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Résumé

Dans le Chapitre 1 nous étudions les groupes localement compacts lacu-
naires hyperboliques. Nous caractérisons les groupes ayant un cône asympto-
tique qui est un arbre réel et dont l’action naturelle est focale. Nous étudions
également la structure des groupes lacunaires hyperboliques, et montrons
que dans le cas unimodulaire les sous-groupes ne satisfont pas de loi. Nous
appliquons au Chapitre 2 les résultats précédents pour résoudre le problème
de l’existence de points de coupure dans un cône asymptotique dans le cas
des groupes de Lie connexes.

Dans le Chapitre 3 nous montrons que le groupe de Neretin est compac-
tement présenté et donnons une borne supérieure sur sa fonction de Dehn.
Nous étudions également les propriétés métriques du groupe de Neretin, et
prouvons que certains sous-groupes remarquables sont quasi-isométriquement
plongés.

Nous étudions dans le Chapitre 4 une famille de groupes agissant sur
un arbre, et dont l’action locale est prescrite par un groupe de permuta-
tions. Nous montrons entre autres que ces groupes ont la propriété (PW),
et exhibons des groupes simples au sein de cette famille.

Dans le Chapitre 5 nous introduisons l’éventail des relations d’un groupe
de type fini, qui est l’ensembles des longueurs des relations non engen-
drées par des relations plus courtes. Nous établissons un lien entre la simple
connexité d’un cône asymptotique et l’éventail des relations du groupe, et
donnons une grande classe de groupes dont l’éventail des relations est aussi
grand que possible.





Abstract

In Chapter 1 we investigate the class of locally compact lacunary hyperbolic
groups. We characterize locally compact groups having one asymptotic cone
that is a real tree and whose natural isometric action is focal. We also
study the structure of lacunary hyperbolic groups, and prove that in the
unimodular case subgroups cannot satisfy a law. We apply the previous
results in Chapter 2 to solve the problem of the existence of cut-points in
asymptotic cones for connected Lie groups.

In Chapter 3 we prove that Neretin’s group is compactly presented and
give an upper bound on its Dehn function. We also study metric properties
of Neretin’s group, and prove that some remarkable subgroups are quasi-
isometrically embedded.

In Chapter 4 we study a family of groups acting on a tree, and whose
local action is prescribed by some permutation group. We prove among
other things that these groups have property (PW), and exhibit some simple
groups in this family.

In Chapter 5 we introduce the relation range of a finitely generated
group, which is the set of lengths of relations that are not generated by re-
lations of smaller length. We establish a link between simple connectedness
of asymptotic cones and the relation range of the group, and give a large
class of groups having a relation range as large as possible.





Introduction

Cette thèse s’articule essentiellement autour de deux axes de recherche,
représentant mes centres d’intérêts mathématiques jusqu’à aujourd’hui. Le
premier a pour sujet la notion de cône asymptotique d’un groupe, et le
second concerne l’étude de groupes agissant sur un arbre ou sur son bord,
et dont l’action locale satisfait une condition de rigidité.

Groupes. La notion principale au coeur de cette thèse est la notion de
groupe. Les groupes trouvent leur origine entre la fin du 18e et le début du
19e siècle, avec les travaux de Lagrange et Gauss, puis de Galois sur la réso-
lution d’équations polynomiales. Ils apparaissent depuis dans de nombreux
domaines mathématiques : en géométrie, topologie, théorie des nombres,
théorie ergodique, et bien d’autres encore.

La fin du 20e siècle voit naître la théorie géométrique des groupes avec
entre autres les travaux de Mostow, Milnor, Stallings, Abels, Gromov, qui
soulignent l’importance de l’apport de la géométrie à l’étude des objets al-
gébriques que sont les groupes. L’idée sous-jacente à la géométrie à grande
échelle, et plus généralement à la géométrie grossière, est d’étudier des ob-
jets en les observant « de très loin ». Cette approche consiste à négliger
toute propriété locale, pour ne retenir que les configurations géométriques
globales.

Si G est un groupe et S un sous-ensemble générateur, on peut munir
G de la métrique des mots dS associée à S. Si de plus G est muni d’une
topologie de groupe localement compact et si S est supposé compact, alors
la classe de quasi-isométrie de (G, dS) ne dépend pas du choix de S. Cette
observation fondamentale signifie que tout groupe localement compact com-
pactement engendré possède une géométrie à grande échelle intrinsèque, et
en particulier tout invariant de quasi-isométrie est un invariant du groupe
lui-même.

Ce point de vue a été largement adopté et a conduit à des avancées
spectaculaires dans le cadre des groupes discrets, l’exemple le plus frappant
étant surement la théorie des groupes hyperboliques de type fini. A l’opposé,
si G est un groupe de Lie réel connexe, la manière traditionnelle de munir G
d’une distance est de considérer sur G une métrique riemannienne invariante
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à gauche. Associer à G une métrique des mots provenant d’un voisinage
compact de l’identité peut dans un premier temps sembler brutal du point
de vue de la géométrie riemannienne classique, mais se révèle utile dans
l’étude des propriétés asymptotiques de G. En outre, les espaces métriques
obtenus en munissant G d’une métrique riemannienne ou d’une métrique
des mots sont quasi-isométriques.

Voir les groupes localement compacts compactement engendrés comme
des objets géométriques à part entière, est un point de vue qui, comparati-
vement au cas des groupes discrets et des groupes de Lie, a été nettement
moins adopté.

Arbres. La seconde notion centrale de cette thèse est la notion d’arbre.
Les arbres sont des espaces métriques très simples, satisfaisant la propriété
agréable qu’étant donnés deux points dans un arbre, il existe un unique
chemin injectif menant de l’un à l’autre.

Les arbres ayant un caractère continu sont appelés arbres réels. Ceux-ci
apparaissent notamment en géométrie, souvent comme limite d’espaces hy-
perboliques, en topologie dans l’étude des variétés hyperboliques, en théorie
des groupes ou encore en probabilités. Dans le Chapitre 1, nous étudions
les groupes localement compacts compactement engendrés G admettant un
cône asymptotique qui est un arbre réel. Un tel cône asymptotique est na-
turellement doté d’une action transitive par isométries, et le point de vue
adopté ici est de relier les caractéristiques de cette action aux propriétés du
groupe G.

Les arbres ayant un caractère discret sont appelés arbres simpliciaux.
Ceux-ci sont des objets centraux en théorie des groupes, notamment via la
théorie de Bass-Serre. Dans les Chapitres 3 et 4, nous étudions des groupes
agissant sur un arbre simplicial ou sur son bord (ou, de manière informelle,
sur un « voisinage » de ce bord), et dont l’action locale satisfait une condi-
tion de rigidité.

Cônes asymptotiques

Le théorème de croissance polynomiale de Gromov, qui caractérise les
groupes de type finis virtuellement nilpotents comme étant ceux dont la
croissance est polynomiale [Gro81], est sans doute l’un des résultats les
plus frappant de la théorie géométrique des groupes. L’une des étapes de
la preuve de Gromov consiste à construire, étant donné un groupe à crois-
sance polynomiale Γ, un Γ-espace obtenu comme limite de copies de Γ avec
métriques échelonnées. Cette construction a ensuite été généralisée par van
den Dries et Wilkie, et nous rappelons maintenant sa définition.
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Si (X, d) est un espace métrique non vide et e ∈ X, et si s = (sn) est une
suite de nombres réels positifs tendant vers l’infini, on note Precone(X, d, s)
l’ensemble des suites (xn) telles que d(xn, e) = O(sn). Etant donné un ultra-
filtre non-principal ω, on peut munir Precone(X, d, s) de la pseudo-distance
dω((xn), (yn)) = limωd(xn, yn)/sn, et le cône asymptotique Coneω(X, d, s)
de X associé aux paramètres s et ω est par définition l’espace métrique ob-
tenu en identifiant dans Precone(X, d, s) les points à distance nulle. Lorsque
(X, d) est un groupe localement compact muni de la métrique des mots dS

associée à un sous-ensemble compact générateur S, l’ensemble Precone(G, dS, s)
ne dépend pas du choix de S, et nous le notons Precone(G, s). Le cône
asymptotique de G associée à la suite s et à l’ultrafiltre non principal
ω est noté Coneω(G, s). Notons que l’action du groupe sur lui-même se
prolonge naturellement en une action isométrique et transitive du groupe
Precone(G, s) sur l’espace Coneω(G, s).

Pourquoi les cônes asymptotiques ?

L’un des intérêts de la notion de cône asymptotique est que, étant donnés
s et ω fixés, le cône asymptotique Coneω(G, s) est un invariant topologique
(et même bi-Lipschitz) de la classe de quasi-isométrie de G. Les propriétés
métriques ou topologiques des cônes asymptotiques d’un espace métrique
X reflètent en un certain sens les propriétés géométriques de X, comme le
montrent les résultats suivants :

(i) un groupe de type fini G est virtuellement nilpotent si et seulement
si tous ses cônes asymptotiques sont localement compacts [Gro81,
Dru02] ;

(ii) un espace métrique géodésique est hyperbolique si et seulement si tous
ses cônes asymptotiques sont des arbres réels [Gro93,Dru02] ;

(iii) si G est un groupe localement compact compactement engendré dont
tous les cônes asymptotiques sont simplement connexes, alors G est
compactement présenté et a une fonction de Dehn polynomialement
bornée [Gro93].

Notons que par un théorème dû à Pansu [Pan83], dans la situation (i)
tous les cônes asymptotiques de G sont isométriques à un groupe de Lie
« Carnot-gradué » canoniquement associé à G. Ce résultat a été étendu
par Breuillard [Bre14] au cadre des groupes localement compacts à crois-
sance polynomiale. Mentionnons également que Sapir a récemment démon-
tré qu’un résultat d’Hrushovski entraîne que l’implication indirecte de (i)
reste vraie sous l’hypothèse que G admet un cône asymptotique localement
compact [Sap13].

La notion de cône asymptotique a également été utilisée pour établir
des résultats de rigidité concernant entre autres les immeubles euclidiens et
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espaces symétriques de rang supérieur [KL97], les résaux non uniformes dans
les groupes de Lie semi-simples de rang supérieur [Dru00], ou les groupes
relativement hyperboliques [DS05].

Groupes lacunaires hyperboliques

Le premier exemple de groupe de type fini admettant des cônes asymp-
totiques non homéomorphes fut construit par Thomas et Velickovic [TV00].
L’idée de leur construction est de considérer un groupe défini par deux gé-
nérateurs a, b et une suite de relateurs wn(a, b) satisfaisant une condition
de petite simplification, et dont la longueur sn croît très vite. Le groupe
ainsi obtenu est tel que Coneω(G, s) est non simplement connexe pour tout
ultrafiltre ω, alors que les cônes asymptotiques correspondant à des suites
d’échelons s’intercalant entre les valeurs de s = (sn) sont des arbres réels.

L’étude générale des groupes de type fini ayant un cône asymptotique qui
est un arbre réel a été systématisée par Olshanskii, Osin et Sapir [OOS09],
qui ont baptisé ces groupes lacunaires hyperboliques. Les groupes lacunaires
hyperboliques peuvent être caractérisés comme limites directes de groupes
hyperboliques Gn avec morphismes surjectifs αn : Gn ։ Gn+1, tels que la
constante d’hyperbolicité de Gn est petite devant le rayon d’injectivité de
αn [OOS09]. Les travaux d’Olshanskii, Osin et Sapir montrent également
qu’un groupe lacunaire hyperbolique peut avoir des propriétés très éloignées
de celles des groupes hyperboliques : il existe des groupes lacunaires hyper-
boliques non virtuellement cycliques qui sont élémentairement moyennables,
ou qui ont un centre infini, ou qui sont de torsion [OOS09].

La définition de groupe lacunaire hyperbolique s’étend immédiatement
au cas d’un groupe G localement compact compactement engendré. Si ω et
s sont tels que Coneω(G, s) est un arbre réel, alors le groupe Precone(G, s)
hérite immédiatement d’une action (transitive) sur un arbre réel. Rappe-
lons que si Γ est un groupe agissant transitivement sur un arbre réel X non
réduit à un point ou à une droite, alors soit l’action est de type général,
i.e. Γ contient deux isométries hyperboliques sans bout commun, soit Γ fixe
un unique point dans le bord de X. Le théorème suivant donne une carac-
térisation des groupes lacunaires hyperboliques pour lesquels cette dernière
situation a lieu. Nous renvoyons au Chapitre 1 pour la définition d’auto-
morphisme compactant.

Théorème. Soit G un groupe localement compact compactement engendré.
Supposons que G admet un cône asymptotique Coneω(G, s) qui est un arbre
réel, et tel que le groupe Precone(G, s) fixe un unique point dans le bord de
Coneω(G, s). Alors G admet une décomposition en produit semi-direct H⋊Z
ou H ⋊ R, où l’élément 1 ∈ Z ou R induit un automorphisme compactant
de H.
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Ce théorème permet entre autres de retrouver un résultat de Caprace,
Cornulier, Monod et Tessera [CCMT] affirmant que tout groupe hyperbo-
lique fixant un unique point dans son bord est de la forme H ⋊Z ou H ⋊R
avec action compactante.

Rappelons que tout groupe topologique est naturellement une extension
d’un groupe connexe par un groupe totalement discontinu, si bien que la
résolution d’un problème peut dans certains cas consister à traiter séparé-
ment les cas connexes et totalement discontinus, et étudier comment recoller
ces morceaux pour obtenir une solution générale. D’après la résolution du
cinquième problème de Hilbert [MZ55], tout groupe connexe localement
compact admet un sous-groupe compact normal tel que le quotient soit un
groupe de Lie. Ce résultat permet très souvent de réduire un problème de
géométrie grossière du cas d’un groupe connexe au cas d’un groupe de Lie
connexe. Au sein de la classe des groupes localement compacts compacte-
ment engendrés, les groupes totalement discontinus (ou plus généralement
les groupes admettant des sous-groupes compacts ouverts) jouissent de pro-
priétés supplémentaires. Par exemple, par une construction d’Abels, ceux-ci
agissent géométriquement sur un graphe connexe localement fini.

Mis à part le cas bien compris d’un groupe admettant un cône asympto-
tique réduit à un point ou à une droite, il découle du théorème ci-dessus que
pour tous G,ω, s tels que Coneω(G, s) est un arbre réel, alors soit le groupe
G est un groupe hyperbolique, soit l’action de Precone(G, s) sur Coneω(G, s)
est de type général. En utilisant des arguments géométriques au niveau de
l’action de Precone(G, s) sur Coneω(G, s), nous montrons que dans cette
dernière situation la composante connexe du neutre dans G est toujours
un sous-groupe compact ou cocompact ; et déduisons que tout groupe lacu-
naire hyperbolique est soit hyperbolique, ou bien admet des sous-groupes
compacts ouverts. Ce résultat nous permet d’étendre la caractérisation des
groupes lacunaires hyperboliques discrets d’Olshanskii, Osin et Sapir au
cadre des groupes localement compacts.

Théorème. Soit G un groupe localement compact compactement engendré.
Alors G est lacunaire hyperbolique si et seulement si

(a) soit G est hyperbolique ; ou

(b) il existe un groupe localement compact hyperbolique G0 agissant géo-
métriquement sur un arbre localement fini, et une suite croissante
de sous-groupes discrets normaux Nn de G0, dont la réunion N est
discrète et telle que G est isomorphe à G0/N ; et si S est un sous-
ensemble compact engendrant G0 et

ρn = min{|g|S : g ∈ Nn+1\Nn},

alors G0/Nn est δn-hyperbolique avec δn = o(ρn).
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Il est clair que tout sous-groupe quasi-isométriquement plongé dans un
groupe lacunaire hyperbolique est lui-même lacunaire hyperbolique. En re-
vanche, sans hypothèse de non-distortion, il est a priori difficile de donner
des propriétés significatives des sous-groupes des groupes lacunaires hyper-
boliques. Nous démontrons le résultat suivant dans la Section 1.6, à laquelle
nous renvoyons pour la définition de satisfaire une loi.

Théorème. Soit G un groupe lacunaire hyperbolique unimodulaire. Si H
est un sous-groupe compactement engendré ayant une croissance relative
exponentielle dans G, et n’admettant pas Z comme sous-groupe discret co-
compact, alors H ne satisfait pas de loi.

En particulier ce théorème répond à une question d’Olshanskii, Osin
et Sapir posée dans le cas discret dans [OOS09]. Il est aisé de vérifier
que l’hypothèse d’unimodularité est nécessaire, et notons que d’après un
exemple construit dans [OOS09], l’hypothèse de croissance relative expo-
nentielle est également nécessaire. L’idée de la preuve de ce théorème est
d’exhiber des groupes libres, qui constituent une obstruction évidente au fait
de satisfaire une loi. On ne peut pas espérer trouver de tels groupes dans H,
par exemple car H peut être de torsion ou être moyennable. En revanche,
nous montrons que si Coneω(G, s) est un arbre réel, alors le sous-groupe
de Precone(G, s) constitué des suites à valeurs dans H contient toujours
des groupes libres. Nous y parvenons en étudiant l’action de ce groupe sur
l’arbre réel Coneω(G, s).

Points de coupure asymptotiques

Si X est un espace métrique géodésique, un point x ∈ X est appelé
point de coupure si l’espace X \{x} n’est plus connexe. Les arbres réels
sont des exemples d’espaces métriques ayant des points de coupure. Pour
un espace métrique géodésique, la propriété d’avoir des points de coupure
dans ses cônes asymptotiques peut être vue comme une forme très faible
d’hyperbolicité. La classe des groupes de type fini admettant des points
de coupure dans tout cône asymptotique contient par exemple les groupes
relativement hyperboliques [DS05], ou les groupes modulaires de surfaces
épointées [Beh06].

La propriété de n’avoir de point de coupure dans aucun cône asymp-
totique peut être caractérisée par une propriété géométrique de l’espace
appelée divergence. Grossièrement, la divergence estime le coût de relier
deux points d’un espace métrique en évitant une grande boule entre ces
deux points. Nous renvoyons à la Section 2.2 pour une définition précise
de la notion de divergence, et le lien avec l’existence de points de coupure
asymptotiques. Notons qu’il existe des groupes de type fini admettant un
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cône asymptotique ayant des points de coupure, et un cône asymptotique
sans point de coupure.

Drutu, Mozes et Sapir [DMS10] conjecturent qu’un réseau dans un groupe
de Lie semi-simple de rang supérieur n’admet de point de coupure dans au-
cun cône asymptotique, et prouvent cette conjecture dans le cas des réseaux
de Q-rang un et dans le cas du groupe spécial linéaire à coefficients dans
l’anneau des S-entiers d’un corps de nombres. Dans la Section 2.3, nous
prouvons que ce dernier résultat est également vrai en caractéristique posi-
tive.

Théorème. Soit q une puissance d’un nombre premier, soit S un ensemble
de valuations d’une extension finie du corps Fq(t) des fractions rationnelles
à coefficients dans le corps fini Fq, et soit OS l’anneau des S-entiers associé.
Pour tout n ≥ 3, le groupe SLn(OS) a une divergence linéaire.

De manière équivalente, le groupe SLn(OS) n’admet de point de coupure
dans aucun cône asymptotique.

Rappelons que le groupe SOL est le groupe de Lie de dimension trois
R2 ⋊R, où l’action de t ∈ R sur R2 est donnée par la matrice diag(et, e−t).
C’est un exemple caractéristique de groupe n’admettant de point de cou-
pure dans aucun cône asymptotique : tous ses cônes asymptotiques sont
homéomorphes à {(x, y) ∈ T × T : b(x) + b(y) = 0}, où T est un arbre réel
homogène de degré continu et b est une fonction de Busemann sur T [Cor08,
Section 9] ; et il est facile de vérifier que cet espace métrique n’admet pas
de point de coupure.

Dans la Section 2.5, nous résolvons le problème de l’existence de points
de coupure dans un cône asymptotique dans le cas des groupes de Lie réels
et des groupes algébriques p-adiques. Nous montrons que ceux-ci sont soit
hyperboliques, ou bien n’admettent pas de point de coupure dans aucun
cône asymptotique.

Théorème. Soit G un groupe localement compact compactement engendré.
Supposons que G est soit un groupe de Lie réel connexe, soit un groupe algé-
brique linéaire sur un corps local non archimédien de caractéristique nulle.
Si G admet des points de coupure dans l’un de ses cônes asymptotiques,
alors G est en fait hyperbolique.

Nous déduisons ce résultat d’un énoncé plus général (Corollary 2.34)
dans la Section 2.5, à laquelle nous renvoyons pour plus de détails.

Croissance des relations

Dans le Chapitre 5, nous associons à un groupe de type fini G un en-
semble d’entiers naturels, qui est l’ensemble des longueurs des relations entre

8



des générateurs de G qui ne sont pas engendrées par des relations de lon-
gueur plus petite. On vérifie que cet ensemble ne dépend pas du choix d’un
système de générateurs fini, modulo la relation d’équivalence ∼ sur P(N)
« être à distance de Hausdorff multiplicative bornée ». Cet ensemble est ap-
pelé éventail des relations de G, et noté R(G). On dit que G est densément
présenté si R(G) ∼ N, et lacunairement présenté sinon.

Nous prouvons que R(G) est invariant par passage à un sous-groupe
d’indice fini, et par quotient par un sous-groupe normal fini. L’éventail des
relations se comporte également de manière agréable par rapport aux opé-
rations de produit libre et produit direct. Nous donnons dans la Section
5.2 une classe de groupes densément présentés, obtenus en itérant un épi-
morphisme non-injectif dans un groupe non Hopfien. La classe des groupes
densément présentés contient les exemples standards de groupes métabé-
liens de présentation infinie que sont Z ≀ Z et Z[1/n]2 ⋊ Z pour n ≥ 2, où
l’action de Z sur Z[1/n]2 est définie par la multiplication par n sur le pre-
mier facteur et n−1 sur le second. Nous montrons également que le groupe
de Grigorchuk est densément présenté.

