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Abstract

This paper delivers an analysis of the least-square estimation of the Laguerre coe1cients of a linear discrete-time
system from step response data. The original contribution consists in an explicit formula for the bias error on the estimated
coe1cients due to the under-modelling of the system. The formula, jointly with some a-priori information on the neglected
dynamics, can be used to construct bounds on this error. The results presented in this paper are illustrated with a simulation
example.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a linear discrete-time plant with transfer function T (z). If T (z) is unknown, a model of the plant
can be estimated from experimental data [5]. A broadly used class of models in identi�cation of linear systems
consists in the �nite Laguerre expansion [4,10,8,12]. A model in this class takes the form

M (z; �) =
n∑

k=1

�kLk(z; a); Lk(z; a) =
K

z − a

(
1 − az
z − a

)k−1

; K =
√
1 − a2; (1)

where Lk(z; a) is a Laguerre function with poles in a, and �= [�1; �2; : : : ; �n]T is the parameter that has to be
tuned according to the data. The parameter a is a �xed parameter chosen by the user. For a= 0; M (z; �) is
the usual FIR model. In general, one should choose the parameter a in accordance with the available a priori
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information on T (z). In fact, it is well known that, as long as T (z) is stable, it can be expressed as in�nite
expansion of Laguerre functions, i.e.,

T (z) =
∞∑
k=1

gkLk(z; a); (2)

the convergence rate of the expansion depending on a. For this reason, a good choice of a improves the
error committed when T (z) is approximated through a truncated expansion as in (1). For results on the
approximation of transfer functions with �nite Laguerre expansions see also [1,3,7,9,11].
In this paper, we will consider the particular case in which the parameter vector � of a model M (z; �)—in

the form given in (1) where a is assumed to be already chosen—is estimated from a �nite sequence of step
response data, and where a least-squares criterion is used. We will give an analysis of the error existing
between the estimated model parameter vector �̂ = [�̂1; : : : ; �̂n] and the corresponding vector �0 = [g1; : : : ; gn]
of Laguerre coe1cients of the true system (2). We will focus on the deterministic component of the error
(bias) due to the under-modelling of T (z). We will not consider the stochastic component arising from the
possible presence of noise aLecting the data. The bias error on the coe1cients depends of course on the
unknown transfer function T (z). It will be shown that our explicit bias error expression, jointly with some
prior information on the decay rate of the Laguerre coe1cients of T (z), can be used to derive useful bounds
of this error.
It is well known that the step signal is not persistently exciting (see [5]). This means that the condition

number of the identi�cation problem gets worse as N (i.e. the number of data) increases. Since increasing
the number of data is needed to eliminate the eLect of the noise, our analysis is of practical use only in a
situation with a low noise level. On the other hand, the results in this paper are of theoretical importance.
They can be the basis for further developments in the analysis of the bias error committed when square-wave
signals are used. Indeed, these signals, which are broadly used in identi�cation, are superpositions of
steps.
The paper is organized as follows. The problem statement and the notation are introduced in Section 2. The

explicit expression of the bias error on the estimated coe1cients is derived in Section 3. Section 4 is devoted
to a brief discussion of the particular case in which the static gain is known. The expression of the bias
error is used in Section 5 to calculate a worst-case bound on this error. An illustrative simulation example
is given in Section 6. The conclusions, in Section 7, end the paper. The Appendix contains all the technical
proofs.

2. Problem statement

Let M (z; �) be as in (1); in order to simplify the notation, we will not always express the dependency
on a, which is considered as a given �xed parameter. Let [ys(1); : : : ; ys(N )] be the (noise-free) response of
the plant T (z)—up to the instant N—to a unitary step change in the input applied at time 0 when the plant
is at rest. This step signal is denoted step(t). We denote by �̂(N ) the parameter vector that minimizes the
least-squares cost function J (�; N ) constructed on the basis of [ys(1); : : : ; ys(N )]:

J (�; N ) =
N∑
t=1

(ys(t) − M (z; �) step(t))2: (3)

We denote by �0 the vector of the �rst n coe1cients of the Laguerre expansion of T (z) (see (2)):

�0 = [g1g2 : : : gn]T:
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In the following, we will derive an explicit expression for the parameter bias error D(N ) de�ned as the
diLerence between the estimated coe1cients of the model (i.e. �̂(N )) and the �rst n coe1cients of the
Laguerre expansion of the true plant (i.e. �0):

D(N ) = �̂(N ) − �0:

The unknown transfer function T (z) will enter the expression of D(N ), but only through the “tail” of the
expansion of T (z) (i.e. [gn+1 gn+2 : : : ]). In the event that some prior information on the tail is available, it
will be natural to use such information to derive explicit bounds for D(N ).

