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Abstract. We study the uniformly recurrent subgroups of groups acting by homeomor-
phisms on a topological space. We prove a general result relating uniformly recurrent
subgroups to rigid stabilizers of the action, and deduce a C∗-simplicity criterion based
on the non-amenability of rigid stabilizers. As an application, we show that Thompson’s
group V is C∗-simple, as well as groups of piecewise projective homeomorphisms of the
real line. This provides examples of finitely presented C∗-simple groups without free sub-
groups. We prove that a branch group is either amenable or C∗-simple. We also prove
the converse of a result of Haagerup and Olesen: if Thompson’s group F is non-amenable,
then Thompson’s group T must be C∗-simple. Our results further provide sufficient con-
ditions on a group of homeomorphisms under which uniformly recurrent subgroups can
be completely classified. This applies to Thompson’s groups F , T and V , for which we
also deduce rigidity results for their minimal actions on compact spaces.

1. Introduction

Let G be a second countable locally compact group. The set Sub(G) of all closed sub-
groups of G admits a natural topology, defined by Chabauty in [Cha50]. This topology turns
Sub(G) into a compact metrizable space, on which G acts continuously by conjugation.

The study of G-invariant Borel probability measures on Sub(G), named invariant ran-
dom subgroups (IRS’s) after [AGV14], is a fast-developing topic [AGV14, ABB+12,
Gla14, BDL16]. In this paper we are interested in their topological counterparts, called
uniformly recurrent subgroups (URS’s) [GW15]. A uniformly recurrent subgroup is a
closed, minimal, G-invariant subset H ⊂ Sub(G). We will denote by URS(G) the set of
uniformly recurrent subgroups of G. Every normal subgroup N E G gives rise to a URS
of G, namely the singleton {N}. More interesting examples arise from minimal actions
on compact spaces: if G acts minimally on a compact space X, then the closure of all
point stabilizers in Sub(G) contains a unique URS, called the stabilizer URS of G y X
[GW15].

When G has only countably many subgroups (e.g. if G is polycyclic), every IRS of
G is atomic, and every URS of G is finite, as follows from a standard Baire argument.
Leaving aside this specific situation, there are important families of groups for which a
precise description of the space IRS(G) has been obtained. Considerably less is known
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about URS’s. For example if G is a lattice in a higher rank simple Lie group, the normal
subgroup structure of G is described by Margulis’ Normal Subgroups Theorem. While
Stuck–Zimmer’s theorem [SZ94] generalizes Margulis’ NST to IRS’s, it is an open question
whether a similar result holds for URS’s of higher rank lattices, even for the particular case
of SL(3,Z) [GW15, Problem 5.4].

1.1. Micro-supported actions. In this paper we study the space URS(G) for countable
groups G admitting a faithful action G y X on a topological space X such that for every
non-empty open set U ⊂ X, the rigid stabilizer GU , i.e. the pointwise stabilizer of X \U
in G, is non-trivial. Following [Cap16], such an action will be called micro-supported.
Note that this implies in particular that X has no isolated points.

The class of groups admitting a micro-supported action includes Thompson’s groups F <
T < V and many of their generalizations, groups of piecewise projective homeomorphisms of
the real line [Mon13], piecewise prescribed tree automorphism groups [LB15], branch groups
(viewed as groups of homeomorphisms of the boundary of the rooted tree) [BGŠ03], and
topological full groups acting minimally on the Cantor set. These groups have uncountably
many subgroups, and many examples in this class have a rich subgroup structure.

Our first result shows that many algebraic or analytic properties of rigid stabilizers
are inherited by the uniformly recurrent subgroups of G. In the following theorem and
everywhere in the paper, a uniformly recurrent subgroup H ∈ URS(G) is said to have a
group property if every H ∈ H has the corresponding property.

Theorem 1.1 (see also Theorem 3.5). Let G be a countable group of homeomorphisms of a
Hausdorff space X. Assume that for every non-empty open set U ⊂ X, the rigid stabilizer
GU is non-amenable (respectively contains free subgroups, is not elementary amenable, is
not virtually solvable, is not locally finite). Then every non-trivial uniformly recurrent
subgroup of G has the same property.

This result has applications to the study of C∗-simplicity; see §1.2.

We obtain stronger conclusions on the uniformly recurrent subgroups of G under addi-
tional assumptions on the action of G on X. Recall that when X is compact and G y X
is minimal, the closure of all point stabilizers in Sub(G) contains a unique URS, called
the stabilizer URS of G y X, and denoted SG(X) [GW15] (see Section 2 for details).
The following result provides sufficient conditions under which SG(X) turns out to be the
unique URS of G, apart from the points {1} and {G} (hereafter denoted 1 and G). We say
that Gy X is an extreme boundary action if X is compact and the action is minimal
and extremely proximal (see §2.1 for the definition of an extremely proximal action).

Theorem 1.2. Let X be a compact Hausdorff space, and let G be a countable group of
homeomorphisms of X. Assume that the following conditions are satisfied:

(i) Gy X is an extreme boundary action;
(ii) there is a basis for the topology consisting of open sets U ⊂ X such that the rigid

stabilizer GU admits no non-trivial finite or abelian quotients;
(iii) the point stabilizers for the action Gy X are maximal subgroups of G.
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Then the only uniformly recurrent subgroups of G are 1, G and SG(X).

We actually prove a more general result, see Corollary 3.12. Examples of groups to which
this result applies are Thompson’s groups T and V , as well as examples in the family of
groups acting on trees G(F, F ′) (see §1.3 and §1.5). In particular this provides examples
of finitely generated groups G (with uncountably many subgroups) for which the space
URS(G) is completely understood. In the case of Thompson’s groups, we deduce from this
lack of URS’s rigidity results about their minimal actions on compact spaces (see §1.3).

1.2. Application to C∗-simplicity. A group G is said to be C∗-simple if its reduced
C∗-algebra C∗

red(G) is simple. This property naturally arises in the study of unitary repre-
sentations: G is C∗-simple if and only if every unitary representation of G that is weakly
contained in the left-regular representation λG is actually weakly equivalent to λG [Har07].
Since amenability of a group G is characterized by the fact that the trivial representation
of G is weakly contained in λG, a non-trivial amenable group is never C∗-simple.

The first historical C∗-simplicity result was Powers’ proof that the reduced C∗-algebra
of the free group F2 is simple [Pow75]. The methods employed by Powers have then been
generalized in several different ways, and various classes of groups have been shown to be
C∗-simple. We refer to [Har07, Proposition 11] (see also the references given there), and
to Corollary 12 therein for a list of important examples of groups to which these methods
have been applied.

Problems related to C∗-simplicity recently received new attention [KK14, BKKO14,
Rau15, LB15, Ken15, Haa15]. A characterization of C∗-simplicity in terms of boundary
actions was obtained by Kalantar and Kennedy: a countable group G is C∗-simple if and
only if G acts topologically freely on its Furstenberg boundary; equivalently, G admits some
topologically free boundary action [KK14] (we recall the terminology in §2.1). By devel-
oping a systematic approach based on this criterion, Breuillard–Kalantar–Kennedy–Ozawa
provided new proofs of C∗-simplicity for many classes of groups [BKKO14]. Moreover, they
showed that the uniqueness of the trace on C∗

red(G) actually characterizes the groups G
having trivial amenable radical [BKKO14]. While C∗-simplicity also implies triviality of
the amenable radical [Har07], counter-examples to the converse implication have been given
in [LB15].

Relying on the aforementioned boundary criterion from [KK14], Kennedy subsequently
showed that a countable group G is C∗-simple if and only if G admits no non-trivial
amenable URS [Ken15]. In view of this result, Theorem 1.1 has the following consequence.

Corollary 1.3. Let X be a Hausdorff space, and let G be a countable group of homeomor-
phisms of X. Assume that for every non-empty open set U ⊂ X, the rigid stabilizer GU is
non-amenable. Then G is C∗-simple.

We use this criterion to prove the C∗-simplicity of several classes of groups described
later in this introduction.

Consider now a countable group G and a given boundary action G y X. By [KK14]
if G y X is topologically free then G is C∗ simple. The converse does not hold: the fact
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that G y X is not topologically free surely does not rule out the existence of another
topologically free boundary action. Nevertheless, one may still ask if the C∗-simplicity of G
can be characterized in terms of the given actionGy X only. This is useful in practice since
it often happens that groups come equipped with an explicitly given boundary action, and
other boundary actions may be difficult to concretely identify. It is proven in [BKKO14] that
if G y X is not topologically free and has amenable stabilizers, then G is not C∗-simple.
If however stabilizers are non-amenable, nothing can be concluded on the C∗-simplicity of
G (see Example 3.15).

We show that under the additional assumption that G y X is an extreme boundary
action, the C∗-simplicity of G is completely characterized by the stabilizers of Gy X.

Theorem 1.4. Let G be a countable group, and Gy X a faithful extreme boundary action.
Then G is C∗-simple if and only if one of the following possibilities holds:

(i) the action Gy X is topologically free;
(ii) the point stabilizers of the action Gy X are non-amenable.

In fact in Theorem 3.13 we elucidate the precise relation between the stabilizers of any
faithful extreme boundary action G y X, and the stabilizers of the action of G on its
Furstenberg boundary. Examples of groups that admit a natural extreme boundary action
are Thompson’s groups, as well as any group admitting an action on a tree which is minimal
and of general type (see §4.3).

1.3. Thompson’s groups. Recall that Thompson’s group F is the group of orientation
preserving homeomorphisms of the unit interval which are piecewise linear, with only finitely
many breakpoints, all at dyadic rationals, and slopes in 2Z. Thompson’s group T admits a
similar description as group of homeomorphisms of the circle, and V is a group of homeo-
morphisms of the Cantor set. We refer the reader to the notes [CFP96] for an introduction
to these groups.

Corollary 1.3 admits the following consequence.

Theorem 1.5. Thompson’s group V is C∗-simple.

Similar arguments apply to various classes of “Thompson-like” groups, including the
higher dimensional generalizations nV introduced by Brin [Bri04], as well as the groups
VG associated to a self-similar group G constructed by Nekrashevych [Nek04, Nek13]. See
Theorem 4.5.

Recall that it is a long-standing open problem to determine whether F is amenable.
Haagerup and Olesen discovered in [HO16] a connection between this problem and the C∗-
simplicity of T . They proved that if the group F is amenable, then the group T cannot
be C∗-simple. Whether the converse statement is true has been considered by Bleak and
Juschenko in [BJ14], and more recently in [Ble16]. Breuillard–Kalantar–Kennedy–Ozawa
obtained a partial result in this direction, proving that if T is not C∗-simple, then F is not
C∗-simple either [BKKO14].

In this paper we prove the converse of the Haagerup–Olesen result, i.e. that the non C∗-
simplicity of T would imply amenability for F . More generally, we show that the existence
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of at least one overgroup of F inside Homeo(S1) which is not C∗-simple, would imply that
F is amenable (see Theorem 4.1). This applies in particular to the group F itself, so that
the non-amenability of F would automatically imply its C∗-simplicity.

Theorem 1.6 (see also Theorem 4.11). The following statements about Thompson’s groups
F and T are equivalent:

(i) The group F is non-amenable;
(ii) The group F is C∗-simple;
(iii) The group T is C∗-simple.

We point out that, while we prove these properties to be equivalent, we do not elucidate
whether these are true or false.

We also obtain a complete classification of the URS’s of Thompson’s groups. Recall that
R. Thompson proved that the groups [F, F ], T and V are simple, and that the normal
subgroups of F are precisely the subgroups containing [F, F ] [CFP96]. In spite T and V
do not have normal subgroups, they do admit non-trivial URS’s coming from their action
respectively on the circle and the Cantor set. We prove that these are the only ones, and
that F admits no URS other than its normal subgroups.

Theorem 1.7 (Classification of the URS’s of Thompson’s groups).
(i) The only URS’s of Thompson’s group F are the normal subgroups. The derived

subgroup [F, F ] has no uniformly recurrent subgroups other than 1 and [F, F ].
(ii) The URS’s of Thompson’s group T are 1, T and the stabilizer URS associated to its

action on the circle.
(iii) The URS’s of Thompson’s group V are 1, V and the stabilizer URS associated to its

action on the Cantor set.

Theorem 1.7 can be compared with a result of Dudko and Medynets [DM14], stating
that the groups F , T and V essentially do not admit invariant random subgroups. Note
that the URS’s associated to T y S1 and V y C do not carry any invariant probability
measure.

This lack or uniformly recurrent subgroup implies a rigidity result on the possible minimal
actions on compact spaces of the groups F, T and V . Recall that if X,Y are two G-spaces,
the action Gy X is said to factor onto Gy Y if there exists a continuous G-equivariant
map from X onto Y .

Theorem 1.8 (Rigidity of minimal actions of Thompson’s groups on compact spaces).
(i) Every faithful, minimal action of F on a compact space is topologically free.
(ii) Every non-trivial minimal action of T on a compact space is either topologically free

or factors onto the standard action on the circle.
(iii) Every non-trivial minimal action of V on a compact space is either topologically free

or factors onto the standard action on the Cantor set.

Part (ii) of Theorem 1.8 may be compared to a result of Ghys and Sergiescu, stating
that every non-trivial action of T on the circle by C2-diffeomorphisms is semi-conjugate to
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the standard one [GS87, Théorème K]. Whether this rigidity holds for actions by homeo-
morphisms does not seem to have been adressed in the literature (see the remark following
Theorem 3.14 in [Man15]). In §4.1.4 we show how Theorem 1.8 can be used to prove this.
We learned from É. Ghys that this can also be proved using bounded cohomology.

Corollary 1.9. Every non-trivial action by homeomorphisms of Thompson’s group T on
the circle is semi-conjugate to the standard one.

1.4. Piecewise projective homeomorphisms of the real line. Following [Mon13], if
A is a subring of R, we denote by G(A) the group of homeomorphisms of the projective line
P1(R) which are piecewise PSL(2, A), each piece being a closed interval, with breakpoints
in the set of ends of hyperbolic elements of PSL(2, A). Let also H(A) be the stabilizer of
the point ∞ in G(A). By work of Monod, when A is a dense subring of R, the group H(A)
is a counter-example to the so-called von Neumann-Day problem: H(A) is non-amenable
and yet does not contain any non-abelian free subgroups [Mon13].

Lodha and Moore [LM16] have exhibited a non-amenable 3-generated group G0 ≤ H(R),
and proved that G0 is finitely presented. The definition of the group G0 is recalled in §4.2.

de la Harpe asked in [Har07] whether there exist countable C∗-simple groups with no
free subgroups. This was answered in the positive by Olshanskii and Osin in [OO14]. Their
examples are direct limits of relatively hyperbolic groups with surjective homomorphisms
Gn � Gn+1 [OO14]. In particular, these groups are never finitely presented. More examples
were given in [KK14, Theorem 1.6] and [BKKO14, Corollary 6.12], where C∗-simplicity of
the Tarski monster groups constructed by Olshanskii in [Ols79, Ols80] has been obtained.

Here we show that groups of piecewise projective homeomorphisms provide new examples
of C∗-simple groups without free subgroups. In particular, the C∗-simplicity of the group
G0 shows that the question of de la Harpe also has a positive answer in the realm of finitely
presented groups.

Theorem 1.10. Let A be a countable dense subring of R. Then both H(A) and G(A) are
C∗-simple. Moreover the Lodha-Moore group G0 is C∗-simple.

1.5. Groups acting on trees with almost prescribed local action. In this paragraph
we consider the family of groups G(F, F ′) which have been proved to be non C∗-simple in
[LB15] and yet do not have non-trivial amenable normal subgroups. We first briefly recall
their definition.