Rappelons que par un résultat de Gromov, si un groupe de type fini G
a tous ses cônes asymptotiques simplement connexes, alors G est de pré-
sentation finie, autrement dit l’éventail des relations de G est fini. On ne
peut bien sûr pas espérer la même conclusion si on suppose juste la simple
connexite au niveau d’un seul cône asymptotique, par exemple parce que
tout groupe lacunaire hyperbolique non hyperbolique est de présentation in-
finie. En revanche, nous prouvons que la simple connexité d’un cône asymp-
totique impose tout de même une restriction sur l’éventail des relations du
groupe.

Théorème. Soit G un groupe de type fini admettant un cône asymptotique
simplement connexe. Alors G est lacunairement présenté.

Ce résultat implique par exemple que tout groupe de type fini lacunaire
hyperbolique est lacunairement présenté. En particulier il est impossible
de construire des groupes lacunaires hyperboliques en itérant à l’infini un
épimorphisme non injectif sur un groupe de type fini.

Groupes agissant (presque) sur un arbre

Le second axe majeur de cette thèse est d’étudier certains groupes agis-
sant sur un arbre simplicial ou sur son bord, et dont l’action locale satisfait
une condition de rigidité. Les deux familles de groupes que nous étudions
fournissent des exemples de groupes localement compacts, totalement dis-
continus, non discrets, compactement engendrés et simples. Cette classe de
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groupes joue un rôle majeur dans l’étude générale de la structure des groupes
localement compacts compactement engendrés [CM11,CRW13,CRW14].

Groupe de presqu’automorphismes d’un arbre

Pour tout entier d ≥ 3, notons Td l’arbre simplicial régulier de degré
d. Muni de la topologie compacte-ouverte, le groupe Aut(Td) des automor-
phismes de Td est un groupe localement compact totalement discontinu.
L’action du groupe Aut(Td) sur Td est propre, continue et cocompacte, si
bien que Aut(Td) et Td sont quasi-isométriques.

Le bord à l’infini ∂Td de l’arbre Td peut être pensé comme l’espace des
directions à l’infini dans Td. Il s’agit d’un espace métrique compact, et l’ac-
tion d’un élément de Aut(Td) sur l’arbre induit un homéomorphisme de son
bord. La notion de presqu’automorphisme de l’arbre Td est en quelque sorte
une relaxation de la notion d’automorphisme. Un presqu’automorphisme
n’agit pas sur l’arbre Td, mais sur son bord à l’infini : c’est par définition
une transformation bicontinue du bord de Td qui est un automorphisme
d’arbre par morceaux. Cela signifie que localement l’action d’un presqu’au-
tomorphisme sur ∂Td provient de l’action sur ∂Td d’un automorphisme de
Td. Le groupe AAut(Td) des presqu’automorphismes de l’arbre Td admet une
topologie de groupe localement compacte faisant de Aut(Td) un sous-groupe
ouvert.

Le groupe AAut(Td) a été introduit par Neretin comme un analogue
combinatoire, du point de vue de la théorie des représentations, du groupe
des difféomorphismes du cercle [Ner92]. Lorsque d = p + 1 avec p premier,
le bord de Tp+1 s’identifie naturellement avec la droite projective P1(Qp), et
le groupe AAut(Tp+1) contient le groupe des difféomorphismes localement
analytiques de P1(Qp) [Ner92]. Motivé par la simplicité du groupe des dif-
féomorphismes du cercle de classe C∞ préservant l’orientation, Kapoudjian
a montré que le groupe AAut(Td) est simple [Kap99]. Récemment Bader,
Caprace, Gelander et Mozes ont prouvé que le groupe AAut(Td) n’admet
pas de réseaux [BCGM12], fournissant le premier exemple de groupe simple
(compactement engendré) ne possédant pas de réseaux.

Les groupes de Thompson, communément notés F, T et V , sont des
groupes de type fini apparaissant dans divers domaines mathématiques, et
étant au centre de nombreux problèmes de géométrie des groupes. Nous
renvoyons à [CFP96] pour plus de détails sur ces groupes. Higman étendit
la définition du groupe V en une famille de groupes Vd,k, ceux-ci étant tous
infinis de présentation finie, et ayant un sous-groupe simple d’indice au plus
deux [Hig74]. On peut vérifier que pour tout d ≥ 2, le groupe AAut(Td+1)
contient une copie du groupe Vd,2 comme sous-groupe dense. Ce fait est
par exemple utilisé de manière cruciale dans [Kap99]. Nous précisons le lien
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entre les groupes AAut(Td+1) et Vd,2 dans la Section 3.2, en montrant que
AAut(Td+1) s’identifie au complété de Schlichting du groupe Vd,2 relative-
ment à un sous-groupe commensuré localement fini.

Présentation compacte et fonction de Dehn. On peut vérifier que
pour tout d ≥ 2, le groupe de presqu’automorphismes AAut(Td+1) est en-
gendré par un système fini de générateurs de Vd,2, auquel on ajoute un
sous-groupe compact de Aut(Td+1). De fait, le groupe AAut(Td+1) est com-
pactement engendré.

La notion de présentation compacte est plus forte que la notion de gé-
nération compacte. Un groupe localement compact G est dit compactement
présenté s’il admet un sous-ensemble générateur compact tel que G admet
une présentation, en tant que groupe abstrait, ayant S pour ensemble de gé-
nérateurs et un ensemble de relateurs de longueur bornée. Lorsque le groupe
G est discret, cela revient à dire que G est de présentation finie. On véri-
fie que cette définition ne dépend pas du choix du système de générateurs
compact S.

L’un des intérêts majeurs de cette notion a priori algébrique est qu’il
s’agit d’une propriété géométrique. En effet, le fait d’être compactement pré-
senté s’interprête en termes de simple connexité grossière du graphe de Cay-
ley de G associé à un sous-ensemble générateur compact, et en particulier
être compactement présenté est invariant par quasi-isométries. La classe des
groupes compactement présentés contient par exemple les groupes abéliens
et nilpotents, les groupes connexes, et les groupes Gromov-hyperboliques.

L’une des raisons à l’origine de l’intérêt des théoriciens des groupes pour
les groupes de Thompson et leurs généralisations, est que ceux-ci jouissent
à la fois de propriétés de simplicité et de finitude. Alors que la simplicité de
AAut(Td) a été obtenue dans [Kap99], nous démontrons le théorème suivant
dans la Section 3.2.

Théorème. Pour tout d ≥ 3, le groupe AAut(Td) est compactement pré-
senté.

Nous montrons en fait ce résultat pour de nombreux groupes agissant
sur le bord de l’arbre Td, et dont l’action locale est prescrite par un groupe
régulièrement branché. Nous renvoyons à la Section 3.2 pour plus de détails.

La fonction de Dehn δG d’un groupe localement compact compactement
présenté G est un invariant du groupe G, aux aspects à la fois géométrique
et combinatoire. D’un point de vue géométrique, δG(n) est l’aire maximale
d’un lacet dans G de longueur au plus n. En d’autres termes, la fonction
δG est la meilleure fonction isopérimétrique du groupe G. D’un point de
vue combinatoire, la fonction de Dehn fournit une estimation quantitative
du fait que G est compactement présenté : δG(n) est le supremum pour
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toutes les relations w dans G de longueur au plus n, du nombre minimal de
relateurs nécessaires pour réduire w au mot trivial.

Rappelons sa définition précise. Si G est un groupe localement compact
compactement présenté et S un sous-ensemble compact générateur, il existe
un entier k ≥ 1 tel que G admette une présentation 〈S | Rk〉, où Rk est
l’ensemble des relations dans G (i.e. des mots en les lettres de S représentant
l’élément trivial du groupe G) de longueur au plus k. L’aire a(w) d’une
relation w est le plus petit entier m tel que w admet une décomposition
dans le groupe libre FS en un produit de m conjugués d’éléments de Rk. On
définit la fonction de Dehn de G par

δG(n) = sup {a(w) : w relation de longueur au plus n} .
Cette fonction dépend du choix de S et k, mais son comportement asymp-
totique n’en dépend pas, et est en fait un invariant géométrique du groupe
G.

Avoir un petite fonction de Dehn a des conséquences géométriques re-
marquables. Par exemple, un groupe est hyperbolique si et seulement si
il a une fonction de Dehn linéaire [Gro87]. De plus, tout groupe ayant
une fonction de Dehn sous-quadratique a en fait une fonction de Dehn li-
néaire [Gro87, Bow91]. Le comportement asymptotique de la fonction de
Dehn d’un groupe est intimement lié aux propriétés topologiques de ses
cônes asymptotiques. Par un theorème de Gromov, si un groupe localement
compact compactement engendré G a tous ses cônes asymptotiques sim-
plement connexes, alors le groupe G est compactement présenté et a une
fonction de Dehn polynomialement bornée [Gro93]. Ce résultat admet une
réciproque partielle dûe à Papasoglu, qui affirme que si G a une fonction de
Dehn quadratique, alors tous les cônes asymptotiques de G sont simplement
connexes.

Nous prouvons la majoration suivante sur la fonction de Dehn du groupe
AAut(Td+1) dans la Section 3.2.

Théorème. Pour tout d ≥ 2, le groupe AAut(Td+1) a une fonction de Dehn
asymptotiquement bornée par celle du groupe Vd,2.

Ce résultat est en fait obtenu pour une famille de groupes plus générale
définie à la fin de la Section 3.1, nous renvoyons le lecteur au Théorème
3.17.

Il n’est pas difficile de voir que le groupe AAut(Td+1) n’est pas hyper-
bolique, et par conséquent sa fonction de Dehn est au moins quadratique.
Lorsque d = 2, le groupe V2,2 est isomorphe au groupe de Thompson V .
Tandis qu’il est connu que la fonction de Dehn du groupe de Thompson
F est quadratique, on ne sait pas s’il en est de même pour le groupe de
Thompson V . Cependant, en invoquant un résultat de Guba [Gub06], on
peut déduire du théorème précédent le résultat suivant.

12



Corollaire. Le groupe de presqu’automorphismes d’un arbre régulier triva-
lent a une fonction de Dehn polynomialement bornée (4 n11).

Une question qui découle naturellement du théorème ci-dessus est de
se demander si la fonction de Dehn du groupe AAut(Td+1) est strictement
plus petite que celle de Vd,2. Nous adressons cette question et en discutons
certains aspects à la fin de cette thèse.

Diagrammes et propriétés métriques. Par définition les éléments du
groupe AAut(Td) sont définis par leur action au bord de l’arbre Td, et on
peut les penser comme des transformations à l’infini. Cependant, le fait que
l’action locale provienne de l’action d’un automorphisme de l’arbre permet
de penser qu’un élément du groupe AAut(Td) agit sur un « voisinage » du
bord de l’arbre. Cette approche a l’avantage de permettre de représenter
les éléments du groupe AAut(Td) par une donnée combinatoire se situant
maintenant dans l’arbre, et non plus dans son bord. Cette idée est bien
connue et a été massivement utilisée dans le cas des groupes de Thompson
et certaines de leurs généralisations. La notion de diagramme associé à un
presqu’automorphisme que nous définissons est liée, mais est en générale
différente de celle utilisée pour les groupes de Thompson.

L’un des intérêts de notre construction est que cette notion fournit une
fonction de longueur C sur le groupe AAut(Td), et nous permet d’obtenir une
pseudo-métrique sur AAut(Td) ayant les propriétés agréables d’être propre
et invariante à gauche. De manière générale, il est naturel de se demander si
une telle pseudo-métrique sur un groupe localement compact compactement
engendré est quasi-isométrique à la métrique des mots. Nous répondons dans
ce cas par la négative à cette question, en prouvant le résultat suivant.

Proposition. Pour tout d ≥ 3 et tout sous-ensemble générateur compact S
de AAut(Td), il existe une constante c > 0 telle que pour tout g ∈ AAut(Td),
nous avons

c−1C(g) ≤ |g|S ≤ cC(g) log(1 + C(g)).

De plus les fonctions de longueur C et | · |S ne sont pas asymptotiquement
équivalentes.

Ce résultat peut en quelque sorte être vu comme une version non discrète
d’un énoncé similaire sur le groupe de Thompson V dû à Birget. Alors que la
preuve de la seconde partie de l’énoncé consiste dans le cas du groupe V en
un argument de dénombrement sur des ensembles finis, notre preuve repose
sur une estimation de la croissance de la mesure de Haar d’une famille de
sous-groupes compacts ouverts du groupe AAut(Td).

La question de comparer la métrique des mots dans AAut(Td) et la
métrique fournie par la notion de diagramme est aussi justifiée par le fait
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que cette dernière apparaît comme la métrique induite sur une orbite de
AAut(Td) dans un complexe cubique CAT(0) sur lequel ce groupe agit.
Bien que la construction d’un complexe cubique CAT(0) muni d’une action
propre du groupe AAut(Td) n’apparaisse pas clairement dans la littérature,
celle-ci semble être connue et l’idée de sa construction est similaire à la
construction de Farley dans le cas des groupes de Thompson [Far03] (voir
aussi [Nav02]). Nous rappelons cette construction en adoptant le point de
vue des actions commensurantes dans la Section 3.3. Le résultat précédent
peut donc être interprété comme une étude de la distortion de l’applica-
tion orbitale du groupe AAut(Td) dans un complexe cubique CAT(0), et
affirme en particulier que cette application n’est pas un plongement quasi-
isométrique. Ce résultat apparait comme une motivation naturelle à la ques-
tion de savoir si le groupe AAut(Td) peut se plonger quasi-isométriquement
dans un espace métrique CAT(0), que nous adressons à la fin de cette thèse.

La construction de diagrammes représentant un presqu’automorphisme
et l’étude de la métrique qui en découle est également motivée par le fait
que pour certains sous-groupes remarquables de AAut(Td), celle-ci est com-
parable à la métrique des mots. De manière générale, si G est un groupe
localement compact compactement engendré et H un sous-groupe compac-
tement engendré, alors H peut être muni d’une part de sa métrique des
mots, et d’autre part de la métrique induite par la métrique des mots de G.
On dit que H est quasi-isométriquement plongé, ou non distordu dans G,
si ces deux métrique sont comparables. Nous prouvons :

Proposition. Pour tout d ≥ 2,
(a) il existe un sous-groupe discret de AAut(Td+1) isomorphe au groupe

de Thompson Fd et quasi-isométriquement plongé dans AAut(Td+1) ;
(b) le groupe Aut(Td+1) des automorphismes de l’arbre Td+1 est quasi-

isométriquement plongé dans AAut(Td+1).

Prescrire l’action locale presque partout

La seconde classe de groupes auxquels nous nous intéressons consiste
en des groupes agissant cette fois sur l’arbre Td lui même, et dont l’action
locale satisafait une condition de rigité presque partout. Nous remercions
chaleuresement les auteurs de [BCGM12] d’avoir attiré notre attention sur
la définition de ces groupes.

Diverses propriétés. Rappelons tout d’abord la définition du groupe
« universel » U(F ) défini par Burger et Mozes. Fixons un coloriage des
arêtes de Td par les entiers 1, . . . , d, tel que des arêtes provenant d’un même
sommet ont des couleurs deux à deux distinctes. Par définition, un auto-
morphisme g de Td envoie l’ensemble des arêtes émanant d’un sommet v
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sur l’ensemble des arêtes émanant de g(v), et par conséquent induit pour
chaque sommet v une bijection σ(g, v) ∈ Sym(d). Étant donné un groupe de
permutations F ≤ Sym(d), le groupe U(F ) est le sous-groupe de Aut(Td)
dont l’action locale est prescrite par F , c’est-à-dire l’ensemble des automor-
phismes g de l’arbre Td tels que σ(g, v) ∈ F pour tout sommet v. Il s’agit
d’un sous-groupe fermé de Aut(Td) agissant transitivement sur l’ensemble
des sommets de Td, et dont la classe de conjugaison dans Aut(Td) ne dépend
pas du choix du coloriage des arêtes.

Nous considérons une famille de groupes G(F ) définis en relaxant la
condition de rigidité locale de Burger et Mozes en un nombre fini de som-
mets. Plus précisément, G(F ) est constitué des éléments g ∈ Aut(Td) tels
que l’ensemble des sommets v pour lesquels σ(g, v) /∈ F est fini. Clairement,
le groupe U(F ) est un sous-groupe de G(F ). Le groupe G(F ) n’est en géné-
ral pas fermé dans Aut(Td), et on peut décrire explicitement son adhérence
(voir Corollary 4.6). On vérifie qu’il existe une topologie de groupe sur G(F )
faisant de l’inclusion U(F ) →֒ G(F ) une application ouverte et continue,
et telle que les stabilisateurs de sommets dans G(F ) sont ouverts et locale-
ment elliptiques. Muni de cette topologie, G(F ) est un groupe localement
compact totalement discontinu compactement engendré.

Les groupes G(F ) ont des propriétés communes avec le groupe de Ne-
retin AAut(Td). Par exemple, le fait que le stabilisateur d’une arête dans
G(F ) est ouvert et localement elliptique peut être vu comme un analogue
du fait que le sous-groupe de AAut(Td) préservant la mesure visuelle dans
∂Td issue de cette arête, est ouvert et localement elliptique. Cependant, les
groupes G(F ) sont tout de même beaucoup plus rigides que AAut(Td), dans
le sens où ceux-ci respectent la structure d’arbre de Td. Cette rigidité sup-
plémenatire impose par exemple que les groupes G(F ) ont une dimension
asymptotique égale à un (Corollary 4.23), alors que AAut(Td) a une dimen-
sion asymptotique infinie. Ainsi, les groupes G(F ) aparaissent comme des
groupes « intermédiaires » entre les groupes U(F ) et AAut(Td).

La plus grande flexibilité dont jouit l’action du groupe G(F ) sur l’arbre
Td par rapport au groupe U(F ) permet par exemple de construire des
groupes simples de type fini. En particulier le théorème suivant fournit des
exemples de groupes de type fini, simples, et de dimension asymptotique
égale à un. L’existence de tels groupes n’était pas connue jusqu’à aujour-
d’hui.

Théorème. Soit d ≥ 3, et soit F ≤ Sym(d) un groupe de permutation
supposé simplement transitif. Soit également F ′ un sous-groupe de Sym(d)
contenant F , dont les stabilisateurs de points sont parfaits et engendrent
F ′. Alors le groupe G(F ) ∩ U(F ′) est un groupe simple de type fini, et de
dimension asymptotique égale à un.

L’un des ingrédients majeurs de la preuve de ce résultat est un critère de
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simplicité qui apparait comme un avatar du théorème de Tits [Tit70] (voir
Theorem 4.15). Nous renvoyons à la Section 4.1 pour plus de détails.

Une question naturelle est de se demander si le groupe G(F ) ou certains
de ses sous-groupes remarquables sont compactement présentés. Nous ré-
pondons à cette question dans la Section 4.2 pour une classe relativement
large de sous-groupes, incluant le groupe G(F ) lui même (voir Proposition
4.26). Ce résultat implique en particulier que le groupe G(F ) n’est pas com-
pactement présenté dès que F ≤ Sym(d) est un sous-groupe propre transi-
tif. Dans le cas où F ≤ Sym(d) est un sous-groupe propre 2-transitif, nous
donnons également une seconde preuve complètement indépendante de ce
résultat, reposant sur une version topologique du théorème de scindement
de Bieri-Strebel.

Diagrammes et action commensurante. Exploitant l’analogie entre la
famille de groupes G(F ) et le groupe des presqu’automorphismes de l’arbre
Td, nous définissons une notion de diagramme pour représenter et manipuler
les éléments du groupe G(F ). Nous renvoyons à la Section 4.3 pour plus
de détails sur cette construction. L’intérêt de cette approche provient en
partie du fait que, quand F est supposé transitif, la taille des diagrammes
en question fournit une estimation quasi-isométrique à la métrique des mots
dans le groupe G(F ). Notons que les constantes en jeu sont complètement
explicites et linéaires en d.

Proposition. Soit d ≥ 3 et soit F ≤ Sym(d) supposé transitif. Alors il
existe un sous-ensemble (explicite) compact générateur S de G(F ) tel que,
si N (g) désigne la taille du diagramme représentant l’élément g ∈ G(F ),
alors

N (g) ≤ |g|S ≤ (3d− 2)N (g) + 3d+ 2

pour tout g ∈ G(F ).

Nous exploitons aussi l’idée sous-jacente à notre construction de dia-
grammes pour construire un ensemble muni d’une action commensurante
de G(F ). Rappelons que si G est un groupe et X un G-ensemble, un sous-
ensemble A ⊂ X est dit commensuré si #(gA△A) est fini pour tout g ∈ G.

Théorème. Soit d ≥ 3 et soit F ≤ Sym(d) supposé transitif. Alors il existe
un ensemble X muni d’une action de G(F ) et un sous-ensemble A ⊂ X tels
que #(gA△A) = 2N (g) pour tout g ∈ G(F ).

Par un principe général, nous déduisons de ce théorème qu’il existe un
complexeX cubique CAT(0) sur lequelG(F ) agit proprement, et un sommet
x0 ∈ X tel que dℓ1(gx0, x0) = 2N (g) pour tout g ∈ G(F ). Ainsi le résultat
ci-dessus affirmant que la quantité N (g) est quasi-isométrique à la métrique
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des mots dans le groupe G(F ) s’interprète géométriquement : il signifie
que l’application orbitale de G(F ) dans ce complexe cubique G(F ) → X,
g 7→ gx0, est un plongement quasi-isométrique.
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Chapter 1

Lacunary hyperbolic groups

In this chapter we investigate the class of locally compact lacunary hy-
perbolic groups. We prove that if a locally compact compactly generated
group G admits one asymptotic cone that is a real tree and whose natu-
ral transitive isometric action is focal, then G must be a focal hyperbolic
group (Theorem 1.1). We also prove several results for locally compact
lacunary hyperbolic groups, and extend the characterization of finitely gen-
erated lacunary hyperbolic groups of [OOS09] to the setting of locally com-
pact groups. We moreover answer a question of Olshanskii, Osin and Sapir
about subgroups of lacunary hyperbolic groups.

1.1 Introduction

1.1.1 Locally compact hyperbolic groups

If G is a locally compact group and S a compact generating subset,
then G can be equipped with the word metric associated to S. A locally
compact compactly generated group is hyperbolic if it admits some com-
pact generating subset such that the associated word metric is Gromov-
hyperbolic. By [CCMT, Corollary 2.6], this is equivalent to asking that
the group acts continuously, properly and cocompactly by isometries on
some proper geodesic hyperbolic metric space. Examples of non-discrete
hyperbolic groups include semisimple real Lie groups of rank one, or the
full automorphism group of a semi-regular locally finite tree. We freely use
the shorthand hyperbolic LC-group for locally compact compactly generated
hyperbolic group.