3. Explicit expression of the parameter bias

The parameter vector �̂(N ) is given by the well-known normal equations

�̂(N ) =

[
N∑
t=1

�(t)�(t)T
]−1 N∑

t=1

�(t)ys(t) (4)

in which �(t) is the regression vector de�ned as

�(t) = [l1(t); l2(t); : : : ; ln(t)]T; (5)

lk(t) = Lk(z; a) step(t): (6)

Let �hk(N ) denote the (h; k)-element of the matrix [
∑N

t=1 �(t)�(t)T]: it is given by �hk(N )=
∑N

t=1 lh(t)lk(t).
For a= 0 the lk(t)’s are just delayed steps. In Figs. 1 and 2, the lk(t)’s are illustrated for some other values
of a. Notice that the time scales are diLerent in the two plots.
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Fig. 1. The l2(t) (continuous), l6(t) (dashed), l12(t) (dashed–
dotted) for a = 0:3.

Fig. 2. The l2(t) (continuous), l6(t) (dashed), l12(t) (dashed–
dotted) for a = 0:8.
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Let us de�ne the vectors P�(t) and Pg as

P�(t) = [ln+1(t); ln+2(t); : : : ]T; Pg= [gn+1; gn+2; : : : ]T:

The vector Pg is referred to as the tail of T (z). We can then write

�̂(N ) =

[
N∑
t=1

�(t)�(t)T
]−1 N∑

t=1

�(t)[�(t)T P�(t)T]

[
�0

Pg

]

=

[
N∑
t=1

�(t)�(t)T
]−1 [ N∑

t=1

�(t)�(t)T
]
�0 +

[
N∑
t=1

�(t)�(t)T
]−1 [ N∑

t=1

�(t) P�(t)T
]
Pg

from which we obtain

D(N ) =

[
N∑
t=1

�(t)�(t)T
]−1 [ N∑

t=1

�(t) P�(t)T
]
Pg: (7)

Therefore, D(N ) depends only on the tail Pg.

3.1. The case of an FIR model

Let us start by considering the FIR case (i.e., a= 0). In this case we have
N∑
t=1

lh(t)lk(t)|a=0 =

{
N − max(h; k) + 1; max(h; k)6N;

0; max(h; k)¿N
(8)

from which we can easily calculate the right-hand side of Eq. (7). We obtain

D(N )|a=0 =

N∑
k=n+1

(
1 − k

N + 1

)
gk

1 − n
N + 1




0

...

0

1



: (9)

We observe from expressions (9) that the “shape” of the parameter bias error is independent of the plant.
The �rst n − 1 coe1cients are unbiased: the error is entirely con�ned to the last coe1cient. The tail of
the Laguerre expansion of T (z) (i.e. Pg) enters the error vector only through the proportionality coe1cient∑N

k=n+1 (1 − k=(N + 1))gk .

3.2. The case of general Laguerre models

Let us now consider the general case (i.e. a �= 0). We will show that the bias presents similar features
to the case a = 0. On the other hand, in order to make the problem tractable, we need to introduce some
approximation.
To start with, we have the following result on the matrix [

∑N
t=1 �(t)�(t)T].

Proposition 1. De9ne the matrix PA(N ) with elements Pahk(N ); h; k = 1; : : : ; n as

Pakk(N ) =
K2

(1 − a)2

(
N +

1
1 − a

− k
1 + a
1 − a

)
− K2

(1 − a)2
a

1 − a2
;
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Fig. 3. Some �hk (N ) (continuous) compared to the corresponding
Pahk (N ) (dash–dotted) for a = 0:3.

Fig. 4. Some �hk (N ) (continuous) compared to the corresponding
Pahk (N ) (dash–dotted) for a = 0:8.