Let Ω be a set, and F ≤ F ′ ≤ Sym(Ω) two permutation groups on Ω such that F acts
freely transitively on Ω. Here we assume Ω to be finite for simplicity, but in §4.3.1 we will
allow Ω countable. We let T be a |Ω|-regular tree, whose edges are coloured by the elements
of Ω, so that neighbouring edges have different colors. The group G(F, F ′) is by definition
the group of automorphisms of T whose local action is prescribed by the permutation group
F ′ for all vertices, and by the permutation group F for all but finitely many vertices. We
refer to §4.3.1 for a formal definition, and to [LB16] for properties of these groups. The
subgroup of index two of G(F, F ′) that preserves the types of vertices of T will be denoted
G(F, F ′)∗.
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The groups G(F, F ′) have no non-trivial amenable normal subgroup, but do have non-
trivial amenable URS’s [LB15]. Indeed, the action of the group G(F, F ′) on the tree T
extends to a minimal action by homeomorphisms on the set of ends ∂T , which has amenable
stabilizers and which is not topologically free [LB15]. In terms of URS’s, this exactly
means that the stabilizer URS associated to the action G(F, F ′) y ∂T is amenable and
non-trivial. A natural problem then arises, which is to classify all amenable URS’s of
the groups G(F, F ′). The following result provides, beyond the amenable case, a complete
classification of all URS’s of these groups under appropriate assumptions of the permutation
groups.

Theorem 1.11 (see also Proposition 4.28 and Theorem 4.33). Let F ≤ F ′ ≤ Sym(Ω) such
that F acts freely transitively on Ω, F ′ acts 2-transitively on Ω, and point stabilizers in F ′

are perfect. Write G = G(F, F ′)∗. Then the following hold:
(i) G admits exactly three URS’s, namely 1, SG(∂T ) and G; where SG(∂T ) is the

stabilizer URS associated to the action Gy ∂T .
(ii) SG(∂T ) is the unique non-trivial amenable URS of G, and we have SG(∂T ) =

{Gξ,0 : ξ ∈ ∂T}, where Gξ,0 is the set of elliptic elements of G that fix ξ, and is an
infinite locally finite group.

In particular this provides examples of finitely generated groups with trivial amenable
radical and exactly one non-trivial amenable URS.

Although the boundary ∂T is not the Furstenberg boundary of G(F, F ′), we are able
to precisely identify the point stabilizers in G(F, F ′) for the action on the Furstenberg
boundary. In particular we characterize the elements g ∈ G(F, F ′) that have fixed points
in the Furstenberg boundary of G(F, F ′). See Corollary 4.29.

1.6. C∗-simplicity for branch groups. Branch groups are a class of groups acting on
rooted trees that naturally appears in the classification of just-infinite groups. The class
of branch groups contains many instances with interesting properties such as Grigorchuk
groups Gω of intermediate growth [Gri84], or Gupta-Sidki torsion groups [GS83]. We refer
the reader to [BGŠ03] for a survey on branch groups. The study of amenability within
the class of branch groups has been actively investigated. Several examples of well-studied
branch groups are amenable (e.g. the groups mentioned above [Gri84, BKN10]), but Sidki
and Wilson constructed finitely generated branch groups containing free subgroups [SW03],
therefore the branch property does not imply amenability.

We show that the following sharp dichotomy holds in the class of branch groups.

Theorem 1.12. A countable branch group is either amenable or C∗-simple.

This will follow from a more general statement saying that many properties of a branch
group are inherited by its uniformly recurrent subgroups, which will follow from Theorem
1.1 applied to the action on the boundary of the rooted tree, see §4.4.

1.7. C∗-simplicity for topological full groups. Let Γ be a group acting by homeomor-
phism on the Cantor set X. The topological full group of Γ y X is the group [[Γ]]
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of all homeomorphisms of X that locally coincide with an element of Γ. This notion was
first introduced in [GPS99], in the case Γ = Z, in connection with the study of orbit equiv-
alence of Cantor minimal systems. See [Mat16] for a recent survey (in the more general
setting of étale groupoids). One feature of this construction from the group-theoretical
point of view is that it provides many new examples of finitely generated, infinite simple
groups [Mat06, Nek15]. Juschenko and Monod proved that the topological full group of
any Cantor minimal Z-system is amenable [JM13], providing the first examples of finitely
generated, infinite simple groups that are amenable. This result motivated the study of
analytic properties of topological full groups. Amenability of other families of topological
full groups was established in [JNdlS16, JMBMS17]. Recently Nekrashevych constructed
étale groupoids whose topological full groups have intermediate growth [Nek16], giving the
first examples of simple groups with this property. Other analytic properties of topological
full groups that have been studied include the Haagerup property [Mat15], and the Liouville
property [MB14].

All these properties are either strong or weak forms of amenability. Here we go in the
opposite direction and consider the question of determining when the topological full group
of a group action is C∗-simple.

Theorem 1.13. Let Γ be a non-amenable group acting freely and minimally on the Cantor
set. Then the topological full group [[Γ]] is C∗-simple.

Organization. The rest of this article contains three additional sections. In Section 2 we
set some notation and give preliminaries about uniformly recurrent subgroups. In particular
we explain the existence, for every countable group G, of an amenable uniformly recurrent
subgroup AG that is larger (with respect to a natural order on the set URS(G)) than any
other amenable URS. We also explain the connection between AG and C∗-simplicity of G.

The study of uniformly recurrent subgroups in groups admitting a micro-supported action
is developed in Section 3. A key ingredient used throughout this section is Proposition 3.8.
We point out that the reader interested in the proof of Theorem 1.1 and its applications to
C∗-simplicity may skip §3.3, and only needs a simplified version of Proposition 3.8 (see the
remark before its proof). Theorem 1.2 and Theorem 1.4 are proved at the end of Section 3.

Section 4 concerns the applications of the results of the previous sections to various classes
of groups, and contains the proofs of all the other results mentioned in the introduction.
Each of its subsections can be read independently from the others, after reading Sections 2
and 3.
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2. Preliminaries

2.1. Notation and terminology. Let X be a topological Hausdorff space, and G a count-
able group acting faithfully by homeomorphisms on X. For x ∈ X, we will denote by Gx

the stabilizer of x in G, and by G0
x the (normal) subgroup of Gx consisting of elements

g ∈ Gx such that g fixes pointwise a neighbourhood of x.
For g ∈ G, we will denote by Fix(g) the set of fixed points of g, and by Supp(g) the

support of g, i.e. the closure of the set of x ∈ X that are moved by g. If H is a subgroup
of G and Y ⊂ X, we will say that H is supported in Y if Supp(h) ⊂ Y for every h ∈ H.
Given a subset U ⊂ X, we will denote by GU the rigid stabilizer of U , which is defined
as the subgroup of G consisting of elements that fix pointwise the complement of U .

The action of G on X is:
• micro-supported if GU is non-trivial for every non-empty open U .
• topologically free if Fix(g) has empty interior for every non-trivial g ∈ G. When
X is a Baire space (e.g. X is compact), this is equivalent to saying that the set of
points x ∈ X such that Gx is trivial is a Gδ-dense subset of X.

• minimal if every orbit is dense in X, or equivalently if X is the only non-empty
closed invariant subset.

• strongly proximal if the closure of the orbit of every probability measure on X
contains a Dirac mass.

• a boundary action if X is compact, and the action of G is minimal and strongly
proximal.

• extremely proximal if every closed C ̸= X is compressible, where Y ⊂ X is
compressible if there exists a point x ∈ X such that for every open U ⊂ X
containing x, there exists g ∈ G such that g(Y ) ⊂ U .

• an extreme boundary action if X is compact, and the action of G is minimal and
extremely proximal. Note that an extreme boundary action is a boundary action
[Gla74, Theorem 2.3].

2.2. The Chabauty space. If G is a countable group, we denote by Sub(G) the space of
all subgroups of G. When viewed as a subset of {0, 1}G, the space Sub(G) is closed for the
product topology. The topology induced on Sub(G) by the product topology is called the
Chabauty topology, and makes Sub(G) a compact space. A sequence (Hn) converges to
H in Sub(G) if and only if every element of H eventually belongs to Hn, and H contains
∩kHnk

for every subsequence (nk). Note in particular that a sequence (Hn) converges to
the trivial subgroup if and only if 1 is the only element of G that belongs to Hn for infinitely
many n.

The action of the group G on itself by conjugation naturally extends to an action of G
on Sub(G) by homeomorphisms. For H ∈ Sub(G), we will denote by C(H) the conjugacy
class of H in G, i.e. C(H) is the G-orbit of H in Sub(G).

The following easy lemma will be used in Section 3.

Lemma 2.1. Let G be a countable group, and H ∈ Sub(G). The following are equivalent:
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(i) The closure of C(H) in Sub(G) does not contain the trivial subgroup;
(ii) There exists a finite subset P ⊂ G \ {1} all of whose conjugates intersect H;
(iii) There exists a finite subset P ⊂ G \ {1} such that for every K ∈ C(H), all the

conjugates of P intersect K.

Proof. By definition of the Chabauty topology, a basis of neighbourhoods of the trivial
subgroup is given by the sets

UP = {L ∈ Sub(G) : L ∩ P = ∅},
where P ranges over finite subsets of G \ {1}. The equivalence between (i) and (ii) follows
immediately, and the equivalence between (ii) and (iii) is clear. �

If G acts by homeomorphisms on a space X, we may consider the stabilizer map Stab :
X → Sub(G), defined by x 7→ Gx. This map need not be continuous in general. The
following lemma, which characterizes its continuity points, has already been proved in
[Vor12, Lemma 5.4]. We include a proof for completeness.

Lemma 2.2. Let G be a countable group acting by homeomorphisms on a Hausdorff space
X. Then the map Stab : X → Sub(G) is continuous at x ∈ X if and only if Gx = G0

x, or
equivalently Fix(g) contains a neighbourhood of x for every g ∈ Gx.

Proof. The map y 7→ Gy ∈ Sub(G) ⊂ {0, 1}G is continuous if and only if its post-
compositions with all the projections of the product space {0, 1}G onto its factors are
continuous. For a fixed g ∈ G, the post-composition with the corresponding projection is
given by y 7→ 1gy=y. Now if gx ̸= x, this map is obviously continuous at x, while if gx = x
this map is continuous if and only if g ∈ G0

x. Hence it is continuous for every g ∈ G if and
only if Gx = G0

x. �
Definition 2.3. If G is a group acting by homeomorphisms on a Hausdorff space X, we
will denote by X0 ⊂ X the domain of continuity of the map Stab.

Proposition 2.4. If X is a Baire space, X0 is a dense Gδ subset of X.

Proof. By Lemma 2.2, X0 is exactly the complement of ∪g∈G∂Fix(g). Since each ∂Fix(g)
has empty interior (because Fix(g) is always closed), the statement follows. �
2.3. Uniformly recurrent subgroups. The notion of uniformly recurrent subgroup was
introduced and investigated in [GW15]. A uniformly recurrent subgroup (URS for
short) is a closed minimal G-invariant subset of Sub(G). The set of all URS’s of G will be
denoted URS(G).

Examples of URS’s are normal subgroups, and more generally subgroups with a finite
conjugacy class. For simplicity the URS associated to a normal subgroup N will still be
denoted N rather than {N}. The trivial URS, denoted 1, is the URS that contains only
the trivial subgroup. If (Q) is a property of groups, we say that H ∈ URS(G) has (Q) if
every H ∈ H has (Q).

Following Glasner and Weiss, we recall the construction of a URS starting from a minimal
action on a compact space [GW15].
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Proposition 2.5. Assume that G acts minimally on a compact space X, and denote X0 ⊂
X the locus of continuity points of Stab. Let SG(X) be the closure in Sub(G) of the set
{Gx, x ∈ X0}. Then SG(X) is a URS of G.

Moreover SG(X) is the only closed minimal G-invariant subset of the closure in Sub(G)
of the collection of Gx, x ∈ X.

Proof. See the proof of Proposition 1.2 in [GW15]. Note that the assumption made through-
out [GW15] that X is metrizable is not needed here: the only argument used in the proof
is the density of X0 in X, which follows from Proposition 2.4. �
Definition 2.6. SG(X) will be called the stabilizer URS of the action Gy X.

The following proposition shows that this notion is consistent with the terminology of
“topologically free action”.

Proposition 2.7. Let G y X be a minimal action on a compact space. Then SG(X) is
the trivial URS if and only if the action of G on X is topologically free.

Proof. If SG(X) is trivial then one has Gx0 = 1 for every x0 ∈ X0. Since X0 is dense in X
by Proposition 2.4, this implies that the action of G on X is topologically free. Conversely
if Gy X is topologically free, then in particular there exists x ∈ X such that Gx = 1. The
conclusion then follows from the last affirmation in Proposition 2.5. �

We will need the following observation.

Lemma 2.8. Let G y X be a minimal action on a compact space, and let SG(X) ∈
URS(G) be the stabilizer URS. Then

(i) for every x ∈ X, there exists H ∈ SG(X) (not necessarily unique) such that H ≤ Gx;
(ii) for every H ∈ SG(X) there exists x ∈ X such that G0

x ≤ H.

Proof. To prove (i), let x ∈ X. By Proposition 2.4, we may find a net (xi) of points of X0

that converges to x. Up to taking a sub-net, we may assume that (Gxi) converges to a limit
H ∈ Sub(G). Note that H ∈ SG(X) by Proposition 2.5. Moreover every g ∈ H eventually
belongs to Gxi , so g also belongs to Gx since xi → x. Hence H ≤ Gx.

To prove (ii), let H ∈ SG(X). By Proposition 2.5, we can find a net (xi) of points of
X0 such that Gxi converges to H. Up to taking a sub-net we may assume that (xi) also
converges to a point x ∈ X. Then every element of G0

x eventually belongs to Gxi . It follows
that G0

x ≤ H. �
Under an additional assumption on the action G y X, it is possible to give a more

explicit description of the stabilizer URS SG(X).

Definition 2.9. Let G be a countable group acting on a topological space X. The action
Gy X is said to have Hausdorff germs if for every x ∈ X and every g ∈ Gx, either

(i) Fix(g) contains a neighbourhood of x; or
(ii) the set of interior points of Fix(g) does not accumulate on x.

The terminology is motivated by the fact that these conditions exactly characterize the
actions Gy X whose groupoid of germs is Hausdorff.
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Proposition 2.10. Let Gy X with Hausdorff germs. Then the map Stab0 : X → Sub(G),
x 7→ G0

x, is continuous. If moreover X is compact and G y X is minimal, then SG(X) =
{G0

x | x ∈ X}.

Proof. Fix x ∈ X. We let P be a finite subset of G, and we shall prove that the set of
y ∈ X such that G0

y ∩ P = G0
x ∩ P contains a neighbourhood of x.

By assumption we may partition the subset P = {g1, . . . , gi, gi+1, . . . , gj}, such that
g1, . . . , gi belong to G0

x; and gi+1, . . . , gj are such that the second condition of Definition
2.9 is satisfied.

For every k ∈ {1, . . . , j}, we choose a neighbourhood Uk of x such that:
• Uk ⊂ Fix(gk) if k ∈ {1, . . . , i};
• Uk ∩ Fix(gk) has empty interior if k ∈ {i+ 1, . . . , j};

and we consider U = ∩Uk. The set U is clearly a neighbourhood of x, and by construction
for every y ∈ U , the element gk belongs to G0

y if and only if k ∈ {1, . . . , i}. This shows that
the map Stab0 is continuous at x.

Since X is compact, the set of subgroups G0
x, x ∈ X, is therefore a compact subset

of Sub(G), and it is clearly invariant. Moreover it is minimal as soon as the action of G
on X is minimal, and it contains SG(X) by Lemma 2.2. Therefore it must coincide with
SG(X). �
2.4. The largest amenable uniformly recurrent subgroup. Given a countable group
G, the set URS(G) can be naturally endowed with a partial order, as we shall now explain.
We are grateful to P-E. Caprace for suggesting to use this notion to formalize our results.

