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Abstract. A countable group is C∗-simple if its reduced C∗-algebra is sim-
ple. It is well-known that C∗-simplicity implies that the amenable radical
of the group must be trivial. We show that the converse does not hold by
constructing explicit counter-examples. We additionally prove that every
countable group embeds into a countable group with trivial amenable radical
and that is not C∗-simple.

1. Introduction

If G is a discrete countable group, the reduced C∗-algebra of G is the operator
norm closure of the group algebra C[G] acting by left-regular representation
on the Hilbert space ℓ2(G). We say that G is C∗-simple if its reduced C∗-
algebra has no non-trivial two-sided ideal. This is equivalent to saying that any
unitary representation of G that is weakly contained in the regular representation
λG, is actually weakly equivalent to λG. For a proof of this equivalence and
complements about C∗-simplicity, we refer the reader to [Har07].

The study of the class of C∗-simple groups has been of central interest since
the proof of C∗-simplicity of the free group of rank two 1 [Pow75]. C∗-simplicity
has been extensively generalized to many classes of groups, among other non-
trivial free products [PS79] (see also [AL80, Béd91, HP11]), Gromov-hyperbolic
groups [Har88] and relatively hyperbolic groups [AM07], lattices in semi-simple
connected Lie groups [BCH94], or centerless mapping class groups and outer
automorphism groups of free groups [BH04]. It was proved in [DGO11] that
the methods from [AL80] actually apply to any acylindrically hyperbolic group
(therefore unifying the aforementioned results from [PS79, Har88, AM07, BH04]).
More recently, C∗-simplicity has also been obtained for free Burnside groups of
large odd exponent [OO14] and some Tarski monsters [KK14, BKKO14].

It has been known for a long time that the existence of a non-trivial amenable
normal subgroup is an obstruction to C∗-simplicity [PS79]. Therefore if G is C∗-
simple, then the amenable radical of G, i.e. the largest amenable normal subgroup
of G, must be trivial. It was considered as a major problem to determine whether
triviality of the amenable radical is always equivalent to C∗-simplicity. This
problem is for instance discussed in [BH00] and in the survey [Har07][Question 4].
It has been answered positively for the class of linear groups [Poz08, BKKO14],
and the recent work [BKKO14] gives a positive answer as well for the class of
groups having only countably many amenable subgroups. The main purpose
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1We learned from Pierre de la Harpe that, although the article [Pow75] was published in

1975, the proof of the C∗-simplicity of F2 was actually obtained by Powers in 1968.
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of this paper is to show that triviality of the amenable radical does not imply
C∗-simplicity in general, therefore answering a long-standing open question.

Problems related to C∗-simplicity recently experienced major advances. A
powerful dynamical approach has been initiated in [KK14]. This strategy has
been further elaborated in [BKKO14], providing new proofs of C∗-simplicity of
many already known examples. In the realm of locally compact groups, the first
construction of non-discrete C∗-simple groups has recently been carried out in
[Rau15].

The work [BKKO14] also settled the long-standing open problem of charac-
terizing discrete countable groups with the unique trace property (a definition
of which can be found in [Har07]), as those for which the amenable radical is
trivial. In particular C∗-simplicity implies the unique trace property. Combined
with [BKKO14], our result implies that the converse does not hold, thus filling
the last gap in determining the implications between C∗-simplicity, unique trace
property and triviality of the amenable radical.

One of the main results of [KK14] characterizes C∗-simple groups as those
having a topologically free boundary action. A partial converse has been proved
in [BKKO14], namely that for C∗-simple groups, any boundary action with
amenable stabilizers must be topologically free. This last result is an essential
argument in our first proof of Theorem A below. Our second proof relies on a
striking argument from [HO14], which provides some unitary representation of
the group which cannot weakly contain the left-regular representation.

2. Results

The groups for which we will show the non-simplicity of the reduced C∗-algebra
are defined in terms of an action on a tree. In all the paper, T will denote a
(not necessarily locally finite) tree. We refer to the beginning of Section 3 for
the definitions of the terms appearing in the next theorem.

Theorem A. Let G ≤ Aut(T ) be a countable group, whose action on T is
minimal and of general type. Assume that fixators of half-trees in G are non-
trivial, and that there is some ξ ∈ ∂T such that Gξ is amenable. Then G has
trivial amenable radical and is not C∗-simple.

We emphasize that in the above theorem, we do consider G as a discrete group,
although a group satisfying these assumptions cannot be a discrete subgroup of
the topological group Aut(T ). More generally, unless specified otherwise, in this
paper all groups are viewed as discrete groups. In particular when referring to
amenability, it is always with respect to the discrete topology.