Finitely generated hyperbolic groups have received much attention over
the last twenty-five years, and their study led to a rich and powerful the-
ory. On the other hand, hyperbolic LC-groups have not been studied to the
same extent, and this disparity leads to the natural problem of discussing
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the similarities and differences between the discrete and non-discrete set-
ting. One positive result in this vein is the extension of Bowditch’s topo-
logical characterization of discrete hyperbolic groups, as those finitely gen-
erated groups that act properly and cocompactly on the space of distinct
triples of a compact metrizable space, to the setting of locally compact
groups [CD14]. However it turns out that some hyperbolic LC-groups ex-
hibit some completely opposite behavior to what happens for discrete hy-
perbolic groups: while a non-virtually cyclic finitely generated hyperbolic
group always contains a non-abelian free group, some hyperbolic LC-groups
are non-elementary hyperbolic and amenable. It follows from the work of
Caprace, Cornulier, Monod and Tessera that those can be characterized in
terms of the dynamics of the action of the group on its boundary, and that
they coincide with the class of mapping tori of compacting automorphisms
(see Theorem 1.2).

1.1.2 Lacunary hyperbolic groups

The definition of asymptotic cones of a metric space makes sense for a
locally compact compactly generated group G. Let s = (sn) be a sequence
of positive real numbers tending to infinity, and ω a non-principal ultrafil-
ter. We denote by Precone(G, s) the set of sequences (gn) in G such that
there exists some constant C > 0 so that the word length of gn is at most
Csn for every n ≥ 1; and equip it with the pseudo-metric dω((gn), (hn)) =
limω dS(gn, hn)/sn. It inherits a group structure by component-wise multi-
plication, and the asymptotic cone Coneω(G, s) of G associated to the pa-
rameters s, ω is the homogeneous space Precone(G, s) / Sublinω(G, s), where
Sublinω(G, s) is the subgroup of sequences at distance dω zero from the iden-
tity. The group Precone(G, s) can be viewed as a large picture of the group
G, and the action of Precone(G, s) on Coneω(G, s) is inherited from the
action of G on itself. Asymptotic cones capture the large-scale geometry of
the word metric on G. In some sense, the metric space Coneω(G, s) reflects
the properties of the group G that are visible at scale s.

For example if G is a hyperbolic LC-group, then all its asymptotic cones
are real trees. Interestingly enough, thanks to a result of Gromov [Gro93,
Dru02], one can characterize hyperbolicity in terms of asymptotic cones: a
locally compact compactly generated group is hyperbolic if and only if all its
asymptotic cones are real trees. However there exist finitely generated non-
hyperbolic groups with some asymptotic cone a real tree. The first example
appeared in [TV00], where small cancellation theory is used to construct
a finitely generated group with one asymptotic cone a real tree, and one
asymptotic cone that is not simply connected. The systematic study of the
class of finitely generated groups with one asymptotic cone a real tree, called
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lacunary hyperbolic groups, was then initiated in [OOS09]. Olshanskii, Osin
and Sapir characterized finitely generated lacunary hyperbolic groups as
direct limits of sequences of finitely generated hyperbolic groups satisfying
some conditions on the hyperbolicity constants and injectivity radii [OOS09,
Theorem 3.3]. They also proved that the class of finitely generated lacunary
hyperbolic groups contains examples of groups that are very far from being
hyperbolic: a non-virtually cyclic lacunary hyperbolic group can have all its
proper subgroups cyclic, can have an infinite center or can be elementary
amenable.

Following [OOS09], we call a locally compact compactly generated group
lacunary hyperbolic if one of its asymptotic cones is a real tree. For example
if X is a proper geodesic metric space with a cobounded isometric group
action, and if X has one asymptotic cone that is a real tree, then the
full isometry group G = Isom(X) is a locally compact lacunary hyperbolic
group, which has a priori no reason to be discrete.

By construction any asymptotic cone Coneω(G, s) of a locally compact
compactly generated group G comes equipped with a natural isometric ac-
tion of the group Precone(G, s). So in particular if G admits one asymptotic
cone Coneω(G, s) that is a real tree, then we have a transitive action by
isometries of the group Precone(G, s) on a real tree. Recall that isometric
group actions on real trees are classified as follows: if the the translation
length is trivial then there is a fixed point or a fixed end, and otherwise
either there is an invariant line, a unique fixed end or two hyperbolic isome-
tries without common endpoint. It turns out that when G is a hyperbolic
LC-group, then for every choice of parameters s and ω, the asymptotic cone
Coneω(G, s) is a real tree, and the type of the action of Precone(G, s) on
Coneω(G, s) is inherited from the type of the G-action on itself. Recall that
a hyperbolic LC-group G is called focal if its action on ∂G has a unique
fixed point. In particular when G is a focal hyperbolic group, then for ev-
ery scaling sequence s and non-principal ultrafilter ω, the asymptotic cone
Coneω(G, s) is a real tree and the action of Precone(G, s) on Coneω(G, s)
fixes a unique boundary point. This naturally leads to the question as
to whether this phenomenon may appear when considering non-hyperbolic
groups. Our first result shows that this is not the case. More precisely, we
prove the following statement (see Theorem 1.21).

Theorem 1.1. Let G be a locally compact compactly generated group. As-
sume that G admits one asymptotic cone Coneω(G, s) that is a real tree and
such that the group Precone(G, s) fixes a unique end of Coneω(G, s). Then
G = H ⋊ Z or H ⋊R, where the element 1 ∈ Z or R induces a compacting
automorphism of H.

Recall that an automorphism α ∈ Aut(H) of a locally compact group H
is said to be compacting if there exists a compact subset V ⊂ H such that
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for every h ∈ H, for n large enough αn(h) ∈ V . In particular we recover and
strengthen the implication (i) ⇒ (iii) of the following theorem of Caprace,
Cornulier, Monod and Tessera.

Theorem 1.2. [CCMT, Theorem 7.3] If G is a locally compact compactly
generated group, then the following statements are equivalent:

(i) G is a focal hyperbolic group;

(ii) G is amenable and non-elementary hyperbolic;

(iii) G is a semidirect product H ⋊ Z or H ⋊ R, where the element 1 ∈ Z
or R induces a compacting automorphism of the non-compact group
H.

Our method is different from that of [CCMT]: indeed the latter makes
a crucial use of amenability, and the fact that quasi-characters on amenable
groups are characters, while we only use geometric arguments at the level
of the real tree arising as an asymptotic cone.

We call a locally compact compactly generated group G lacunary hy-
perbolic of general type if it admits one asymptotic cone Coneω(G, s) that
is a real tree and such that the action of Precone(G, s) has two hyperbolic
isometries without common endpoint. Drutu and Sapir proved that any
non-virtually cyclic finitely generated lacunary hyperbolic group is of gen-
eral type (see the end of the proof of Theorem 6.12 in [DS05]). In the locally
compact setting, it will follow from Theorem 1.1 that any lacunary hyper-
bolic group that is neither an elementary nor a focal hyperbolic group, is
lacunary hyperbolic of general type (see Theorem 1.30).

It is often the case in topological group theory that a given problem can
be reduced to the case of connected groups and totally disconnected groups,
by using the fact that any topological group decomposes as an extension
with connected kernel and totally disconnected quotient. For instance if
one wants to study the large scale geometry of a given class of compactly
generated groups (say that is stable by modding out by a compact normal
subgroup and passing to a cocompact normal subgroup), then this can be
reduced to the study of connected and totally disconnected groups as soon
as the identity component of a group in this class is either compact or
cocompact. It is worth pointing out that this process cannot be applied in
generality for hyperbolic LC-groups, because it may happen that the unit
component of a hyperbolic LC-group is neither compact nor cocompact. A
typical example is (Qp × R) ⋊ Z, where the automorphism of Qp × R is
the multiplication by (p, p−1). However, apart from focal groups, it is true
that the identity component of a hyperbolic LC-group is either compact or
cocompact [CCMT, Proposition 5.10]. Here we will extend this result to
the setting of lacunary hyperbolic groups in Theorem 1.32.
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As a consequence, we will be able to deduce that a locally compact lacu-
nary hyperbolic group is either hyperbolic or admits a compact open sub-
group. Compactly generated groups with compact open subgroups are gen-
erally more tractable than compactly generated locally compact groups. For
example they act geometrically on a locally finite connected graph thanks to
a construction due to Abels recalled in Proposition 1.11. Most importantly
for our purpose, the fact that any finitely generated group is a quotient of
a finitely generated free group, admits a topological extension to the class
of compactly generated groups with compact open subgroups (see Propo-
sition 1.12). This will allow us to extend the characterization of finitely
generated lacunary hyperbolic groups of Olshanskii, Osin and Sapir to the
locally compact setting (see also Theorem 1.38).

Theorem 1.3. Let G be a locally compact, compactly generated group. Then
G is lacunary hyperbolic if and only if

(a) either G is hyperbolic; or

(b) there exists a hyperbolic LC-group G0 acting geometrically on a locally
finite tree, and an increasing sequence of discrete normal subgroups Nn

of G0, whose discrete union N is such that G is isomorphic to G0/N ;
and if S is a compact generating set of G0 and

ρn = min{|g|S : g ∈ Nn+1\Nn},

then G0/Nn is δn-hyperbolic with δn = o(ρn).

1.1.3 Subgroups of lacunary hyperbolic groups

In [OOS09], the authors initiated the study of subgroups of finitely gen-
erated lacunary hyperbolic groups. They proved for example that any
finitely presented subgroup of a lacunary hyperbolic group is a subgroup
of a hyperbolic group, or that a subgroup of bounded torsion of a lacunary
hyperbolic group cannot have relative exponential growth. This prohibits
Baumslag-Solitar groups, free Burnside groups with sufficiently large expo-
nent or lamplighter groups from occurring as subgroups of a finitely gen-
erated lacunary hyperbolic group [OOS09, Corollary 3.21]. These groups
are examples of groups satisfying a law, and the authors ask whether it is
possible that a non-virtually cyclic finitely generated group of relative ex-
ponential growth in a finitely generated lacunary hyperbolic group satisfies
a law.

Let G be a compactly generated group and s a scaling sequence. For
every subgroup H ≤ G, the set of H-valued sequences of Precone(G, s)
is a subgroup of Precone(G, s), which will be denoted PreconeG(H, s). In
particular when Coneω(G, s) is a real tree, we have an isometric action of the
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group PreconeG(H, s) on the real tree Coneω(G, s), and one might wonder
what is the type of this action in terms of the subgroup H. In Section 1.6 we
carry out a careful study of the possible type of the action of PreconeG(H, s)
on Coneω(G, s), which leads to the following result.

Proposition 1.4. Let G be a unimodular lacunary hyperbolic group. If
H ≤ G is a compactly generated subgroup of relative exponential growth in
G not having Z as a discrete cocompact subgroup, then H cannot satisfy a
law.

In particular when specified to the setting of discrete groups, Proposition
1.4 answers Question 7.2 in [OOS09]. This prohibits for example finitely
generated solvable groups from appearing as subgroups of finitely generated
lacunary hyperbolic groups (see Corollary 1.47).

1.2 Preliminaries

1.2.1 Asymptotic cones

We start this section by recalling the definition of asymptotic cones. Let
ω be a non-principal ultrafilter, i.e. a finitely additive probability measure
on N taking values in {0, 1} and vanishing on singletons. A statement P(n)
is said to hold ω-almost surely if the set of integers n such that P(n) holds
has measure 1. For any bounded function f : N → R, there exists a unique
real number ℓ such that for every ε > 0, we have f(n) ∈ [ℓ− ε, ℓ+ ε]
ω-almost surely. The number ℓ is called the limit of f along ω, and we
denote ℓ = limωf(n).

Consider a non-empty metric space (X, d), a base point e ∈ X, and a
scaling sequence s = (sn), i.e. a sequence of positive real numbers tending
to infinity. A sequence (xn) of elements of X is said to be s-linear if there
exists a constant C > 0 so that d(xn, e) ≤ Csn for all n ≥ 1. We denote
by Precone(X, d, s) the set of s-linear sequences. If ω is a non-principal
ultrafilter, the formula dω(x, y) = limω d(xn, yn)/sn makes Precone(X, d, s)
a pseudometric space, i.e. dω satisfies the triangle inequality, is symmet-
ric and vanishes on the diagonal. The asymptotic cone Coneω(X, d, s) of
(X, d) relative to the scaling sequence s and the non-principal ultrafilter ω,
is defined by identifying elements of Precone(X, d, s) at distance dω zero.
More precisely, Coneω(X, d, s) is the set of equivalence classes of s-linear
sequences, where x, y ∈ Precone(X, d, s) are equivalent if dω(x, y) = 0. We
will denote by (xn)ω the class of the s-linear sequence (xn).

If two metric spaces X,Y are quasi-isometric, then their asymptotic
cones corresponding to the same parameters s andω are bi-Lipschitz home-
omorphic.
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Now if G is a locally compact compactly generated group, it can be
viewed as a metric space when endowed with the word metric dS associated
to some compact generating subset S. Since word metrics associated to dif-
ferent compact generating sets are bi-Lipschitz equivalent, Precone(G, dS, s)
does not depend on the choice of S and will be denoted by Precone(G, s). It
inherits a group structure by component-wise multiplication. For any non-
principal ultrafilter ω, the set of s-linear sequences that are at distance dω

zero from the constant sequence (e) is a subgroup of Precone(G, s), denoted
by Sublinω(G, s). The asymptotic cone Coneω(G, dS, s) is by definition the
space of left cosets

Coneω(G, dS, s) = Precone(G, s) / Sublinω(G, s),

endowed with the metric dω((gn)ω, (hn)ω) = limω dS(gn, hn)/sn. By con-
struction the group Precone(G, s) acts transitively by isometries on Coneω(G, dS, s).
Note that as a set, Coneω(G, dS, s) does not depend on S. Moreover if S1,
S2 are two compact generating sets, then the identity map is a bi-Lipschitz
homeomorphism between Coneω(G, dS1

, s) and Coneω(G, dS2
, s). We will

denote by Coneω(G, s) the corresponding class of metric spaces up to bi-
Lipschitz homeomorphism.

If H is a subgroup of a locally compact compactly generated group
G, then for every scaling sequence s, we will denote by PreconeG(H, s)
the subgroup of Precone(G, s) consisting of H-valued sequences. Remark
that if H is a normal subgroup of G then PreconeG(H, s) is normal in
Precone(G, s), and if H satisfies a law then PreconeG(H, s) satisfies the same
law. These two simple observations will be used repeatedly throughout this
chapter.

1.2.2 Isometric actions on hyperbolic spaces and real
trees

Isometric actions on hyperbolic metric spaces and hyperbolic groups.
Let X be a geodesic δ-hyperbolic metric space, and x ∈ X a base-point.
Recall that it means that X is a geodesic metric space such that any side
of any geodesic triangle is contained in the δ-neighbourhood of the union of
the two other sides. We define the Gromov product relative to x by the for-
mula 2(y, z)x = d(y, x) + d(z, x) − d(y, z). A sequence (yn) of points in X is
called Cauchy-Gromov if (yn, ym)x → ∞ as m,n → ∞. The relation on the
set of Cauchy-Gromov sequences defined by (yn) ∼ (zn) if (yn, zn)x → ∞
as n → ∞, is an equivalence relation, and the boundary ∂X of the hy-
perbolic metric space X is by definition the set of equivalence classes of
Cauchy-Gromov sequences.
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Recall that if ϕ is an isometry ofX, then the quantity d(ϕnx, x)/n always
converges to some real number l(ϕ) ≥ 0 as n → ∞. When l(ϕ) = 0, the
isometry ϕ is called elliptic if it has bounded orbits, and parabolic otherwise.
When l(ϕ) > 0, the isometry ϕ is called hyperbolic. The limit set of ϕ, also
called the set of endpoints of ϕ, is the subset of ∂X of Cauchy-Gromov
sequences defined along an orbit of ϕ. It is empty if ϕ is elliptic, a singleton
if ϕ is parabolic and has cardinality two if ϕ is hyperbolic.

Now let Γ be a group acting by isometries on X. Gromov’s classification
[Gro87], which is summarized in Figure 1.1, says that exactly one of the
following happens:

1. orbits are bounded, and the action of Γ on X is said to be bounded;

2. orbits are unbounded and Γ does not contain any hyperbolic element,
in which case the action is said to be horocyclic;

3. Γ has a hyperbolic element and any two hyperbolic elements share the
same endpoints. Such an action is termed lineal;

4. Γ has a hyperbolic element, the action is not lineal and any two hy-
perbolic elements share an endpoint. In this situation we say that the
action is focal;

5. there exist two hyperbolic elements not sharing any endpoint. Such
an action is said to be of general type.

Now recall that a locally compact compactly generated group G is called
hyperbolic if its Cayley graph is hyperbolic for some (any) compact gener-
ating subset S. The type of G is defined as the type of the action of G on its
Cayley graph. Since horocyclic isometric actions are always distorted (see
for example Proposition 3.2 in [CCMT]), hyperbolic LC-groups are never
horocyclic. It is easily seen that a hyperbolic LC-group is bounded if and
only if it is compact, and hyperbolic LC-groups that are lineal are exactly
the locally compact compactly generated groups with two ends. These two
types of hyperbolic LC-groups are usually gathered under the term of ele-
mentary hyperbolic groups.

When dealing with discrete groups, it is a classical result that a finitely
generated non-elementary hyperbolic group is of general type. On the other
hand, focal hyperbolic groups do exist in the realm of non-discrete locally
compact groups. Examples include some connected Lie groups (e.g. Rn−1⋊
R, n ≥ 2, which admits a free and transitive isometric action on the n-
dimensional hyperbolic space Hn fixing a boundary point), or the stabilizer
of an end in the automorphism group of a semi-regular locally finite tree.
Beyond the connected and totally disconnected cases, a simple example of
a focal hyperbolic group is (Qp × R) ⋊ Z, where the element 1 ∈ Z acts by
multiplication by p on Qp and by p−1 on R. Caprace, Cornulier, Monod and
Tessera characterized focal hyperbolic groups as those hyperbolic LC-groups
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Figure 1.1 – Types of actions on hyperbolic spaces

that are non-elementary and amenable, and gave a precise description of the
structure of these groups (see Theorem 7.3 in [CCMT]).

Actions on real trees. We now recall some basic facts about real trees
and isometric group actions on these. A metric space is a real tree if it is
geodesic and 0-hyperbolic, or equivalently if any two points are connected
by a unique topological arc. If T is a real tree, a non-empty subset T ′ ⊂ T
is called a subtree if it is connected, which is equivalent to saying that T ′

is convex. We insist on the fact that by definition a subtree is necessarily
non-empty. A point x ∈ T is said to be a branching point if T \ {x} has at
least three connected components, and the branching cardinality of x is the
cardinality of the set of connected components of T \ {x}.

If ϕ is an isometry of a real tree T , then the translation length of ϕ is
defined as

‖ϕ‖ = inf
x∈T

d(ϕx, x),

and the characteristic set Minϕ of ϕ is the set of points where the translation
length is attained. The following proposition, a proof of which can be
consulted in [CM87], shows that the dynamics of an individual isometry of
a real tree is easily understood.

Proposition 1.5. The characteristic set Minϕ is a closed subtree of T which
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is invariant by ϕ. If ‖g‖ = 0 then ϕ is elliptic and Minϕ is the set of fixed
points of ϕ; and if ‖ϕ‖ > 0 then Minϕ is a line isometric to R, called the
axis of ϕ, along which ϕ translates by ‖ϕ‖.

If Γ is a group acting by isometries on a real tree T , an invariant subtree
T ′ is called minimal if it does not contain any proper invariant subtree.
When this holds we also say that the action of Γ on T ′ is minimal, or that
Γ acts minimally on T ′. Since a real tree is a hyperbolic metric space, the
classification of isometric group actions on hyperbolic spaces recalled in the
previous paragraph holds, and the five possible types of actions may occur
for groups acting on real trees. However if the action of Γ on T is minimal,
then this action cannot be bounded unless T is reduced to a point, is never
horocyclic, and is lineal if and only if T is isometric to the real line.

The following lemma is standard, see Proposition 3.1 in [CM87].

Lemma 1.6. Suppose that Γ is a group acting on a real tree. If Γ contains
some hyperbolic element, then the union of the axes of the hyperbolic ele-
ments of Γ is an invariant subtree contained in any other invariant subtree.

A simple but useful consequence is the following result.

Lemma 1.7. Let Γ be a group acting minimally on a real tree T , and let
Λ ⊳ Γ be a normal subgroup containing some hyperbolic element. Then the
action of Λ on T is minimal as well, and every point of T lies on the axis
of some hyperbolic element of Λ.

Proof. Let T ′ be the union of the axes of the hyperbolic elements of Λ,
which is a minimal Λ-invariant subtree by the previous lemma. To prove
the statement, it is enough to prove that T ′ = T . But this is clear because
the condition that Λ is a normal subgroup of Γ implies that T ′ is also a
Γ-invariant subtree, and by minimality of the action of Γ on T , one must
have T ′ = T .

1.2.3 Locally compact groups

We now aim to recall some structural results about locally compact
compactly generated groups that will be needed later. As it is often the case,
we will deal separately with connected and totally disconnected groups.

Connected locally compact groups. The material of this paragraph is
classical. It is an illustration of how the solution of Hilbert’s fifth problem
can be used to derive results about connected locally compact groups from
the study of connected Lie groups.
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Proposition 1.8. Every connected locally compact group has a unique max-
imal compact normal subgroup, called the compact radical, and the corre-
sponding quotient is a connected Lie group.

Proof. Let G be a connected locally compact group. By Theorem 4.6 of
[MZ55], there exists a compact normal subgroup K of G such that G/K
is a connected Lie group. Since on the one hand having a unique maximal
compact normal subgroup is preserved by group extension with compact
kernel, and on the other hand any connected Lie group has a unique maximal
compact normal subgroup, the conclusion follows.