Pahk(N ) =
K2

(1 − a)2

(
N +

1
1 − a

− m
1 + a
1 − a

)
; m=max(h; k); h �= k:

Then the following holds:

lim
N→∞

(
PA(N ) −

[
N∑
t=1

�(t)�(t)T
])

= 0: (10)

Proof. See the appendix.

The result in Proposition 1 says that the matrix [
∑N

t=1 �(t)�(t)T] is approximated by PA(N ) as N goes to
in�nity. Let us give a graphical illustration. In Figs. 3 and 4, the elements �hk(N ) of the matrix [

∑N
t=1 �(t)

�(t)T]—corresponding to the lk(t)’s displayed in Figs. 1 and 2—are compared to the corresponding elements
Pahk(N ). It is apparent, from a direct comparison of Figs. 1 and 2 with Figs. 3 and 4, respectively, that each
couple of elements �hk(N ) and Pahk(N ) becomes indistinguishable as long as N is greater than the maximum
settling time of the corresponding lh(t) and lk(t). In general, it is reasonable to assume that PA(N ) is a good
approximation of [

∑N
t=1 �(t)�(t)T] as long as N is greater than the settling time of ln(t). Moreover, under

this assumption, we are allowed to consider PA(N ) as nonnegative de�nite (notice that [
∑N

t=1 �(t)�(t)T] is
nonnegative de�nite by construction, whereas PA(N ) is not so for small N ).
Let us now construct a suitable approximation for the vector [

∑N
t=1 �(t) P�(t)T] Pg which also appears in (7).

It is based on the following result.

Proposition 2. For any given positive integer d de9ne the vector P�d(t) as

P�d(t) = [ln+1(t); : : : ; ln+d(t)]T:

De9ne the matrix PBd(N ) with elements Pbhk(N ); h= 1; : : : ; n; k = 1; : : : ; d as

Pbhk(N ) =
K2

(1 − a)2

(
N +

1
1 − a

− (k + n)
1 + a
1 − a

)
:
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Then the following holds:

lim
N→∞

(
PBd(N ) −

[
N∑
t=1

�(t) P�d(t)T
])

= 0: (11)

Proof. The proof follows directly form the proof of Proposition 1.

In the above proposition, we have introduced the matrix [
∑N

t=1 �(t) P�d(t)T] and its asymptotic approxima-
tion PBd(N ). Similarly to the case of Proposition 1, we have established that PBd(N ) is a good approximation
of [

∑N
t=1 �(t) P�d(t)T] as long as N is greater than the settling time of ln+d(t).

At this point, using the results in Propositions 1 and 2, we can construct the asymptotic approximation (as
N → ∞) of the bias error obtained when the system under identi�cation is a truncated version of the system
T (z) (i.e. a system formed by the expansion of T (z) up to the element n+d). Indeed, if the true system T (z)
were replaced by a truncation (up to element n + d) of the Laguerre expansion of T (z), then the quantity
[
∑N

t=1 �(t) P�(t)T] in the bias expression (7) would be replaced by [
∑N

t=1 �(t) P�d(t)T], for which Proposition
2 delivers a convergent approximate. Let us denote Dd(N ) the bias error in the identi�cation of the truncated
system. Clearly, the vector Dd(N ) is given by

Dd(N ) =

[
N∑
t=1

�(t)�(t)T
]−1 [ N∑

t=1

�(t) P�d(t)T
]
Pgd; (12)

where Pgd=[gn+1; : : : ; gn+d]T. An asymptotic (in N ) approximation of Dd(N ) is then given by the vector PDd(N )
de�ned as

PDd(N ) = PA(N )−1 PBd(N ) Pgd: (13)

Moreover, we have

Dd(N ) = PDd(N ) + o(1=N ) as N → ∞: (14)

This relation can easily be checked using Eqs. (10) and (11) with some algebraic manipulations involving
the de�nitions of PA(N ) and PBd(N ).
An explicit expression of PDd(N ) is given in the following proposition.

Proposition 3. Assume that PA(N ) is non-singular, then the vector PDd(N ) is given by

PDd(N ) =



(
N +

1
1 − a

)
n+d∑

k=n+1
gk − 1 + a

1 − a

n+d∑
k=n+1

kgk

1 − a2n

1 + a
N +

1
1 + a

− n
1 − a2n

1 − a


 Px(a); (15)

where

Px(a) =




(−a)n−1

...

(−a)1

(−a)0



+ (−a)n




(−a)0

(−a)1

...