Piecewise prescribed tree automorphisms. Our first illustration of Theo-
rem A comes from the following construction. Given a subgroup G ≤ Aut(T ), we
introduce the group Pw(G) ≤ Aut(T ) of automorphisms of T acting piecewise
like G (see Section 4 for a formal definition). Constructions of the same flavor
had already been considered at the level of the boundary: for Aut(T ) this gives
rise to the notion of almost automorphism of T , and for PSL(2, R) acting on the
hyperbolic disc we obtain the group of piecewise projective homeomorphisms of
the circle, recently considered in [Mon13]. We point out that this construction is
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different in the sense that Pw(G) does act on T , and not only on its boundary.
Note also that this “inner piecewise-ation” process applied to PSL(2, R) would
only give PSL(2, R) itself.

The following result shows that, under weak assumptions on the group G, the
family of groups acting on T piecewise like G provides examples of countable
groups that are not C∗-simple.
Theorem B. Let G ≤ Aut(T ) be a countable group whose action on T is mini-
mal and of general type, and such that fixators of vertices in G are amenable. Let
Γ be a subgroup of Pw(G) that contains G (and therefore has trivial amenable
radical).

(a) If fixators of half-trees in Γ are non-trivial, then Γ is not C∗-simple.
(b) Assume that stabilizers of vertices in G are non-trivial. Then Pw(G) is

not C∗-simple.
Considering for G amalgamated products or HNN-extensions acting on their

Bass-Serre tree, we thereby obtain a multitude of examples of countable non-
C∗-simple groups with trivial amenable radical. We refer to Section 4 for details
and examples.

Groups with prescribed local action. We further illustrate Theorem A in
the following way. Let Ω be a (possibly finite) countable set, and let F ≤ F ′ ≤
Sym(Ω) be permutation groups on Ω. If TΩ is a regular tree of degree the
cardinality of Ω, we denote by G(F, F ′) the subgroup of Aut(TΩ) consisting of
automorphisms whose local action is prescribed by F ′ around all vertices, and
by F around all but finitely many vertices. We refer to Section 5 for a formal
definition.
Theorem C. Let Ω be a countable set, and let F � F ′ ≤ Sym(Ω) be countable
permutation groups such that F acts freely on Ω, F ′ preserves the orbits of F
and has all its point stabilizers amenable. Then the countable group G(F, F ′)
has trivial amenable radical and is not C∗-simple.

When Ω has finite cardinality, the groups G(F, F ′) from Theorem C give con-
crete and uncomplicated examples of non-C∗-simple groups with trivial amenable
radical. They satisfy many additional interesting properties: they are finitely
generated (but not finitely presented), they have the Haagerup property, and
their asymptotic dimension is equal to one (which is the smallest possible as-
ymptotic dimension for infinite countable groups). When F acts transitively on
Ω, the subgroup G(F, F ′)∗ of index two in G(F, F ′) consisting of automorphisms
preserving the natural bipartition of vertices of TΩ, splits as an amalgamated
product A ∗C B, where A ≃ B are infinite locally finite groups. Moreover there
are natural permutation groups F ≤ F ′ such that G(F, F ′)∗ is simple, e.g. F
generated by a cycle of length d and F ′ = Alt(d) for d ≥ 5 odd. For proofs of
these properties and for complements, we refer to [LB16].

When the set Ω is infinite, this construction is extremely flexible. It allows us
to prove the following result.
Theorem D. Every countable group Γ embeds into a countable group G with
trivial amenable radical and that is not C∗-simple. If moreover Γ is finitely
generated or torsion free (or both), then so is G.
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3. General result

Throughout the paper, T will be a simplicial tree that is not assumed to be
locally finite. We call a subtree of T a half-tree if it is one of the two components
obtained when removing an edge in T . If A is a subtree of T and G is a group
acting on T , the stabilizer of A in G is the set of elements of G preserving A
setwise, and the fixator GA of A is the set of elements of G fixing pointwise A.
We say that the action of G on T is minimal if there is no proper non-empty
G-invariant subtree.

Recall that g ∈ Aut(T ) is called hyperbolic if there is a bi-infinite geodesic
line, called the axis of g, on which g acts by translation. When this holds, g
has exactly two fixed points in ∂T . We say that the action of a group G on T
is of general type if there exist two hyperbolic elements in G without common
fixed points in ∂T . We point out that the terminology strongly hyperbolic is
sometimes used, see [Har07]. In this situation, the ping-pong argument applies
and yields non-abelian free subgroups in G [PV91, p. 152]. Classical results
about isometric group actions on trees assert that if the action of G on T is
not of general type, then one of the following happens: G stabilizes a vertex
or an edge, or G has a unique fixed pair or a unique fixed point in ∂T [PV91,
Propositions 1 & 2].