If G is a topological group, we denote by G◦ the connected component
of the identity. It is a closed characteristic subgroup of G, and the quotient
G/G◦, endowed with the quotient topology, is a totally disconnected group.

Corollary 1.9. Every locally compact group G has a compact subgroup K
that is characteristic and contained in G◦, such that the quotient G◦/K is
a connected Lie group without non-trivial compact normal subgroup.

Proof. Take K the compact radical of G◦. Being characteristic in the char-
acteristic subgroup G◦, it is characteristic in G.

The following result will be used in Section 2.5.

Corollary 1.10. Every connected-by-compact locally compact group is quasi-
isometric to a compactly generated solvable group.

Proof. Clearly it is enough to prove the result for a connected locally com-
pact group G. Modding out by the compact radical of G, we may assume
by Proposition 1.8 that G is a connected Lie group, and the result now
follows from the classical fact that any connected Lie group has a (possibly
non-connected) cocompact solvable Lie subgroup.

Locally compact groups with compact open subgroups. Recall that
if G is a locally compact totally disconnected group, then according to van
Dantzig’s theorem, compact open subgroups of G exist and form a basis of
identity neighbourhoods. In this paragraph we will deal with the slightly
more general class of groups, namely the class of groups G having compact
open subgroups. Note that by van Dantzig’s theorem, this is equivalent to
saying that G is a locally compact group with a compact identity compo-
nent.

The following result, originally due to Abels, associates a connected
locally finite graph to any compactly generated locally compact group with
a compact open subgroup.
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Proposition 1.11. Let G be a compactly generated locally compact group
having a compact open subgroup. Then there exists a connected locally finite
graph X on which G acts by automorphisms, transitively and with compact
open stabilizers on the set of vertices.

Recall that the construction consists in choosing a compact open sub-
group K, and a compact generating subset S of G that is bi-invariant under
the action of K. We take G/K as vertex set for the graph X, and two dif-
ferent cosets g1K and g2K are adjacent if there exists s ∈ S±1 such that
g2 = g1s. The resulting graph is connected and locally finite. The action of
G on X is vertex-transitive, and the stabilizer of the base-vertex is the com-
pact open subgroup K. The graph X is called the Cayley-Abels graph of G
associated to the compact open subgroup K and compact generating subset
S. For example when G is the affine p-adic group Qp⋊Q×

p , its Cayley-Abels
graph associated to K = Zp⋊Z×

p and S = K∪K(0, p) is a regular tree Tp+1

of degree p+ 1. Another example is the p-adic SOL group Q2
p ⋊Q×

p , whose
Cayley-Abels graph with respect to some appropriately chosen parameters
is the Diestel-Leader graph DL(p, p), namely the subset of Tp+1 × Tp+1 de-
fined by the equation b(x) + b(y) = 0, where b is a Busemann function on
Tp+1.

In some sense, the following result is a topological analogue of the fact
that any finitely generated group is a quotient of a finitely generated free
group. The result is not new (see for example [CH15, Proposition 8.A.18]),
but the proof we give here is different from the one in [CH15].

Proposition 1.12. Let G be a compactly generated locally compact group
having a compact open subgroup. Then there exists a compactly generated
locally compact group G0 acting on a locally finite tree, transitively and with
compact open stabilizers on the set of vertices; and an open epimorphism
π : G0 ։ G with discrete kernel.

Proof. Let K be a compact open subgroup of G, and S a K-bi-invariant
compact symmetric generating subset of G containing the identity. Note
that this implies that K ⊂ S. We let RK,S be the set of words of the form
s1s2k

−1, with s1, s2 ∈ S and k ∈ K, when the relation s1s2 = k holds in the
group G. We denote by G0 the group defined by the abstract presentation
G0 = 〈S | RK,S〉. Note that by construction, the group G0 comes equipped
with a natural morphism π : G0 → G, which is onto since S is a generating
subset of G.

We claim that G0 admits a commensurated subgroup isomorphic to the
subgroup K of G. Indeed, let K0 be the subgroup of G0 generated by K ⊂ S
(here K is seen as a subset of the abstract generating set S). To prove that
K0 is isomorphic to K, it is enough to prove that K0 intersects trivially the
kernel of π. But this is clear, because by construction all the relations in
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G of the form k1k2 = k3 are already satisfied in G0, so the map π induces
an isomorphism between K0 and the subgroup K of G. Now it remains to
prove that K0 is commensurated in G0. Since by definition S generates G0,
it is enough to prove that the subset S commensurates K0 in G0. Being
compact and open in G, the subgroup K is commensurated in G. Therefore
for every s ∈ S there exists a finite index subgroup K(s) ≤ K such that
sK(s)s−1 ≤ K. This can be rephrased by saying that for every k(s) ∈ K(s),
there exists k ∈ K such that sk(s)s−1 = k. But now using twice the set or
relators RK,S, it is not hard to check that these relations hold in G0 as well,
which implies that the subgroup K0 is commensurated in G0. This finishes
the proof of the claim.

Now if we equip K0 with the pullback topology under the restriction of
the map π/K0

: K0
∼→ K, we obtain a group topology on G0 turning K0 into

a compact open subgroup (see Lemma 3.13). Note that by construction the
epimorphism π : G0 ։ G is open and has a discrete kernel (because the
latter intersects trivially the open subgroup K0).

To end the proof of the proposition, we need to construct a locally finite
tree on which G0 acts with the desired properties. Let us consider the
Cayley-Abels graph X of G0 associated to K0 and S. The action of G0 on
X is transitive and with compact open stabilizers on the set of vertices, so
the only thing that needs to be checked is that X is a tree, i.e. X does not
have non-trivial loops. To every loop in X can be associated a word s1 · · · sn

so that the relation s1 · · · snk = 1 holds in G0 for some k ∈ K. This means
that in the free group over the set S, we have a decomposition of the form

s1 · · · snk =
N
∏

i=1

wi

(

si,1si,2k
−1
i

)

w−1
i ,

with si,1si,2k
−1
i ∈ RK,S. Now remark that in X, any loop indexed by a

word of the form si,1si,2k
−1
i ∈ RK,S is nothing but a simple backtrack, and

it follows that we have a decomposition of our original loop as a sequence
of backtracks. This implies that X is a tree and finishes the proof.

1.3 Preliminary results on asymptotic cones

This section gathers a few lemmas that will be used in the sequel. As
we have seen earlier, any asymptotic cone of a locally compact compactly
generated group comes equipped with a natural isometric group action. The
next lemma describes to what extent this data varies for instance when mod-
ding out by a compact normal subgroup or passing to a cocompact normal
subgroup. We point out that in the second statement, the assumption that
π(G) is normal in Q is essential (think of R⋊ R inside SL2(R)).
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Lemma 1.13. Consider a proper homomorphism with cocompact image
π : G → Q between locally compact compactly generated groups. Then for
every scaling sequence s and non-principal ultrafilter ω, the induced map at
the level of asymptotic cones π̃ : Coneω(G, s) → Coneω(Q, s) is a bi-Lipschitz
homeomorphism.

If we assume in addition that Coneω(G, s) (and hence Coneω(Q, s)) is a
real tree and that π(G) is normal in Q, then the actions of Precone(G, s)
on Coneω(G, s) and of Precone(Q, s) on Coneω(Q, s) have the same type.

Proof. Since the homomorphism π has compact kernel and cocompact im-
age, it is a quasi-isometry. Therefore the map π̃ defined by π̃((gn)ω) =
(π(gn))ω is a bi-Lipschitz homeomorphism, which is equivariant under the
actions of Precone(G, s).

It follows that Coneω(Q, s) is a real tree if and only if Coneω(G, s) is a
real tree. When this is so and when π(G) is supposed to be normal in Q, if
Precone(G, s) stabilizes some finite subset in the boundary of Coneω(G, s),
then the same holds for the group Precone(Q, s). The converse implication
being clear, the proof is complete.

Recall that a metric space (X, d) is coarsely connected if there exists a
constant c > 0 such that for any x, y ∈ X, there exists a sequence of points
x = x0, x1, . . . , xn = y such that d(xi, xi+1) ≤ c for every i = 0, . . . , n− 1.

Lemma 1.14. Let (X, d) be a coarsely connected non-empty metric space.
If (X, d) is unbounded, then so are all its asymptotic cones.

Proof. Let e ∈ X be a base point, s a scaling sequence and ω a non-principal
ultrafilter. We prove the stronger statement that for every ℓ > 0, there exists
a point in Coneω(X, d, s) at distance exactly ℓ from the point (e)ω.

Since (X, d) is unbounded, for every n ≥ 1 there is a point xn ∈ X at
distance at least ℓsn from the base point e. Now by coarse connectedness,
xn can be chosen to be at distance at most ℓsn + c from e, where c > 0 is
the constant from the definition of coarse connectedness. By construction,
the sequence (xn) defines a point (xn)ω ∈ Coneω(X, d, s) that is at distance
ℓ to the point (e)ω.

Lemma 1.15. Let G be a compactly generated locally compact group, and
H a closed compactly generated subgroup of G. Then for any asymptotic
cone of G, the following statements are equivalent:

(i) H is compact;

(ii) PreconeG(H, s) fixes the point (e)ω ∈ Coneω(G, s);

(iii) PreconeG(H, s) has a bounded orbit in Coneω(G, s).
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Proof. The implications i) ⇒ ii) ⇒ iii) are trivial. Let us prove iii) ⇒ i)
by proving the contrapositive statement.

Since H is a closed compactly generated subgroup of G, the metric
space (H, dG) is coarsely connected [CH15, Proposition 4.B.8]. So if H is
assumed not to be compact, it follows from Lemma 1.14 that none of the
asymptotic cones of (H, dG) are bounded. But the asymptotic cone of H
with the induced metric from G can be naturally identified with the orbit
under PreconeG(H, s) of the point (e)ω ∈ Coneω(G, s). So it follows that
PreconeG(H, s) has one unbounded orbit, and since the action is isometric,
every orbit must be unbounded.

Remark 1.16. We illustrate the failure of Lemma 1.15 when H is not
compactly generated. Let G = Fp((t)) ⋊t Z, where Fp((t)) is the field of
Laurent series over some finite field Fp, and let H be the subgroup generated
by (t−αn , 0), n ≥ 1, where αn = 22n

. Then for any scaling sequence s
such that αn << sn << αn+1 (take for example sn = 23·2n−1

) and for any
non-principal ultrafilter ω, the group PreconeG(H, s) fixes the point (e)ω ∈
Coneω(G, s), whereas H is clearly not compact.

Lemma 1.17. Let G be a compactly generated locally compact group, and
let N be a closed normal subgroup of G. Assume that N is not cocompact in
G. Then for every asymptotic cone Coneω(G, s), there exists a bi-Lipschitz
ray γ : [0,+∞[→ Coneω(G, s) such that for every t ≥ 0,

dω (γ(t), CN) ≥ ct

for some constant c > 0, where CN is the orbit of the point (e)ω under
PreconeG(N, s).

Proof. Since the groupG/N is non-compact, it has an infinite quasi-geodesic
ray, that can be lifted to a quasi-geodesic ray ρ : [0,+∞[→ G such that for
every t ≥ 0, dG(ρ(t), N) ≥ ct for some constant c. Now we easily check that
for every non-principal ultrafilter ω and scaling sequence s, the ω-limit of
the quasi-geodesic ray ρ in Coneω(G, s) is a bi-Lipschitz ray satisfying the
required property.

Corollary 1.18. Let G be a compactly generated locally compact group,
and let N be a closed normal subgroup of G. If for some parameters ω, s the
action of PreconeG(N, s) on Coneω(G, s) is cobounded, then N is cocompact
in G.

WhenG is a compactly generated group with an asymptotic cone Coneω(G, s)
that is a real tree and such that the action of Precone(G, s) is of general
type, the five types of actions on real trees may happen for the action of
PreconeG(H, s) on Coneω(G, s), where H is a subgroup of G. However the
situation is more restrictive under the additional assumption that H is a
normal subgroup.
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Lemma 1.19. Let G be a locally compact compactly generated group. As-
sume that G admits an asymptotic cone Coneω(G, s) that is a real tree and
such that the action of Precone(G, s) is of general type. Then for any nor-
mal subgroup N of G, the action of PreconeG(N, s) on Coneω(G, s) is either
bounded or of general type.

Proof. If the group PreconeG(N, s) preserves a finite subset in the boundary
of Coneω(G, s), then this finite subset is also preserved by Precone(G, s)
because PreconeG(N, s) is normal in Precone(G, s). By assumption this does
not happen, so it follows that the action of PreconeG(N, s) on Coneω(G, s)
is either bounded or of general type.

We point out that it may happen that the group PreconeG(N, s) fixes
the point (e)ω ∈ Coneω(G, s) even if N is non-compact. Indeed, if G is
a non-virtually cyclic finitely generated lacunary hyperbolic group with an
infinite center Z (such groups have been constructed in [OOS09]), then the
action of the abelian group PreconeG(Z, s) cannot be of general type, and
therefore must have a fixed point.

Let (X, d) be a non-empty metric space, and let x0 ∈ X. Recall that
an isometry ϕ of X is hyperbolic if the limit as n → ∞ of d(ϕnx0, x0)/n
is positive. If G ≤ Isom(X) is a subgroup of the isometry group of X,
we can endow G with the pseudo-metric dx0

(g, h) = d(gx0, hx0). Note
that for every scaling sequence s and non-principal ultrafilter ω, the group
Precone(G, dx0

, s) admits a natural action on the asymptotic cone Coneω(X, d, s).
The following lemma says that if X is a geodesic hyperbolic metric space

and G ≤ Isom(X), in many cases the type of the action of Precone(G, dx0
, s)

on Coneω(X, d, s) is the same as the type of the action of G on X. Note
that both situations of statement (b) may happen (see Remark 1.16).

Lemma 1.20. Let X be a geodesic hyperbolic metric space, and x0 ∈ X. If
G is a subgroup of the isometry group of X, then:

(a) if the action of G on X is either bounded, lineal, focal or of general
type, then for every asymptotic cone of X, the action of Precone(G, dx0

, s)
on Coneω(X, d, s) has the same type;

(b) if the action of G on X is horocyclic, then the action of Precone(G, dx0
, s)

on Coneω(X, d, s) is either bounded or horocylic.

Proof. We start by making the easy observation that if g ∈ G is a hyperbolic
element, then for every asymptotic cone Coneω(X, d, s) of X, the element
(gsn) ∈ Precone(G, dx0

, s) is a hyperbolic isometry of Coneω(X, d, s), and
the axis of (gsn) is the asymptotic cone of any geodesic line in X between
the two endpoints of g.

(a). The statement is obvious for bounded and lineal actions, and follows
from the previous observation for actions of general type. Let us give the
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proof in the case when the action of G on X is focal. Let γ ∈ G be
a hyperbolic element. Since any two hyperbolic elements of G share an
endpoint, upon changing γ into its inverse, we may assume that (γkx0) ∈ ∂X
is the unique boundary point that is fixed by G. This implies (see for
instance [GdlH90, Chap.7 Cor.3]) that there exists some constant c > 0 such
that for every g ∈ G, we have d(gγkx0, γ

kx0) ≤ cd(gx0, x0) for every integer
k ≥ 1. It follows that for every element (gn) ∈ Precone(G, dx0

, s), there
exists some constant C > 0 such that d(gnγ

⌊tsn⌋x0, γ
⌊tsn⌋x0) ≤ Csn for every

t ≥ 0 and n ≥ 1. This implies that, if we let ξ : [0,+∞[→ Coneω(X, d, s)
be the ray defined by ξ(t) = (γ⌊tsn⌋x0)ω, in the real tree Coneω(X, d, s) the
distance between g·ξ(t) and ξ(t) is uniformly bounded, which means that the
two rays g·ξ and ξ represent the same end of Coneω(X, d, s). Combined with
the fact that Precone(G, dx0

, s) contains hyperbolic elements not having the
same endpoints (because G already does), this implies that the action of
Precone(G, dx0

, s) on Coneω(X, d, s) is focal.
(b). We assume that the action of Precone(G, dx0

, s) on Coneω(X, d, s)
is not bounded, and we prove that it is horocylic. Let (gnx0)ω be a point of
Coneω(X, d, s) such that dω((x0)ω, (gnx0)ω) = ℓ > 0, and let γn be a geodesic
in X between x0 and gnx0. Call mn the mid-point of γn. Recall that since
the action of G on X is horocylic, for every c > 0 there exists some constant
c′ such that the intersection in X between any c-quasi-geodesic and any G-
orbit lies in the union of two c-balls. This implies that ω-almost surely the
ball or radius ℓsn/3 around mn in X does intersect the orbit Gx0. Therefore
the mid-point of the unique geodesic in Coneω(X, d, s) between (x0)ω and
(gnx0)ω is at distance at least ℓ/3 from any point in the Precone(G, dx0

, s)-
orbit of (x0)ω. In particular this proves that Precone(G, dx0

, s) cannot pre-
serve a geodesic line in Coneω(X, d, s), and therefore does not have any
hyperbolic isometry.

1.4 Focal lacunary hyperbolic groups

This section is devoted to the proof of Theorem 1.1. We call a locally
compact compactly generated group focal lacunary hyperbolic if it admits
one asymptotic cone Coneω(G, s) that is a real tree, and such that the action
of Precone(G, s) on Coneω(G, s) is focal. According to Lemma 1.20, any
focal hyperbolic group is a focal lacunary hyperbolic group. The rest of this
section will be devoted to the proof of the following converse implication.

Theorem 1.21. Any focal lacunary hyperbolic group admits a topological
semidirect product decomposition H⋊Z or H⋊R, where the element 1 ∈ Z
or R acts on H as a compacting automorphism.

Recall that an automorphism α ∈ Aut(H) of a locally compact group
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H is called compacting if there exists a compact subset V ⊂ H, called
a pointwise vacuum set for α, such that for every h ∈ H, there exists an
integer n0 ≥ 1 such that αn(h) ∈ V for every n ≥ n0. Note that α ∈ Aut(H)
is compacting if and only if some positive power of α is compacting.

The idea of the proof of Theorem 1.21 is to deduce a contracting dy-
namics at the level of the group from a focal dynamics at the level of one
asymptotic cone. The first step in the argument is to prove that a focal
lacunary hyperbolic group is a topological semidirect product H ⋊ Z or
H ⋊R. This will be achieved in Corollary 1.25.

Recall that if G is a locally compact group endowed with the word metric
associated to some compact generating subset, a cyclic subgroup 〈g〉 is said
to be undistorted if the left multiplication by g is a hyperbolic isometry of
(G, dS), i.e. if the limit of |gn|S/n is not zero. A sufficient condition for 〈g〉
to be undistorted is the existence of a continuous homomorphism f : G → Z
such that f(g) 6= 0.

The following result provides a criterion for a normal subgroup of a focal
lacunary hyperbolic group to be cocompact.

Lemma 1.22. Let G be a focal lacunary hyperbolic group, and N a closed
normal subgroup containing an undistorted element. Then N is cocompact
in G.

Proof. We denote by C = Coneω(G, s) an asymptotic cone of G that is
a real tree and such that the action of Precone(G, s) on C is focal. Let
ξ : [0,+∞[→ C be the ray emanating from (e)ω representing the end of C
that is fixed by Precone(G, s). Since the group N contains an undistorted
element, it follows that the group PreconeG(N, s) acts on C with a hyperbolic
element h, whose translation length will be denoted by ℓ. Without loss of
generality, we may assume that (e)ω belongs to the axis of h. Indeed, if
(gn)ω is a point on the axis of h and if we denote by g = (gn), then g−1hg is
hyperbolic and contains (e)ω on its axis. Since PreconeG(N, s) is normal in
Precone(G, s), the element g−1hg remains in PreconeG(N, s), and the claim
is proved. Now since the action of Precone(G, s) on C is supposed to be
focal, the axis of h must contain the entire ray ξ.

Let us now prove that the action of PreconeG(N, s) on C is cocompact.
According to Corollary 1.18, this finishes the proof of the proposition. Let
x be a point of C. We will prove that the PreconeG(N, s)-orbit of x in C
intersects the segment joining (e)ω and ξ(ℓ). According to Lemma 1.7, there
exists some hyperbolic element γ ∈ PreconeG(N, s) whose axis contains x.
But since the action of Precone(G, s) on C is focal, the axis of γ intersects
ξ along an infinite ray, and by translating along the axis of γ, there exists
some n ∈ Z so that y = γnx belongs to ξ. But now since the axis of h
contains the ray ξ and since h translates along its axis by an amount of ℓ,
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we can find m ∈ Z so that hmy remains in ξ and is at distance at most ℓ
from (e)ω.

Remark 1.23. Actually the same proof works with the only assumption
that N is a closed normal subgroup such that PreconeG(N, s) acts on C with
a hyperbolic element. This will be used in the proof of Proposition 1.26.

If G is a locally compact group, we denote by ∆G : G → R∗
+ the modular

function of G. Recall that ∆G is a continuous group homomorphism.
The following proposition, which is a crucial step in the argument, con-

sists in obtaining an estimate on the modular function of a focal lacunary
hyperbolic group. In the proof, we take advantage of an idea appearing in
the end of the proof of Theorem 6.12 in [DS05].

Lemma 1.24. Let G be focal lacunary hyperbolic group, and C = Coneω(G, s)
an asymptotic cone of G that is a real tree and such that the action of
Precone(G, s) is focal. Let ξ : [0,+∞[→ C, ℓ 7→ (ξn(ℓ))ω, be the geodesic ray
emanating from (e)ω representing the end of C that is fixed by Precone(G, s).
Then there exist some constants c > 0, ρ > 1, such that for every ℓ ≥ 0, we
have

cρℓsn ≤ ∆G(ξn(ℓ))

ω-almost surely.

Proof. First note that for every ℓ ≥ 0, the element (ξn(ℓ)) ∈ Precone(G, s)
sends the point (e)ω to ξ(ℓ) by definition. But since the action of Precone(G, s)
on C is supposed to be focal, the image of the geodesic ray ξ by (ξn(ℓ))
eventually coincides with ξ. It follows that (ξn(ℓ)) · ξ is exactly the in-
finite subray of ξ emanating from ξ(ℓ). In particular for every k ≥ 1,
(ξn(ℓ)) · ξ(kℓ) = ξ((k + 1)ℓ), and by a straightforward induction we obtain
ξ(kℓ) = (ξn(ℓ)k)ω.