(−a)n−1



: (16)

Proof. See the appendix.
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Notice that, even if PA(N ) becomes singular as N → ∞, the expression PDd(N ) remains well de�ned and
�nite.
We are now in the position to �nd an asymptotic approximation for the vector D(N ), de�ned in (7),

by letting d go to in�nity in Eq. (13). However, in order to assure that (13) is still an asymptotic (in N )
approximation of (12) as d → ∞, we need the uniform convergence of limN→∞[

∑N
t=1 �(t) P�d(t)T] Pgd. In the

following proposition we prove uniform convergence under the assumption that
∑d

k=n+1 k|gk | converges as
d → ∞. This is a standard assumption; notice that all stable rational transfer functions have this property—see
e.g. [5].

Proposition 4. Assume that
∑∞

k=n+1 k|gk | is 9nite; then the following holds:

lim
N→∞

(
PBd(N ) Pgd −

[
N∑
t=1

�(t) P�d(t)T
]
Pgd

)
= 0 uniformly in d: (17)

Proof. See the appendix.

Now, let us de�ne

PD(N ) = lim
d→∞

PDd(N ): (18)

Then, from the result in Proposition 4, we �nally obtain

lim
N→∞

(D(N ) − PD(N )) = 0: (19)

The asymptotic approximation, introduced in (19), can be considered valid as long as N is larger than the
setting time of the step response ys(t). This can be easily deduced from the proof of Proposition 4 considering
that ys(t) =

∑∞
k=1 gklk(t). Moreover, if we substitute the vector PBd(N ) Pgd in (13) by its limit expression (see

Eq. (A.14) in the proof of Proposition 3), then similarly to (14) we obtain

D(N ) = PD(N ) + o(1=N ) as N → ∞: (20)

Collecting all previous results, we have now proved the main result of this paper.

Proposition 5. Assume that
∑∞

k=n+1 k|gk | is 9nite and de9ne PD(N ) as

PD(N ) =



(
N +

1
1 − a

) ∞∑
k=n+1

gk − 1 + a
1 − a

∞∑
k=n+1

kgk

1 − a2n

1 + a
N +

1
1 + a

− n
1 − a2n

1 − a


 Px(a); (21)

where Px(a) is de9ned in (16). Let D(N ) be the parameter bias error of the least-squares identi9cation
problem de9ned in (7). Then, the following holds:

D(N ) = PD(N ) + o(1=N ) as N → ∞: (22)

Similarly to what we obtained in the FIR case, the shape of the (asymptotic) parameter bias vectors (21)
and (25) is independent of the plant. In the present case of a general Laguerre expansion, we observe from
the de�nition of Px(a) that the bias error turns out to be smaller for the �rst coe1cients and it then increases
as k increases to n. The plant T (z) enters the vector only through some proportionality factor.
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4. A particular case: known static gain

In this section, we consider the particular case in which the static gain of T (z) is known. For exam-
ple it could be known from speci�c physical reasons or it could be the case that T (z) is a closed-loop
transfer function of a feedback loop that includes a controller with a �xed integral action in such a way
that static gain is unitary. The user can include this information and constrain the identi�ed system to
have the same static gain of T (z). Interestingly enough, it will be shown that, by including this con-
straint in the identi�cation, one obtains the same asymptotic bias as in the unconstrained case but with faster
convergence.
We denote �̂c(N ) the minimizer of J (�; N ) subject to the constraint that the model M (�̂c(N )) must have

the same static gain as the plant, i.e. M (1; �̂c(N )) = T (1). Without loss of generality, we assume that the
static gain of T (z) is 1. Since each element Lk(z; a) of the Laguerre expansion has gain K=(1− a), the vector
�̂c(N ) is de�ned as

�̂c(N ) = argmin
�

J (�; N ) subject to V T�=
1 − a
K

in which V = [1 1 : : : 1]T. This is a quadratic problem with a linear constraint therefore the solution can be
easily obtained. The parameter bias error in the constrained case is denoted as

Dc(N ) = �̂c(N ) − �0: (23)

In the FIR case, the exact explicit solution can be calculated as usual by using property (8). We obtain the
following expression for Dc(N ):

Dc(N )|a=0 =

( ∞∑
k=n+1

gk

)



0

...