In this paragraph we will use letters A,B for arbitrary subsets of Sub(G), and H,K for
uniformly recurrent subgroups of G.

Definition 2.11. For A,B ⊂ Sub(G), we write A 4 B if there exist H ∈ A and K ∈ B
such that H is contained in K.

The relation 4 is neither transitive nor antisymmetric on the set of all subsets of Sub(G).
However, we shall prove below that, when restricted to to URS(G), it becomes a partial
order.

For every subset A ⊂ Sub(G), we will denote by UE(A) the set of H ∈ Sub(G) such
that there exists K ∈ A with K ≤ H. The set UE(A) will be called the upper envelope
of A. Similarly we will denote by LE(A) the set of H ∈ Sub(G) such that there exists
K ∈ A with H ≤ K. The set UE(A) will be called the lower envelope of A. Note that if
A,B ⊂ Sub(G), we have A 4 B if and only if B intersects UE(A), if and only if A intersects
LE(B).

The proof of the following lemma is an easy consequence of the definition of the Chabauty
topology, and we omit it.

Lemma 2.12. If A is a closed G-invariant subset of Sub(G), then UE(A) and LE(A) are
also closed and G-invariant.

We will need the following lemma.
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Lemma 2.13. Assume that A,B ⊂ Sub(G) are closed G-invariant subsets of Sub(G), and
that B admits a unique minimal G-invariant subset C. If A 4 B, then A 4 C.

Proof. A 4 B means that B ∩ UE(A) is non-empty. Moreover B ∩ UE(A) is also closed
and G-invariant thanks to Lemma 2.12. So by Zorn’s lemma we may find a minimal closed
G-invariant subset inside B ∩ UE(A). By uniqueness the latter has to coincide with C, so
that C ⊂ UE(A). In particular A 4 C. �

Proposition 2.14. If H,K ∈ URS(G), then H 4 K if and only if every element of H is
contained in some element of K and every element of K contains some element of H.

Proof. Clearly it is enough to prove the direct implication. Since H 4 K, H intersects the
lower envelope of K. Since LE(K) is closed and G-invariant according to Lemma 2.12, one
must have H ⊂ LE(K) by minimality of H. A similar argument shows that K ⊂ UE(H),
hence the conclusion. �

Corollary 2.15. The relation 4 is a partial order on the set URS(G).

Proof. Reflexivity is trivial. Transitivity follows from Proposition 2.14. Let us prove that 4
is antisymmetric. Assume that H,K ∈ URS(G) are such that H 4 K and K 4 H. By Zorn’s
lemma, we may find H0 ∈ H that is maximal for the inclusion among elements of H (note
that an increasing sequence of subgroups converges to its union in the Chabauty topology,
thus an ascending union of elements of H belongs to H since H is closed). Applying
Proposition 2.14 twice provides us with K ∈ K and H1 ∈ H such that H0 ≤ K ≤ H1.
By maximality of H0 this implies H0 = H1, and hence H0 = K. In particular H ∩ K is
non-empty, and by minimality one must have H = K. �

Recall that the amenable radical of G is a normal amenable subgroup Ra that contains
any other normal amenable subgroup. By a result of Bader–Duchesne–Lécureux [BDL16],
every µ ∈ IRS(G) supported on amenable subgroups satisfies µ(Sub(Ra)) = 1.

The following result shows that every countable group G admits an amenable URS that
is larger than any other amenable URS. This URS is called the Furstenberg URS of the
group G (see Proposition 2.21 for the choice of this terminology). The Furstenberg URS can
be seen as a “URS version” of the amenable radical for the study of the action Gy Sub(G),
in the sense that it plays a role in the topological setting similar to the amenable radical
in the measured setting.

When completing this work, we learn that U. Bader and P-E. Caprace independently
obtained a similar statement in the setting of locally compact groups.

Theorem 2.16. Let G be a countable group. Then there exists a unique amenable AG ∈
URS(G) such that H 4 AG for every amenable H ∈ URS(G).

Proof. Let M(G) ⊂ ℓ∞(G)∗ be the set of all means on G. For the weak-* topology, M(G)
is a convex compact G-space. The subgroups of G which fix a point in M(G) are exactly
the amenable subgroups of G. Namely any amenable subgroup of G fixes a point in M(G)
by the fixed point characterisation of amenability; conversely every H ∈ Sub(G) that fixes
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a point in M(G) must be amenable, as its acts on G with an invariant mean and trivial
stabilizers.

By Zorn’s lemma, we may choose a non-empty G-invariant convex closed subset C ⊂
M(G) which is minimal with respect to inclusion. Denote by X ⊂ C the closure of the set
of extreme points of C, which is a G-invariant subset. The choice of C implies that X is a
minimal closed invariant subset, and is the unique minimal closed invariant subset of C, see
[Gla76, Theorem III.2.3]. Let AG = SG(X) be the stabilizer URS associated to G y X.
Recall that SG(X) is the closure in Sub(G) of {Gx : x ∈ X0}, where X0 is the domain of
continuity of the stabilizer map. We claim that this URS verifies the desired conclusion. To
see this, let H ∈ URS(G) be another amenable URS, and let H ∈ H. Since H is amenable,
H fixes a point c ∈ C. Since X is the only minimal closed invariant subset of C, the closure
of the G-orbit of c must contain X. In particular, there is a net (gi)i∈I in G such that gi(c)
converges to a point x ∈ X0. Then any cluster point of the net (giHg−1

i )i∈I is contained in
Gx. Since Gx ∈ AG, this shows that H 4 AG as desired.

The uniqueness is clear: if A1,A2 ∈ URS(G) both satisfy the conclusion, then A1 4 A2

and A2 4 A1, so that A1 = A2 by Corollary 2.15. �

Definition 2.17. AG will be called the Furstenberg URS of the group G.

Proposition 2.18. Let G be a countable group. Then the following hold:
(i) AG is invariant under the action of Aut(G) on Sub(G).
(ii)

∩
H∈AG

H = Ra, where Ra is the amenable radical of G.
(iii) AG is either a singleton (in which case it is the amenable radical of G), or uncount-

able.
(iv) The kernel of the action Gy AG is a characteristic subgroup of G, which contains

the amenable radical of G.

Proof. We first prove (i). The group Aut(G) acts on the set URSa(G) of amenable URS’s
of G by preserving the order 4. Since AG is the greatest element of URSa(G), it follows
that Aut(G) must preserve AG.

For (ii), remark that R = ∩H∈AG
H is a normal amenable subgroup of G, so that R ≤ Ra.

Conversely since the singleton Ra is an amenable URS of G, we must have Ra 4 AG. By
Proposition 2.14 this means that every element of AG contains Ra, so Ra ≤ R.

In order to prove (iii), we assume that AG is countable, and we show that it must be
a singleton. By the Baire category theorem, AG must have an isolated point. Now by
minimality all points must be isolated, and by compactness AG has to be finite. This
means that there is an amenable subgroup H ∈ Sub(G) with finitely many conjugates.
This property easily implies that the normal closure N of H is also amenable. Since AG is
larger than any other amenable URS, one must have N ≤ H. Since the other inclusion is
clear by definition, it follows that H = N , so AG is a singleton. This proves (iii).

Finally (iv) follows immediately from (i) and (ii). �

Remark 2.19. There exist countable groups G with an uncountable amenable URS, but
whose Furstenberg URS is a singleton. For example AG is the singleton {G} whenever G
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is amenable, but there are many examples of amenable groups admitting an uncountable
URS.

The following result establishes basic stability properties of the Furstenberg URS.

Proposition 2.20. The following hold:
(i) If G1, G2 are countable groups, then the natural map i : Sub(G1) × Sub(G2) →

Sub(G1×G2) induces an equivariant isomorphism between AG1×AG2 and AG1×G2 .
(ii) If NEG is a normal amenable subgroup of G, and if SubN (G) is the set of subgroups

of G containing N , then the natural map φ : Sub(G/N) → SubN (G) induces an
equivariant homeomorphism between AG/N and AG.

Proof. (i). The map i is continuous, and i(H1,H2) is amenable as soon as H1 and H2 are
amenable. Since moreover the action of G1 × G2 on AG1 × AG2 is minimal, this shows
that i(AG1 × AG2) is an amenable URS of G1 × G2. Moreover one easily check that any
amenable H ∈ URS(G1 ×G2) satisfies H 4 i(AG1 ×AG2), hence the conclusion.

(ii). It is not hard to check that φ is an equivariant homeomorphism. Since N is
amenable, φ sends the set of amenable subgroups of G/N onto the set of amenable sub-
groups ofG containingN . Therefore φ(AG/N ) is an amenable URS ofG, so that φ(AG/N ) 4
AG by definition of AG. Now since N is normal and amenable, every H ∈ AG contains
N by Proposition 2.18, (ii). This means that AG ⊂ SubN (G). Therefore φ−1(AG) is an
amenable URS of G/N , and it follows that φ−1(AG) 4 AG/N . �

Recall that Furstenberg showed that for every countable (and more generally locally
compact) group G, there exists a compact space ∂FG with a boundary action G y ∂FG
satisfying the following universal property: for every boundary action G y X, there ex-
ists a continuous surjective G-equivariant map ∂FG → X [Fur73, Proposition 4.6]. The
space ∂FG is called the Furstenberg boundary of G. It is unique up to G-equivariant
homeomorphism.

The amenable radical of G is exactly the kernel of the action of G on its Furstenberg
boundary [Fur03, Proposition 7]. The second statement of the following proposition says
that the Furstenberg URS of G is the stabilizer URS associated to the action of G on its
Furstenberg boundary (which already played an important role in [Ken15]).

Proposition 2.21. Let G be a countable group.
(i) If Gy X is a boundary action, then AG 4 SG(X). If moreover there exists x ∈ X

such that Gx is amenable, then AG = SG(X).
(ii) AG is the collection of point stabilizers for the action of G on its Furstenberg bound-

ary.
(iii) The action Gy AG is a boundary action.

Proof. We first prove (i). Let Gy X be a boundary action, let H be an arbitrary amenable
URS of G, and let H ∈ H. Since H is amenable, there exists a probability measure µ on
X that is fixed by H. By minimality and strong proximality, there exists a net (gi) such
that µi = gi · µ converges to some δx. Write Hi = giHg

−1
i . Up to passing to a subnet,
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we may assume that (Hi) converges to some K ∈ H. Since the net (µi) converges to δx,
every element of K must fix the point x, i.e. K ≤ Gx. This shows that H is 4 than the
closure in Sub(G) of the collection of subgroups Gy, y ∈ X. Now this set contains SG(X)
as unique URS by Proposition 2.5, so by applying Lemma 2.13 we deduce that H 4 SG(X).
In particular this shows AG 4 SG(X) because by definition AG is amenable.

The existence of x ∈ X such that Gx is amenable implies that SG(X) is amenable, since
the set of amenable subgroups is closed in Sub(G) for every countable group G. Therefore
one must have AG 4 SG(X) by definition of AG, and the equality SG(X) = AG follows
from the previous paragraph.

We shall now prove (ii). Recall that point stabilizers for the action of G on its Fursten-
berg boundary are amenable (to see this it is enough to exhibit one boundary action with
amenable stabilizer, and this follows by applying [Gla76, Theorem III.2.3] to a minimal
closed convex G-invariant subset C ⊂ M(G)). Hence statement (i) implies SG(∂FG) = AG.
This means that AG is the closure in Sub(G) of the set of Gx0 , for x0 ∈ X0 ⊂ ∂FG, where
X0 is the domain of continuity of Stab : ∂FG → Sub(G). Now according to [BKKO14,
Lemma 3.3], Fix(g) is open in ∂FG for every g ∈ G, so it follows from Lemma 2.2 that the
stabilizer map is continuous on ∂FG, i.e. X0 = ∂FG. This shows that the map ∂FG→ AG

is onto. Part (iii) immediately follows, since any factor of a boundary action is a boundary
action. �
Remark 2.22.

(1) The fact that the action of G on the set of point stabilizers Gx, x ∈ ∂FG, is a
boundary action was observed in [Ken15, Remark 4.2].

(2) The boundary AG does not coincide in general with the Furstenberg boundary
∂FG. An important difference is that AG is metrizable (as a subspace of Sub(G)),
while ∂FG is extremally disconnected, and therefore is never metrizable (unless it
is trivial) [KK14, Remark 3.16].

(3) We have seen in the proof of Proposition 2.21 that the stabilizer map Stab : ∂FG→
Sub(G), associated to the boundary action G y ∂FG, is always continuous. This
need not be true in general for the boundary action G y AG, as explained in
Remark 4.30.

Furstenberg proved that for every countable group G, the action G y ∂FG may be
extended to an action of Aut(G) on ∂FG, which is faithful whenever G y ∂FG is [Gla76,
Theorem II.4.3]. The following proposition, due to Breuillard–Kalantar–Kennedy–Ozawa,
says that Aut(G) y ∂FG is also free whenever Gy ∂FG is.

Proposition 2.23. Let G be a countable group. If G acts freely on its Furstenberg boundary
∂FG, then Aut(G) y ∂FG is also free.

Equivalently, if AG is trivial then so is AAut(G).

Proof. Remark that G must have trivial center since G y ∂FG is free. Then apply
[BKKO14, Lemma 5.3] to G, viewed as a normal subgroup of Aut(G). �

It is proved in Theorem 1.4 in [BKKO14] that if N is a normal subgroup of G, then G
acts freely on its Furstenberg boundary if and only if both N and CN act freely on their
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Furstenberg boundaries, where CN is the centralizer of N in G. In terms of uniformly
recurrent subgroups, this means that AG is trivial if and only if both AN and ACN

are
trivial. The following proposition refines the connections between AG, AN and ACN

.

Proposition 2.24. Let G be a countable group, and N a normal subgroup of G.
(i) If AG is a singleton (respectively, is trivial), then AN is a singleton (respectively, is

trivial).
(ii) Suppose AN is trivial. Then AG = ACN

, where CN is the centralizer of N in G.
(iii) Suppose AN = Ra(N) is a singleton, and let M = {g ∈ G : [g, n] ∈ Ra(N) ∀n ∈ N}

be the preimage in G of the centralizer of N/Ra(N) in G/Ra(N). Then AG = AM .
(iv) If AN and AG/N are singletons (respectively, are trivial), then AG is a singleton

(respectively, is trivial).

Proof. In order to prove (i), we first assume that AG is trivial. If AN is not trivial, then
Proposition 2.18(i) implies that AN is a non-trivial amenable URS of G, a contradiction.
The case where AG is a singleton follows according to statement (ii) of Proposition 2.20.

We shall now prove (ii). The map G → Aut(N) induces an action of G on ∂FN . Since
AN is trivial, it follows from Proposition 2.23 that point stabilizers in G are all equal to the
kernel of G → Aut(N), which is exactly CN . By Proposition 2.21, this shows AG 4 CN .
Therefore AG is a closed amenable CN -invariant subset of Sub(CN ), and it follows that
AG 4 ACN

. On the other hand ACN
is itself an amenable URS of G by Proposition 2.18(i),

hence ACN
4 AG, and the equality follows.

In order to prove (iii), write G′ = G/Ra(N) and N ′ = N/Ra(N). By our assumption
and Proposition 2.20(ii), we have that AN ′ is trivial. So by applying statement (ii) we
obtain AG′ = ACN′ , and the conclusion follows by applying again Proposition 2.20.