Let S be a compact generating subset of G, and denote by BS(r) the
closed ball of radius r ≥ 0 around the identity with respect to the word
metric associated to S. Let ℓ ≥ 0, and (gn) ∈ Precone(G, s) such that
|gn| ≤ ℓsn for every n ≥ 1. The image of the point (e)ω under such an
element (gn) is at distance at most ℓ from (e)ω. The action being focal, it
follows from this observation that the two rays (gn) · ξ and ξ intersect along
an infinite subray of ξ containing the point ξ(ℓ).

Now let us assume for a moment that the element (gn) is either elliptic or
has the fixed end of C for attractive endpoint. Since the translation length
of (gn) is at most ℓ, it follows from the above observation that (gn) ·ξ(ℓ) is at
distance at most ℓ/2 from either ξ(ℓ) or ξ(2ℓ). This implies that ω-almost
surely

dS

(

gnξn(ℓ),
{

ξn(ℓ), ξn(ℓ)2
})

≤ 2
3
ℓsn,
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where dS(g, {h, k}) is by definition the minimum between dS(g, h) and
dS(g, k). This inequality can be reformulated by saying that ω-almost surely

gn ∈ ξn(ℓ) ·BS (2ℓsn/3) · ξn(ℓ)−1 ∪ ξn(ℓ)2 ·BS (2ℓsn/3) · ξn(ℓ)−1.

Now if the element (gn) is a hyperbolic isometry having the fixed end of C
for repulsive endpoint, then we can apply the previous argument to (g−1

n ).
So we have proved that for every ℓ ≥ 0, ω-almost surely the ball of

radius ℓsn around the identity in G lies inside

ξn(ℓ)·BS (2ℓsn/3)·ξn(ℓ)−1 ∪ ξn(ℓ)2·BS (2ℓsn/3)·ξn(ℓ)−1 ∪ ξn(ℓ)·BS (2ℓsn/3)·ξn(ℓ)−2.

Now if we let µ be a left-invariant Haar measure on G, then for every ℓ ≥ 0,
ω-almost surely

µ (BS(ℓsn)) ≤ 2µ
(

BS (2ℓsn/3) · ξn(ℓ)−1
)

+ µ
(

BS (2ℓsn/3) · ξn(ℓ)−2
)

.

Dividing by µ (BS (2ℓsn/3)), we obtain

µ (BS (ℓsn))
µ (BS (2ℓsn/3))

≤ 2∆G(ξn(ℓ)) + ∆G(ξn(ℓ))2 ≤ 3∆G(ξn(ℓ))2.

We claim that the Haar-measure µ is not right-invariant. Let us argue by
contradiction and assume that µ is right-invariant, which implies that the
right-hand side of the last inequality is constant equal to 3. Then for every
ℓ ≥ 0, ω-almost surely µ (BS(ℓsn)) ≤ 3µ (BS (2ℓsn/3)). Now since every
point of the real tree C is a branching point, spheres of any given radius in
C are infinite, and it is not hard to see that this establishes a contradiction
with the above inequality on the growth function of G. So µ cannot be
right-invariant, i.e. G is non-unimodular. In particular the group G has
exponential growth, and we easily deduce that the left-hand side of the
above inequality is at least c1α

ℓsn for some constants c1 > 0, α > 1, and the
conclusion follows with c =

√

c1/3 and ρ =
√
α.

Corollary 1.25. If G is a focal lacunary hyperbolic group, then G admits
a topological semidirect product decomposition H ⋊Z or H ⋊R, where H is
the kernel of the modular function of G.

Proof. Let H be the kernel of the modular function ∆G : G → R∗
+. Assume

that we have proved that the image of ∆G is a closed non-trivial subgroup
of R∗

+. Then the image of ∆G is either discrete and infinite cyclic, or topo-
logically isomorphic to R. In the first case we easily have G = H ⋊ Z, and
in the other case we use the fact that any quotient homomorphism from a
locally compact group to the group R is split, and deduce that G = H ⋊R.

So we should prove that the image of ∆G is closed and non-trivial. Ac-
cording to Lemma 1.24, we can choose some ξn(ℓ) = γ ∈ G such that
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∆G(γ) > 1. Let us consider the subgroup N = H ⋊ 〈γ〉 of G generated by
H and γ. Since H contains the derived subgroup of G, the subgroup N is
normal in G, and being the preimage by ∆G of the discrete subgroup of R∗

+

generated by ∆G(γ), N is a closed subgroup.
Since ∆G(γ) 6= 1, the cyclic subgroup generated by γ is undistorted in

G, and therefore we are in position to apply Lemma 1.22, which implies
that N is a cocompact subgroup of G. Hence ∆G induces a homomorphism
from the compact group G/N to R∗

+/∆G(N), which necessarily has a closed
image. Being the preimage in R∗

+ of this closed subgroup, the image of ∆G

is closed.

So we have proved that any focal lacunary hyperbolic group is either of
the form H⋊Z or H⋊R. We must now prove that the associated action is
compacting. The first step towards this result is the following proposition,
which says that a focal lacunary hyperbolic group satisfies in some sense a
weak local contracting property.

If H is a subgroup of a compactly generated group G, we denote by
BG,H(r) the closed ball of radius r ≥ 0 in H around the identity, where H
is endowed with the induced metric from G.

Proposition 1.26. Let G be a focal lacunary hyperbolic group. Assume
that G admits a topological semidirect product decomposition G = H ⋊ 〈t0〉.
Then there exist t ∈ {t0, t−1

0 } and infinitely many N ≥ 1 such that

tN ·BG,H(2N) · t−N ⊂ BG,H(N).

Proof. Let us denote by C = Coneω(G, s) an asymptotic cone of G that is
a real tree and such that the action of Precone(G, s) on C is focal. Observe
that the element (tsn

0 ) ∈ Precone(G, s) is hyperbolic, and its axis is the
image of the map R → Coneω(G, s), x 7→ (t−⌊xsn⌋

0 )ω. One of the two ends
of this axis must be the end of C that is fixed by Precone(G, s), so there is
t ∈ {t0, t−1

0 } such that the ray emanating from (e)ω representing the fixed
end of C is the image of ξ : [0,+∞[→ Coneω(G, s), x 7→ (t−⌊xsn⌋)ω.

We claim that PreconeG(H, s) cannot fix a point in C. Indeed, if the set
of fixed points of PreconeG(H, s) is not empty, then it is a subtree of C that is
invariant by Precone(G, s) since H ⊳G. But Precone(G, s) acts transitively
on C, so we deduce that the set of fixed points of PreconeG(H, s) is the entire
C. It follows that the action of PreconeG(H, s) on C is trivial, and this im-
plies that the asymptotic cone C is a line, which contradicts the fact that the
action of Precone(G, s) on C is focal. On the other hand, if PreconeG(H, s)
contains some hyperbolic isometry, then according to Remark 1.23 the con-
clusion of Lemma 1.22 holds and the subgroup H is cocompact in G, which
is a contradiction. So the action of PreconeG(H, s) on C must be horocyclic.
It follows that if (hn) is a sequence in H such that |hn|S ≤ 2ℓsn for every
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n ≥ 1 (which implies that the distance in Coneω(G, s) between (e)ω and
(hn)ω is at most 2ℓ), then the element (hn) fixes ξ([ℓ,+∞[). In particular
if |hn|S ≤ 2sn for every n ≥ 1, then (hn) fixes the point ξ(1) = (t−sn)ω, and
we have

limω d(hnt
−sn , t−sn)
sn

= limω |tsnhnt
−sn|S

sn

= 0.

So for every hn ∈ BG,H(2sn), ω-almost surely we have |tsnhnt
−sn|S ≤ sn,

which is equivalent to saying that ω-almost surely tsn · BG,H(2sn) · t−sn ⊂
BG,H(sn).

Corollary 1.27. Let G be a focal lacunary hyperbolic group with a topo-
logical semidirect product decomposition G = H ⋊ 〈t0〉. Then there exist
t ∈ {t0, t−1

0 }, an integer n0 ≥ 1 and a compact symmetric subset K ⊂ H
containing the identity such that:

i) 〈K, tn0〉 = H ⋊ 〈tn0〉;
ii) tn0 ·K2 · t−n0 ⊂ K.

Proof. Let t coming from Proposition 1.26, and N0 ≥ 1 an integer such that
BG,H(N0) together with t generate the group G. According to Proposition
1.26, there exists N1 ≥ N0 such that

tN1 ·BG,H(2N1) · t−N1 ⊂ BG,H(N1).

If we set

K1 =
N1−1
⋃

i=0

ti ·BG,H(N1) · t−i,

then K1 is a compact subset of H and by construction conjugating by t
sends K1 into itself because

t ·K1 · t−1 ⊂ K1 ∪ tN1 ·BG,H(N1) · t−N1 ⊂ K1.

In particular the sequence of compact subsets (t−n ·K1 ·tn)n≥0, is increasing.
A fortiori the same holds for the sequence of subgroups (t−n · 〈K1〉 · tn)n≥0,
and it follows that the subgroup they generate is nothing but their union.
But now by assumption K1 and t generate G, so this increasing union of
subgroups is the entire subgroup H. This observation implies in particular
that for every n0 ≥ 1, the subgroup generated by K1 and tn0 is equal to
H ⋊ 〈tn0〉.

Now we let n0 be an integer satisfying the conclusion of Proposition
1.26 and so that BG,H(n0) contains K1, and we check that K = BG,H(n0)
satisfies the conclusion. It follows from the last paragraph that the subgroup
generated by K together with tn0 is equal to H ⋊ 〈tn0〉 because K contains
K1. Besides it is clear that K2 ⊂ BG,H(2n0), so the inclusion tn0 ·K2 ·t−n0 ⊂
K follows immediately from the conclusion of Proposition 1.26.
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The following result provides a sufficient condition on a group G =
H ⋊ 〈t〉 so that the conjugation by the element t induces a compacting
automorphism of the group H.

Proposition 1.28. Let G = H ⋊ 〈t〉 be a locally compact group such that
there is some compact symmetric subset K ⊂ H containing the identity so
that:

(a) S = K ∪ {t} generates the group G;

(b) t ·K2 · t−1 ⊂ K.

Then the automorphism of H induced by the conjugation by t is compacting.

Proof. We check that for every h ∈ H, we have tnht−n ∈ K eventually. The
hypotheses imply that H is generated by the increasing union of compact
sets t−n ·K · tn, so that every element of H lies inside t−n ·K2k · tn for some
integers n, k ≥ 0. The latter being included in t−n−k ·K · tn+k thanks to (b),
the proof is complete.

We are now able to prove the main result of this section.

Proof of Theorem 1.21. Let G be a focal lacunary hyperbolic group. Ac-
cording to Corollary 1.25, the group G admits a topological semidirect
product decomposition of the form H ⋊α Z or H ⋊α(t) R. To conclude
we need to prove that the action of α (resp. α(1)) on H is compacting. For
the sake of simplicity we denote α(1) by α as well.

We claim that upon changing α into its inverse, there is some positive
power of α satisfying the hypotheses of Proposition 1.28. In the case when
G = H⋊αZ this follows directly from Corollary 1.27. When G = H⋊α(t)R,
the subgroup H ⋊α(1) Z is normal and cocompact in G, and therefore focal
lacunary hyperbolic as well by Lemma 1.13, so that Corollary 1.27 can also
be applied.

Consequently Proposition 1.28 implies that some positive power of α is
compacting, and it follows that α is compacting as well.

1.5 Structure of locally compact lacunary hy-

perbolic groups

1.5.1 Identity component in lacunary hyperbolic groups

Recall that a locally compact compactly generated group G is lacunary
hyperbolic of general type if it admits one asymptotic cone Coneω(G, s) that
is a real tree and such that the action of Precone(G, s) on Coneω(G, s) is
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of general type. It turns out that, apart from the case of hyperbolic LC-
groups, every lacunary hyperbolic group is of general type. This will be
proved in Theorem 1.30 below.

It is proved in [DS05, Proposition 6.1] that if a finitely generated group
G has one asymptotic cone that is a line, then G is virtually infinite cyclic.
The following lemma is an extension of this result to coarsely connected
metric groups. In particular it encompasses the case of a closed compactly
generated subgroup H of a locally compact compactly generated group G,
where H is endowed with the induced word metric from G.

Lemma 1.29. Let (Γ, d) be a group equipped with a coarsely connected
left-invariant metric. If (Γ, d) admits one asymptotic cone that is quasi-
isometric to the real line, then Γ admits an infinite cyclic cobounded sub-
group.

Proof. If C = Coneω(Γ, d, s) is an asymptotic cone of (Γ, d) that is quasi-
isometric to the real line, the action of Precone(Γ, d, s) on C is lineal. There-
fore Precone(Γ, d, s) contains some hyperbolic element γ = (γn), and there
exists ℓ > 0 such that the ℓ-neighbourhood of the 〈γ〉-orbit of the point (e)ω

is the entire C.
For every n ≥ 1, we let Γn be the subgroup of Γ generated by γn. We

claim that ω-almost surely, Γ is contained in the (ℓ + 1)sn-neighbourhood
of Γn. Let us argue by contradiction and assume that ω-almost surely there
exists xn ∈ Γ such that d(xn,Γn) ≥ (ℓ + 1)sn. Since (Γ, d) is coarsely
connected, we can assume that d(xn,Γn) ≤ (ℓ+ 1)sn + c for some constant
c > 0. Upon multiplying xn on the left by an element of Γn, we can
moreover assume that d(xn,Γn) = d(xn, e), which implies that the sequence
(xn) defines a point x ∈ C. But by construction, ω-almost surely d(xn, γ

i
n) ≥

(ℓ+ 1)sn for every i ∈ Z, so the point x is at distance at least (ℓ+ 1) from
any point in the 〈γ〉-orbit of the point (e)ω. Contradiction.

Theorem 1.30. Let G be a locally compact lacunary hyperbolic group. Then
exactly one of the following holds:

(a) G is either an elementary or a focal hyperbolic group;

(b) for every asymptotic cone Coneω(G, s) that is a real tree, the action
of Precone(G, s) on Coneω(G, s) is of general type.

Proof. Let C = Coneω(G, s) be an asymptotic cone of G that is a real tree.
By homogeneity C can be either a point, a line, or such that every point is
branching with the same branching cardinality. The case when C is a point
is trivial, as it easily implies that the group G is compact. If C is a line then
G must have an infinite cyclic discrete and cocompact subgroup by Lemma
1.29. So we may assume that C is neither a point nor a line. This implies
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that if the action of Precone(G, s) on C is not of general type, then it is
focal, and by Theorem 1.21 this implies that G is focal hyperbolic.

We now aim to establish some structural results about locally compact
lacunary hyperbolic groups. Since any topological group naturally lies into
an extension with a connected kernel and a totally disconnected quotient,
it is natural to wonder what can be said about the identity component of a
locally compact lacunary hyperbolic group. Recall that even for hyperbolic
LC-groups, it may happen that the identity component is neither compact
nor cocompact. Take for example the semidirect product (R×Qp)⋊Z, where
the action of Z is by multiplication by 1/2 on R and by p on Qp. However,
if G is a hyperbolic LC-group of general type, it follows from [CCMT,
Proposition 5.10] that the identity component of G is either compact or
cocompact. We will extend this result to lacunary hyperbolic groups in
Theorem 1.32 below.

Recall that if G is a locally compact group, the Braconnier topology is
a Hausdorff topology on the group Aut(G) of topological automorphisms of
G. For an introduction to this topology, see for example [CM11, Appendix
I].

Lemma 1.31. Let G be a σ-compact locally compact group, and N ⊳ G a
closed normal subgroup with trivial center and finite outer automorphism
group. Assume moreover that the group Inn(N) of inner automorphisms of
N is closed in Aut(N). Then G has a finite index open subgroup that is
topologically isomorphic to the direct product of N with its centralizer in G.

Proof. If we let C be the centralizer of N in G, we want to prove that the
subgroup NC is open in G, has finite index and is topologically the direct
product of N and C. Since N is a closed normal subgroup of G, the action
of G by conjugation on N yields a continuous map G → Aut(N) [HR79,
Theorem 26.7]. Being the preimage of the closed finite index subgroup
Inn(N) of Aut(N) under this map, the subgroup NC is a closed finite index
(and hence open) subgroup of G. It follows that NC is a σ-compact locally
compact group, and we deduce that the natural epimorphism N×C → NC
is a quotient morphism between topological groups. Since it is clearly onto,
and injective becauseN has trivial center, it is an isomorphism of topological
groups.

Theorem 1.32. Let G be a locally compact lacunary hyperbolic group of
general type. Then G◦ is either compact or cocompact in G.

Proof. According to Corollary 1.9 there exists a compact characteristic sub-
group W of G contained in G◦ such that G◦/W is a connected Lie group
without non-trivial compact normal subgroup. Now by Lemma 1.13, the
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group G/W is lacunary hyperbolic of general type as well, so the proof can
be reduced to the case when G◦ is a connected Lie group without non-trivial
compact normal subgroup.

Let C = Coneω(G, s) be an asymptotic cone of G that is a real tree and
such that the action of Precone(G, s) on C is of general type. According to
Lemma 1.19, the action of PreconeG(G◦, s) on C is either bounded or of gen-
eral type. Since G◦ is compactly generated, if the action of PreconeG(G◦, s)
on C is bounded then G◦ is compact by Lemma 1.15. So we may assume
that this action is of general type and we will prove that G◦ is cocompact
in G.

We denote by R the non-connected solvable radical of G◦, that is its
largest normal solvable subgroup. It is a closed, compactly generated sub-
group of G◦, and being characteristic in the normal subgroup G◦, the sub-
group R is normal in G. We will prove that R is reduced to the identity.
For the same reason as above, the action of PreconeG(R, s) on C must be
either bounded or of general type. However it cannot be of general type
because otherwise PreconeG(R, s) would contain a non-abelian free sub-
group (see Theorem 2.7 in [CM87]), which is clearly impossible because
PreconeG(R, s) is a solvable group. Therefore the action of PreconeG(R, s)
on C is bounded, and by Lemma 1.15 this implies that R is a compact sub-
group. But G◦ is assumed not to contain any non-trivial compact normal
subgroup, so R must be trivial.

It follows that G◦ is a semisimple Lie group with trivial center, and
consequently G◦ has finite outer automorphism group. So we are in position
to apply Lemma 1.31, and we obtain that G admits a finite index open
subgroup decomposing as a topological direct product G′ = G◦ × Q. Now
since G′ has finite index in G, Coneω(G′, s) ≃ Coneω(G◦, s)×Coneω(Q, s) is
a real tree. This implies that either Coneω(G◦, s) or Coneω(Q, s) is a point,
that is either G◦ or Q is compact. But by assumption G◦ is not compact so
Q must be compact, and the conclusion follows.

As a consequence of this result, we deduce the following property for
locally compact lacunary hyperbolic groups.

Proposition 1.33. If G is a locally compact lacunary hyperbolic group,
then either G is hyperbolic or G has a compact open subgroup.

Proof. According to Lemma 1.29, if G is not an elementary hyperbolic LC-
group, then G must be either focal lacunary hyperbolic or lacunary hy-
perbolic of general type. If G is focal lacunary hyperbolic then G is focal
hyperbolic by Theorem 1.21. Now if G is lacunary hyperbolic of general
type, then according to Theorem 1.32 the identity component G◦ is either
compact or cocompact in G. In the latter case G must be hyperbolic (see
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Remark 2.31), and in the former G has a compact open subgroup by van
Dantzig’s theorem.

1.5.2 Characterization of lacunary hyperbolic groups

Cartan-Hadamard Theorem. This paragraph consists of a recall of a
Cartan-Hadamard type theorem due to Gromov, and its application to lacu-
nary hyperbolic groups due to Kapovich and Kleiner, stated for topological
groups rather than discrete ones.

Let (X, d) be a non-empty geodesic metric space, x0 ∈ X a base point
and c > 0. A c-loop based at x0 is a sequence of points x0 = x1, x2, . . . , xn =
x0 such that d(xi, xi+1) ≤ c for every i = 1, . . . , n− 1. Two c-loops are said
to be c-elementarily homotopic if one of them can be obtained from the
other by inserting a new point, and c-homotopic if they are the extremities
of a finite sequence of c-loops such that any two consecutive terms are c-
elementarily homotopic. Recall that X is c-large scale simply connected if
any c-loop based at x0 is c-homotopic to the trivial loop.

The following result can be deduced from [BH99, Part III.H Lemma 2.6].

Proposition 1.34. There exists some universal constant C > 0 so that
every geodesic δ-hyperbolic metric space is Cδ-large scale simply connected.

The following result appears as a large scale analogue of Cartan-Hadamard
Theorem in metric geometry. The idea of this local-global principle goes
back to [Gro87], but the version we use here is inspired from Theorem 8.3
of the Appendix of [OOS09] (see also Chapter 8 of [Bow91]).

Theorem 1.35. There exist some constants c1, c2, c3 > 0 such that the
following holds: every geodesic, c-large scale simply connected metric space
X with the property that there exists some R ≥ c1c such that every ball in
X of radius R is c2R-hyperbolic; is c3R-hyperbolic.

Kapovich and Kleiner [OOS09, Appendix] observed that geodesic metric
spaces with one asymptotic cone that is a real tree fulfill the assumption of
local hyperbolicity appearing in Theorem 1.35, which yields the following
corollary.

Corollary 1.36. Let (X, d) be a homogeneous, geodesic, c-large-scale simply
connected metric space. If X is lacunary hyperbolic then X is hyperbolic.

Proof. Let e ∈ X be a base point, s a scaling sequence and ω a non-principal
ultrafilter such that Coneω(X, d, s) is a real tree. Then ω-almost surely, the
ball or radius sn in X around e is δn-hyperbolic, with δn = o(sn). But since
X is homogeneous, every ball in X or radius sn is δn-hyperbolic. Now for
some large enough n we have sn ≥ c1c and δn/sn ≤ c2, so it follows from
Theorem 1.35 that X is hyperbolic.
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Since for a locally compact compactly generated group, compact pre-
sentability can be characterized in terms of large scale simple connectedness
(see for example [CH15, Proposition 8.A.3]), we obtain the following result,
which is the topological counterpart of [OOS09, Theorem 8.1] by Kapovich
and Kleiner.