0

1



: (24)

Notice that it does not depend on N .
In the general case, an asymptotic expression for Dc(N ) can also be obtained. The result is stated

in the proposition below. The proof of the proposition is omitted since it is similar to the proof of
Proposition 5.

Proposition 6. Assume that
∑∞

k=n+1 k|gk | is 9nite and de9ne PDc as

PDc =

(
1 + a
1 − a2n

∞∑
k=n+1

gk

)
Px(a); (25)

where Px(a) is de9ned in (16). Let Dc(N ) be the parameter bias error of the constrained least-squares
identi9cation problem de9ned in (23). Then the following holds:

Dc(N ) = PDc + o(1=N ) as N → ∞: (26)

The following comments are in order.
The bias in the constrained case is the limit (as N → ∞) of the bias in the unconstrained case. This is

true both for the exact FIR case (compare (9) and (24)) and for the general case (compare (21) and (25)).
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Obviously, we have that

PD(N ) = PDc + o(1) as N → ∞: (27)

Moreover, if we substitute (27) in (22), we obtain

D(N ) = PDc + o(1) as N → ∞: (28)

Therefore, by comparing (26) and (28), we conclude that the bias, in the constrained case, converges faster
than the bias in the unconstrained case.

5. Explicit bounds on the parameter bias

If prior information on the tail of T (z) is available, the results contained in the previous section can be
used to derive bounds on the bias of the estimated coe1cients.
A typical a priori assumption, for �nite-dimensional linear systems, is that there exist  and ! such that

|gk |¡ !k; k¿ n+ 1: (29)

Under this assumption the worst-case bias error can be calculated.
In particular, on the basis of Eqs. (21) and (25), we have the following results.

Proposition 7. Let Pk be

Pk =
⌊
1 − a
1 + a

N +
1

1 − a

⌋
;

where �x� denotes the greatest integer smaller than x. Then, for the unconstrained identi9cation, the
worst-case (asymptotic) bias over all possible {gk ; k¿ n+1} satisfying (29) is given by PD(N )=± PDwc(N ),
where

PDwc(N ) =

(
N +

1
1 − a

)
c1 −

(
1 + a
1 − a

)
c2

1 − a2n

1 + a
N +

1
1 + a

− n
1 − a2n

1 − a

Px(a) (30)

in which c1 and c2 are given by

c1 =




 
!n+1

1 − !
− 2 

! Pk+1

1 − !
if n¡ Pk;

− 
!n+1

1 − !
if n¿ Pk;

c2 =




 
(n+ 1)!n+1 − n!n+2

(1 − !)2
− 2 

( Pk + 1)! Pk+1 − Pk! Pk+2

(1 − !)2
if n¡ Pk;

− 
(n+ 1)!n+1 − n!n+2

(1 − !)2
if n¿ Pk

and Px(a) is de9ned in (16).
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Proof. See the appendix.

Proposition 8. The worst-case (asymptotic) bias over all possible {gk ; k¿ n + 1} satisfying (29), for the
case of constrained identi9cation, is given by PDc = ± PDwc

c , where

PDwc
c =  

1 + a
1 − a2n

!n+1

1 − !
Px(a) (31)

and Px(a) is de9ned in (16).

Proof. The result is obtained by substituting  !k to gk in (25).

The worst-case bounds are then obtained by adding and subtracting the worst-case bias to the estimated
parameter vector �̂(N ) (or �̂c(N )).

It is well known that worst-case bounds can be very conservative. This is not a weakness of the analysis
contained in this paper but a feature of the worst-case approach. Expressions (21) and (25) can be used
to derive bounds under other approaches to uncertainty estimation (see e.g. [2]). In addition, if the a priori
bound (29) is known to hold for all k ≥ 1, then such information can also be used to constrain the param-
eter estimation problem: see e.g. [6] for a discussion of the role of prior knowledge versus data in system
identi�cation.

