Equations 



And now, 
we can zoom 
on Japan ! 



The earthquake motion  
displaces a column water 

It is a huge energy ! 
20 x Energy of Hiroshima’s bomb ! 
This initial condition must be provided to the model 



Small waves  
travel fast 
as function of the bathymetry 

An accurate bathymetry is a 
critical ingredient to predict the 
propagation of the waves ! 



Waves compression 
forces waves to gain height ! 

Height is increased as speed decreases ! 
An accurate shoreline description is required. 



Simulating  
tsunamis 
is easy 

Simulation performed on May 17th by 
Jonathan Lambrechts and Benjamin de Brye 



15 minutes 



1 hour 



4 hours 

Hawaï 

Indonesia 



6 hours 



7 hours 

Hawaï 



10 hours 



Waves equation  
Equal-order discretization ! 

Geostrophy equilibrium 
Exactly satisfied ?  

Stokes problem:  
LBB condition occurs ! 

A lot of physical processes inside 
the Shallow Water  Equations 



P1    -P1 inviscid computations 
look pretty nice … 

NC  

… but exhibit only  
  a first-order convergence! 



Structured noise is observed ! 

•  it is not a mode as P1−P1 pressure mode as it is bounded  
•  it does not appear on half-squares meshes. 



P1    -P2 wins the accuracy award! DG  

•  Second-order convergence for all benchmarks. 
•  Higher order quadrature rules are required. 
•  Consistency requires to use P2 tracers ! 
•  Efficient iterative solution strategy ? 



Coriolis issue for P1    -P1 DG        DG  

•  Half an order of accuracy is lost with Coriolis 
•  Coriolis term has no corresponding interface term 
•  Only normal velocity jumps are removed by the Riemann solver 
•  Tangent velocity jumps amplified by Coriolis term and not damped 



The Galerkin  
Discontinuous  
Method 

Finite Volumes 
•  Natural treatment of wave-like terms 
•  Low order on unstructured meshes 

Continous Finite Elements 
•  Optimal for second-order terms 
•  High order interpolation spaces 

Best of both approaches ! 
•  Wave terms handled in the finite volume spirit 
•  Second-order terms accurately handled with IP formulation 
•  High order interpolation spaces 



The Galerkin  
Discontinuous  
Method 

•  Bloc-diagonal global matrices  
•  Transfer between elements through the flux on the edges 
•  A weak collocated formulation can be also derived 
•  Upwinding by the flux evaluation (Riemann’s solver) 



Theoretical rates of convergence 
are obtained for the analytical 
Stommel problem 



How does it  
converge ? 

Uniform P4 Mesh 

Uniform P1 Mesh 

Adaptive P4 Mesh 

Adaptive P1 Mesh 



 Pn    -Pn     is currently used  
because it is fast    

DG        DG  

Implicit time marching 

•  Implicit scheme needs linear solver 
•  DG + ILU(0) GMRES solution strategy is efficient 

Explicit time marching 

•  Finite volume limiters can be applied 
•  Conservative wetting and drying procedures are available 



Delaunay based  
triangulation 

1.8 million triangles, 
780 seconds for doing the mesh,  
90% spent in computing the mesh size field. 

•  Poincaré waves have to be resolved 
•  Mesh size smaller along coastlines 
•  Geometry of the coastlines has to be represented 



In a natural way, 
finite elements 
do not require 
a global system 
of coordinates! 

Solving the Laplace’s equation on the sphere is trivial 

•  No need of spherical coordinates 
•  No poles singularity 
•  As simple as the planar problem 



The code :-) 
dxdxi = x2-x1; dxdet = x3-x1;!
dydxi = y2-y1; dydet = y3-y1;!
dzdxi = z2-z1; dzdet = z3-z1;!

lgt11 = sqrt(dxdxi * dxdxi + dydxi * dydxi + dzdxi * dzdxi);!
lgt22 = sqrt(dxdet * dxdet + dydet * dydet + dzdet * dzdet); !!
cos12 =     (dxdxi * dxdet + dydxi * dydet + dzdxi * dzdet) / (lgt11*lgt22);!
sin12 = sqrt(1.0-cos12*cos12);!
ajac  = sin12 * (lgt11*lgt22);!
dxdxi = lgt11;         dydxi = 0.0;!
dxdet = lgt22 * cos12; dydet = lgt22 * sin12;!

dxidx =   dydet / ajac;!
dxidy = - dxdet / ajac; !
detdx = - dydxi / ajac;!
detdy =   dxdxi / ajac;!

! !!
for (int iInteg=0; iInteg < myElement.getNumberInteg(); iInteg++) { ! !!
  myElement.setShapes(iInteg);!
  phi = myElement.getPhi();!
  dphidxi = myElement.getDphidxi();!
  dphidet = myElement.getDphideta();!
  weight  = myElement.getWeight();!
 !!
  for (int i=0;i<nn;i++) {!

! dphidx[i] = (dphidxi[i] * dxidx + dphidet[i] * detdx);!
! dphidy[i] = (dphidxi[i] * dxidy + dphidet[i] * detdy);  }!

  for (int i=0;i<nn;i++) {!
! for (int j=0;j<nn;j++) {!
! ! Aloc(i,j) += ajac * weight[iInteg] * (dphidx[i]*dphidx[j] + dphidy[i]*dphidy
[j]);}!