3.1. Construction of a boundary action. Recall that if G is a countable
group, a G-boundary is a compact space X endowed with an action of G by
homeomorphisms, such that every G-orbit in X is dense, and that is strongly
proximal, that is every probability measure on X has a Dirac measure in the
weak-closure of its G-orbit. The aim of this paragraph is to explain how to
construct a G-boundary starting from an action of G on T .

If v is a vertex of T and x ∈ T ∪ ∂T is either a vertex or an end, there
exists a unique geodesic from v to x, that will be denoted [v, x]. If v1, . . . , vn are
neighbours of the vertex v, we denote by U(v; v1, . . . , vn) the set of x ∈ T ∪ ∂T
such that [v, x] contains none of the vertices v1, . . . , vn. Equipped with the
topology generated by all the subsets U(v; v1, . . . , vn), where v ranges over the set
of vertices and n ≥ 0, the set T ∪ ∂T is a compact space (see [MS04, Proposition
4.2]). We are grateful to Pierre-Emmanuel Caprace for pointing out the reference
[MS04] to our attention.

The action of the group Aut(T ) on the tree T extends to an action on T ∪ ∂T
by homeomorphisms. Clearly Aut(T ) preserves the (open) set Tf of vertices
of T of finite degree, so that we also have an action of Aut(T ) on the space
X = (T \ Tf ) ∪ ∂T .
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Proposition 3.1. Let G ≤ Aut(T ) be a countable group, whose action on T is
minimal and of general type. Then X = (T \ Tf ) ∪ ∂T is a G-boundary.

Proof. We let C be a closed non-empty G-invariant subset of X, and we prove
that C = X. Remark that if g ∈ G is hyperbolic, then (gnx) converges to the
attracting fixed point of g for every x different from the repelling fixed point of
g. Combining this observation with the fact that no point of X can be fixed by
all the hyperbolic elements of G (because the action of G is of general type), we
see that C must contain all fixed point of hyperbolic elements of G.

We claim that this implies that C = X. To see this, let us first prove that
every end of T lies in the closure of the set of fixed points of hyperbolic elements
of G. To prove this, it is enough to show that every half-tree intersects the axis
of some hyperbolic element. Argue by contradiction and assume that this is not
true. Then the union of the axes of the hyperbolic elements of G is therefore
contained in a proper subtree of T . But it is classical that the latter is a G-
invariant subtree, so we obtain a contradiction with the minimality of the action
of G on T . Therefore we have proved that C must contain ∂T . The latter being
dense in X [MS04, Proposition 4.4 (vi)], one must have C = X.

The fact that the action of G on X is strongly proximal is obtained similarly,
and we refer to [Oza14, Example 2]. �

3.2. Proof of Theorem A. We now give two different proofs of Theorem A
from the introduction.

Proof 1. The fact that G has no non-trivial amenable normal subgroup is clas-
sical, we repeat the argument for completeness. We actually prove that if N
is a normal subgroup of G not containing non-abelian free subgroups, then N
must be trivial. Since it does not contain non-abelian free subgroups, the group
N must stabilize a vertex or an edge, or must have a unique finite orbit in ∂T .
In the latter case, this finite orbit has cardinality one or two and must be G-
invariant since N is normal in G, which is impossible since the action of G is
of general type. Similarly if N stabilizes an edge without fixing a vertex, then
this edge has to be G-invariant, which contradicts the existence of hyperbolic
elements in G. So the set of vertices of T fixed by N is a non-empty subtree,
and by G-invariance and minimality of the action of G we obtain that it must
be the entire tree T , which exactly means that N is trivial.

We now turn to the proof that G is not C∗-simple. Since the action of G on
T is minimal and of general type, the set X = (T \ Tf ) ∪ ∂T is a G-boundary
by Proposition 3.1. Fixators of half-trees in G are non-trivial by assumption,
so by definition of the topology this implies that the action of G on X is not
topologically free. Moreover there is a point stabilizer Gξ that is assumed to be
amenable, so according to [BKKO14, Proposition 2.6], the group G cannot be
C∗-simple. �

We now give a second and independent proof of Theorem A.

Proof 2. As proved in [HO14], the existence of an amenable subgroup H ≤ G
together with non-trivial elements a, b ∈ G having disjoint support in G/H imply
that G cannot be C∗-simple. Indeed, an easy computation shows that since
a, b have disjoint support in G/H, the element (1 − a)(1 − b) acts trivially by
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convolution on ℓ2(G/H). Since H is amenable, the quasi-regular representation
λG/H must be weakly contained in λG, while the converse is impossible by the
previous observation. So G is not C∗-simple.