It is enough to prove (iv) in the case of singletons, and we may assume that N has trivial
amenable radical by Proposition 2.20. Therefore by point (ii), we deduce that AG = ACN

.
Denote by π the canonical projection from G to G/N . The group π(CN ) is normal in
G/N , so it follows from statement (i) of the proposition that Aπ(CN ) is a singleton. Now
π(CN ) = CN/N ∩ CN and N ∩ CN is abelian, so the conclusion follows from Proposition
2.20. �

2.5. Amenable uniformly recurrent subgroups and C∗-simplicity. Recall that a
group G is said to be C∗-simple if its reduced C∗-algebra C∗

red(G) is simple. This is an
important property, which can be characterized in terms of weak containment of represen-
tations of the group [Har07]. By work of Kalantar and Kennedy [KK14], C∗-simplicity also
admits the following dynamical characterization.

Theorem 2.25 (Kalantar-Kennedy). A countable group G is C∗-simple if and only if G
acts freely on its Furstenberg boundary.

Combining Theorem 2.25 with the description of AG given in Proposition 2.21 yields the
following result from [Ken15].
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Theorem 2.26 (Kennedy). A countable group G is C∗-simple if and only if it has no
non-trivial amenable uniformly recurrent subgroup; equivalently if and only if the conjugacy
class of every amenable subgroup of G accumulates at the trivial subgroup in Sub(G).

3. Micro-supported actions and uniformly recurrent subgroups

In this section X is a Hausdorff space, and G ≤ Homeo(X) is a countable group of
homeomorphisms of X. Although we make a priori no global additional assumption on X,
most of the results of this section are relevant only when X has no isolated points. Note
also that if Gy X is micro-supported, then X cannot have isolated points.

3.1. Preliminaries. In this section we collect some preliminary results that will be used
in the sequel.

Lemma 3.1. Let X be a Hausdorff space without isolated points. Let g1, . . . , gr be non-
trivial homeomorphisms of X. Then there exist non-empty open subsets U1, . . . , Ur ⊂ X
such that the sets U1, . . . , Ur, g1(U1), . . . gr(Ur) are pairwise disjoint.

Moreover given any z ∈ X, we may find a neighbourhood W of z and open sets Ui as
above such that W is disjoint from all the Ui and all the g−1

j (Ui).

Proof. First observe that every non-trivial homeomorphism of X moves infinitely many
points. To see this, let f be a non-trivial homeomorphism, and let x ∈ X such that f(x) ̸= x.
Since X is Hausdorff, there exists a neighbourhood U of x such that U ∩ f(U) = ∅. Since
moreover X has no isolated points, the open set U is infinite, and every point of U is moved
by f .

We now prove the first sentence of the statement. Let x1 be a point moved by g1 and
set y1 = g1(x1). Since g2 moves infinitely many points, it moves at least one point x2
which is different from x1, y1, g

−1
2 (x1), g

−1
2 (y1). Set y2 = g2(x2). Proceeding by induction

by avoiding at each step only finitely many points, we can find x1, . . . xr ∈ X such that
gi(xi) ̸= xi and the points x1, . . . xr, y1 = g1(x1), . . . , yr = gr(xr) are all distinct. Since X is
Hausdorff, there exist neighbourhoods Vi of xi and Wi of yi such that V1, . . . , Vr,W1, . . .Wr

are pairwise disjoint. Set Ui = Vi ∩ g−1
i (Wi). Then U1, . . . , Ur verify the conclusion of the

lemma.
To prove the last sentence, observe that if z ∈ X is given, we may choose carefully the

points xi so that they are all different from z and from gj(z) for all j = 1, . . . , r. Then a
similar argument gives the conclusion. �

We will make use of the following group theoretic lemma, which is exactly Lemma 4.1 in
[Neu54]. We include a short proof based on random walk.

Lemma 3.2 (B.H. Neumann). Let Γ be a countable group that can be written as a union
∪r
i=1∆iγi of r cosets of subgroups ∆i ≤ Γ. Then at least one of the subgroups ∆ℓ has index

at most r.
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Proof. Let µ be a symmetric, non-degenerate probability measure on Γ such that µ(1) > 0
and let gn = h1 · · ·hn be the corresponding random walk. We have

1 = µ∗n(Γ) ≤
r∑

i=1

µ∗n(∆iγi),

from which we deduce that there exists ℓ such that µ∗n(∆ℓγℓ) ≥ 1
r holds for infinitely many

n. The latter is the probability that the Markov chain (∆ℓgn) on the coset space ∆ℓ\Γ
is equal to ∆ℓγℓ at time n. The assumptions on µ imply that (∆ℓgn) is an irreducible,
aperiodic, reversible Markov chain on ∆ℓ\Γ. It is easy to check that the counting measure
on ∆ℓ\Γ is a stationary measure for this Markov chain (this is a general fact about Markov
chain on coset spaces induced by a random walks on the group). By the ergodic theorem
for aperiodic Markov chains, the probability that ∆ℓgn is equal to any given coset tends
to 1/[Γ : ∆ℓ] (where the latter is set to be 0 if [Γ : ∆ℓ] = ∞). Since we assumed that
µ∗n(∆ℓγℓ) ≥ 1/r for infinitely many n’s, we deduce that [Γ : ∆ℓ] ≤ r. �

Lemma 3.3. Let Γ be a group that can be written as a finite union Γ = ∪r
i=1Yi of subsets.

Then there exists ℓ ∈ {1, . . . , r} such that the subgroup

∆ℓ = ⟨γδ−1 | γ, δ ∈ Yℓ⟩

has index at most r.

Proof. Select one γi ∈ Yi for every i. Then we have Yi ⊂ ∆iγi. Thus Γ = ∪r
i=1∆iγi, and at

least one of the ∆i has index at most r by the previous lemma. �

We will need the following classical lemma, a proof of which can be found in [Nek13,
Lemma 4.1].

Lemma 3.4. Let X be a Hausdorff space, and let G be a group of homeomorphisms of X.
If N is a non-trivial normal subgroup of G, there exists a non-empty open U ⊂ X such that
[GU , GU ] ≤ N .

3.2. From rigid stabilizers to uniformly recurrent subgroups. We still denote by G
a countable group of homeomorphisms of a Hausdorff space X. In this subsection we show
that many properties of the rigid stabilizers GU are inherited by URS’s of the group G.
This is a consequence of the following result.

Theorem 3.5. Let G be a countable group of homeomorphisms of a Hausdorff space X.
Then for every H ∈ Sub(G), one of the following possibilities holds:

(i) the closure of the conjugacy class C(H) in Sub(G) contains the trivial subgroup;
(ii) there exists a non-empty open U ⊂ X such that H admits a finite index subgroup

of GU as a subquotient.

Recall that a group Q is a subquotient of a group H if there exists a subgroup K ≤ H
such that Q is a quotient of K.

Before giving the proof of Theorem 3.5, let us single out the following consequence.
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Corollary 3.6. Retain the notation of Theorem 3.5. If all rigid stabilizers GU , U non-
empty and open in X, are non-amenable (respectively are not elementary amenable, contain
free subgroups, are not virtually solvable), then every non-trivial uniformly recurrent sub-
group of G has the same property.

In particular when combining Theorem 2.26 together with Corollary 3.6, we obtain the
following result. Note that the second assertion follows from the fact that having non-
amenable rigid stabilizers is stable under taking overgroups in Homeo(X).

Theorem 3.7. Let X be a Hausdorff space, and let G be a countable group of homeomor-
phisms of X. Assume that for every non-empty open U ⊂ X, the group GU is non-amenable.
Then G is C∗-simple.

More generally every countable subgroup of Homeo(X) containing G is C∗-simple.

The end of this paragraph is dedicated to the proof of Theorem 3.5. We will actually
prove the following more technical statement, which implies Theorem 3.5, and which will
be used later on.

Proposition 3.8. Let G be a countable group of homeomorphisms of X. Fix z ∈ X. Then
for every H ∈ Sub(G), one of the following possibilities holds:

(i) the closure of the conjugacy class C(H) in Sub(G) contains the trivial subgroup;
(ii) there exists a neighbourhood W of z such that for every K ∈ C(H), there exist a

non-empty open U ⊂ X, a finite index subgroup Γ ≤ GU and a subgroup A ≤ K
with the following properties:

• A fixes W pointwise;
• A leaves U invariant, and for every γ ∈ Γ, there is a ∈ A such that a coincides

with γ on U .

Before going into the proof, we shall explain why Proposition 3.8 implies Theorem 3.5.
Indeed, if H ∈ Sub(G) does not contain {1} in the closure of its conjugacy class, and if
U , Γ and A are as in condition (ii) of Proposition 3.8, then the restriction to U provides a
quotient of A that contains an isomorphic copy of Γ. Since the latter has finite index in GU

and since A is a subgroup of H, this proves condition (ii) of Theorem 3.5. Note that this
argument is completely independent of the choice of the point z and the neighbourhood
W . However these will be important for the application of Proposition 3.8 in the next
subsection.

Proof of Proposition 3.8. We assume that (i) does not hold, and we prove (ii). We may
plainly assume that X has no isolated points, since otherwise (ii) is obviously true.

According to Lemma 2.1, there exists a finite subset P = {g1, . . . , gr} ⊂ G\{1} such that
all the conjugates of P intersect K for every K ∈ C(H). Let U1, . . . , Ur ⊂ X be some open
sets as in the conclusion of Lemma 3.1 applied to P , and let also W be a neighbourhood of
z as in Lemma 3.1. For every i = 1, . . . , r we will write Gi = GUi , the rigid stabilizer of Ui.

Let L be the subgroup of G generated by all the Gi for i = 1, . . . r. By construction the
Gi have disjoint supports, and hence pairwise commute. In particular we have a natural
identification L = G1 × · · · ×Gr. Let us denote πi : L→ Gi the projection of L to Gi.
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FixK ∈ C(H). By definition of P , every element ofGmust conjugate at least one element
of P inside K. In particular we can write L as a finite union of subsets L = Y1 ∪ · · · ∪ Yr,
where Yi is the set of elements of L that conjugate gi ∈ P inside K:

Yi =
{
γ ∈ L | γgiγ−1 ∈ K

}
.

By Lemma 3.3, we may find an index ℓ such that the subgroup

∆ℓ = ⟨γδ−1 | γ, δ ∈ Yℓ⟩
has finite index in L. We fix such a ℓ, and for every γ, δ ∈ Yℓ, we consider the element

aγ,δ = (γg−1
ℓ γ−1)(δgℓδ

−1).

Being the product of two elements of K, aγ,δ is an element of K. We denote by A ≤ K the
subgroup generated by all the elements aγ,δ when γ, δ range over Yℓ.

We will now prove that (ii) holds with U = Uℓ and Γ = πℓ(∆ℓ) ≤ GU . Note that Γ is
indeed of finite index in GU because ∆ℓ has finite index in L. Moreover observe that Γ is
generated by the πℓ(γδ−1) when γ, δ run in Yℓ. By definition of the projection, this is just
the element that coincides with γδ−1 on U and with the identity elsewhere. Hence proving
the following lemma is enough to conclude.

Lemma 3.9. For every γ, δ ∈ Yℓ, the element aγ,δ fixes pointwise W , leaves Uℓ invariant
and coincides with γδ−1 in restriction to Uℓ.

Proof of Lemma 3.9. To prove the statement, let us first rewrite aγ,δ = γ(g−1
ℓ γ−1δgℓ)δ

−1.
Since the elements γ, δ belong to L, they leave every Ui invariant and have support contained
in the union ∪r

i=1Ui. In particular γ and δ leave Uℓ invariant and act trivially on W thanks
to Lemma 3.1. Now the support of g−1

ℓ γ−1δgℓ is contained in g−1
ℓ (∪iUi), and again by

Lemma 3.1 the latter is disjoint from both W and Uℓ. Therefore aγ,δ is trivial on W and
acts as γδ−1 on Uℓ, and the lemma is proved. �

This concludes the proof of the proposition. �
3.3. Case of an extremely proximal action. Recall that we say that a subset Y ⊂ X
is compressible if there exists a point x ∈ X such that for every open U ⊂ X containing
x, there exists g ∈ G such that g(Y ) ⊂ U . The action of G on X is said to be extremely
proximal if every closed C ̸= X is compressible.

Theorem 3.10. Let G be a countable group of homeomorphisms of X. Assume that the
action of G on X is extremely proximal. Let H ∈ Sub(G) such that the closure of the
conjugacy class C(H) in Sub(G) does not contain the trivial subgroup. Then there exist a
non-empty open U ⊂ X and a finite index subgroup Γ ≤ GU such that H contains [Γ,Γ].

Proof. First note that if there is a non-empty open subset U such that GU is finite, then
the conclusion is trivially satisfied. Therefore in the proof we may assume that all the
subgroups GU are infinite.

We start by applying Proposition 3.8 (with an arbitrary choice of z). Since C(H) does
not accumulate at the trivial subgroup in Sub(G) by assumption, we obtain the existence
of a non-empty open U0 ⊂ X, a finite index subgroup Γ0 ≤ GU0 and a subgroup A0 ≤ H
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with the following properties: A0 preserves U0, and for every γ ∈ Γ0 there exists a ∈ A0

which coincides with γ on U0.
By extreme proximality of the action of G on X, the closed subset C = X \ U0 is

compressible. We let z0 ∈ X be a point of X all of whose neighbourhoods contain an
element of the G-orbit of C. Now we apply Proposition 3.8 a second time, this time by
choosing z = z0. We denote by W a neighbourhood of z0 as in condition (ii) in Proposition
3.8.

Fix some g ∈ G such that g(C) ⊂ W . According to the conclusion of Proposition 3.8
applied with K = gHg−1, there must exist a non-empty open U1 ⊂ X, a finite index
subgroup Γ1 ≤ GU1 and a subgroup B ≤ gHg−1 such that B acts trivially on W , and the
action of any element of Γ1 on U1 can be realized by an element of B. Note that since GU1

is assumed to be infinite, the same holds for its finite index subgroup Γ1, and a fortiori the
subgroup B is also infinite.

Set A1 = g−1Bg ≤ H. Since B acts trivially on W , the subgroup A1 acts trivially on
g−1(W ). Now g−1(W ) contains C = X \ U0, so it follows that A1 is a subgroup of GU0 .
Note also that A1 is a subgroup of H by construction, so that we actually have A1 ≤ HU0 .
Now consider A2 = A1 ∩ Γ0. Since Γ0 has finite index in GU0 , the subgroup A2 is of finite
index in A1. Now as noticed above, B (and hence A1) must be infinite, so we deduce that
A2 is also infinite.

We claim that HU0 contains ⟨⟨AΓ0
2 ⟩⟩, the normal closure of A2 in Γ0. To show this, let

x ∈ A2 and γ ∈ Γ0. According to the conclusion of Proposition 3.8, there is a ∈ A0 which
coincides with γ on U0. This implies that the element axa−1 coincides with γxγ−1 on U0.
Moreover axa−1 is trivial outside U0 because x ∈ A2 and A2 acts trivially outside U0. Since
γxγ−1 is also trivial outside U0 (since both γ and x are trivial outside U0), it follows that
the elements axa−1 and γxγ−1 are actually equal. Since A0 and A2 are subgroups of H,
the element axa−1 belongs to H, and the claim is proved.

In particular we have proved that HU0 contains a non-trivial normal subgroup of Γ0

(since A2 is non-trivial). According to Lemma 3.4 applied to Γ0 acting on U0, there exists
a non-empty open U ⊂ U0 such that the derived subgroup of (Γ0)U is contained in HU0 .
Since moreover Γ = (Γ0)U has finite index in GU because Γ0 has finite index in GU0 , we
have proved that Γ satisfies the desired conclusion. �
Corollary 3.11. Assume that the following conditions are satisfied:

(i) X is compact, and the action of G on X is extremely proximal;
(ii) for every open U ⊂ X and every finite index subgroup Γ ≤ GU , there exists an open

V ⊂ U such that GV ≤ [Γ,Γ].
If H ∈ Sub(G) is such that C(H) does not accumulate at the trivial subgroup in Sub(G),

then there exists a point x ∈ X such that C(H) accumulates at some overgroup of G0
x.