Corollary 1.37. Any compactly presented group that is lacunary hyperbolic
is a hyperbolic group.

Characterization of locally compact lacunary hyperbolic groups.
We are now able to generalize to the locally compact setting the structural
theorem of Olshanskii, Osin, Sapir [OOS09] for finitely generated lacunary
hyperbolic groups.

Theorem 1.38. Let G be a locally compact, compactly generated group with
a compact open subgroup. Then the following assertions are equivalent:

(i) G is lacunary hyperbolic;

(ii) There exists a scaling sequence s such that for every non-principal
ultrafilter ω, the asymptotic cone Coneω(G, s) is a real tree;

(iii) There exists a hyperbolic LC-group G0 acting on a locally finite tree,
transitively and with compact open stabilizers on the set of vertices,
and an increasing sequence of discrete normal subgroups Nn, whose
discrete union N is such that G is topologically isomorphic to G0/N ;
and if S is a compact generating set of G0 and

ρn = min{|g|S : g ∈ Nn+1\Nn},

then G0/Nn is δn-hyperbolic with δn = o(ρn).

The proof of the implication (iii) ⇒ (ii) is similar than in the discrete
setting, so we choose not to repeat it here and refer the reader to [OOS09,
p.16]. The implication (ii) ⇒ (i) being trivial, we only have to prove
(i) ⇒ (iii).

Proof of (i) ⇒ (iii). Let G be a lacunary hyperbolic group with a compact
open subgroup. We let G0 and π : G0 → G be as in Proposition 1.12. Recall
thatG0 is a locally compact compactly generated group acting geometrically
on a locally finite tree and π is an open morphism from G0 onto G with
discrete kernel N . Let ω be a non-principal ultrafilter and s a scaling
sequence such that Coneω(G, s) is a real tree. Choose a compact open
subgroup K of G0 intersecting N trivially, and a K-bi-invariant compact
generating set S of G0. For every k ≥ 1, let Nk be the normal subgroup of
G0 generated by elements of N of word length at most dk with respect to S,
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and set Gk = G0/Nk. Note that since s is an increasing sequence tending to
infinity, by construction (Nk) is an increasing sequence of normal subgroups
of G0 whose union is N . This can be rephrased by saying that we have an
infinite sequence of locally compact groups and quotient morphisms

G0 ։ · · · ։ Gk ։ Gk+1 ։ · · ·

whose direct limit is topologically isomorphic to the group G. Observe that
the injectivity radius of the map Gk ։ G is larger than dk, and a fortiori
the same holds for the injectivity radius of the map Gk ։ Gk+1.

For every k ≥ 1, we push the pair (K,S) in Gk and in G, and we denote
by Xk (resp. X) the Cayley-Abels graph of Gk (resp. G) with respect to this
compact open subgroup and compact generating set. By abuse of notation,
we still denote by K the image of the subgroup K in Gk. To the above
sequence of groups and epimorphisms corresponds an infinite sequence of
coverings of graphs

X0 ։ · · · ։ Xk ։ Xk+1 ։ · · ·

Note that the map Xk ։ X is injective on the ball BXk
(K, dk) of radius dk

around the vertex K.
Now sinceG is quasi-isometric to its Cayley-Abels graphX, their asymp-

totic cones Coneω(X, s) and Coneω(G, s) are bi-Lipschitz homeomorphic. It
follows that Coneω(X, s) is a real tree, and therefore ω-almost surely the
ball of radius dk in X is δk-hyperbolic with δk = o(dk). By the above ob-
servation on the injectivity radius of the map Xk ։ X, the same is true in
Xk. According to Proposition 1.34, the ball BXk

(K, dk) is O(δk)-large scale
simply connected. But by construction of the group Gk, any loop in Xk is
built from loops of length at most dk, so it follows that the entire graph Xk

is Ck-large scale simply connected, with Ck = O(δk).
Now let us pick a sequence (∆k) such that δk << ∆k << dk. If we let

c1, c2, c3 be the constants from Theorem 1.35, then ω-almost surely ∆k ≥
c1Ck and ∆k ≥ δk/c2. So we are in position to apply Theorem 1.35, which
implies that ω-almost surely Xk is c3∆k-hyperbolic.

Now as observed earlier, the injectivity radius ρk of Gk ։ Gk+1 satisfies
ρk ≥ dk. Since ∆k = o(dk), we clearly have ∆k = o(ρk). It follows that ω
almost surely, the graphXk (and a fortiori the groupGk) is o(ρk)-hyperbolic,
and the conclusion follows.

The next proposition establishes some stability properties of the class
of locally compact lacunary hyperbolic groups. We note that, as observed
in [OOS09], the class of finitely generated lacunary hyperbolic groups is not
stable under free product.
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Proposition 1.39. The class of locally compact lacunary hyperbolic groups
is stable under taking:

(a) a semidirect product with a compact group;

(b) an HNN-extension over some compact open subgroup;

(c) an amalgamated product with a hyperbolic LC-group over some com-
pact open subgroup.

Proof. The statement (a) is trivial. Let us prove (b). Let G be a lacu-
nary hyperbolic group, K,L two compact open subgroups, ϕ : K → L
a topological isomorphism, and G′ = HNN(G,K,L, ϕ) the corresponding
HNN-extension. We want to prove that G′ is lacunary hyperbolic. If G
is hyperbolic then there is nothing to prove because since K,L are com-
pact, the group G′ is hyperbolic as well. Otherwise G has a compact open
subgroup by Proposition 1.33, and we let G0 be a hyperbolic LC-group
and (Nn) an increasing sequence of discrete normal subgroups as in The-
orem 1.38. There exists an integer n0 ≥ 1 such that for every n ≥ n0,
the group Gn has subgroups isomorphic to K and L, which we still de-
note by K and L by abuse of notation. Let us form the HNN-extension
G′

n = HNN(Gn, K, L, ϕ). Since Gn is δn-hyperbolic and K,L are compact,
the group G′

n is δ′
n-hyperbolic. Moreover since K,L have bounded diam-

eter in Gn, we have δ′
n = O(δn). Now the epimorphism αn : Gn ։ Gn+1

naturally extends to α′
n : G′

n ։ G′
n+1 by mapping the stable letter to itself,

and the injectivity radius ρ′
n of α′

n is equal to the injectivity radius ρn of
αn. Since by assumption ρn << δn, we have ρ′

n << δ′
n, and the fact that G′

is lacunary hyperbolic follows from the implication (iii) ⇒ (i) in Theorem
1.38.

The case (c) of an amalgamated product with a hyperbolic LC-group
over some compact open subgroup is analogous, and relies on the fact that
the amalgamated product of two hyperbolic LC-groups over some compact
open subgroup remains hyperbolic, with a control on the hyperbolicity con-
stant in terms of the hyperbolicity constants of the two groups and the
diameter of the compact subgroup.

Example 1.40. Here is a construction providing examples of locally com-
pact lacunary hyperbolic groups with a non-discrete topology. Let Γ be
a discrete lacunary hyperbolic group, and G a hyperbolic LC-group with
some compact open subgroup U . Let us consider the semidirect product
H = (∗G/UΓ) ⋊ G, where G acts on the free product ∗G/UΓ by permuting
the factors according to the natural action of G on G/U , and the topology
on H is such that the subgroup G is open. Equivalently, H can be defined
as the topological amalgamated product of Γ×U with G over the subgroup
U . It follows from the statements (a) and (c) of Proposition 1.39 that the
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group H is lacunary hyperbolic. Note that the group H may be far from
discrete, because for example H is non-unimodular as soon as G is.

1.6 Subgroups of lacunary hyperbolic groups

In this section we carry on the investigation started in [OOS09] of groups
that may appear as subgroups of lacunary hyperbolic groups.

1.6.1 Quasi-isometrically embedded normal subgroups

It is a classical result that if G is a hyperbolic LC-group, and N a com-
pactly generated quasi-isometrically embedded normal subgroup of G, then
N must be either compact or cocompact in G. The following proposition is
a generalization of this result to the realm of lacunary hyperbolic groups,
which seems to be new even for discrete groups.

Proposition 1.41. Let G be a locally compact lacunary hyperbolic group,
and N a closed normal subgroup of G. Assume that N is compactly gener-
ated and quasi-isometrically embedded in G. Then N is either compact or
cocompact in G.

Proof. We let C = Coneω(G, s) be an asymptotic cone of G that is a real
tree, and we denote by CN the PreconeG(N, s)-orbit of (e)ω ∈ Coneω(G, s).
Since N is compactly generated and quasi-isometrically embedded in G, the
subset CN is a subtree of C that is clearly invariant by PreconeG(N, s).

First assume that PreconeG(N, s) acts on C with some hyperbolic ele-
ment. Then we are in position to apply Lemma 1.7, which implies that CN

must be the entire C. The fact that N is cocompact in G then follows from
Corollary 1.18.

We now have to deal with the case when PreconeG(N, s) does not have
any hyperbolic element. We claim that the action of PreconeG(N, s) on
C cannot be horocyclic. Indeed otherwise the action of PreconeG(N, s)
on the subtree CN would be horocylic as well, which is impossible since
a transitive isometric action on a real tree cannot be horocyclic. This im-
plies that if PreconeG(N, s) does not contain any hyperbolic element then
PreconeG(N, s) must have a fixed point, and by Lemma 1.15 this forces the
subgroup N to be compact.

1.6.2 Subgroups satisfying a law

The goal of this paragraph is to exhibit some obstruction for a given
group to be a subgroup of a lacunary hyperbolic group.
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Recall that if G is a compactly generated group endowed with a compact
generating set S, and if H is a subgroup of G, we denote by BG,H(n) the
intersection between H and the ball in G of radius n ≥ 1 around the identity.
If µ is a left-invariant Haar measure on G, a measurable subgroup H is said
to have relative exponential growth in G if there exists ρ > 1 such that
ρn ≤ µ (BG,H(e, n)) for every n ≥ 1. Note that this condition implies that
the subgroup H has positive Haar measure, and hence is open in G. If H1

is an open subgroup of G, the restriction to H1 of a Haar measure on G is
a Haar measure on H1, so if H2 is a subgroup of H1 of relative exponential
growth in H1, then H2 has relative exponential growth in G. For example
a compactly generated open subgroup of exponential growth has relative
exponential growth in the ambient group.

Proposition 1.42. Let G be a unimodular lacunary hyperbolic group, and
H ≤ G a subgroup of relative exponential growth in G. If C = Coneω(G, s) is
an asymptotic cone of G that is a real tree, then the action of PreconeG(H, s)
on C cannot have a fixed point or be horocyclic.

Proof. We shall prove that the action of PreconeG(H, s) on C cannot be
horocyclic. The case of an action with a fixed point can be ruled out with
the same kind of arguments, and is actually easier.

Let S be a compact generating set of G, and µ a left-invariant Haar-
measure on G. We argue by contradiction and assume that the action of
PreconeG(H, s) on C is horocyclic, and denote by ξ : [0,+∞[→ C the ray em-
anating from (e)ω representing the end of C that is fixed by PreconeG(H, s).
Then every element (hn) ∈ PreconeG(H, s) such that |hn|S ≤ sn fixes the
point ξ(1/2) = (ξn)ω, that is

limω dS(hnξn, ξn)
sn

= limω |ξ−1
n hnξn|S
sn

= 0.

This means that for every ε > 0, ω-almost surely the element ξ−1
n hnξn

has length at most εsn, which is equivalent to saying that hn belongs to
ξn ·BG(e, εsn) · ξ−1

n . So for every ε > 0, ω-almost surely

BG,H(e, sn) ⊂ ξn ·BG(e, εsn) · ξ−1
n .

Combined with the fact that G is unimodular, we obtain that ω-almost
surely

µ (BG,H(e, sn)) ≤ µ
(

ξn ·BG(e, εsn) · ξ−1
n

)

= µ (BG(e, εsn)) ≤ αεsn

for some constant α ≥ 1. This implies that

lim inf
n→∞

log µ (BG,H(e, sn))
sn

= 0,
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which is a contradiction with the fact thatH has relative exponential growth
in G.

Let us derive the following consequence of Proposition 1.42, which re-
covers Theorem 3.18 (c) of [OOS09], and generalizes it to the setting of
unimodular locally compact lacunary hyperbolic groups.

Corollary 1.43. Let G be a unimodular lacunary hyperbolic group, and
H ≤ G a subgroup of finite exponent. Then H cannot have relative expo-
nential growth in G.

Proof. For any scaling sequence s, the group PreconeG(H, s) has finite ex-
ponent as well. It follows that for any asymptotic cone Coneω(G, s) that is
a real tree, the action of PreconeG(H, s) on Coneω(G, s) must have a fixed
point or be horocyclic, and H cannot have relative exponential growth in
G according to Proposition 1.42.

We point out that both Corollary 1.43 and Proposition 1.42 fail without
the assumption that the group is unimodular. Actually the corresponding
statements at the level of groups rather than asymptotic cones already fail
for hyperbolic LC-groups of general type. Take for example the amalga-
mated product of Z/2Z × Fp[[t]] and Fp((t)) ⋊t Z over the compact open
subgroup Fp[[t]]. The resulting group is hyperbolic of general type and
non-unimodular. Having relative exponential growth in the open subgroup
Fp((t)) ⋊ Z, the finite exponent subgroup Fp((t)) has relative exponential
growth in the ambient group. To see why the conclusion of Proposition
1.42 fails, note that the action of Fp((t)) on the quasi-isometrically embed-
ded subgroup Fp((t))⋊Z is horocylic, so its action on the entire group must
be horocyclic as well.

Proposition 1.44. Let G be a unimodular lacunary hyperbolic group. If H
is a subgroup of relative exponential growth in G, and if C = Coneω(G, s) is
an asymptotic cone of G that is a real tree, then the action of PreconeG(H, s)
on C cannot be focal.

Proof. The argument will be a slight modification of the beginning of the
proof of Lemma 1.24. Assume that ξ : [0,+∞[→ C is a geodesic ray starting
at (e)ω representing and end of C that is fixed by PreconeG(H, s). Let us
fix some k ≥ 1, and consider k + 1 points ξ(1) = x(0), x(1), . . . , x(k) = ξ(2)
dividing the interval [ξ(1), ξ(2)] into k segments of equal length. For every
(hn) ∈ PreconeG(H, s) such that |hn|S ≤ sn for every n ≥ 1, upon changing
(hn) in (hn)−1, there exists some point x(i) such that the distance in C
between (hn) · ξ(1) and x(i) is at most 1/2k. This implies that ω-almost
surely, the distance in G between hnξn(1) and x(i)

n is at most sn/k.
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So for every k ≥ 1, ω-almost surely

BG,H(e, sn) ⊂
k
⋃

i=0

(

x(i)
n ·BG(e, sn/k) · ξn(1)−1

)±1
,

and certainly

µ (BG,H(e, sn)) ≤
k
∑

i=0

2µ
(

x(i)
n ·BG(e, sn/k) · ξn(1)−1

)

= 2(k + 1)µ (BG(e, sn/k))

≤ 2(k + 1)αsn/k

for some constant α ≥ 1. Now since H has relative exponential growth in
G, we obtain that there exists ρ > 1 such that for every k ≥ 1, ω-almost
surely ρsn ≤ 2(k + 1)αsn/k. This implies that ρ ≤ α1/k for every k ≥ 1,
which contradicts the fact that ρ > 1.

Proposition 1.45. Let G be a unimodular lacunary hyperbolic group, and
H ≤ G a compactly generated subgroup of relative exponential growth in
G. Assume that H does not have a cyclic cocompact subgroup. Then for
any asymptotic cone C = Coneω(G, s) of G that is a real tree, the action of
PreconeG(H, s) on C is of general type.

Proof. We carry out a case-by-case analysis of the possible type of the action
of PreconeG(H, s) on C, and prove that other types of actions all lead to a
contradiction.

If PreconeG(H, s) fixes a point in C then Lemma 1.15 implies that H
is compact, which is a contradiction with the fact that H has relative ex-
ponential growth. Now assume that the action of PreconeG(H, s) on C is
lineal. Since H is compactly generated, the metric space (H, dG) is coarsely
connected [CH15, Proposition 4.B.8]. So we are in position to apply Lemma
1.29 to obtain that H admits an infinite cyclic cocompact subgroup, which
is again a contradiction. Finally, it follows from Proposition 1.42 that the
action of PreconeG(H, s) on C cannot be horocylic, and according to Propo-
sition 1.44 it cannot be focal either.

We immediately deduce the following result.

Corollary 1.46. Let G be a unimodular lacunary hyperbolic group. If H ≤
G is a compactly generated subgroup of relative exponential growth in G not
having Z as a discrete cocompact subgroup, then H cannot satisfy a law.

When specified to finitely generated groups, Corollary 1.46 answers
Question 7.2 in [OOS09]. As an example, we deduce the following result.
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Corollary 1.47. Any finitely generated solvable subgroup of a finitely gen-
erated lacunary hyperbolic group is virtually cyclic.

Proof. Let H be a finitely generated solvable group that is a subgroup
of a finitely generated lacunary hyperbolic group G. Assume that H has
exponential growth. Then H has relative exponential growth in G, and
according to Corollary 1.46 the group H must be virtually cyclic, contra-
diction. Therefore the solvable group H does not have exponential growth,
and we deduce that H must be virtually nilpotent [Mil68, Wol68]. In par-
ticular H is finitely presented and therefore must be a subgroup of a hyper-
bolic group [OOS09, Theorem 3.18 (a)], and the conclusion follows from the
fact that any finitely generated virtually nilpotent subgroup of a hyperbolic
group is virtually cyclic.
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Chapter 2

Asymptotic cut-points

In this chapter we study the existence of cut-points in asymptotic cones
for certain locally compact compactly generated groups. In Section 2.3
we show how the machinery developed in [DMS10] to study this problem
for certain lattices in semi-simple groups of zero characteristic, applies in
positive characteristic as well. In Section 2.5 we use the results from Section
1.4 to characterize connected Lie groups and linear algebraic groups over
the p-adics having cut-points in one asymptotic cone.

2.1 Introduction

Recall that in a geodesic metric space X, a point x ∈ X is a cut-point if
X \ {x} is not connected. Typical examples of geodesic metric spaces with
cut-points are real trees. The question of studying the existence of cut-
points in asymptotic cones of groups have been shown to be very interesting
[DMS10]. In a sense, the property of having cut-points in asymptotic cones
can be seen as a very weak form of hyperbolicity. Note that this property
is invariant under quasi-isometries.

The divergence is a geometric notion of a metric space, which roughly
speaking estimates the cost of going from a point a to another point b
while remaining outside a large ball centered at a third point c. See the
next subsection for precise definitions. It follows from the work of Stallings
[Sta68] that the understanding of the space of ends of the Cayley graph
of a finitely generated group yields some significant information about the
algebraic structure of the group. Finitely generated groups with no ends are
the same as finite groups, and groups with at least two ends are precisely
those that split as an HNN-extension or nontrivial amalgam over a finite
subgroup. From the geometric viewpoint, being one-ended corresponds to
being connected at infinity, and the divergence is a quantified version of
this connectedness at infinity, estimating how hard it is to connect two
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given points avoiding a large ball.
The property of having a linear divergence is closely related to the exis-

tence of cut-points in asymptotic cones. More precisely, a finitely generated
group has a linear divergence if and only if none of its asymptotic cones has
cut-points [DMS10].

Examples of finitely generated groups with a linear divergence include
any direct product of two infinite groups, non-virtually cyclic groups satis-
fying a law or non-virtually cyclic groups with central elements of infinite
order [DS05]. It is conjectured in [DMS10] that any irreducible lattice in a
higher rank semisimple Lie group has a linear divergence. Note that in the
case of a cocompact lattice, the conjecture is known to be true because such
a lattice is quasi-isometric to the ambient Lie group, so their asymptotic
cones (corresponding to the same ultrafilter and scaling constants) are bi-
Lipschitz equivalent. Now any asymptotic cone of a semisimple Lie group
of R-rank ≥ 2 is known to have the property that any two points belong to
a common flat of dimension 2 [KL97], and thus does not have cut-points.

On the other hand, the class of finitely generated groups with cut-points
in all their asymptotic cones include relatively hyperbolic groups [DS05,
Theorem 1.11], or mapping class groups of punctured surfaces [Beh06, The-
orem 7.1]. Actually relatively hyperbolic groups and mapping class groups
belong to the class of so-called acylindrically hyperbolic groups, and it is
proved in [Sis13] that any acylindrically hyperbolic group has cut-points in
all its asymptotic cones.

2.2 Divergence and asymptotic cut-points

In this subsection we provide preliminary material about the notion of
divergence. The main result is the equivalence between the linearity of the
growth rate of the divergence and the fact that no asymptotic cone admits
cut-points. More details can be found in [DMS10].

As usual in the context of studying large-scale geometric properties,
we consider functions measuring asymptotic properties of groups modulo a
certain equivalence relations.

Definition 2.1. Let f, g : R+ → R+. We write f 4 g if there exists C > 0
such that for all x ∈ R+,

f(x) ≤ Cg(Cx+ C) + Cx+ C.

If f, g : R+ → R+ satisfy f 4 g and g 4 f , then we write f ≃ g, and f, g
are said to be ≃-equivalent.
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In [DMS10] the authors introduce several definitions of divergence, and
prove that they give ≃-equivalent functions. We will focus on the following
definition of divergence.

Definition 2.2. Let (X, d) be a geodesic metric space, and let 0 < δ < 1 and
γ ≥ 0. We define the divergence divγ(a, b, c; δ) of a pair of points a, b ∈ X
relative to a point c ∈ X, to be the length of a shortest path in X connecting
a and b and avoiding the ball centered at c of radius δd(c, {a, b}) − γ. If
there is no such path, put divγ(a, b, c; δ) = ∞. The divergence divγ(a, b; δ)
of the pair (a, b) is defined as the supremum of the divergences relative to
all points c ∈ X, and the divergence function Divγ(n; δ) is defined as the
supremum of all divergences of pairs (a, b) with d(a, b) ≤ n.

The following proposition is proved in Lemma 3.4 and Lemma 3.11 of
[DMS10].