We take H = Gξ, so that G/H can be identified with the G-orbit of ξ in ∂T .
Consider an edge e of T , and let T1 and T2 be the two half-trees emanating from
e. The partition ∂T = ∂T1 ⊔ ∂T2 yields a partition of G · ξ into two non-empty
subsets. By assumption fixators of half-trees in G are not reduced to the identity,
so we may plainly find non-trivial elements a ∈ GT1 and b ∈ GT2 , and these have
disjoint support in G · ξ by construction. This proves the statement. �

3.3. Product of trees. The groups G(F, F ′) that will be shown not be C∗-
simple in Section 5 are connected to Burger-Mozes’ finitely presented torsion
free simple groups constructed as lattices in the product of two trees [BM00].
Therefore this naturally raises the question whether these groups are C∗-simple.
The following result, which relies on [BKKO14], shows that this is indeed the
case. We mention that the C∗-simplicity of these groups is also obtained in
[KS16].

Proposition 3.2. Let Γ ≤ Aut(T1) × . . . × Aut(Tn) be a discrete subgroup, such
that every locally finite subgroup of Γ is finite. Then Γ is C∗-simple if and only
if Γ has trivial amenable radical.

Proof. According to Theorem 3.8 in [BKKO14], the equivalence between trivi-
ality of the amenable radical and C∗-simplicity holds for the class of countable
groups having only countably many amenable subgroups, so it enough to show
that Γ has this property. Upon replacing Γ by a finite index subgroup, we may
assume that Γ acts without inversion on each Ti.

We claim that every amenable subgroup H ≤ Γ is virtually free abelian of rank
k, with k ≤ n. In particular the group H is finitely generated, and since the
group Γ is countable, this implies that there are only countably many amenable
subgroups. To prove the claim, we let H be an amenable subgroup of Γ. Since
H does not contain non-abelian free subgroups, the projection of the action of
H on each Ti must fix a vertex or a point in ∂Ti. If r ≥ 0 is the number of trees
for which the first situation does not happen, then we have a natural morphism
from H to Zr, whose kernel is denoted by K. Every finitely generated subgroup
of K must have a fixed point in each Ti. By assumption Γ must act properly
on the product of trees, so it follows that K is locally finite, and therefore finite
thanks to the assumption on Γ. So H is finite-by-(free abelian of finite rank),
and the proof of the claim is complete. �

4. Piecewise prescribed tree automorphisms

In this paragraph we consider a “piecewise-ation” process for subgroups of
Aut(T ), and show how this automatically provides examples of countable groups
that are not C∗-simple.

Let A be a finite subtree of T , and let v1, . . . , vn be the vertices of A having at
least one neighbour that is not in A. For i = 1, . . . , n, we denote by Ti the subtree
of T made of vertices whose projection on A is the vertex vi. By construction
the subtrees Ti are disjoint, and every vertex of T that is not in A lies in some
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Ti. With a slight abuse of notation, we will write T \A = ⊔n
i=1Ti, although every

vi lies in both Ti and A.

Definition 4.1. For a subgroup G ≤ Aut(T ), we denote by Pw(G) the set of
automorphisms of T acting piecewise like G, i.e. the set of γ ∈ Aut(T ) so that
there exists a finite subtree A of T such that, if T \ A = ⊔n

i=1Ti, then for every i
there exists gi ∈ G such that γ and gi coincide on Ti.

We leave to the reader the verification that Pw(G) is indeed a subgroup of
Aut(T ), which is countable as soon as G and T are countable. When the tree
T is locally finite, Pw(G) coincides with the intersection in Homeo(∂T ) of the
topological full group associated to G y ∂T and the group Aut(T ).

Recall that if P is a property of groups, we say that a group is locally P if
every finitely generated subgroup has P.

Lemma 4.2. Let P be a property of groups stable by taking subgroups, and
G ≤ Aut(T ) a subgroup such that fixators of edges in G have P. Then for every
ξ ∈ ∂T , the stabilizer of ξ in G is (locally P)-by-Z or locally P.

Proof. Let (v0, v1, . . .) be a geodesic ray representing the end ξ. The group Gξ

admits a normal subgroup G0
ξ consisting of elements g ∈ G fixing an infinite

subray (vn, vn+1, . . .), where n ≥ 0 depends on g. Moreover the quotient of
Gξ by G0

ξ is either infinite cyclic or trivial, according to whether there exists a
hyperbolic isometry in G having ξ as a fixed point. Therefore it is enough to
show that every finitely generated subgroup of G0

ξ has P. Now for such a finitely
generated subgroup K, there is an N ≥ 1 such that the entire K fixes the subray
(vN , vN+1, . . .). In particular K lies inside the fixator of an edge in G. The latter
has P by assumption and P goes to subgroups, so the proof is complete. �

Lemma 4.3. Let P be a property of groups stable by taking subgroups, quotients
and extensions. Let G be a group generated by a family of normal subgroups
(Ni)i∈I together with a subgroup H. If all the Ni and H have P, then G is
locally P.