Proof. Theorem 3.10 shows that there is U ⊂ X and a finite index subgroup Γ ≤ GU such
that [Γ,Γ] is contained in H. Combining with assumption (ii), we obtain a non-empty open
V ⊂ X such that K = GV is contained in H.

Since the action of G on X is extremely proximal, there exists x ∈ X such that any
neighbourhood of x contains a G-translate of the complement of V . Let W be the collection
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of all neighbourhoods of x in X. For every W ∈ W, we let gW ∈ G such that gW (X \V ) ⊂
W , and we write KW = gWKg

−1
W . Then (KW )W∈W is a net taking values in Sub(G), where

the index set W is partially ordered by reversed inclusion. We claim that every cluster point
of this net must be an overgroup of G0

x.
Let g ∈ G0

x. Since g fixes pointwise some neighbourhood W0 of x, it acts trivially on W
for all W ⊂W0. In particular g is trivial on gW (X \V ), which exactly means that g ∈ KW

for all W ⊂W0. This shows that any cluster point of the net (KW ) must contain g, hence
must contain G0

x since g ∈ G0
x was arbitrary. Since K is contained in H, the conclusion

then follows by considering any cluster point of the net (gWHg
−1
W ) ⊂ C(H). �

Recall (Proposition 2.5) that any minimal action of a countable group G on a compact
space X gives rise to a URS of G, denoted SG(X) ∈ URS(G). More precisely, SG(X) is the
closure in Sub(G) of the set of Gx0 , for x0 ∈ X0, where X0 is the domain of continuity of
the stabilizer map Stab : X → Sub(G).

The following result says that when the action is moreover assumed to be extremely
proximal, under suitable assumptions, SG(X) turns out to be smaller (with respect to the
relation 4 defined in §2.4) than any other non-trivial URS. Recall that a minimal and
extremely proximal action is called an extreme boundary action.

Corollary 3.12. Assume that X is compact, and that the following conditions are satisfied:
(i) Gy X is an extreme boundary action;
(ii) for every open U ⊂ X and every finite index subgroup Γ ≤ GU , there exists an open

V ⊂ U such that GV ≤ [Γ,Γ].
Then SG(X) 4 H for every non-trivial H ∈ URS(G).

In particular if there is H ∈ SG(X) which is a maximal subgroup of G, then the only
uniformly recurrent subgroups of G are 1, SG(X), and G.

Proof. Let H be a non-trivial URS of G. According to Corollary 3.11, there exists K ∈ H
and x ∈ X such that G0

x ≤ K. Let x0 ∈ X0. By minimality of the action of G on X, there
exists a net (gi)i∈I such that gi(x) converges to x0. Since G0

x0
= Gx0 because x0 ∈ X0, it is

an easy verification to show that the net (giG
0
xg

−1
i )i∈I converges to Gx0 . This shows that

there is L ∈ H such that Gx0 ≤ L, and the first statement is proved. The second statement
immediately follows. �

3.4. Extreme boundaries and amenable URS’s. Recall from Theorem 2.16 that every
countable group G admits a largest amenable URS, denoted AG, and that AG coincides
with the set of point stabilizers for the action of G on its Furstenberg boundary (Proposition
2.21). The following result shows that AG can be explicitly identified as soon as one is given
a faithful extreme boundary action of G.

Theorem 3.13. Let G be a countable group, and G y X be a faithful extreme boundary
action. Then:

(i) if Gx is amenable for some x ∈ X, then AG = SG(X);
(ii) if Gx is non-amenable for all x ∈ X, then AG is trivial.
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Proof. Part (i) was already proven in Proposition 2.21, so we only have to prove (ii). Choose
x ∈ X such that Gx = G0

x. Since amenability is preserved by direct limits, Gx must have a
non-amenable finitely generated subgroup, and it follows that there exists a closed subset
C ⊂ X not containing x such that GC is non-amenable. Let U ⊂ X be an arbitrary
non-empty open set. By minimality and extreme proximality, there exists g ∈ G such
that g(C) ⊂ U . This implies that gGCg

−1 is a subgroup of GU , which is therefore non-
amenable. Since U was arbitrary, by Corollary 3.6 it follows that G has no non-trivial
amenable URS’s. �

In particular the stabilizers of any faithful extreme boundary action characterize the
C∗-simplicity of G:

Corollary 3.14. Let G be a countable group, and G y X be a faithful extreme boundary
action. Then G is C∗-simple if and only if one of the following possibilities holds:

(i) the action is topologically free;
(ii) the point stabilizers are non-amenable.

Proof. By Theorem 2.26 G is C∗-simple if and only if AG is trivial. Hence the statement
follows from Theorem 3.13. �

Example 3.15. If Gy X is only required to be a boundary action, the non-amenability of
point stabilizers no longer implies the C∗-simplicity of G. Indeed let Gi y Xi, i = 1, 2,
be two faithful boundary actions which are not topologically free, and such that the point
stabilizers of G1 y X1 are amenable (in particular, G1 is not C∗-simple) but those of
G2 y X2 are not amenable. One can take for instance G1 to be a group G(F, F ′) (see
§4.3.1) acting on the boundary of the tree, and G2 to be Thompson’s group V acting on
the Cantor set. Consider G = G1 × G2, acting on X = X1 × X2 in the natural way.
Then G y X is a faithful boundary action, whose stabilizers are non-amenable since the
stabilizers of G2 y X2 already have this property. However G is not C∗-simple since G1 is
not C∗-simple and is normal in G [BKKO14]. Note that the action Gy X is not extremely
proximal, since closed subsets of the form X1 × {x} are not compressible.

4. Applications

4.1. Thompson’s groups. Recall that Thompson’s group T is the group of orientation
preserving homeomorphisms of S1 = R/Z which are piecewise linear, with only finitely
many breakpoints, all at dyadic rationals, and slopes in 2Z. Thompson’s group F is the
subgroup of T that stabilizes the point 0 ∈ S1.

To define Thompson’s group V , we need the following notation: the binary Cantor set
is the space C = {0, 1}N of (infinite) binary sequences, endowed with the product topology.
For every finite word w in the alphabet {0, 1} we denote Cw ⊂ C the cylinder subset defined
by w, which consists of those sequences that have w as an initial prefix. Thompson’s group
V is the group of homeomorphisms of C consisting of elements g for which there exist two
cylinder partitions {Cw1 , . . . , Cwn} and {Cz1 , . . . , Czn} of C such that g(wix) = zix for every
i and every binary sequence x.
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4.1.1. C∗-simplicity for Thompson’s groups. In this paragraph we completely elucidate the
connections between the problems of the amenability of F and the C∗-simplicity of F and
T (Corollary 4.2), and we prove the C∗-simplicity of the group V and some of its relatives
(see Theorem 4.5).

Theorem 4.1. Suppose that F is non-amenable. Then any countable subgroup G ≤
Homeo(S1) containing F must be C∗-simple.

Proof. Any rigid stabilizer FU , with U a non-empty open subset of S1, contains an iso-
morphic copy of F by Lemma 4.4 from [CFP96], and is therefore non-amenable by our
assumption. Therefore me may apply Theorem 3.7, from which the conclusion follows. �

Recall that Haagerup and Olesen proved in [HO16] that if the group T is C∗-simple,
then the group F has to be non-amenable. This result also appeared in [BKKO14], where
a partial converse is obtained, namely that if T is not C∗-simple, then F is not C∗-simple
either [BKKO14]. The question whether the exact converse of Haagerup-Olesen’s result
holds was considered in [BJ14, Ble16]. The following result answers the question positively,
and also says that the non-amenability of F is also equivalent to its C∗-simplicity.

Corollary 4.2. The following statements are equivalent:
(i) The group F is non-amenable;
(ii) The group F is C∗-simple;
(iii) The group T is C∗-simple.

Proof. That (iii) implies (i) was proved in [HO16], and the implication from (ii) to (i)
follows from a general argument [Har07, Proposition 3]. That (i) implies both (ii) and (iii)
is consequence of Theorem 4.1. �

We now observe that the results obtained in Section 3 may also be applied to other
interesting groups related to Thompson’s group F . We note that there is now a multitude
of “Thompson-like” groups in the literature, for which similar arguments could be applied.
We certainly do not try to be exhaustive here, and only give a few examples which further
illustrate the results from Section 3.

Consider the group PL2(R) of homeomorphisms of the real line which are piecewise linear
with a discrete set of breakpoints (all of them dyadic rationals), with slopes in 2Z and which
preserve the set of dyadic rationals. Thompson’s group F is well known to have a faithful
representation ρ : F → PL2(R) (which is topologically conjugate to its standard action on
the open interval (0, 1)), whose image ρ(F ) consists of those elements g ∈ PL2(R) for which
there exist A > 0 and m,n ∈ Z such that g(x) = x+m for every x ≤ A and g(x) = x+ n
for every x ≥ A. For the sake of simplicity we will still denote by F the image of ρ, and
when talking about F inside PL2(R) we will always implicitly refer to this representation.

The following result is another formulation of Theorem 4.1.

Theorem 4.3. Suppose that F is non-amenable. Then any countable subgroup G ≤
Homeo(R) that contains F must be C∗-simple.
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We consider two countable groups of homeomorphisms of the real line that contain F .
The first is the normalizer of F in PL2(R), which, by work of Brin [Bri96], turns out to be
isomorphic to the group Aut(F ) of automorphisms of F . A second example is the group
Comm(F ) of abstract commensurators of the group F , which was explicitly described inside
PL2(R) by Burillo, Cleary and Röver [BCR08].

Corollary 4.4. The following statements are equivalent:
(i) The group F is non-amenable;
(ii) The automorphism group Aut(F ) is C∗-simple;
(iii) The abstract commensurator group Comm(F ) is C∗-simple.

Proof. The fact that (i) implies (ii) and (iii) is a consequence of Theorem 4.3 thanks to
the identifications of Aut(F ) and Comm(F ) (given respectively in [Bri96] and [BCR08])
with overgroups of F inside PL2(R). Being centerless, F embeds as a normal subgroup
in Aut(F ), so it clear that F cannot be amenable if Aut(F ) is C∗-simple. So (ii) implies
(i). Finally it remains to see that (iii) also implies (i). According to [BCR13, Theorem 1],
the group [F, F ] appears as a subnormal subgroup of Comm(F ). Since being C∗-simple
is inherited by normal subgroups [BKKO14, Theorem 1.4], it follows that if Comm(F )
was C∗-simple then the same would be true for [F, F ]. In particular [F, F ] would not be
amenable, so F would not be amenable either. �

While the question of C∗-simplicity of the groups F and T remains open, the arguments
developed in this paper allow to obtain the C∗-simplicity of the group V . Indeed, since the
rigid stabilizer of a cylinder for the action of V on the binary Cantor set is easily seen to be
isomorphic to V , it follows that any rigid stabilizer VU , for U a non-empty open subset of
C, is non-amenable (because the group V contains non-abelian free subgroups). Therefore
Theorem 3.7 applies and shows that V is C∗-simple. The exact same argument applies to
the higher-dimensional groups nV , constructed by Brin in [Bri04], for the action of nV on
the Cantor n-cube.

Theorem 3.7 further implies that any countable subgroup of Homeo(C) containing V is
C∗-simple. Interesting examples of such groups are the groups VG, associated to a self-
similar group G, considered by Nekrashevych in [Nek04, Nek13].

The following result summarizes the above discussion.

Theorem 4.5. The following groups are C∗-simple:
(i) Thompson’s group V ;
(ii) the higher-dimensional groups nV , n ≥ 2;
(iii) all the groups VG, where G is a countable self-similar group.

4.1.2. Classification of uniformly recurrent subgroups. In this paragraph we completely clas-
sify the URS’s of the groups F , T and V .

Theorem 4.6 (Classification of the URS’s of Thompson’s groups).
(i) The only URS’s of Thompson’s group F are the normal subgroups. The derived

subgroup [F, F ] has no URS other than 1 and [F, F ].
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(ii) The URS’s of Thompson’s group T are 1, T and the stabilizer URS arising from its
action on the circle.

(iii) The URS’s of Thompson’s group V are 1, V and the stabilizer URS arising from its
action on the binary Cantor set.

Proof. Let us first prove (i). We consider the action of the group F on the circle S1 =
[0, 1]/∼, where ∼ identifies the points 0 and 1. For simplicity we will still denote by 0 the
image of 0 in S1. Recall that the derived subgroup of F consists exactly of those elements
of F that act trivially on a neighbourhood of 0 in S1 [CFP96]. We need some preliminary
lemmas.

Lemma 4.7. The action of [F, F ] on S1 is extremely proximal.

Proof. We show that every proper closed C ⊂ S1 is compressible. Without loss of generality,
we may assume that C is contained in the complement of an open interval ]a, b[, where a, b
are dyadic numbers and 0 < a < b < 1. We let ]β, α[ be an open interval of S1 containing
the point 0, and we show that there is a [F, F ]-translate of C inside ]β, α[. Upon reducing
]β, α[ if necessary, we may assume that α, β are dyadic numbers and that α′ = α/2 < a
and β′ = (1 + β)/2 > b. We easily see that for n large enough, any homeomorphism of S1
acting trivially on [0, α′] and [β′, 1], acting like x 7→ 2−nx+ α′(1− 2−n) on [α′, a] and like
x 7→ 2−nx+ β′(1− 2−n) on [b, β′]; will send C into ]α, β[. Since such homeomorphisms can
be found in the group [F, F ], the statement follows. �
Lemma 4.8. For every dyadic numbers 0 < α < β < 1 with β − α ∈ 2Z and every finite
index subgroup Γ ≤ F[α,β], there exist dyadic numbers 0 < a < b < 1 such that F[a,b] is
contained in the derived subgroup of Γ.

Proof. The subgroup F[α,β] is easily seen to be isomorphic to F [CFP96, Lemma 4.4]. In
particular F[α,β] has a simple derived subgroup N , and N is contained in any finite index
subgroup. Therefore the derived subgroup of Γ must contain N , and since N is exactly
the set of elements which are trivial on neighbourhoods of α and β, the conclusion actually
holds for every dyadic numbers a, b such that α < a < b < β. �
Lemma 4.9. Let a, b be dyadic numbers such that 0 < a < b < 1, and let H be the rigid
stabilizer of [a, b] in F (which is a subgroup of [F, F ]). Then [F, F ] is an accumulation point
of C(H) in Sub([F, F ]).

Proof. We choose (gn) ∈ [F, F ] such that the sequence (gn([a, b])) is increasing and ascends
to S1 \ {0}, and we denote Hn = gnHg

−1
n . It is immediate to check that (Hn) converges to

the subgroup of F consisting of elements which are trivial in a neighbourhood of 0 in S1.
Since the latter subgroup is exactly [F, F ], the proof is complete. �

We are now ready to prove that the only URS’s of [F, F ] are 1 and [F, F ]. Write G =
[F, F ], and let H ∈ URS(G) be a non-trivial URS and H ∈ H. Since the action of G on S1 is
extremely proximal by Lemma 4.7, Theorem 3.10 implies that we may find dyadic numbers
0 < α < β < 1 such that H contains the derived subgroup of a finite index subgroup of the
rigid stabilizer G[α,β]. Now the group G[α,β] is equal F[α,β], so by Lemma 4.8 we may find
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dyadic numbers 0 < a < b < 1 such that H contains the rigid stabilizer F[a,b]. According
to Lemma 4.9, the conjugacy class of F[a,b] accumulates at G in Sub(G). This shows that
G ∈ H, and by minimality H = G.