Proposition 2.3. Let X be a connected homogeneous locally finite graph
with one end (e.g. the Cayley-Abels graph of a locally compact totally dis-
connected one-ended group). Then there exist γ0, δ0 > 0 such that for every
γ ≥ γ0 and every δ ≤ δ0, the function n 7→ Divγ(n; δ) takes only finite val-
ues, and is independent, up to the equivalence relation ≃, of the parameters
γ and δ.

The following result says that the divergence function is a quasi-isometry
invariant. We refer the reader to [DMS10, Lemma 3.2] for a proof.

Proposition 2.4. Let X and Y be connected homogeneous locally finite
graphs with one end. If X and Y are quasi-isometric then they have ≃-
equivalent divergence functions.

Let X be an infinite connected homogeneous graph. As we claimed in
the introduction, the topological property for asymptotic cones of having
cut-points is closely related to the geometric property for X of having a
linear divergence, i.e. a divergence function ≃ n. For a proof of this result,
see [DMS10, Lemma 3.17].

Proposition 2.5. All the asymptotic cones of X have no cut-points if and
only if there exist γ, δ such that the function Divγ(n, δ) is linear.

2.3 The special linear group over a function

ring

The motivation of this subsection comes from the following result of
Drutu, Mozes and Sapir.
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Theorem 2.6 ( [DMS10], Theorem 1.4).
Let G be a semisimple Lie group of R-rank ≥ 2, and let Γ be an irreducible
lattice of G which is either of Q-rank one or of the form SLn(OS) with
n ≥ 3, where S is a finite set of valuations of a number field containing all
the Archimedean ones and OS is corresponding ring of S-integers. Then Γ
has a linear divergence.

In [CDG10], Caprace, Dahmani and Guirardel prove that the divergence
of twin building lattices is linear. This implies in particular that the group
SLn(Fq[t, t−1]) has a linear divergence for every n ≥ 2. Except for this
particular case, to the best of our knowledge, nothing has been done before
concerning the study of the divergence of arithmetic groups over function
fields.

In this subsection we compute the divergence of SLn(OS), where S is a
finite non-empty set of pairwise non-equivalent valuations of a global func-
tion field, and OS is the corresponding ring of S-integers. By global function
field we mean a finite extension of the field Fq(t) of rational functions with
coefficients in the finite field Fq. They are the analogues in positive char-
acteristic of number fields, i.e. finite extensions of the field Q of rational
integers.

The analogy between number fields and function fields sometimes ex-
tends to groups over these fields, but only up to a certain limit. For in-
stance, an important difference between SLn(Z) and SLn(Fq[t]) is that the
latter fails to be virtually torsion-free, i.e. does not admit a finite index
subgroup without torsion elements. Finiteness properties may also change
with the characteristic. The group SL2(Z) is finitely presented whereas
SL2(Fq[t]) is not even finitely generated [Nag59]. In the same way, SL3(Z)
is finitely presented, which is not the case of SL3(Fq[t]) [Beh79]. Since finite
presentability can be interpreted in terms of coarse simple connectedness,
it means that SL3(Z) and SL3(Fq[t]) do not behave the same way from the
point of view of simple connectedness at infinity. The following result, in
contrast, shows that they behave the same way from the point of view of
connectedness at infinity.

Theorem 2.7. For any n ≥ 3, the finitely generated group SLn(OS) has a
linear divergence.

Note that Theorem 2.7 also holds for n = 2 when |S| > 1 because
SL2(OS) quasi-isometrically embeds into a product of |S| trees, and the
image under this embedding can be identified as the complement of disjoint
horoballs. Now it follows from Theorem 5.12 of [DMS10] that such a space
has a linear divergence. On the other hand if |S| = 1 then SL2(OS) is not
finitely generated.

Combining Theorem 2.7 and Proposition 2.5, we obtain the following.
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Theorem 2.8. For any n ≥ 3, the asymptotic cones of SLn(OS) do not
have cut-points.

2.3.1 The case of the polynomial ring Fq[t]

In this subsection we prove that the finitely generated group SLn(Fq[t])
has a linear divergence, explicitly constructing a short path joining any two
given large matrices and avoiding a large ball around the origin. It turns
out that moving in the Cayley graph from a vertex to another corresponds
to making column operations in terms of matrices. We will write down the
proof only for n = 3 but our method applies directly to the general case.

Preliminary material. Throughout this paragraph, we let k be the the
field Fq(t) and k∞ be the field of Laurent series Fq((t−1)). Recall that k∞

is the completion of k with respect to the valuation ν∞, see Example 2.20.
Let us denote by | · | the associated norm. Note that for any polynomial
a ∈ Fq[t], we have |a| = qdeg a. If γ is a matrix with entries in Fq[t], we
denote by

‖γ‖ = max
i,j

{|γi,j|}

its norm as a matrix over k∞.
We now recall some basic results coming from the theory of matrices with

elements in a euclidean ring (see Theorem 22.4 of [Mac56] for example). We
let ei,j(r) be the elementary unipotent matrix whose (i, j)-entry is r, i 6= j.

Theorem 2.9. Let A be a euclidean ring and n ≥ 2. Then any element of
SLn(A) is a product of elementary matrices.

Corollary 2.10. For any n ≥ 3, the group SLn(Fq[t]) is generated by the
finite set

S0 =
⋃

i6=j

{

ei,j(α) : α ∈ F∗
q

}

∪ {ei,j(t)} .

Proof. According to Theorem 2.9 it is enough to prove that for any P ∈
Fq[t], the matrix ei,j(P ) is a product of elements of S0. Since F∗

q and t
generate Fq[t] as a ring, this follows, using a straightforward induction,
from the identity

ei,j(x+ y) = ei,j(x)ei,j(y)

and the commutator relation

ei,j(xy) = [ei,k(x), ek,j(y)]

for all x, y ∈ Fq[t] and k 6= i, j (using that n ≥ 3).
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Since all the Cayley graphs of SL3(Fq[t]) are quasi-isometric, we can
choose a particular generating set S. Its construction goes as follows.

Let us still denote by S0 the previous finite generating set. We will add
some elements to S0 in order to get a more convenient one.

Denote by S1 the set of monomial matrices whose non-zero entries are
±1 (by a monomial matrix we mean a matrix with exactly one non-zero
element in each row and each column).

Consider a matrix A1 ∈ SL2(Fq[t]) with two eigenvalues λ+, λ− ∈ k∞

such that |λ+| > 1 and |λ−| < 1, and another matrix A2 with the same
eigenvalues but with different eigen-directions. For example the matrices

A1 =

(

1 t
1 t+ 1

)

and its conjugate

A2 =

(

1 t
0 1

)(

1 t
1 t+ 1

)(

1 t
0 1

)−1

=

(

t+ 1 t
1 1

)

would work. To complete our generating set, put

S2 =
2
⋃

i=1

















Ai
0
0

0 0 1





 ,







1 0 0
0
0

Ai

















,

and take S = S0 ∪ S1 ∪ S2.
We now set some notation and terminology, extensively borrowed from

[DMS10].

Definition 2.11. Let 0 < ε < 1. An entry γi,j of γ ∈ SL3(Fq[t]) is called
ε-large if we have

log |γi,j| ≥ ε log ‖γ‖ .
Note that any entry γi,j of γ ∈ SL3(Fq[t]) such that |γi,j| = ‖γ‖ is ε-large,

but these may not be the only ε-large entries.

Definition 2.12. Let δ1, δ2, δ3 > 0. A (δ1, δ2, δ3)-external trajectory con-
necting two elements γ1, γ2 of SL3(Fq[t]) is a path η in its Cayley graph from
γ1 to γ2 such that:

i) η remains outside the ball centered at e of radius δ1 × dS(e, {γ1, γ2}) − δ2;

ii) the length of η is bounded by δ3 × dS(γ1, γ2).

Two elements γ1 and γ2 are said to be (δ1, δ2, δ3)-externally connected if
there exists a (δ1, δ2, δ3)-external trajectory between them, and uniformly
externally connected if there exist some constants δ1, δ2, δ3 > 0 which do
not depend on γ1 and γ2, such that γ1 and γ2 are (δ1, δ2, δ3)-externally
connected.
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Clearly SL3(Fq[t]) has a linear divergence if and only if any two elements
are uniformly externally connected.

In the proof, when constructing paths in the Cayley graph of SL3(Fq[t]),
we will substantially make use of the work of Lubotzky, Mozes and Raghu-
nathan. In [LMR00] they prove that any irreducible lattice in a semisimple
Lie group of R-rank ≥ 2, endowed with some word metric associated to
a finite generating set, is quasi-isometrically embedded in the ambient Lie
group. Their result allows us to estimate the size of a matrix γ ∈ SL3(Fq[t])
with respect to the word metric dS in terms of its norm ‖γ‖.

Proposition 2.13. There exists C > 0 such that for any γ ∈ SL3(Fq[t]),

C−1(1 + log ‖γ‖) ≤ dS(e, γ) ≤ C(1 + log ‖γ‖). (2.1)

Roughly speaking, Proposition 2.13 states that the size of γ ∈ SL3(Fq[t])
is the maximum of the degrees of the entries of γ.

Quasi-isometrically embedded lamplighters. While connecting points
in the Cayley graph of SL3(Fq[t]), we will take advantage of embedded sub-
groups with nice geometric properties with respect to our problem, i.e. with
a linear divergence. For i = 1, 2, define

Λi =







1 0 0
Fq[t]
Fq[t]

AZ
i





 .

Since Fq[t] is a cocompact lattice in k∞, the group Λi is a cocompact lattice
in

Gi =







1 0 0
k∞

k∞
AZ

i





 .

Now since Ai is diagonalizable in SL2(k∞), it follows that Gi is conjugated
in SL3(k∞) to the group







1 0 0
k∞ λn

+ 0
k∞ 0 λ−n

+





 ,

with |λ+| > 1. So the groups Λi both are quasi-isometric to k2
∞ ⋊Z, where

the action of Z is the multiplication by (λ+, λ
−1
+ ), and in particular we obtain

Proposition 2.14. For i = 1, 2, all the asymptotic cones of Λi are home-
omorphic to the hypersurface of equation b(x) + b(y) = 0 in the product of
two copies of the universal real tree T with continuum branching everywhere,
where b is a Busemann function on T.
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Proof. See Section 9 of [Cor08].

Since this metric space has no cut-points (see Section 2.4), Proposition
2.5 tells us that the groups Λi have a linear divergence. In order to use this
property inside SL3(Fq[t]), we need to ensure that these groups are quasi-
isometrically embedded. This follows from the fact that the groups Λi are
quasi-isometric to k2

∞ ⋊ Z and from the following standard lemma, which
gives an estimate of the word metric in the latter group.

Lemma 2.15. Let (Ki)i=1..m be a family of local fields, each one being en-
dowed with a multiplicative norm | · |i. For i = 1 . . .m, let λi ∈ Ki be an
element of norm different from 1. Let G = (

⊕

Ki) ⋊ Z, where the diagonal
action of Z is by multiplication by λi on Ki. Then G is compactly generated
and for any compact generating set S of G, there exists a constant C such
that for any (x, n) = (x1, . . . , xm, n) ∈ G,

C−1
(

log
(

1 + max
i

|xi|i
)

+ |n|
)

≤ |(x, n)|S ≤ C
(

log
(

1 + max
i

|xi|i
)

+ |n|
)

.

Proof. It is not hard to see that it is enough to prove the result for only
one local field K, and that without loss of generality we can assume that
the element λ defining the action of Z has norm strictly smaller than 1.
In this situation G is generated by the compact set S = K0 ∪ t, where K0

denotes the set of elements of K of norm at most 1, and t = (0, 1). Since
different compact generating sets yield bi-Lipschitz equivalent word metrics,
it is enough to prove the result for this generating set.

Let us prove the upper bound first. If (x, n) ∈ G and if we denote by

n0 = max (⌊− log |x|/ log |λ|⌋ + 1, 0) ,

then the reader can check that λn0x ∈ K0. Therefore there exists x0 ∈ K0

such that the word t−n0x0t
n0tn represents the element (x, n) of G, which

therefore has length at most 2n0 + 1 + |n| ≤ c(log(1 + |x|) + |n|) for some
constant c.

To prove the lower bound, let us consider a word tn1x1 . . . t
nkxk of length

at most ℓ representing an element (x, n) of G, where xi ∈ K0 and k,
∑ |ni| ≤

ℓ. Then (x, n) is also represented by the word

tn1x1t
−n1tn1+n2x2t

−n1−n2 . . . tn1+...+nkxkt
−n1−...−nktn1+...+nk ,

and therefore the equality

k
∑

i=1

λn1+...+nixi = x
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holds in K, and n = n1 + . . .+ nk. Consequently

|x| ≤
k
∑

i=1

|λn1+...+nixi| ≤ kmax
i

|λ|n1+...+ni ≤ ℓ|λ|−ℓ ≤ |λ|−c′ℓ

for some constant c′. So now

log(1 + |x|) + |n| ≤ log(1 + |λ|−c′ℓ) +
∑

|ni| ≤ c′′ℓ,

for some constant c′′ and ℓ large enough, which completes the proof.

Construction of external trajectories. The following lemma will be
used repeatedly in this paragraph.

Lemma 2.16. Let 0 < ε < 1 be fixed. For any α ∈ SL3(Fq[t]) having an
ε-large entry in its third column and any

θ =







1 0 0
x 1 0
y 0 1





 ∈ SL3(Fq[t]),

α and αθ are uniformly externally connected.

Proof. Let α ∈ SL3(Fq[t]) having an ε-large entry αj,3 in its third column.
First note that we have a control of the size of αθ in the sense that αθ is
bounded away from the identity. Indeed, since the third column of αθ is
the third column of α,

log ‖αθ‖ ≥ log |αj,3| ≥ ε log ‖α‖ .
Now according to (2.1),

dS(e, αθ) ≥ C−1(1 + log ‖αθ‖)

≥ C−1(1 + ε log ‖α‖)

≥ C−1(1 + ε(C−1dS(e, α) − 1))

= εC−2dS(e, α) + C−1(1 − ε).

Since Λi is quasi-isometrically embedded in SL3(Fq[t]), for every

θ =







1 0 0
x 1 0
y 0 1





 ∈ SL3(Fq[t])

there exists a short word s(i)
1 . . . s(i)

n representing θ, where all the s(i)
k belong

to
















1 0 0
0
0

Ai





 ,







1 0 0
α 1 0
0 0 1





 ,







1 0 0
0 1 0
β 0 1

















,
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with α, β ∈ F∗
q. It gives us two short trajectories η1, η2 from α to αθ. To

conclude that α and αθ are uniformly externally connected, it is enough
to prove that one of these two trajectories does not get too close to the
identity.

Following [DMS10], for 0 < c < 1 and i = 1, 2, we define the non-
contracting cone of the matrix Ai in k2

∞,

NCc(Ai) =
{

v ∈ k2
∞ : ‖vA‖ > c ‖v‖ ∀A ∈ 〈Ai〉

}

∪ {0} .

Since A1 and A2 have distinct eigen-directions, it is easily checked that we
can choose c0 > 0 small enough such that

NCc0
(A1) ∪ NCc0

(A2) = k2
∞,

and therefore we can find i such that (αj,2, αj,3) ∈ NCc0
(Ai), where αj,3 still

denotes an ε-large entry of α.
Note that in each trajectory ηi, only the elements s(i)

k belonging to S2

can affect the second or the third column. It follows from this observation,
and from the choice of i such that (αj,2, αj,3) ∈ NCc0

(Ai), that the same
computation we made at the beginning of the proof yields that any point
in the trajectory ηi is at distance at least

εC−2dS(e, α) + C−1(1 − ε+ log c0)

from the identity, which concludes the proof.

As in the proof in [DMS10] for the case of SL3(Z), the strategy for
uniformly externally connecting two given points will consist in first mov-
ing each of them to another point of the same size, lying in a particular
subgroup. This is achieved by the following lemma.

Lemma 2.17. There exist c1, c2 > 0 such that for any α ∈ SL3(Fq[t]), there
is an element

α′ =







1 0 x
0 1 y
0 0 1





 ∈ SL3(Fq[t])

satisfying

c1 ≤ 1 + dS(e, α)
1 + dS(e, α′)

≤ c2,

and such that α and α′ are uniformly externally connected.

Then using the fact that the subgroup

Λ′
1 =







A1
x
y

0 0 1
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(which is isomorphic to Λ1) has a linear divergence and is quasi-isometrically
embedded inside SL3(Fq[t]), we obtain that any two points in SL3(Fq[t]) are
uniformly externally connected, i.e. SL3(Fq[t]) has a linear divergence.

Proof of Lemma 2.17. We are going to proceed in a finite number of steps
to construct a path in the Cayley graph connecting α to a suitable α′. In
each step, we can check that αi+1 and αi satisfy

c
(i)
1 ≤ 1 + dS(e, αi)

1 + dS(e, αi+1)
≤ c

(i)
2

for some constants c(i)
1 , c

(i)
2 > 0 which do not depend on α. The estimate on

the size of α′ follows from this sequence of inequalities.
Let 0 < ε < 1 and let

α =







∗ ∗ ∗
∗ ∗ ∗
a b c





 ∈ SL3(Fq[t]).

Swapping columns if necessary, which is possible thanks to S1, we can as-
sume that α has an ε-large entry αi,3 in the last column.

Now we claim that without loss of generality, we can also assume that
the lower right entry c is ε-large. Indeed, we can first assume, at the price
of exchanging the first two columns, that b 6= 0 (otherwise if a = b = 0 then
we can directly move to Claim 4 of this proof). Now multiplying α on the
right by

θ =







1 0 0
tdeg αi,3 1 0

0 0 1







has the effect of changing a into a+tdeg αi,3b, which has degree at least degαi,3

because b 6= 0. But according to Lemma 2.16, α and αθ are uniformly
externally connected. Therefore we can suppose that the lower left entry is
ε-large, and finally we just have to exchange the first and third columns to
obtain an ε-large lower right entry.

Claim 1. α is uniformly externally connected to

α2 =







∗ ∗ ∗
∗ ∗ ∗
a′ b′ c





 ,

where a′, b′ verify gcd(a′, b′) = 1.
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Proof. Multiplying α by e1,3(1) if necessary, which has the effect of changing
a into a′ = a+ c, we can assume that a′ 6= 0. Let p1, . . . , pd be the distinct
prime divisors of a′. If we let m be the product of all the pi’s dividing
neither b nor c, then it is easy to check that a′ and b′ = b+mc are relatively
prime. Now using Lemma 2.16 and the identity







1 0 0
0 1 0
0 m 1





 =







0 1 0
−1 0 0
0 0 1













1 0 0
0 1 0

−m 0 1













0 −1 0
1 0 0
0 0 1





 ,

we obtain that α is uniformly externally connected to






∗ ∗ ∗
∗ ∗ ∗
a′ b′ c





 = α2.

We now want to perform an external trajectory between α2 and

α3 =







∗ ∗ ∗
∗ ∗ ∗
a′ b′′ c





 ,

where the entry b′′ is ε-large and satisfies gcd(a′, b′′) = 1. There is nothing
to do if deg b′ ≥ deg c. Otherwise we get this external trajectory by setting
b′′ = b′ + tdeg ca′ and using Lemma 2.16 and the identity







1 tdeg c 0
0 1 0
0 0 1





 =







0 −1 0
1 0 0
0 0 1













1 0 0
−tdeg c 1 0

0 0 1













0 1 0
−1 0 0
0 0 1





 .

Claim 2. α3 is uniformly externally connected to

α4 =







∗ ∗ ∗
∗ ∗ ∗
a′ 1 b′′





 .

Proof. First note that we can go in one step from α3 to

α′
3 = α3







1 0 0
0 0 1
0 −1 0





 =







∗ ∗ ∗
∗ ∗ ∗
a′ −c b′′





 .

Let u, v be Bézout coefficients of small degree for the pair (a′, b′′), that is,
a′u + b′′v = 1. Using Lemma 2.16 one more time and the two identities
already used above, we get that α′

3 is uniformly externally connected to

α′
3







1 (c+ 1)u 0
0 1 0
0 0 1













1 0 0
0 1 0
0 (c+ 1)v 1





 = α′
3







1 (c+ 1)u 0
0 1 0
0 (c+ 1)v 1





 =







∗ ∗ ∗
∗ ∗ ∗
a′ 1 b′′





 .

66



Claim 3. α4 is uniformly externally connected to

α5 =







∗ ∗ ∗
∗ ∗ ∗
0 1 1





 ,

where the third column of α5 remains ε-large.

Proof. It directly follows from Lemma 2.16 that α4 is uniformly externally
connected to

α′
4 = α4







1 0 0
−a′ 1 0
0 0 1





 =







∗ ∗ ∗
∗ ∗ ∗
0 1 b′′





 .

Now we can find a polynomial P of small degree such that if we first exter-
nally connect α′

4 to

α′′
4 = α′

4







1 P 0
0 1 0
0 0 1





 ,

then the third column of

α5 = α′′
4







1 0 0
0 1 1 − b′′

0 0 1





 =







∗ ∗ ∗
∗ ∗ ∗
0 1 1







remains ε-large.

Now the vertex corresponding to α5 in the Cayley graph is adjacent to

α6 = α5e2,3(−1) =







B
∗
∗

0 0 1





 ,

where B ∈ SL2(Fq[t]).

Claim 4. α6 is uniformly externally connected to

α7 =







1 0 x
0 1 y
0 0 1





 ,

which concludes the proof of Lemma 2.17.

Proof. Note that since the matrix B−1 has determinant 1, the entries of
its first row are relatively prime. It follows from the Euclidean algorithm
applied to these entries that B−1 is a product of matrices

B−1 =

(

1 0
q1 1

)(

0 1
−1 0

)±1 (

1 0
q2 1

)(

0 1
−1 0

)±1

· · ·
(

1 0
qk 1

)

,
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where the polynomials qi are the quotients appearing when performing the
Euclidean algorithm. In particular the quantity

∑

deg qi is bounded by the
maximum of the degrees of the entries of B−1.

Now let us multiply α6 on the right by






1 0 0
q1 1 0
0 0 1













0 1 0
−1 0 0
0 0 1







±1





1 0 0
q2 1 0
0 0 1













0 1 0
−1 0 0
0 0 1







±1

· · ·







1 0 0
qk 1 0
0 0 1





 .