Proof. Observe that a subgroup K generated by H and some normal subgroup
N ▹ G with P must be an extension of N by H/(H ∩ N). These have P by
assumption, so K has P as well.

Now every finitely generated subgroup of G lies in some subgroup of the form
Ni1 . . . Nik

H because all the Ni are normal. An easy induction shows that ev-
ery Ni1 . . . Nik

H has P thanks to the previous observation, so the statement is
proved. �

Assume that P is a property of groups with the following properties:
• P is stable by taking subgroups, quotients and extensions;
• a group has P if and only if all its finitely generated subgroups have P

(i.e. P = locally P);
• every group that is (locally finite)-by-P has P.

Examples of such properties are amenability, elementary amenability or being
locally finite.
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Proposition 4.4. Let G ≤ Aut(T ) such that fixators of vertices in G have P.
Then fixators of vertices in Pw(G) also have P.

In particular fixators of ends in Pw(G) are P-by-Z or P.

Proof. For every vertex v and every integer n ≥ 0, let Kn(v) be the set of elements
γ ∈ Pw(G)v such that there exists a finite subtree A inside the ball of radius
n around v, such that γ coincides with an element of G on each component of
T \A. It is not hard to check that, for a fixed vertex v, each Kn(v) is a subgroup,
and the sequence (Kn(v)) is increasing and ascends to Pw(G)v.

We fix some vertex v0, and we prove that Pw(G)v0 has P. Since P is a local
property, by the previous observation it is enough to prove that each Kn(v0) has
P. Let us prove this fact by induction. By definition K0(v0) is equal to the
stabilizer of v0 in G. The latter has P by assumption, so the result holds for
n = 0.

Now we assume that n ≥ 1 is so that Kn−1(v) has P for every vertex v,
and we prove that Kn(v0) has P. We denote by (vi)i∈I the set of neighbours
of v0, and by Ti the unique half-tree containing v0 but not vi. For i ∈ I, we
let Fn(vi) = Pw(G)Ti ∩ Kn(vi): this is the set of automorphisms γ fixing the
half-tree Ti and such that there exists a finite subtree A inside the ball of radius
n around vi, such that γ coincides with an element of G on each component of
T \ A.

Let us denote by π : Pw(G)v0 → Sym(I) the morphism coming from the
action of the group Pw(G)v0 on the set of neighbours of v0. The kernel of π is
the set of elements of Pw(G) fixing the 1-ball around the vertex v0. If we let
Nn(v0) = Kn(v0) ∩ ker π, then we easily see that Nn(v0) is generated by all the
subgroups Fn−1(vi) together with the subgroup GB(v0,1) of G fixing the 1-ball
around v0. By the induction hypothesis, every Kn−1(vi) has P, so a fortiori
every Fn−1(vi) has P. Moreover GB(v0,1) also has P (as a subgroup of Gv0), and
every Fn−1(vi) is normal in Nn(v0). Therefore it follows from Lemma 4.3 that
the subgroup Nn(v0) is locally P, and hence is P.

Moreover it readily follows from the definition of the group Pw(G) that the
image of Pw(G)v0 in Sym(I) lies inside the subgroup Sym0(I)π(Gv0) of Sym(I),
where Sym0(I) is the group of finitary permutations of I. The group Gv0 has
P, so its image π(Gv0) also has P. By assumption an extension of a locally
finite group by a group with P remains P, so it follows that Sym0(I)π(Gv0)
(and therefore π(Kn(v0)) has P.

So we have proved that the group Kn(v0) is an extension of groups with P. By
assumption P is stable under extension, so Kn(v0) must have P. This finishes
the induction step and terminates the proof of the first statement.

To obtain the second statement, remark that fixators of edges in Pw(G) must
also have P, and apply Lemma 4.2. �

In particular when applying Proposition 4.4 with P equals amenability, we
obtain the following result.

Corollary 4.5. Let G ≤ Aut(T ) be a subgroup such that fixators of vertices in G
are amenable. Then for every ξ ∈ ∂T , the stabilizer of ξ in Pw(G) is amenable.

We now prove Theorem B from the introduction.



C∗-SIMPLICITY AND THE AMENABLE RADICAL 9

Proof of Theorem B. (a). Let Γ ≤ Pw(G) containing G and having non-trivial
fixators of half-trees. It is clear that the action of Γ on T is minimal and of
general type because it is already the case for G and Γ contains G.

Since fixators of vertices in G are amenable, by Corollary 4.5 we obtain that
stabilizers of ends in Pw(G) are amenable, so a fortiori the same is true in Γ.
Moreover fixators of half-trees in Γ are non-trivial by assumption, so Theorem
A gives the conclusion.