We now prove that the only URS of Thompson’s group F are the normal subgroups of
F . Starting with a non-trivial H ∈ URS(F ) and repeating the exact same argument as
above, we obtain the existence of N ∈ H such that [F, F ] ≤ N . Such a subgroup has to be
normal in F , so by minimality we deduce that H = N . This concludes the proof of (i).

To prove (ii), observe that the action of T on S1 is clearly minimal, and is also extremely
proximal since it is already the case for the subgroup [F, F ] (Lemma 4.7). Now for every
dyadic numbers 0 < α < β < 1, the rigid stabilizer T[α,β] coincides with F[α,β], and using
Lemma 4.8 we see that we are in position to apply Corollary 3.12. Moreover point stabilizers
Tx, x ∈ S1, are maximal subgroups of T since T acts 2-transitively on each of its orbits in
S1 (see [Sav15, Proposition 1.4], where this is proved for the group F , but the same proof
applies to T ). Thus (ii) is proved.

The proof of (iii) is very similar to (ii), and actually easier. The action of V on C is clearly
minimal and extremely proximal. Moreover for every cylinder U in C, the rigid stabilizer
VU is isomorphic to V , and hence is simple [CFP96]. Finally for every x ∈ C, the stabilizer
Vx is a maximal subgroup of V , because V acts 2-transitively (indeed n-transitively for all
n) on the orbit of x. Therefore we may apply Corollary 3.12, which implies the statement,
and concludes the proof of the theorem. �

We now give an explicit description of the URS’s of the groups T and V arising from
their action respectively on the circle and the Cantor set.

For x ∈ S1, we will denote by T 0+
x and T 0−

x the subgroups of T consisting of those elements
that fix pointwise a right (respectively left) neighbourhood of x. Note that if x is not a
breakpoint of the slope of some element of T (i.e. x is not dyadic), then T 0+

x = T 0−
x = T 0

x .

Proposition 4.10. The stabilizer URS of T y S1 is given by

ST (S1) = {T 0+
x | x ∈ D} ∪ {T 0−

x | x ∈ D} ∪ {T 0
x | x ∈ S1 \D},

where D ⊂ S1 is the set of dyadic points.

Proof. Let X0 ⊂ S1 be the domain of continuity of the stabilizer map. Recall that X0

coincides with the set of points x ∈ S1 such that T 0
x = Tx (Lemma 2.2), so in particular X0

intersects D trivially. We shall identify the closure in Sub(T ) of {T 0
x | x ∈ X0}.

Let (xn) be a sequence of points of X0 such that (T 0
xn
) converges to some H in Sub(T ).

We want to prove that H is either T 0+
x or T 0+

x for some x ∈ D, or of the form T 0
x for

some x /∈ D. Up to passing to a subsequence, we may assume that (xn) converges to a
point x ∈ S1, and also that (xn) converges to x from one side, say from the left. If (xn) is
eventually equal to x, then we must have x /∈ D, and H = T 0

x . If (xn) is not eventually
constant, then (T 0

xn
) converges to T 0−

x . To see this, observe that every element of T 0−
x

belongs to T 0
xn

for n large enough, and conversely every element that belongs to infinitely
many T 0

xn
must belong to T 0−

x . Thus we have H = T 0−
x . Since T 0−

x = T 0
x when x is not

dyadic, we have proved the left-to-right inclusion in the statement.
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Conversely, we shall prove that every T 0±
x , x ∈ D, belongs to the closure of {T 0

x | x ∈
X0}. But this is clear, since if (xn) ∈ X0 converges to x from the left (respectively right),
then again (T 0

xn
) converges to T 0−

x (respectively T 0+
x ). Therefore the converse inclusion also

holds, and the equality is proved. �
The combination of Theorem 4.6 and the above description of the URS associated to

T y S1 allows us to deduce the following result.

Theorem 4.11. Let D be the set of dyadic points of S1. The point stabilizers for the action
of Thompson’s group T on its Furstenberg boundary are either:

(i) {T 0+
x | x ∈ D} ∪ {T 0−

x | x ∈ D} ∪ {T 0
x | x ∈ S1 \D}; in which case Thompson’s

group F is amenable;
(ii) or trivial; in which case Thompson’s group F is non-amenable.

Proof. Recall (Proposition 2.21) that for every countable groupG, the set of point stabilizers
for the action G y ∂FG is precisely the Furstenberg URS of G. Since Thompson’s group
T is non-amenable, the URS AT has to be either trivial or equal to ST (S1) according to
Theorem 4.6. If AT = ST (S1) then statement (i) holds thanks to Proposition 4.10, and in
this case the group F must be amenable since all the elements of ST (S1) contain a copy
of F . On the other hand if AT is trivial then ST (S1) is not amenable, and therefore the
group F is not amenable either because the conjugacy class of F inside T accumulates on
ST (S1). �

For Thompson’s group V we have:

Proposition 4.12. The stabilizer URS of V y C is given by SV (C) = {V 0
x | x ∈ C}.

Proof. If x is a point of C and g an element of Vx, then either Fix(g) contains a cylinder
containing x, or there exists a cylinder U around x and ε = ±1 such that gεny → x, n→ ∞,
for every y ∈ U . In particular either Fix(g) contains a neighbourhood of x, or x is isolated
in Fix(g). This implies that V y C has Hausdorff germs (Definition 2.9), so the statement
follows from Proposition 2.10. �
4.1.3. Rigidity of non-free minimal actions. In this subsection we explain how the classifi-
cation of the URS’s of the Thompson groups, obtained in the previous subsection, imposes
strong restrictions on the minimal actions of these groups on compact topological spaces.

Recall that given a continuous group action Gy X on a topological space, for every x ∈
X we denoteG0

x the subgroup ofG consisting of elements that fix pointwise a neigbhourhood
of x. We will need the following lemma.

Lemma 4.13. Consider Thompson’s group T acting on the circle S1. For any two distinct
points z1, z2 ∈ S1, the subgroups T 0

z1 and T 0
z2 generate T .

The same statement holds for Thompson’s group V acting on the binary Cantor set.

Proof. Consider first the case of T . Let us first assume that z1 and z2 do not belong to
the same T -orbit. Then T 0

z1 acts transitively on the T -orbit of z2 (see the proof of [Sav15,
Proposition 1.4]). Since for every g ∈ T we have gT 0

z2g
−1 = T 0

g(z2)
, it follows that the
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subgroup of T generated by T 0
z1 and T 0

z2 contains the subgroup generated by all conjugates
of T 0

z2 . The latter is a non-trivial normal subgroup of T , hence is equal to T since T is
simple.

If z1 and z2 belong to the same T -orbit, then the group T 0
z1 still acts transitively on

this orbit after removing the point z1. Hence the same argument shows that the subgroup
of T generated by T 0

z1 and T 0
z2 still contains all conjugates of T 0

z2 (by conjugating T 0
z2 by

elements of T 0
z1 we obtain all conjugates but T 0

z1 itself, which is already contained in it by
assumption). Hence the same argument applies.

The proof for V is similar (and actually easier). We leave the details to the reader. �
Recall that given two group actions G y X and G y Y by homeomorphisms, we say

that G y X factors onto G y Y if there exists a continuous surjective G-equivariant
map X → Y . We are now ready to state the following corollary of Theorem 4.6.

Corollary 4.14. Let F , T and V be the Thompson groups.
(i) Every faithful, minimal action of F on a compact space is topologically free.
(ii) Every non-trivial minimal action T y X on a compact space which is not topologi-

cally free factors onto the standard action on the circle.
(iii) Every non-trivial minimal action V y X on a compact space which is not topolog-

ically free factors onto the standard action on the Cantor set.
Moreover in (ii) and (iii) the factor map φ : X → S1 (respectively φ : X → C) is unique,
and is characterized by the condition that φ(x) is the unique point of S1 (respectively C)
such that T 0

φ(x) (respectively V 0
φ(x)) fixes x.

Proof. Note that (i) follows directly from the first statement of Theorem 4.6, since any min-
imal action on a compact space giving rise to a trivial URS stabilizer must be topologically
free by Proposition 2.7.

The proof of (ii) requires additional arguments. Let T y X be a non-trivial, minimal
action on a compact space, which is not topologically free. The following lemma shows
that the map φ appearing in the statement is well-defined, and provides a factor map to
T y S1.

Lemma 4.15. For every x ∈ X there exists a unique z ∈ S1 such that T 0
z ≤ Tx. The map

φ : X → S1, x 7→ z = φ(x), is continuous, surjective, and T -equivariant.

Proof. Since T y X is neither trivial nor topologically free, by Theorem 4.6 we must have
ST (X) = ST (S1). Hence Lemma 2.8 ensures the existence of a point z ∈ S1 as in the
statement. The uniqueness of z follows from the fact that for any two z1 ̸= z2 ∈ S1, the
subgroups T 0

z1 and T 0
z2 generate T (Lemma 4.13). Hence if there were two possible choices

for z, the point x would be globally fixed by T , contradicting our assumption on T y X.
In the sequel we write z = φ(x).

The fact that the map φ is equivariant is clear. Let us check that φ is continuous. Let
(xi)i∈I ⊂ X be a net converging to x. Let y ∈ S1 be a cluster point of (φ(xi)) and let us
prove that y = φ(x). We may assume, upon taking a subnet, that φ(xi) → y and that
(Txi) converges to a limit H in Sub(T ). Since φ(xi) → y, every element of T 0

y eventually
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belong to T 0
φ(xi)

, and since T 0
φ(xi)

≤ Txi we deduce that T 0
y ≤ H. Moreover since Txi → H

and xi → x, we deduce that H ≤ Tx. It follows that T 0
y ≤ Tx, and since φ(x) is the only

point of S1 with this property, y = φ(x).
The fact that φ is onto readily follows, since the action of T on S1 is minimal. �
Finally note that the map φ constructed in the lemma is the unique factor map from

T y X to T y S1. Namely if ψ : X → S1 is another factor map, by equivariance T 0
φ(x)

must must fix ψ(x), which implies that ψ(x) = φ(x).
The proof of (iii) is exactly the same, using the second statement of Lemma 4.13. �

4.1.4. Actions of Thompson’s group T on the circle. In this paragraph we further investigate
situation (ii) of Corollary 4.14 for actions of Thompson’s group T on the circle.

Recall that a representation τ : G→ Homeo(S1) is said to be semi-conjugate to σ : G→
Homeo+(S1) if τ factors onto σ through a map which is monotone (non-increasing or non-
decreasing) with respect to the circular order on S1, and with degree ±1.

Ghys and Sergiescu have proved in [GS87, Théorème K] that every non-trivial action of
Thompson’s group T on the circle by C2-diffeomorphisms is semi-conjugate to the standard
action. The main purpose of this paragraph is to show that this result actually holds for
every action of T on the circle by homeomorphisms.

Theorem 4.16. Every non-trivial, continuous action of Thompson’s group T on the circle
is semi-conjugate to the standard action.

First note that a non-trivial continuous action of T on the circle cannot have a finite
orbit. Indeed, the case of a finite orbit of cardinality greater than 1 is ruled out by the
simplicity of the group T ; and the case of a global fixed point cannot happen either because
the stabilizer of a point in the group of orientation preserving homeomorphisms of the circle
is torsion-free, whereas T contains torsion elements.

It is a well-known general fact that any continuous action of a countable group on the
circle without finite orbits is semi-conjugate to a minimal action (the semi-conjugation is
obtained by collapsing to a point every connected component of the complement of the
unique minimal subset) [Ghy01, Proposition 5.8]. In particular Theorem 4.16 has the
following equivalent formulation.

Theorem 4.17. Every minimal continuous action of the group T on the circle is conjugate
to the standard action.

Proof. In the sequel we denote by τ : T → Homeo(S1) an arbitrary representation of T on
the circle such that the induced action τ(T ) y S1 is minimal, and by a mere inclusion
T ↪→ Homeo(S1) the standard representation. If x ∈ S1 and g ∈ T , the notation gx will
refer to the standard action, and we will always write τ(g)x when making reference to the
action induced by τ . The notations Tx, T 0

x will always be intended with respect to the
standard action.

We wish to apply Corollary 4.14 to the action τ(T ) y S1. For this, we need to rule
out the possibility that this action is topologically free. This will follow from the following
well-known lemma.



32 ADRIEN LE BOUDEC AND NICOLÁS MATTE BON

Lemma 4.18. Every non-trivial continuous action of [F, F ] on the circle has a fixed point.

We derive this lemma from a result of Margulis (conjectured by Ghys), stating that every
group of homeomorphisms of the circle that does not have free subgroups must preserve
a probability measure [Mar00]. However É. Ghys informed us that the lemma was known
before Margulis’ result, and can also be proved directly.

Proof. Since [F, F ] does not have free subgroups by a result of Brin and Squier [BS85],
Margulis’ alternative implies that every continuous action on S1 preserves a probability
measure µ. Assume by contradiction that [F, F ] acts on S1 with no global fixed point. By
simplicity of [F, F ] all orbits must be infinite, and it follows that the measure µ is atomless.
By reparametrizing the circle using µ, we can semi-conjugate the action of [F, F ] to an
action that preserves the Lebesgue measure, i.e. an action by rotations. This is clearly a
contradiction because [F, F ], being simple, does not have non-trivial abelian quotients. �

Lemma 4.19. A minimal action of T on the circle cannot be topologically free.

Proof. Let τ : T → Homeo(S1) be, as above, a representation inducing a minimal action.
According to Lemma 4.18, there exists x ∈ S1 that is fixed by τ([F, F ]). Since the conjugacy
class of [F, F ] in Sub(T ) does not accumulate on the trivial subgroup, a fortiori the same
is true for the stabilizer of x for the action induced by τ . According to the last sentence in
Proposition 2.5, the stabilizer URS of this action must be non-trivial. By Proposition 2.7,
this exactly means that the action is not topologically free. �

We now complete the proof of Theorem 4.17. Since the action τ(T ) y S1 is minimal
and not topologically free, Corollary 4.14(ii) provides us with a continuous surjective map
φ : S1 → S1 that factors the action τ(T ) y S1 onto the standard action T y S1. Recall
the definition of the map φ: for x ∈ S1, φ(x) ∈ S1 is the unique point z ∈ S1 such that
τ(T 0

z ) fixes x. Let us show that, in this situation, φ must be a homeomorphism. It is
enough to check that φ is injective. To this end, assume by contradiction that there exist
x1 ̸= x2 such that φ(x1) = φ(x2) = z. Since φ is surjective, in particular φ is not constant
on at least one of the two intervals with endpoints x1 and x2, say I. Since τ(T 0

z ) fixes x1
and x2, τ(T 0

z ) must preserve I (note that τ(T ) necessarily acts by orientation-preserving
homeomorphisms because T has no subgroup of index two). Choose and fix a point y ∈ I
such that z′ = φ(y) verifies T 0

z′ = Tz′ , and z′ is not contained in the T -orbit of z. Note that
such a point y exists because φ(I) ⊂ S1 is a proper interval, and the set of z′ verifying these
two conditions is dense in S1 (in fact, both conditions are verified by all but countably many
points). The fact that z and z′ lie in different T -orbits implies that T 0

z acts transitively on
the orbit of z′, as it was already observed in the proof of Lemma 4.13. From this we deduce
that every element of T can be written as a product of an element in T 0

z and an element in
Tz′ = T 0

z′ , i.e. we have the decomposition T = T 0
z T

0
z′ . Since τ(T 0

z′) fixes y by definition of
z′ = φ(y), it follows that the τ(T )-orbit of y is equal to the τ(T 0

z )-orbit of y, and thus it is
contained in I since τ(T 0

z ) preserves I. This contradicts the minimality of τ(T ) y S1, and
shows that the map φ must be injective. This concludes the proof of Theorem 4.17, and
thus the proof of Theorem 4.16. �
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The following remark was pointed out to us by É. Ghys.