6. Simulation example

In this section, we illustrate the results presented in this paper, Let T (z) be

T (z) =
0:4(z − 0:5)2

(z − 0:6)(z2 − 1:4z + 0:65)
:

The coe1cients of its Laguerre expansion with a = 0:7 are displayed in Fig. 5. The step response is in
Fig. 6. The model M (z; �) is chosen to be

M (�) =
n=6∑
k=1

�kLk(a):

The coe1cients of M (�) are estimated using noise-free step response data.
In Fig. 7 the elements of the bias error D(N ) as a function of N are compared with the elements of the

vector PD(N ) de�ned in (21). In Fig. 8 the elements of the bias error for the constrained identi�cation Dc(N )
are compared with the elements of the vector PDc de�ned in (25). Notice, by comparing the two �gures, the
faster convergence of the bias in the constrained case.
In the following, we consider the unconstrained identi�cation with N = 80.
The parameter �̂(80) is given by

�̂(80) = [0:611098 − 0:123120 − 0:210881 0:219969 − 0:082229 0:004293]:

As for the diLerence between the true and estimated parameters, we have

�0 = [0:614731 − 0:134486 − 0:190322 0:187573 − 0:033830 − 0:066331];

D(80) = [ − 0:003633 0:011366 − 0:020559 0:032396 − 0:048399 0:070624]:
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Fig. 5. The coe1cients of the Laguerre expansion of T (z). Fig. 6. The step response of T (z).
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Fig. 7. Evolution with N (number of data) of the 6 elements
of D(N ) (continuous) and the 6 elements of PD(N ) (dashed).

Fig. 8. Evolution with N (number of data) of the 6 elements
of Dc(N ) (continuous) and the 6 elements of PDc (dashed).

The true and estimated parameters are compared in Figs. 9 and 10. The diLerence between the obtained
D(80) and the theoretical PD(80)—given by (21)—is of order 10−10. For completeness, we illustrate also the
construction of the worst-case bounds. Let the a priori bounds on the tail be (see Fig. 11)

|gk |¡ 0:35 × 0:8k ; k¿ 7: (32)

Then, the worst-case bounds obtained from (30) are displayed in Fig. 12. It can be seen that such bounds
are quite conservative with respect to the actual error. Nevertheless, they represent exactly the worst-case bias
over all possible {gk ; k¿ 7} satisfying (32).
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Fig. 9. The true coe1cients �0(•) and the estimated coe1-
cients �̂(80)(◦).

Fig. 10. The elements of the parameter bias-error D(80).
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Fig. 11. The coe1cients of the tail of the Laguerre expansion
of T (z)(•) and the a priori bounds.

Fig. 12. The true coe1cients �0(•), the estimated coe1cients
�̂(80)(◦) and the worst-case bounds.

7. Conclusions

In this paper, we have derived explicit expressions for the parameter bias in the identi�cation of Laguerre
coe1cients from step response data. It has been shown that these expressions can be used to calculate bounds
for this error. The object of further work will be the extension of the results of this paper to the case of
square-wave signals.

Appendix A. Proofs

The following lemma will be used in the proof of Proposition 1.



ARTICLE IN PRESS
A. Lecchini, M. Gevers / Systems & Control Letters ( ) – 13

Lemma A.1. Consider lk(t) de9ned in (6) and de9ne Q(z; a) as

Q(z; a) =
1 − az
z − a

;

then the following expression for lk(t) holds:

lk(t) = l1(t) −
k−1∑
h=1

qh(t); (A.1)

qh(t) = Q(z; a)h−1
(
K

1 − a2

1 − a
z

(z − a)2
&(t)

)
: (A.2)

Proof. From the de�nition of Lk(z; a) we have that lk(t) satis�es the following recursive relation:

l1(t) =
K

1 − a
(1 − at); (A.3)

lk(t) = Q(z; a)lk−1(t): (A.4)

The impulse response of Q(z; a) is

hQ(0) = −a; hQ(t) = at−1 − at+1; t¿ 1

from which we have

l2(t) =
t∑

m=0

hQ(t − m)l1(m) =
t−1∑
m=0

K
1 − a

(at−m−1 − at−m+1)(1 − am) − K
a

1 − a
(1 − at)

=K
1 − a2

1 − a

(
1 − at

1 − a
− tat−1

)
− K

a
1 − a

(1 − at)

=
K

1 − a
(1 − at) − K

1 − a2

1 − a
tat−1:

Since (z=(z − a)2) &(t) = tat−1, the statement of lemma is easily obtained by applying the recursive formula
(A.3)–(A.4) to the above expression of l2(t).