(b). Remark that if the action of a group on T is minimal and of general type,
the non-triviality of the fixator of one half-tree is equivalent to the non-triviality
of all fixators of half-trees. By combining this observation with statement (a),
we see that it is enough to exhibit some non-trivial element in Pw(G) fixing a
half-tree.

Since stabilizers of vertices in G are non-trivial, we may find a vertex v of
degree at least three, two different edges e1 and e2 around v and g ∈ Gv such
that g(e1) = e2. Denote by T1 (resp. T2) the half-tree emanating from e1 (resp.
e2) and not containing v, so that T1 and T2 are disjoint and g(T1) = T2. Now
consider γ acting like g on T1, like g−1 on T2 and being the identity elsewhere. By
construction the element γ is non-trivial, γ fixes a half-tree because the degree
of v is at least three, and γ clearly belongs to Pw(G). This terminates the
proof. �

We now explain how Theorem B allows to construct a multitude of groups
with trivial amenable radical that are not C∗-simple. First start with:

• an amalgamated product G = A∗CB, where A, B are countable amenable
groups, C is a proper subgroup of both A and B that is not of index two
in both A and B; or

• an HNN-extension G = HNN(H, K, L, φ), where H is a countable amenable
group, K, L are proper subgroups, and φ : K → L is an isomorphism;

and consider the action of G on its Bass-Serre tree T . This action is minimal and
of general type, and fixators of vertices are amenable. Therefore if we denote by
Ĝ the image of G → Aut(T ), Theorem B shows that Pw(Ĝ) has trivial amenable
radical and is not C∗-simple. Note that the kernel of G → Ĝ can be explicitly
computed (see for instance [HP11, §5.1 and 5.2]).

For example one may take for A, B two finite groups of cardinality p and q
and C = 1, with (p, q) ̸= (2, 2). In this situation G = A ∗ B acts on a (p, q)-
biregular tree. For (p, q) = (2, 3), the group G is isomorphic to PSL(2, Z), and
we obtain that the group of automorphisms of the (2, 3)-biregular tree which
are piecewise PSL(2, Z) is not C∗-simple. Interestingly, one may check that this
group is isomorphic to G(F, F ′) with F = Alt(3) and F ′ = Sym(3) (see Section
5 for the definition of these groups).

The case of HNN-extensions includes for example the Baumslag-Solitar group
BS(m, n) =

⟨
t, x | txmt−1 = xn

⟩
with |n| > |m| ≥ 2, whose Bass-Serre tree T is

regular of degree |m| + |n|. While BS(m, n) is known to be C∗-simple [HP11],
Theorem B shows that the group Pw(BS(m, n)) is not C∗-simple. Note that the
recent work [Rau15] shows that some Schlichting completion of BS(m, n), which
coincides with the closure of BS(m, n) in Aut(T ), is C∗-simple.
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5. Groups with prescribed local action

Let Ω be a set (with no further assumption) of cardinality at least three, and
TΩ a regular tree of degree the cardinality of Ω. We fix a coloring of the edges
c : E(TΩ) → Ω such that for every vertex v, the restriction of c to the set of
edges containing v induces a bijection with Ω. For every g ∈ Aut(TΩ) and every
vertex v, the action of g around v gives rise to a permutation σ(g, v) ∈ Sym(Ω)
after identification of the edges around v and around g(v) with Ω.

Given a permutation group F ≤ Sym(Ω), we let U(F ) ≤ Aut(TΩ) be the
subgroup consisting of elements g such that σ(g, v) ∈ F for all vertices v. It is
not hard to check that the action of the group U(F ) on TΩ is always transitive
on vertices and of general type.

When Ω is finite, the groups U(F ) are important closed subgroups of Aut(TΩ),
and play an essential role in the main construction of [BM00]. The study of these
groups in the setting of a non-locally finite tree has been initiated in [Smi14].

Now given a second permutation group F ′ ≤ Sym(Ω) containing F , we define
G(F, F ′) ≤ Aut(TΩ) as the set of automorphisms g such that σ(g, v) ∈ F ′ for all
v, and σ(g, v) ∈ F for all but finitely many v. Clearly G(F, F ′) contains U(F ),
and it is a simple verification that G(F, F ′) is always a group.

Remark 5.1. When Ω is a finite set, it readily follows from the definition that
the group Pw(U(F )) coincides with G(F, Sym(Ω)). When Ω is infinite, we always
have Pw(U(F )) ≤ G(F, Sym(Ω)), but this inclusion is strict in general, so that
the groups investigated in this section are not covered by Section 4.

5.1. Proof of Theorem C. The aim of this paragraph is to show that, under
mild assumptions on the permutation groups F, F ′, the group G(F, F ′) is not
C∗-simple.