Remark 4.20. In contrast to what is shown in Theorem 4.16 for Thompson’s group T ,
the group F does admit non-trivial continuous actions on the interval that are not semi-
conjugate to the standard action. Such an action can be obtained by choosing a bi-invariant
ordering on F (bi-invariant orderings on F exist, and these were completely classified in
[NR10]), embedding F in the interval [0, 1] by respecting the bi-invariant ordering, and
extending the F -action on itself to an action on the interval in the natural way. The
resulting action of F on [0, 1] has the property that for every g ∈ F , either gx ≤ x or
gx ≥ x for all x ∈ [0, 1]. Note that the standard action of F on [0, 1] is far from verifying
this property.

4.2. Groups of piecewise projective homeomorphisms. In this paragraph we prove
the C∗-simplicity of the groups of piecewise projective homeomorphisms of the real line
considered by Monod in [Mon13] to provide new examples of non-amenable groups with-
out free subgroups. We also prove the C∗-simplicity of the finitely presented group G0

introduced by Lodha and Moore in [LM16].

We take the original notation from [Mon13]. Consider the action of PSL2(R) by homo-
graphies on the projective line P1(R) = R ∪ {∞}. Given a subring A ≤ R, we let G(A)
be the group of homeomorphimsms of P1(R) that coincide with elements of PSL2(A) in
restriction to finitely many intervals, and such that the endpoints of the intervals belong to
the set of fixed points of hyperbolic elements of PSL2(A). Let also H(A) ≤ G(A) be the
stabilizer of the point ∞. Thus, H(A) acts on the real line R by homeomorphisms.

The following easy lemma provides a sufficient condition for all rigid stabilizers to be
non-amenable.

Lemma 4.21. Let X be a topological space, and G a group of homeomorphisms of X.
Assume that there exists an open subset U0 ⊂ X whose G-orbit forms a basis for the
topology, and such that GU0 is non-amenable. Then all rigid stabilizers GU , for U ⊂ X
open and non-empty, are non-amenable.

Proof. Let U be any non-empty open subset of X. If g ∈ G is such that g(U0) ⊂ U
(such an element exists by assumption), then gGU0g

−1 is contained in GU . Since GU0 is
non-amenable by assumption, GU is also non-amenable. �

Theorem 4.22. Let G ≤ H(R) be a non-amenable countable subgroup of H(R). Assume
that for every non-empty intervals I1 =]a, b[ and I2 =]c, d[, there is g ∈ G such that g(I1) ⊂
I2. Then G is C∗-simple.

Proof. The two germs around the point ∞ give rise to a morphism G→ (RoR×
+)

2. Since
G is non-amenable, the kernel N of the above morphism is also non-amenable.

Since every element of N acts trivially on a neighbourhood of ∞, we can write N as the
increasing union of the rigid stabilizers N]−n,n[, n ≥ 1. Since a direct limit of amenable
groups remains amenable, there must exist n such that N]−n,n[ is non-amenable. By as-
sumption the G-orbit of ]− n, n[ generates the topology on R, so by Lemma 4.21 all rigid
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stabilizers GU , for U ⊂ R open and non-empty, are non-amenable. Therefore G satisfies
the assumptions of Theorem 3.7, so it follows that G is C∗-simple. �

It is proved in [Mon13] that if A ≤ R is a dense subring, then the group H(A) is non-
amenable. Note that non-amenability of G(A) is clear since G(A) contains non-abelian free
subgroups. Therefore Theorem 4.22 implies:

Corollary 4.23. Let A be a countable dense subring of R. Then both H(A) and G(A) are
C∗-simple.

Lodha and Moore have exhibited a finitely presented subgroupG0 ≤ H(Z[1/
√
2]) [LM16].

The group G0 is generated by the translation a = t 7→ t + 1, and the two following
transformations b and c:

b(t) =


t if t ≤ 0
t

1−t if 0 ≤ t ≤ 1
2

3− 1
t if 1

2 ≤ t ≤ 1
t+ 1 if 1 ≤ t

c(t) =

{
2t
1+t if 0 ≤ t ≤ 1

t otherwise.

It readily follows from the definition that for all n ≥ 1, the element bn sends the interval
[0, 1] to [0, n]. Therefore the ⟨a, b⟩-orbit of any non-empty open interval generates the
topology on R. Combined with the non-amenability of G0 [LM16], Theorem 4.22 thus
implies the following result.

Corollary 4.24. The group G0 is C∗-simple.

As far as we know, this provides the first example of a finitely presented C∗-simple group
with no free subgroups.

4.3. Groups acting on trees. In this paragraph T will be a simplicial tree, whose set of
ends will be denoted ∂T . Any edge of T separates T into two subtrees, called half-trees.

Recall that g ∈ Aut(T ) is elliptic if g stabilizes a vertex or an edge, and hyperbolic if g
translate along a bi-infinite geodesic line, called the axis of g. In this last situation g admits
exactly two fixed ends, called the endpoints of g. We say that the action of a group G
on T is of general type if G has hyperbolic elements without common endpoints, and is
minimal if T has no proper G-invariant subtree. This last terminology is conflicting with
the one introduced in §2.1, but there will be no ambiguity since the meaning of the word
minimal will be clear from the context.

In the sequel we assume that G is a subgroup of Aut(T ) whose action on T is minimal
and of general type. We will repeatedly use the classical fact that, under these assumptions,
G contains a hyperbolic element with axis contained in any given half-tree of T .

Lemma 4.25. For every half-trees T1, T2 in T , there is g ∈ G such that g(T1) ⊂ T2.

Proof. First assume that the half-trees T1 and T2 are disjoint. Then any hyperbolic g ∈ G
such that the axis of G lies in T2 will send T1 inside T2. If T2 is not contained in T1, then
T2 must contain another half-tree T ′

2 that is disjoint from T1, so that we may apply the
previous argument and find g ∈ G such that g(T1) ⊂ T ′

2 ⊂ T2. In the case when T1 contains



SUBGROUP DYNAMICS AND C∗-SIMPLICITY OF GROUPS OF HOMEOMORPHISMS 35

T2, any hyperbolic element whose axis is contained in the complement of T1 will send T1
onto a subtree disjoint from T1, so in particular disjoint from T2. Again we are reduced to
the first case, and the statement is proved. �

We consider the set T ⊔∂T , endowed with the coarsest topology for which every half-tree
is open. By a half-tree in T ⊔ ∂T we mean the union of a half-tree T1 in T and the set of
ends defined by T1. The set Tf of vertices of T having finite degree is clearly preserved by
G, so that G also acts on XT = (T \ Tf ) ⊔ ∂T . One easily check that XT is actually the
only minimal closed G-invariant subset of T ⊔ ∂T .

Proposition 4.26. The action of G on XT is extremely proximal.

Proof. We want to show that every proper closed C ⊂ XT is compressible. The subset
∂T being dense in XT , the complement of C must contain some ξ ∈ ∂T . Since any
neighbourhood of ξ contains a half-tree, upon enlarging C we may assume that C is itself a
half-tree (here by half-tree in XT we mean the intersection of a half-tree of T ⊔∂T with XT ).
Now given any point η ∈ ∂T , Lemma 4.25 shows that any neighbourhood of η contains a
G-translate of C, so C is compressible. �

4.3.1. Almost prescribed local action. In this paragraph Ω will be a (possibly finite) count-
able set of cardinality greater than three, and T will be a regular tree of branching degree
the cardinality of Ω. Note that the set of vertices of T must be countable. As in the
previous paragraph, we denote XT = (T \ Tf ) ⊔ ∂T . Since the tree T is now regular, we
have XT = ∂T when Ω is finite, and XT = T ⊔ ∂T when Ω is infinite.

Let c : E(T ) → Ω be a colouring of the set of edges of T such that for every vertex v, the
map c induces a bijection cv between the set of edges around v and Ω. For g ∈ Aut(T ) and
for a vertex v, the action of g around v gives rise a permutation σ(g, v) ∈ Sym(Ω), defined
by σ(g, v) = cgv ◦ gv ◦ c−1

v , that we will call the local permutation of g at the vertex v.
Given two permutation groups F ≤ F ′ ≤ Sym(Ω), we denote by G(F, F ′) the set of

g ∈ Aut(T ) having all their local permutations in F ′, and all but finitely many in F :
σ(g, v) ∈ F ′ for all v and σ(g, v) ∈ F for all but finitely many v. The index two subgroup
of G(F, F ′) that preserves the types of vertices of T will be denoted G(F, F ′)∗. We will
always assume that the permutation group F acts freely on Ω. Under this assumption, it is
not hard to see that G(F, F ′) is a countable group as soon as the permutation group F ′ is
countable. When Ω is finite, G(F, F ′) is actually a finitely generated group [LB16].

Recall that, under the assumption that point stabilizers in F ′ are amenable, the groups
G(F, F ′) are not C∗-simple and yet do not have non-trivial amenable normal subgroups
[LB15]. The goal of this paragraph is twofold: we first give an explicit description of the
Furstenberg URS of these groups (for Ω finite) and interpret this result at the level of the
Furstenberg boundary; and also give, under appropriate assumptions on the permutation
groups, a complete classification of all the URS’s of the groups G(F, F ′).

4.3.2. Description of the Furstenberg URS. We will need the following lemma.
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Lemma 4.27. Let ξ ∈ ∂T , and denote by G(F, F ′)0ξ the set of elements of G(F, F ′) fixing
a neighbourhood of ξ in ∂T . Then G(F, F ′)0ξ is precisely the set of elliptic elements of
G(F, F ′)ξ.

Proof. The fact that G(F, F ′)0ξ contains only elliptic elements is clear. To prove the con-
verse, let g be an elliptic element of G(F, F ′)ξ, and denote by (vn) a sequence of adjacent
vertices representing the point ξ. Since g is elliptic and g fixes ξ, g must fix vn for n large
enough. Now since g has only finitely many local permutations outside F , there is n0 ≥ 1
such that σ(g, v) ∈ F for every vertex v outside the ball of radius n0 around v0. Thanks
to the previous observation, we may also assume that g fixes all the vn for n ≥ n0. Now
the permutation σ(g, vn0+1) belongs to F and has a fixed point since g fixes the edge en0

between vn0 and vn0+1. Since F acts freely on Ω by assumption, this shows that σ(g, vn0+1)
is trivial, i.e. g fixes the star around vn0+1. By repeating the argument we immediately
see that g must fix pointwise the half-tree defined by en0 and containing vn0+1. The latter
being an open neighbourhood of ξ in ∂T , the statement is proved. �

The following result gives a precise description of the stabilizer URS associated to the
action G(F, F ′) y ∂T , and shows that it coincides with the maximal amenable URS of
G(F, F ′). We point out that the assumption that Ω is finite (equivalently, XT = ∂T ) is
important here, as the description of the URS associated to the action of G(F, F ′) on XT

turns out to be more complicated when Ω is infinite.

Proposition 4.28. Assume that Ω is finite. Let F ≤ F ′ ≤ Sym(Ω), and write G =
G(F, F ′). Then the Furstenberg URS of G is AG = SG(∂T ), and is exactly the collection
of subgroups G0

ξ , for ξ ∈ ∂T .

Proof. The action G y ∂T is a boundary action, and stabilizers are (locally finite)-by-
cyclic [LB16]. In particular they are amenable, so the equality AG = SG(∂T ) follows from
Proposition 2.21. To show the second statement, take ξ ∈ ∂T and g ∈ Gξ. If g is hyperbolic
then ξ is clearly isolated in Fix(g), and if g is elliptic then Fix(g) contains a neighbourhood
of ξ according to Lemma 4.27. Therefore the action of G on XT = ∂T has Hausdorff germs,
and the conclusion follows from Proposition 2.10. �
Corollary 4.29. Assume that Ω is finite, and let F ≤ F ′ ≤ Sym(Ω).

(i) The collection of point stabilizers for the action of G(F, F ′) on its Furstenberg bound-
ary is exactly the collection of G(F, F ′)0ξ , ξ ∈ ∂T .

(ii) An element g ∈ G(F, F ′) fixes a point in the Furstenberg boundary of G(F, F ′) if
and only if g fixes a half-tree of T , or equivalently g is elliptic and g fixes a point
in ∂T .

Proof. The elements of AG(F,F ′) are exactly the points stabilizers for the action of G(F, F ′)
on its Furstenberg boundary (Proposition 2.21), so the first statement is a consequence of
Proposition 4.28. The second statement follows immediately thanks to Lemma 4.27. �

The following remark shows that the stabilizer map AG → Sub(G), which associates to
H ∈ AG its normalizer, is not continuous in general.
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Remark 4.30 (see also Remark 2.22(3)). Assume that F � F ′, and write G = G(F, F ′).
Then the map Sub(G) → Sub(G), which sends a subgroup H to its normalizer NH in G,
is not continuous on AG. Indeed, let ξ ∈ ∂T be the endpoint of some hyperbolic element
of G, and choose a sequence (ξn) converging to ξ such that ξn is not the endpoint of some
hyperbolic element of G. Then G0

ξn
converges to G0

ξ in AG, but NG0
ξn

= G0
ξn

does not
converge to NG0

ξ
because the latter contains a hyperbolic element by our assumption on ξ.

4.3.3. Classification of all URS’s. Sufficient conditions on the permutation groups F ≤ F ′

ensuring the simplicity of the group G(F, F ′)∗ were obtained in [LB16, Corollary 4.14].
In this paragraph we strengthen this result by giving sufficient conditions under which we
are able to completely describe the set of URS’s of G(F, F ′)∗ (see Theorem 4.33). Note
that these conditions are nevertheless strictly stronger than the ones from [LB16, Corollary
4.14].

We fix a vertex o ∈ T . To every ξ ∈ ∂T is associated a Busemann (or height) function
bξ : T → Z, defined by bξ(v) = d(v, ôv)− d(o, ôv), where ôv is the projection of the vertex
v on the geodesic ray [o, ξ[. For every k ∈ Z, we denote by Lξ,k the level set b−1

ξ (k). These
level sets Lξ,k partition the set of vertices of T , and every vertex v ∈ Lξ,k admits exactly
one neighbour in Lξ,k−1, that will be denoted v−.

Lemma 4.31. Assume that F ′ acts 2-transitively on Ω, and fix ξ ∈ ∂T . Then the group
G(F, F ′)ξ acts transitively on Lξ,k for every k ∈ Z.

Proof. First note that two vertices in Lξ,k must be at even distance from each other. We
let v, w ∈ Lξ,k, and we prove that v and w are in the same G(F, F ′)ξ-orbit. We argue by
induction on d(v, w) = 2n.

The case n = 0 is trivial. Assume that n ≥ 1. Let m be the midpoint of the geodesic
[v, w], which is also the unique vertex of [v, w] that belongs to Lξ,k−n. Denote by a ∈ Ω
the color of the edge (m,m−), and by x (resp. y) the neighbour of m that belongs to [m, v]
(resp. [m,w]). Since F ′

a (the stabilizer of a in F ′) acts transitively on Ω \ {a}, we may
find g ∈ G(F, F ′) such that g fixes pointwise the half-tree defined by the edge (m,m−)
and containing m−, and g(x) = y (see for instance Lemma 3.4 in [LB16]). Clearly such
an element g belongs to G(F, F ′)ξ. Now by construction the vertices g(v) and w are at
distance at most 2n− 2 from each other, and the conclusion follows by induction. �
Proposition 4.32. Assume that F ′ acts 2-transitively on Ω, and fix ξ ∈ ∂T . Then every
subgroup H ≤ G(F, F ′) strictly containing G(F, F ′)ξ is either G(F, F ′)∗ or G(F, F ′).