Proof of Proposition 1. Using Lemma A.1 we can write

N∑
t=1

lh(t)lk(t) =
N∑
t=1

(
l1(t)2 − l1(t)

h−1∑
i=1

qi(t) − l1(t)
k−1∑
i=1

qi(t)

+

(
h−1∑
i=1

qi(t)

)(
k−1∑
i=1

qi(t)

))
: (A.5)

In the following we will �nd the limit expression for each term in (A.5).
As for the �rst term, we have

N∑
t=1

l1(t)2 =
K2

(1 − a)2

N∑
t=1

(1 − at)2 =
K2

(1 − a)2

(
N − 2a

1 − aN

1 − a
+ a2

1 − a2N

1 − a2

)
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from which we obtain

lim
N→∞

(
N∑
t=1

l1(t)2 − K2

(1 − a)2
N

)
=

K2

(1 − a)2

(
a2

1 − a2
− 2a

1 − a

)
: (A.6)

As for the remaining terms, we will make use of the following equations:

l1(t) =
K

1 − a
− z

1 − a
L1(z; a)&(t); (A.7)

qi(t) =
az

1 − a
Li(z; a)&(t) +

z
1 − a

Li+1(z; a)&(t): (A.8)

By using (A.7)–(A.8) and the orthogonality of the Laguerre basis, after some simple calculations we obtain

lim
N→∞

N∑
t=1

l1(t)qi(t) =




K2

(1 − a)2
1 + a
1 − a

− K2

(1 − a)2
a

1 − a2
; i = 1;

K2

(1 − a)2
1 + a
1 − a

; i¿ 1

from which we can derive the limit of the second (and the third) term in (A.5)

lim
N→∞

N∑
t=1

(
l1(t)

h−1∑
i=1

qi(t)

)
= (h − 1)

K2

(1 − a)2
1 + a
1 − a

− K2

(1 − a)2
a

1 − a2
: (A.9)

In a similar way, we can calculate

lim
N→∞

N∑
t=1

qi(t)qi+d(t) =




K2

(1 − a)2
1 + a2

1 − a2
; d= 0;

K2

(1 − a)2
a

1 − a2
; d= 1;

0; d¿ 1

from which we obtain the limit of the last term in (A.5)

lim
N→∞

N∑
t=1

(
h−1∑
i=1

qi(t)
k−1∑
i=1

qi(t)

)
=




K2

(1 − a)2

(
(h − 1)

1 + a2

1 − a2
+ (2h − 4)

a
1 − a2

)
; h= k;

K2

(1 − a)2

(
(l − 1)

1 + a2

1 − a2
+ (2l − 3)

a
1 − a2

)
; l=min(h; k); h�=k:

(A.10)

By summing up the Eqs. (A.6), (A.9) and (A.10), according to Eq. (A.5), the statement of the proposition
is �nally achieved.

Proof of Proposition 3. The proof is obtained by simple veri�cation of Eq. (13). We have to show that

PA(N ) PDd(N ) = PBd(N ) Pgd

where PDd(N ) is given by (15). In the following we sketch the calculations. Let us denote Py the vector
PA(N ) Px(a). Moreover, de�ne

'= N +
1

1 − a
; ( =

1 + a
1 − a

; )=
a

1 − a2
:
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Then, the element Py i is given by

Py i =
K2

(1 − a)2

(
'

n−1∑
k=0

(−a)k − i(
n−1∑

k=n−i

(−a)k − (
n−i−1∑
k=0

(n − k)(−a)k − )(−a)n−i

)

+(−a)n
K2

(1 − a)2

(
'

n−1∑
k=0

(−a)k − i(
i−1∑
k=0

(−a)k − (
n−1∑
k=i

(k + 1)(−a)k − )(−a)i−1

)
:

The sums in the above expression can be made explicit by using

n−1∑
k=0

(−a)k =
1 − (−a)n

1 + a
; (A.11)

n−1∑
k=0

k(−a)k =
n−1∑
k=0

(k + 1)(−a)k −
n−1∑
k=0

(−a)k =
d
da

(
n∑

k=1

(−a)k
)

− 1 − (−a)n

1 + a

=− (n+ 1)(−a)n

1 + a
+

1 − (−a)n+1

(1 + a)2
− 1 − (−a)n

1 + a
: (A.12)

After some calculations one obtains that Py i is independent of i and is given by

Py i =
K2

(1 − a)2

(
1 − a2n

1 + a
N +

1
1 + a

− n
1 − a2n

1 − a

)
: (A.13)

Since the vector PBd(N ) Pgd results to be

PBd(N ) Pgd =

((
N +

1
1 − a

) n+d∑
k=n+1

gk − 1 + a
1 − a

n+d∑
k=n+1

kgk

)



1

1

...