Lemma 5.2. Assume that the permutation group F acts freely on Ω. Then
fixators of edges in U(F ) are trivial.

Proof. Let e be an edge of TΩ and let a ∈ Ω be its color. Assume that g ∈ U(F )
fixes e. If v is one of the two vertices of e, then the permutation σ(g, v) fixes a
because g fixes the edge e, and σ(g, v) ∈ F because g ∈ U(F ). By assumption F
acts freely on Ω, so we obtain that σ(g, v) is trivial. Therefore g fixes the 1-ball
around the edge e, and by repeating the argument we immediately obtain that
g must be trivial. �

For a subgroup G ≤ Aut(TΩ), we will denote by G∗ the subgroup of G of index
at most two preserving the natural bipartition of vertices of TΩ.

Lemma 5.3. Assume that the permutation group F is torsion free. Then the
group U(F )∗ is torsion free.

Proof. Any element g ∈ U(F )∗ is either hyperbolic or fixes a vertex. In the
former case g is clearly of infinite order, so we may assume that there exists a
vertex v such that g(v) = v. Assume that gn = 1 for some n ≥ 1. Since g fixes
v, one has σ(g, v)n = σ(gn, v) = 1, and therefore σ(g, v) = 1 since F is torsion
free. An easy induction on the distance between a vertex w and v shows that
σ(g, w) = 1 for every vertex w, and we deduce that g must be trivial. �
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Under the assumption that F acts freely on Ω, the following result relates the
amenability of fixators of half-trees in G(F, F ′) to the amenability of point sta-
bilizers F ′

a in F ′, a ∈ Ω. We emphasize that, for fixators of half-trees in G(F, F ′)
to the amenable, the permutation group F ′ (and a fortiori vertex stabilizers in
G(F, F ′)) need not be amenable (note the difference with Proposition 4.4). This
will be a crucial point in the proof of Theorem D.

Proposition 5.4. Let Ω be a set, and F ≤ F ′ ≤ Sym(Ω) permutation groups
such that F acts freely on Ω and F ′ preserves the orbits of F . Then fixators of
half-trees in G(F, F ′) are amenable if and only if F ′

a is amenable for every a ∈ Ω.

Proof. We assume that F ′
a is amenable for every a ∈ Ω, and we prove that

fixators of half-trees in G(F, F ′) are amenable.
Given a half-tree T in TΩ, we denote by eT the edge defining T , and by vT

the vertex of eT that does not belong to T . For every n ≥ 0, we let Kn,T be the
set of elements g ∈ G(F, F ′) fixing T and such that σ(g, w) ∈ F for every vertex
w at distance at least n from vT . For every b ∈ Ω, we denote by Tb the half-tree
containing vT and defined by the edge around vT having color b.

Let us denote by a the color of the edge eT . The action of the group Kn+1,T

around the vertex vT yields a morphism from Kn+1,T to F ′
a, and one may check

that this morphism is onto thanks to the assumption that F ′ preserves the orbits
of F (see [LB16, Lemma 3.4]). Moreover the kernel of this morphism is the fixator
of the 1-ball around vT in Kn+1,T , so that we have a short exact sequence

(1) 1 →
⊕
b̸=a

Kn,Tb
→ Kn+1,T → F ′

a → 1

for every n ≥ 0.
For a fixed half-tree T , the sequence (Kn,T ) is increasing and ascends to

G(F, F ′)T . So to prove that G(F, F ′)T is amenable, it is enough to prove that
each Kn,T is amenable. We shall prove by induction on n ≥ 0 that Kn,T is
amenable for every half-tree T .

Assume that n = 0 and let T be a half-tree in TΩ. By definition the group
K0,T lies inside U(F ) and fixes an edge. Since F acts freely on Ω, according to
Lemma 5.2 this implies that K0,T is trivial. So the result holds for n = 0.

Now assume that n ≥ 0 is such that Kn,T is amenable for every half-tree T .
We let T be a half-tree and we show that Kn+1,T is amenable. Denote by a the
color of eT . Combining the short exact sequence (1) with the assumption on
n, we see that the group Kn+1,T is an extension of an amenable group by the
group F ′

a. By assumption all point stabilizers in F ′ are amenable, so it follows
that Kn+1,T is an extension of amenable groups, and therefore is amenable. This
terminates the proof of one implication.