Proof. Since H contains G(F, F ′)ξ as a proper subgroup, we may find h ∈ H and vertices
v, w such that h(v) = w and h(v−) ̸= w−. We claim that this implies that Hv, the
stabilizer of v in H, acts transitively on the star around v. To see this, first remark that
all the neighbours of v different from v− are in the same Hv-orbit by Lemma 4.31. So
proving that Hv does not fix v− is enough to prove the claim. But this is true, because
if g ∈ G(F, F ′)ξ fixes w and satisfies g(h(v−)) ̸= h(v−) (such an element exists because
h(v−) ̸= w−), then h−1gh belongs to H and does not fix v−. So we have proved that the
stabilizer of v in H acts transitively on the star around v.
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Now combining this with the fact that H acts transitively on each Lξ,k thanks to Lemma
4.31, we easily deduce that the stabilizer of v in H acts transitively on the star around v
for every vertex v. This implies in particular that the action of H on T has two orbits
of vertices and is of general type. Since moreover H contains the pointwise fixator of
any half-tree containing ξ (because G(F, F ′)ξ ≤ H), we deduce from Lemma 4.25 that H
contains all fixators of half-trees. Now the subgroup generated by the pointwise fixators
of half-trees in the same as the subgroup generated by pointwise fixators of edges, because
the group G(F, F ′) has the edge-independence property (see [LB16]). Finally since F ′ is
2-transitive (which implies that F ′ is generated by its point stabilizers), this subgroup is
equal to G(F, F ′)∗ according to [LB16, Proposition 4.7]. Therefore H contains G(F, F ′)∗,
and the statement is proved. �

Before stating the main result of this paragraph, let us mention that the 2-transitivity
assumption on the permutation group F ′ is quite natural. As illustrated by the work of
Burger and Mozes [BM00], the properties of the local action of groups acting on trees is
inherent to the structure of these groups, and the 2-transitivity condition on the local action
naturally appears in this setting [BM00].

Recall that Ω is a (possibly finite) countable set, and that XT is either ∂T when Ω is
finite, or T ⊔ ∂T when Ω is infinite. Examples of finite permutation groups satisfying the
assumptions of the following theorem are F = ⟨(1, . . . , d)⟩ and F ′ = Alt(d) for d ≥ 7 odd.
More examples may be found in [BM00, Example 3.3.1].

Theorem 4.33. Let F ≤ F ′ ≤ Sym(Ω) such that F acts freely transitively on Ω, F ′ acts
2-transitively on Ω, and point stabilizers in F ′ are perfect. Then the group G(F, F ′)∗ admits
exactly three URS’s, namely 1, SG(F,F ′)∗(XT ) and G(F, F ′)∗.

Proof. We claim that Corollary 3.12 applies to the action of G(F, F ′)∗ on XT . This action
is minimal and extremely proximal by Proposition 4.26. Since point stabilizers in F ′ are
perfect, fixators of half-trees in G(F, F ′)∗ are generated by perfect subgroups, and hence
are perfect. By combining this observation with Lemma 3.4, we see that every finite index
subgroup in the fixator of a half-tree must contain the fixator of another half-tree, so that
the second assumption of Corollary 3.12 is also satisfied. Finally since stabilizers of ends
are maximal subgroups of G(F, F ′)∗ according to Proposition 4.32, the conclusion follows
from Corollary 3.12. �
4.3.4. Piecewise prescribed tree automorphisms. In this paragraph we consider the “piecewise-
ation” process for groups acting on trees introduced in [LB15]. Recall that the construction
takes as input a group G ≤ Aut(T ), and produces a larger group PW(G) consisting of
automorphisms acting on T piecewise like G. See below for a precise definition. While
this construction was used in [LB15] to produce examples of non C∗-simple groups with
trivial amenable radical, here in contrast we apply the results of Section 3 to show that,
under different assumptions on the group G we start with, we obtain a group PW(G) that
is C∗-simple.

Let us first recall the definition of this construction. If A is a finite subtree of T and
v1, . . . , vn are the vertices of A having a neighbour outside T , we denote by Ti the subtree
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of T whose projection on A is vi, and by T \ A the disjoint union of the subtrees Ti. If G
is a subgroup of Aut(T ), we denote by PW(G) ≤ Aut(T ) the group of automorphisms of
T acting piecewise like G: an element γ ∈ Aut(T ) belongs to PW(G) if and only if there
exists a finite subtree A such that, if we denote T \ A = ⊔n

i=1Ti, then for every i there is
gi ∈ G such that γ and gi coincide on the subtree Ti.

Recall that it was proved in [LB15] that, under the assumption that vertex stabilizers in
G are amenable (and non-trivial), the group PW(G) is not C∗-simple. The following result
essentially proves the converse, thereby providing a fairly complete picture of C∗-simplicity
for this class of groups.

Theorem 4.34. Let G be a countable subgroup of Aut(T ) whose action on T is minimal
and of general type, and such that fixators of edges in G are non-amenable. Then the group
PW(G) is C∗-simple.

Proof. According to Theorem 3.7 applied to the action of PW(G) on ∂T (where ∂T is
endowed with the topology inherited from XT ), in order to obtain the conclusion it is
enough to show that fixators of half-trees in PW(G) are non-amenable. We remark that
by Lemma 4.25, it is actually enough to show that some fixator of half-tree in PW(G) is
non-amenable.

Let e be an edge of T , and denote by T1 and T2 the two half-trees separated by e. The
action of the fixator of e in G on each half-tree induces an embedding i : Ge → Aut(T1)×
Aut(T2). By assumption Ge is non-amenable, so there must exist one of the two half-trees,
say T1, such that the image of p1 ◦ i, where p1 is the projection of Aut(T1) × Aut(T2) on
Aut(T1), has non-amenable image.

For every g ∈ Ge, consider the automorphism γg of T fixing e, acting like g on T1 and
being the identity on T2. By construction γg ∈ PW(G), and the map Ge → PW(G), defined
by g 7→ γg, is a group homomorphism with non-amenable image. This shows that the
fixator of T2 in PW(G) is non-amenable, and concludes the proof. �

The following example may be compared with Corollary 4.23.

Corollary 4.35. The group of automorphisms of the tree Tp+1 acting piecewise like PSL(2,Z[1/p])
is C∗-simple.

Proof. Indeed, the action of PSL(2,Z[1/p]) has two orbits of vertices and does not fix any
end of Tp+1 (the Bruhat-Tits tree of PSL(2,Qp)). Moreover edge stabilizers contain free
subgroups (as it is already the case for PSL(2,Z)), so C∗-simplicity follows from Theorem
4.34. �

4.4. Branch groups. We briefly recall basic definitions on groups acting on rooted trees
and branch groups. We refer the reader to [BGŠ03] for a comprehensive survey on branch
groups.

A rooted tree is said to be spherically homogeneous if vertices at the same distance
from the root have the same degree. We denote by r = (r1, r2, . . .) a sequence of integers
ri ≥ 2, and by Tr a spherically homogeneous rooted tree with degree sequence r. The set
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of vertices at distance n from the root is called the n-th level of the tree. The distance
between a vertex v ∈ Tr and the root will be denoted |v|. The subtree below v is the tree
spanned by all vertices w such that the unique geodesic from w to the root passes through
v.

We denote Aut(Tr) the group of automorphisms of Tr that fix the root. Note that
Aut(Tr) preserves the levels of the tree. A subgroup G ≤ Aut(Tr) is level-transitive if G
acts transitively on all levels of the tree. All the subgroups of Aut(Tr) that we will consider
will be level-transitive. The stabilizer of a vertex v ∈ Tr in G is denoted StG(v). The
pointwise stabilizer of the n-th level is denoted StG(n). The subgroup of StG(v) consisting
of those elements that act trivially outside the subtree below v is called the rigid stabilizer
of v in G, and is denoted RiStG(v). Note that this terminology is consistent with the use
of “rigid stabilizer” elsewhere in the paper, in the sense that if we view G as a group of
homeomorphisms of the boundary ∂Tr, then RiStG(v) is precisely the rigid stabilizer of the
set of ends defined by the subtree below v. The terminology rigid stabilizer for general
group actions on topological spaces is actually inspired by the well-established use of this
terminology in the world of branch groups. The subgroup of StG(n) generated by all rigid
stabilizers of vertices at the n-th level is called the n-th level rigid stabilizer, and is
denoted RiStG(n). It follows from the definition that RiStG(n) is naturally isomorphic to
the direct product

∏
|v|=nRiStG(v).

A subgroup G < Aut(Tr) is a branch group if G is level-transitive, and the n-th level
rigid stabilizer RiStG(n) has finite index in StG(n) for every n ≥ 1.

Many well-studied branch groups are amenable (such as Grigorchuk groups [Gri84] and
Gupta-Sidki groups [GS83]). However the branch property does not imply amenability.
Sidki and Wilson have constructed examples of branch groups containing free subgroups
[SW03].

The following theorem shows that amenability is the only obstruction to C∗-simplicity
in the class of branch groups.

Theorem 4.36. A countable branch group is either amenable or C∗-simple.

According to Theorem 2.26, part (i) of the following result will imply Theorem 4.36.

Proposition 4.37. Let G be a countable branch group, and let H ∈ URS(G) be a non-trivial
uniformly recurrent subgroup of G. Then:

(i) If G is not amenable, then neither is H.
(ii) If G admits non-abelian free subgroups, then so does H.
(iii) If G is finitely generated, then H is not elementary amenable.

Proof. We view G as a group of homeomorphisms of the boundary of the tree ∂Tr, and we
apply Corollary 3.6. Since cylinder subsets form a basis for the topology, we deduce that,
in each of the three cases, it is enough to show that all rigid stabilizers RiSt(w) have the
desired property.

In order to prove (ii), assume that G admits non-abelian free subgroups, and fix n ≥ 1.
Since RiStG(n) has finite index in G, RiStG(n) also admits non-abelian free subgroups.
It is not hard to see (see for instance [Nek10, Lemma 3.2]) that this implies that there
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must exist a vertex w of level n such that RiSt(w) contains a free subgroup. Now since
rigid stabilizers corresponding to vertices of the same level are conjugated in G (since G is
level-transitive), it follows that RiSt(v) contains a free subgroup for every vertex v of level
n. According to the previous paragraph, this proves (ii). The proof of (i) is similar.

Assume now that G is finitely generated. By the main result of [Jus15], G cannot be
elementary amenable. Arguing as above, we see that all the subgroups RiStG(w) are not
elementary amenable. Again, according to the first paragraph, this implies that H is not
elementary amenable . �

4.5. Topological full groups. Let Γ y X be a group acting by homeomorphisms on a
topological space X. Recall that the topological full group of the action is the group of
all homeomorphisms of X that locally coincide with elements of Γ.

Theorem 4.38. Let Γ be a countable non-amenable group and Γ y X be a free, minimal
action of Γ on the Cantor set. Then the topological full group of Γ y X is C∗-simple.

We first first recall the following classical consequence of minimality, see [Got46].

Lemma 4.39. Let Γ be a countable group and Γ y X be a minimal action of Γ on a
compact space. Let U ⊂ X be an open set. Then there exists a finite subset T ⊂ Γ such
that for every x ∈ X and every g ∈ Γ, there exists h ∈ Tg such that hx ∈ U .

Proof of Theorem 4.38. DenoteG the topological full group. By Theorem 3.7, it is sufficient
to show that the rigid stabilizers GU are non-amenable for every non-empty clopen U ⊂ X.
To do this, we use a “graphing” argument: we construct a finitely generated subgroup of
GU that acts on U with non-amenable orbital Schreier graphs.

Let S ⊂ Γ be a finite subset given by Lemma 4.39 applied to U . Up to enlarging
S if necessary, we may assume that it is symmetric, contains 1, and that it generates a
non-amenable subgroup of Γ. From now on, let Γ0 = ⟨S⟩.

Consider the corresponding Cayley graph Cay(Γ0, S). Choose and fix x ∈ U . Consider

∆x = {γ ∈ Γ0 | γx ∈ U} ⊂ Cay(Γ0, S).

Since x has trivial stabilizer in Γ0, the set ∆x is naturally in bijection with the intersection
of the Γ0 orbit of x and U .

By Lemma 4.39 and the choices made, ∆x is a 1-dense subset of Cay(Γ0, S) (meaning
that every point of Cay(Γ, S) is either in ∆x or has a neighbour in ∆x). Endow ∆x with
a graph structure by connecting two points if and only if they are at distance at most 3 in
Cay(Γ0, S).

Lemma 4.40. Endowed with this graph structure and the corresponding metric, ∆x is
quasi-isometric to Cay(Γ0, S).

Proof. Let δ be the distance on ∆x and d be the distance on Γ0. We already know that ∆x is
1-dense. Clearly if y, z ∈ ∆x we have d(y, z) ≤ 3δ(y, z). Let us check that δ(y, z) ≤ d(y, z).
Indeed let y0 = y, y1, . . . yn = z be a geodesic in Γ0 between y, z, with n = d(y, z). For
every i there exists wi ∈ ∆x such that d(wi, yi) ≤ 1, with w0 = y, wn = z. By the triangle
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inequality d(wi, wi+1) ≤ d(wi, yi) + d(yi, yi+1) + d(yi+1, wi+1) ≤ 3 and hence wi and wi+1

are neighbours in ∆x. Hence δ(y, z) ≤ n = d(x, y). �

Set T = S3 \ {1}. For t ∈ T we denote Ut = U ∩ t−1(U).

Lemma 4.41. For every t ∈ T there exists a finite partition Pt of Ut into clopen sets such
that for every V ∈ Pt, we have t(V ) ∩ V = ∅ and t(V ) ⊂ U .

Proof. Since the action is free, we have t(x) ̸= x for every x ∈ Ut, and moreover t(x) ∈ U
by definition of Ut. Hence we may cover Ut with finitely many clopen sets verifying the
conclusion. After refining this cover we may assume that it is a partition. �

For every t ∈ T and V ∈ Pt we define the following element γt,V of the topological full
group.

γt,V (x) =

 t(x) if x ∈ V
t−1(x) if x ∈ t(V )
x otherwise.

Clearly γt,V ∈ GU for every t ∈ T . Consider the subgroup H ≤ GU generated by elements
γt,V when t ranges in T and V ranges in Pt. Observe that by construction the H-orbits
of every x ∈ U coincides with the Γ0-orbit of x intersected with U , hence it is identified
with the vertex set of ∆x. Moreover the orbital Schreier graph of H acting on the orbit of
X with respect to the generating set {γt,V | t ∈ T, V ∈ Pt} coincides with the previously
defined graph structure on ∆x (possibly after adding loops and multiple edges). Since this
graph is quasi-isometric to Cay(Γ0, S), it is non-amenable. It follows that H has a non-
amenable Schreier graph, and thus H is non-amenable. A fortiori the same is true for GU .
By Theorem 3.7, this concludes the proof of the theorem. �

Remark 4.42. The assumption that the action Γ y X is minimal cannot be removed, as the
following example shows. Start with any minimal, free action Γ y X of a non-amenable
group on the Cantor set. Let Γ̂ = Γ∪{∞} be the one-point compactification of Γ, on which
Γ acts by fixing the point at infinity. Let Y = Γ̂ ×X, which is still homeomorphic to the
Cantor set. Consider the diagonal action Γ y Y , and let G be its topological full group.
Observe that the action Γ y Y is free, but not minimal: in fact, the subset {∞} ×X is a
closed minimal invariant subset (and is the unique such subset). Let NEG be the subgroup
consisting of elements that act trivially on {∞} ×X. It is clearly non-trivial and normal,
as it is the kernel of the restriction of the action of G on {∞}×X. Moreover one can prove
that N is locally finite. It follows that G has a non-trivial amenable normal subgroup, so
it follows that G is not C∗-simple.

We do not know, however, if the assumption that the action is free can be relaxed to
faithful.
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