1



; (A.14)

one can easily check that Eq. (13) is satis�ed.

Proof of Proposition 4. Let Fj;d(N ) denote the jth element of vector ([
∑N

t=1 �(t) P�d(t)T] Pgd − PBd(N ) Pgd):

Fj;d(N ) =
d∑

k=1

[(
N∑
t=1

ln+k(t)lj(t)

)
− K2

(1 − a)2

(
N +

1
1 − a

− (k + n)
1 + a
1 − a

)]
gn+k :

We have to show that

∀,¿ 0 ∃ PN : |Fj;d(N )|¡, ∀N ¿ PN ∀d:
Let us assume 1¡j¡n (the cases j = 1 and j = n are similar), by using Lemma A.1 and letting d go to
in�nity we can write

|Fj;d(N )|6
∣∣∣∣∣
(

N∑
t=1

l1(t)lj(t)

)
− K2

(1 − a)2

(
N +

1
1 − a

− j
1 + a
1 − a

)∣∣∣∣∣
∞∑
k=1

|gn+k |
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+

∣∣∣∣∣
(

N∑
t=1

(
n−1∑
i=1

qi(t)

)
lj(t)

)
− K2

(1 − a)2
1 + a
1 − a

(n − j)

∣∣∣∣∣
∞∑
k=1

|gn+k |

+
∞∑
k=1

k∑
i=1

∣∣∣∣∣
(

N∑
t=1

qn−1+i(t)lj(t)

)
− K2

(1 − a)2
1 + a
1 − a

∣∣∣∣∣ |gn+k |:

The three terms in the right-hand side of the above inequality are independent of d. From the results contained
in the proof of Proposition 1 we have the �rst two terms tend to zero as N → ∞. Let us consider the third
term (denoted by PF3

j (N )):

PF3
j (N ) =

∞∑
k=1

k∑
i=1

∣∣∣∣∣
(

N∑
t=1

qn−1+i(t)lj(t)

)
− K2

(1 − a)2
1 + a
1 − a

∣∣∣∣∣ |gn+k |:

Each term |(∑N
t=1 qn−1+i(t)lj(t)) − K2=(1 − a)2((1 + a)=(1 − a))| converges to zero as N → ∞. Moreover,

since qi(t) is bounded uniformly in i

∃M :

∣∣∣∣∣
(

N∑
t=1

qn−1+i(t)lj(t)

)
− K2

(1 − a)2
1 + a
1 − a

∣∣∣∣∣¡M ∀N ∀i:

Therefore, we can write

PF3
j (N )6

Pd∑
k=1

k∑
i=1

∣∣∣∣∣
(

N∑
t=1

qn−1+i(t)lj(t)

)
− K2

(1 − a)2
1 + a
1 − a

∣∣∣∣∣ |gn+k | + |M |
∞∑

k= Pd+1

k|gn+k |

and, with a suitable choice of Pd, the right-hand side of the above inequality can be made arbitrarily small by
choosing N su1ciently large.

Proof of Proposition 7. From Eq. (21) we have that

PD(N ) =

∞∑
k=n+1

(
N +

1
1 − a

− 1 + a
1 − a

k
)
gk

1 − a2n

1 + a
N +

1
1 + a

− n
1 − a2n

1 − a

:

The coe1cients of the gk ’s in the sum are positive for k6 Pk and negative for k ¿ Pk. Therefore, we have
that, under assumption (29), the sequence that maximize the sum is given by

gwck =  !k ; k6 Pk;

gwck = − !k ; k ¿ Pk:

The worst-case bias error is given by

PDwc(N ) =

Pk∑
k=n+1

(
N +

1
1 − a

− 1 + a
1 − a

k
)
 !k −

∞∑
k= Pk+1

(
N +

1
1 − a

− 1 + a
1 − a

k
)
 !k

1 − a2n

1 + a
N +

1
1 + a

− n
1 − a2n

1 − a

:

The calculation of the sums leads to the statement of the proposition.
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