The converse implication is clear because point stabilizers in F ′ embed in every
fixator of half-tree. �

Corollary 5.5. Let Ω be a set, and F ≤ F ′ ≤ Sym(Ω) permutation groups such
that F acts freely on Ω and F ′ preserves the orbits of F . Assume that F ′

a is
amenable for every a ∈ Ω. Then for every ξ ∈ ∂TΩ, the fixator of ξ in G(F, F ′)
is amenable.
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Proof. Let e be an edge of TΩ. It is not hard to check that the fixator of e
in G(F, F ′) is the product of the fixators of the two half-trees defined by e
(in other words, the group G(F, F ′) has the edge-independence property in the
terminology of [LB16]). According to Proposition 5.4, these fixators of half-trees
are amenable, so the fixator of e in G(F, F ′) is also amenable. The statement
then follows by applying Lemma 4.2. �

When the set Ω is countable and F acts freely on Ω, it immediately follows from
Lemma 5.2 that the group U(F ) is countable. So if moreover the permutation
group F ′ is also countable, it is not hard to deduce that G(F, F ′) is a countable
group.

Before giving the proof of Theorem C, let us mention that the argument also
applies to the group G(F, F ′)∗, which is therefore not C∗-simple either.

Proof of Theorem C. By definition G(F, F ′) always contains the group U(F ),
whose action on TΩ is minimal and of general type, so a fortiori the same is true
for G(F, F ′).

Let us prove that fixators of half-trees in G(F, F ′) are non-trivial. Let T be
a half-tree in TΩ. We point out that G(F, F ′)T is actually infinite, but this is
not needed here, and we shall give a simple argument to exhibit a non-trivial
element in G(F, F ′)T . We let e be the edge defining T , and denote by a ∈ Ω the
color of e. We also let T ′ be the half-tree facing T , and v be the vertex of e that
belongs to T ′. Since F is a proper subgroup of F ′ and F ′ stabilizes the orbits
of F , there is a non-trivial σ ∈ F ′ such that σ(a) = a. For every b ∈ Ω, we let
σb ∈ F such that σb(b) = σ(b). Consider the automorphism g of TΩ fixing the
edge e and such that:

- σ(g, w) = id for every vertex w in T ;
- σ(g, v) = σ;
- σ(g, w) = σb for every vertex w ̸= v of T ′, where b is the color of the

unique edge emanating from v towards w.
It is a simple verification that the automorphism g is well defined. By con-
struction g fixes T but is not trivial because σ ̸= 1, and g ∈ G(F, F ′) because
σ(g, w) ∈ F for every w ̸= v.

Now since point stabilizers in F ′ are supposed to be amenable, it follows from
Corollary 5.5 that stabilizers of ends in G(F, F ′) are amenable. Therefore we are
in position to apply Theorem A, which gives the conclusion. �

5.2. Embedding theorem. We now prove Theorem D. Our construction is
extremely flexible: it admits a parameter that is a countable amenable group A,
so that when A varies, we actually obtain many embeddings with the required
properties.

We let Γ be a countable group. For an arbitrary group A, we consider the
wreath product F ′ = Γ ≀ A, and we let F = Γ(A) be the kernel of the natural
morphism from F ′ onto A. If Ω = F ′/A, then the group F acts transitively on
Ω. Clearly the stabilizer of the coset A in F is trivial by construction, and since
all point stabilizers in F are conjugate, we obtain that F acts freely on Ω.

We claim that the action of F ′ on Ω is always faithful when Γ is non-trivial.
Indeed, given 1 ̸= γ ∈ Γ and α ∈ A, let us consider the element f ∈ F = Γ(A)
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equals to the identity everywhere except at a, where it takes the value γ. Now
assume that β ∈ A ∩ fAf−1. Then an easy computation shows that one must
have f = βfβ−1. Therefore these two elements have the same support, which
shows that β must be trivial. So there are two conjugates of A in F ′ that intersect
trivially, which implies that the action of F ′ on Ω = F ′/A is faithful.

Clearly F ′ (and therefore Γ) embeds into any vertex stabilizer in G(F, F ′), so
in particular into G(F, F ′)∗.

If we assume in addition that A is countable, amenable and non-trivial, then
F ′ is also countable, and its point stabilizers are amenable because these are
conjugates of A. Therefore we may apply Theorem C, which shows that the
countable group G(F, F ′)∗ has trivial amenable radical and is not C∗-simple.

Now if we assume that Γ is finitely generated, then F ′ can easily me made
finitely generated as well (by choosing A with the same property). Since F
is simply transitive, the group G(F, F ′)∗ is generated by two copies of F ′ (see
Corollary 3.10 and Remark 3.11 in [LB16]. The argument is given there for Ω
finite, but the proof works verbatim in our setting). In particular this shows that
G(F, F ′)∗ is finitely generated.

Finally if Γ is torsion free, then by choosing A torsion free (e.g. A = Z)
we see that F ′ is also torsion free. According to Lemma 5.3, this implies that
the group U(F ′)∗ has no torsion elements, and therefore the same is true in
G(F, F ′)∗ ≤ U(F ′)∗.
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