! Bloc(i) += ajac * weight[iInteg]* source * phi[i];}}!
}!



High-order versus  
low-order meshes 



Williamson test case 2 and 3 

Analytical steady-state solution as a 
balance between non linear transport 
terms, pressure term and Coriolis force 

[Williamson et al. 1992] 

The expected convergence rate is 
reached … 



The hydrostatic  
Boussinesq  
equations  
and 

•  Shallow water model is the depth-integrated 3D model 
•  Prismatic elements appear as a natural choice 

With a single layer, we solve the shallow water model ! 

… the Shallow  
Water Equations 



3D : baroclinic effects take place!  
Barotropic model 

•  Surface waves and advection 
•  Subcritical for large scale problems 

Baroclinic model 

•  Surface waves, advection and internal waves 
•  Internally supercritical flows are common 
•  Internal waves breaks can occur 
•  Density current fronts are supercritical 
•  Specific limiters are needed 



Internal waves couple… 

•  Tracers are advected by the vertical velocity 
•  Vertical velocity is deduced from the horizontal velocity 
•  Pressure gradient is a source term for the horizontal momentum 
•  Pressure gradient is deduced from the density gradient 
•  Density gradient is linked to the tracers by an equation of state 

Interface terms must take into account this physics 
at least for subcritical flows ! 

…momenttum,  
mass and tracers. 



Lax-Friedrichs flux is  
the key ingredient … 

Deriving a Riemann solver would be quite difficult 
because the equations are not in a convervative form. 

•  We add to the centered scheme a jump penalty term 
proportional to estimated maximum internal wave speed. 

•  Those terms are added only in prognostic equations related to 
baroclinic effects: momentum and tracer equations. 

•  The continuity equation does not have such interface terms. 



Semi-implicit (IMEX)  
Runge-Kutta schemes 
•  The time step can easily be changed. 
•  High order versions are available. 
•  The linear system for 3d momentum has a block structure 

corresponding to the columns of dof ’s. 



Implicit mode splitting procedure 

•  The 3D dof ’s of a whole vertical line 
are aggregated into a single 2D dof. 

•  It can be viewed as a restriction on the 
functional space: the 2D mode 
corresponds to  a single layer. 



Elevation can be viewed as the 2d 
counterpart of vertical velocity 



Implicit mode splitting procedure 

Lagrange multipliers ensure compatibility. 

•  Requiring compatibily add too much equations. 
•  Incorporating Lagrange multipliers allows us to weakly impose 

the compatbility between the 2D and 3D velocity fields 



Internal waves  
in the lee of a  
moderately tall 
seamount 

The computation starts with a global zonal 
geostrophic equilibrium ignoring the seamount 
as in Williamson testcase 5 

Cloud waves in the lee of Amsterdam island 
(NASA image from J. Schmalz) 



7 days evolution  
of density deviation field 



Mesh of 23562 
triangles extruded 
into 25 σ layers  



Two well separated modes at day 7 



Cut in the density 
field at day 7 



The time 
stepping 

 issue 

•  890,000 triangles 
•  Smallest element : 7 m 
•  Largest element : 3,300 m 
•  99.9 % > 60m 

The time step is constrained by the smallest element . 

•  Use innovative time stepping procedures 
•  Implicit-explicit (IMEX) schemes 
•  Multirate schemes 



Reduce cost by 1000 ! 
Use high performance computers ! 

Each route could reduce the computational cost by 
one order of magnitude. 

•  Exploit single precision BLAS/LAPACK for the efficient 
implementation of the explicit and implicit discontinuous Galerkin 
methods. 

•  Implement new time-integration procedures adapting the time step to 
the physical processes. 

•  Introduce multi-level methods for the implicit linear and non-linear 
solvers with multigrid methods as a preconditioner for stiff, non-linear 
and non-positive-definite systems.  

1.759 Pflops 
224,162 processors 

10 Gflops 
2 processors 



2D conclusions 
•  DG is the most compelling solution 

•  Both implicit and explicit procedures are needed  
  Implicit for long term simulations  
  Explicit allows to use simple limiters  

•  P2 on curved meshes would be faster and more accurate 
with the same number of dofs  

  Efficient limiters for P2 are not obvious to derive 



3D conclusions 
The long way to realistic models 

•  An accurate DG discretization on the sphere withe a flexible 
implicit mode splitting has been developed  

•  It should work with limiters for supercritical flows 

•  Mode splitting may not be the best solution  
 Multigrid implicit scheme, aware of the physics, is also attractive 



Quotes by (other)  
famous simulators 

  As far as the laws of mathematics refer to reality, they are not certain, 
and as far as they are certain, they do not refer to reality.   
Albert Einstein  

  Everything is vague to a degree you do not realize  
till you have tried to make it precise.   
Bertrand Russell 

  In these matters the only certainty is that nothing is certain.   
Pliny the Elder 

  However beautiful the strategy,  
you should occasionally look at the results.   
Sir Winston Churchill 