Each product by a monomial matrix consists in moving to an adjacent
vertex in the Cayley graph. Now the fact that

∑

deg qi is well controlled,
together with Lemma 2.16 applied for each product by a matrix







1 0 0
qi 1 0
0 0 1





 ,

yield that α6 is uniformly externally connected to

α6







B−1 0
0

0 0 1





 =







1 0 x
0 1 y
0 0 1





 = α7.

2.3.2 Adding valuations

In this subsection we prove that the growth rate of the divergence func-
tion of the group SLn(OS) cannot increase while adding valuations to the
set S.

Number theory. We now recall some basic definitions about valuations
on a global function field k.

Definition 2.18. A discrete valuation on k is a non-trivial homomorphism
ν : k∗ → R satisfying ν(x + y) ≥ min(ν(x), ν(y)) for all x, y ∈ k∗ with
x+ y 6= 0. It is convenient to extend ν to a function defined on k by setting
ν(0) = ∞.

Example 2.19. Let P ∈ Fq[t] be an irreducible polynomial. Every non-
zero element x of Fq(t) can be written in a unique way x = P n(a/b), where
n ∈ Z and a, b ∈ Fq[t] are not divisible by P . We define a valuation on
k = Fq(t) putting νP (x) = n. If P = t − a then νP (x) is the order of
vanishing of the rational function x at the point a ∈ Fq.
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Example 2.20. Besides the valuations νP defined above, we get another
discrete valuation ν∞ on Fq(t) by setting ν∞(a/b) = deg b − deg a for any
two non-zero polynomials a, b ∈ Fq[t].

Remark 2.21. Every discrete valuation on k = Fq(t) is equivalent to either
ν∞ or νP for some irreducible P ∈ Fq[t] [Wei95, Th.2 Chap.III.1], where
two valuations ν1, ν2 are said to be equivalent if there exists c > 0 such that
ν1(x) = c ν2(x) for all x ∈ k.

Given a valuation ν on k, we define the associated norm by the formula
|x|ν = q−ν(x) for all x ∈ k. It is easily checked that we get a metric on k
by setting dν(x, y) = |x − y|ν . By the completion of k with respect to the
valuation ν we mean the completion of the metric space (k, dν). Note that
the field operations and the valuation ν on k extend to its completion.

Example 2.22. The completion of k = Fq(t) with respect to νP is the field
Fq((P )), and its completion with respect to ν∞ is Fq((t−1)).

If S denotes a finite set of valuations on k, we denote by OS the ring
of S-integer points of k. Recall that OS is defined as the set of x ∈ k such
that x is ν-integral for all valuations ν /∈ S,

OS = {x ∈ k : |x|ν ≤ 1 for all valuations ν /∈ S} .

We have a natural diagonal embedding of k into

kS =
∏

ν∈S

kν ,

where kν denotes the completion of k with respect to the valuation ν. Note
that OS has a discrete and cocompact image into kS .

Example 2.23. Let k = Fq(t) and let S = {ν∞}. Then OS is the polyno-
mial ring Fq[t]. It is a discrete cocompact subring of Fq((t−1)).

Example 2.24. Let k = Fq(t) and let νa denote the valuation associated
to the polynomial t− a. If S = {ν∞, ν0, ν−1} then OS = Fq[t, t−1, (t+ 1)−1].
It is a discrete cocompact subring of the locally compact ring Fq((t−1)) ×
Fq((t)) × Fq((t+ 1)).

Proof of the result. From now and until the end of this subsection, S
will denote a finite set of s ≥ 2 pairwise non-equivalent valuations on k
containing ν∞. We will prove that the divergence function of the finitely
generated group SLn(OS) is linear. As in the previous subsection, we write
down the arguments only for n = 3, the proof of the general case being a
straightforward extension of the proof for this case.
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We now choose a finite generating set of SL3(OS). We choose similarly
the sets S0, S1, S2 defined at the beginning of Section 2.3.1. Recall that
according to Dirichlet unit theorem, the group O×

S of units of OS is the
direct product of a free Abelian group of rank s − 1, freely generated by
λ1, . . . , λs−1, with a finite Abelian group generated by λs, . . . , λd. We define
S3 as the following set of matrices

S3 =
d
⋃

i=1

















λi

λ−1
i

1





 ,







λi

1
λ−1

i

















.

We now take S = S0 ∪ S1 ∪ S2 ∪ S3 as finite generating set of SL3(OS).
If x ∈ OS and γ is a matrix with entries in OS , we denote by

|x| = max
ν∈S

|x|ν

and
‖γ‖ = max

i,j
{|γi,j|} .

The control of the size of a matrix with respect to the word metric
associated to S by the size of its entries, provided by [LMR00], still holds
in this setting:

Proposition 2.25. There exists C > 0 such that for any γ ∈ SL3(OS),

C−1(1 + log ‖γ‖) ≤ dS(e, γ) ≤ C(1 + log ‖γ‖).

We define similarly the notion of ε-large entry of an element of SL3(OS),
and the notion of external trajectories between two elements in the Cayley
graph of SL3(OS) associated to S. As in Section 2.3.1 for SL3(Fq[t]), we
prove that any two elements of SL3(OS) are uniformly externally connected.
Some points of the proof will be similar to what we did in the case of Fq[t],
but the idea is that here we are in a more pleasant situation because diagonal
matrices coming from units in OS provide some more place to move.

Lemma 2.26. There exist c′
1, c

′
2 > 0 such that any α ∈ SL3(OS) can be

uniformly externally connected to an element

α′ ∈







SL2(OS)
∗
∗

0 0 1







satisfying

c′
1 ≤ 1 + dS(e, α)

1 + dS(e, α′)
≤ c′

2.
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Proof. As before, the control on the size of α′ will come from the fact that
we proceed in a finite number of steps to connect α to α′, and that each
intermediate point satisfies such a control. Let ε > 0 be fixed. Write

α =







∗ ∗ ∗
∗ ∗ ∗
a b c





 .

First note that multiplying if necessary by diagonal elements of S3, which
has the effect of multiplying the columns of α, we can assume that the first
two columns belong to Fq[t] and that the third column is ε-large. Now
proceeding as in Claim 1 of the proof of Lemma 2.17 and using an analogue
of Lemma 2.16, we obtain that α is uniformly externally connected to

α2 =







∗ ∗ ∗
∗ ∗ ∗
a′ b′ c





 ,

where a′ and b′ are coprime. Then swapping columns 2 and 3, multiplying
if necessary by elements of S3 to get an ε-large third column, and doing as
in Claim 2 in 2.3.1, we get that α2 is uniformly externally connected to

α3 =







∗ ∗ ∗
∗ ∗ ∗
a′ 1 b′′





 .

Now using Lemma 2.16 we uniformly externally connect α3 to

α4 =







∗ ∗ ∗
∗ ∗ ∗
0 1 b′′





 .

To obtain the desired result it is now sufficient to make the first column
ε-large thanks to S3, and use one more time Lemma 2.16 to connect α4 to







∗ ∗ ∗
∗ ∗ ∗
0 1 0





 ,

and finally exchange columns 2 and 3.

To finish the proof we now have to show that any two

γ, γ′ ∈







SL2(OS)
∗
∗

0 0 1
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are uniformly externally connected. But this is straightforward because
since s ≥ 2, SL2(OS) is finitely generated and quasi-isometrically embedded
in SL3(OS), so we easily get (by first making their third column large thanks
to S3) that each of them is uniformly externally connected to an element of
the form







1 0 ∗
0 1 ∗
0 0 1





 .

Now in order to see that any two elements of this form are uniformly ex-
ternally connected, we can for example argue that they lie in the quasi-
isometrically embedded subgroup







∗ 0 ∗
0 ∗ ∗
0 0 ∗





 ≃ (OS ⋊ O×
S )2,

which, as a direct product of two infinite finitely generated groups, trivially
has a linear divergence.

2.4 On the asymptotic cone of SOL

Recall that the group SOL is the three-dimensional Lie group R2 ⋊ R,
where the action of t ∈ R on R2 is given by the diagonal matrix diag(et, e−t).
It was proved in [Cor08, Section 9] that the asymptotic cones of SOL do
not depend on the choice of ω and s. More precisely, embedding the group
SOL as a horosphere into the direct product (R⋊R) × (R⋊R), it is proved
that all these asymptotic cones are bi-Lipschitz equivalent to

{(x, y) ∈ T × T : b(x) + b(y) = 0} ,

where T is a homogeneous real tree of continuum branching cardinality, and
b is a Busemann function on T. This metric space, defined up to bi-Lipschitz
homeomorphism, will be denoted by Cone(SOL).

Proposition 2.27. The metric space Cone(SOL) does not have cut-points.

Proof. In order to show that a metric space does not have cut-points,
it is enough to prove that given any two points, there exist two differ-
ent paths joining them which intersect only at their extremities. For let
(x1, y1), (x2, y2) ∈ Cone(SOL). We can always assume, composing by an
isometry if necessary, that b(x1) = b(y1) = 0 and b(x2) > 0. In this situa-
tion Figure 2.1 shows how to construct two convenient paths.
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Figure 2.1 – Construction of a circle containing (x1, y1) and (x2, y2)
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Now consider the three-dimensional real Heisenberg group H3(R), i.e.
the group of upper triangular unipotent matrices of size 3 with entries in
R, and its extension H3(R) ⋊R, where

t ·







1 x z
1 y

1





 =







1 etx z
1 e−ty

1





 .

Note that this group is also a central extension of the group SOL by the
group R, and in particular has discrete infinite central subgroups.

It is not known whether the asymptotic cones of H3(R) ⋊ R are bi-
Lipschitz homeomorphic to Cone(SOL), and the aim of the end of this para-
graph is to explain how a negative answer to an apparently more tractable
question explained below, would yield a negative answer to this problem.

Proposition 2.28 (Drutu-Sapir). Let G be a compactly generated group
with a discrete central infinite cyclic subgroup. Then every asymptotic cone
of G satisfies the property that for every ε > 0, there exists an isometry
sending every point to another point at distance exactly ε.

Proof. See [DS05, Lemma 6.3]. The argument is given there for discrete
groups, but the proof works verbatim for locally compact groups.

The following lemma, whose proof is easy and left to the reader, explains
how an isometry like in the conclusion of Proposition 2.28 is transported by
a bi-Lipschitz homeomorphism.

Lemma 2.29. Let ψ : (X1, d1) → (X2, d2) be a C-bi-Lipschitz homeomor-
phism between metric spaces, and let ε > 0. If ϕ1 ∈ Isom(X1) is such that
d1(ϕ1(x1), x1) = ε for every x1 ∈ X1, then ϕ2 = ψ ◦ ϕ1 ◦ ψ−1 is a C2-bi-
Lipschitz homeomorphism of X2 such that C−1ε ≤ d2(ϕ2(x2), x2) ≤ Cε for
every x2 ∈ X2.

So if the metric space Cone(SOL) does not admit a bi-Lipschitz self-
homeomorphism ϕ so that c1 ≤ d(ϕ(x), x) ≤ c2 for some c1, c2 > 0 and
every x ∈ Cone(SOL), then according to Proposition 2.28 and Lemma 2.29,
the asymptotic cones of H3(R) ⋊ R are not bi-Lipschitz homeomorphic to
Cone(SOL).

The question of the existence of a bi-Lipschitz self-homeomorphism of
Cone(SOL) with this property is addressed at the end of this thesis.

2.5 Asymptotic cut-points of Lie groups and

p-adic groups

In this section we give a rigidity result for connected Lie groups and
linear algebraic groups over an ultrametric local field of characteristic zero,
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namely that if such a group has cut-points in one asymptotic cone, then it
is Gromov-hyperbolic.

Actually our characterization will follow from a general statement about
groups satisfying a law. Recall that a law is a non-trivial reduced word
w(x1, . . . , xn) in some letters x1, . . . , xn. A group G is said to satisfy the law
w(x1, . . . , xn) if w(g1, . . . , gn) = 1 in G for every g1, . . . , gn ∈ G. Examples
of groups satisfying a law are solvable groups, or groups of finite exponent.
In [DS05], Drutu and Sapir proved that if a finitely generated non-virtually
cyclic group G satisfies a law, then G does not have cut-points in any of its
asymptotic cones. This result does not hold for locally compact compactly
generated groups. For example for every local field K, the affine group
K⋊K∗ is solvable of class two, and is also non-elementary hyperbolic, and
therefore all its asymptotic cones are real trees.

Nevertheless, applying Theorem 1.1 will allow us to obtain some gener-
alization of the result of Drutu and Sapir to the locally compact setting, by
proving that a locally compact group satisfying a law does not have cut-
points in any of its asymptotic cones as soon as it is neither an elementary
nor a focal hyperbolic group (see Theorem 2.33). Before doing this, let us
derive the following consequence of Theorem 1.21.

Proposition 2.30. Let G be a locally compact lacunary hyperbolic group.
If G satisfies a law then G is hyperbolic.

Proof. Let Coneω(G, s) be an asymptotic cone of G that is a real tree.
Note that since the group G satisfies a law, the same holds for the group
Precone(G, s). Clearly we can assume that Coneω(G, s) is not a point.
If Coneω(G, s) is a line, then by Lemma 1.29 the group G is elementary
hyperbolic. So we may assume that Coneω(G, s) is not a line, and it follows
that the action of Precone(G, s) on Coneω(G, s) is either focal or of general
type. But it cannot be of general type, because otherwise this would imply
that Precone(G, s) contains a non-abelian free subgroup [CM87, Theorem
2.7], which is a contradiction with the fact that Precone(G, s) satisfies a
law. Therefore the action of Precone(G, s) on Coneω(G, s) is focal, and it
follows from Theorem 1.21 that G is a focal hyperbolic group.

Remark 2.31. Since the properties of being lacunary hyperbolic and of
being hyperbolic are invariant under quasi-isometries, Proposition 2.30 still
holds for groups quasi-isometric to a group satisfying a law.

Although it is not stated explicitly in these terms, the following result
can be derived from the work of Drutu and Sapir. For an introduction to
the concept of tree-graded spaces, we refer the reader to [DS05].

Proposition 2.32 (Drutu-Sapir). Let G be a locally compact compactly
generated group satisfying a law. If C = Coneω(G, s) is an asymptotic cone
of G with cut-points, then C must be a real tree.
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Proof. Since by assumption C has cut-points, it follows from Lemma 2.31
of [DS05] that C is tree-graded with respect to a collection of proper subsets.
Assume by contradiction that C is not a real tree. Then we can apply
Proposition 6.9 of [DS05] to the action of Precone(G, s) on C, and we obtain
that Precone(G, s) contains a non-abelian free subgroup. On the other hand
since the group G satisfies a law, Precone(G, s) cannot contain a non-abelian
free group. Contradiction.

The following theorem generalizes to the realm of locally compact com-
pactly generated groups the aforementioned result of Drutu and Sapir about
finitely generated groups satisfying a law.

Theorem 2.33. Let G be a locally compact compactly generated group sat-
isfying a law. If G has cut-points in one of its asymptotic cones, then G is
either an elementary or a focal hyperbolic group.

Proof. We let C be an asymptotic cone of G with cut-points. Since the
group G satisfies a law, it follows from Proposition 2.32 that C is a real
tree. Therefore G is lacunary hyperbolic, and the conclusion then follows
from Proposition 2.30.

Since the property of having cut-points in one asymptotic cone is a
quasi-isometry invariant, the following result follows immediately from the
contrapositive of Theorem 2.33.

Corollary 2.34. Let G be a compactly generated group that is quasi-isometric
to a group satisfying a law. If G is not a hyperbolic group then G does not
have cut-points in any of its asymptotic cones.

In particular since connected-by-compact locally compact groups, or
compactly generated linear algebraic groups over an ultrametric local field
of characteristic zero, are quasi-isometric to a solvable group, we deduce the
following result.

Corollary 2.35. Let G be a locally compact compactly generated group.
Assume that G is either connected-by-compact, or a linear algebraic group
over an ultrametric local field of characteristic zero. If G is not a hyperbolic
group then G does not have cut-points in any of its asymptotic cones.

Note that by Corollary 3 of [CT11], we have a complete description of
connected Lie groups or linear algebraic groups over a non-Archimedean
local field of characteristic zero that are non-elementary hyperbolic. For
example in the case of a connected Lie group, G is either isomorphic to a
semidirect product N ⋊ (K × R), where N is a simply connected nilpotent
Lie group, K is a compact connected Lie group and the action of R on N is
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contracting; or the quotient of G by its maximal compact normal subgroup
is isomorphic to a rank one simple Lie group with trivial center. So it follows
from Corollary 2.35 that if a connected Lie group is not of this form, then
it does not have cut-points in any of its asymptotic cones.

Remark 2.36. Here is another proof of Corollary 2.35 whenG is a connected-
by-compact locally compact group. Argue by contradiction and assume that
G admits one asymptotic cone C with cut-points. Since G is quasi-isometric
to a solvable group, according to Proposition 2.32 the asymptotic cone C
must be a real tree. Now since connected-by-compact groups are compactly
presented (see for example [CH15, Proposition 8.A.19]), the group G must
be hyperbolic by Corollary 1.37. Contradiction.
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Chapter 3

Neretin’s group and its
generalizations

The group Nd of almost automorphisms of a non-rooted regular tree of
degree d+ 1 ≥ 3 was introduced by Neretin in connection with his work in
representation theory [Ner92]. He proved that Nd can be seen as a p-adic
analogue of the diffeomorphism group of the circle, in the sense that some
of the features of the representation theory of the latter are inherited by
Nd. Inspired by a simplicity result of the diffeomorphism group of the circle
Diff+(S1) [Her71], Kapoudjian later proved that the group Nd is abstractly
simple [Kap99].

Recently, Bader, Caprace, Gelander and Mozes proved that Nd does
not have any lattice [BCGM12]. This result is remarkable for the reason
that all the familiar examples of simple locally compact groups (which are
unimodular), e.g. real or p-adic Lie-groups, or the group of type preserving
automorphisms of a locally finite regular tree, are known to have lattices.
Actually Nd turned out to be the first example of a locally compact simple
group without lattices.

In this chapter we investigate a large family of groups which appear as
generalizations of Neretin’s group. In Section 3.1 we set some terminol-
ogy, recall some background on Higman-Thompson groups, and define the
groups AAutD(Td,k) and their topology. Section 3.2 deals with the study of
compact presentability and the Dehn function of these groups, as well as
other examples of groups of almost automorphisms. Finally in Section 3.3
we study metric properties and embeddings of these groups.
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∅
a1 a2

a1b1 a1b2 a1b3 a2b1 a2b2 a2b3

Figure 3.1 – A picture of the tree T3,2.

3.1 Introduction

3.1.1 Definitions

The quasi-regular rooted tree Td,k and its boundary. Let A and B
be finite sets of cardinality respectively k ≥ 2 and d ≥ 2. Consider the set of
finite words {∅}∪{ab1 · · · bn : a ∈ A, bi ∈ B} over the alphabet X = A∪B
being either empty or beginning by an element of A. This set is naturally
the vertex set of a rooted tree, where the root is the empty word ∅ and
two vertices are adjacent if they are of the form v and vx, x ∈ X. We will
denote this tree by Td,k. In the case when k = d it will be denoted by Td for
simplicity. See Figure 3.1.1 for the case k = 2, d = 3.

For any vertex v, we will also denote by T v
d,k the subtree of Td,k spanned

by vertices having v as a prefix. The distance between a vertex and the
root will be called its level, and the number of its neighbours will be called
its degree. If v is a vertex of level n ≥ 0, then its neighbours of level n+ 1
are called the descendants of v. By construction, the root of Td,k has degree
k, and a vertex of level n ≥ 1 has degree d + 1: it has one distinguished
neighbour pointing toward the root, and d descendants. Any subtree of Td,k

spanned by a vertex of level n ≥ 1 and its d neighbours of level n + 1 will
be called a caret.

The boundary ∂∞Td,k of the tree Td,k is defined as the set of infinite words
ab1 · · · bn · · · , i.e. infinite geodesic rays in Td,k started at the root. We define
the distance between two such words ξ, ξ′ by d(ξ, ξ′) = d−|ξ∧ξ′|, where |ξ∧ξ′|
is the length of the longest common prefix of ξ and ξ′. Equipped with this
distance, the boundary at infinity ∂∞Td,k turns out to be homeomorphic to
the Cantor set.

From now and for the rest of this chapter, we fix an embedding of Td,k in
the oriented plane. This embedding induces a canonical way of ordering, say
from left to right, the descendants of any vertex. In particular we obtain a
total ordering on the boundary at infinity ∂∞Td,k, defined by declaring that
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ξ ≤ ξ′ if the first letter of ξ following the longest common prefix of ξ and
ξ′, is smaller than the one of ξ′.

The group AAut(Td,k) of almost automorphisms of Td,k. Recall that
the group Aut(Td,k) of automorphisms of the rooted tree Td,k is defined as
the group of bijections of the set of vertices fixing the root and preserving the
edges. In particular every automorphism of Td,k induces a homeomorphism
of ∂∞Td,k. We now introduce a larger subgroup of the homeomorphism
group of ∂∞Td,k, namely the group of homeomorphisms of ∂∞Td,k which are
piecewise tree automorphisms.

Definition 3.1. A finite subtree T of Td,k is a rooted complete subtree if
it contains the root as a vertex of degree k and if any other vertex which is
not a leaf has degree d+ 1.

If T is a finite rooted complete subtree of Td,k then its complement is a
forest composed of finitely many copies of the tree Td. If T, T ′ are subtrees
of Td,k, a map ψ : Td,k \ T → Td,k \ T ′ will be called a forest isomorphism
if it maps each connected component of Td,k \ T to a connected compo-
nent of Td,k \T ′, and induces a tree isomorphism on each of these connected
components. Note that such a forest isomorphism naturally induces a home-
omorphism of ∂∞Td,k.

Definition 3.2. The group AAut(Td,k) is defined as the set of equivalence
classes of triples (ψ, T, T ′), where T, T ′ are finite rooted complete subtrees
such that |∂T | = |∂T ′| and ψ : Td,k \ T → Td,k \ T ′ is a forest isomorphism,
where two triples are said to be equivalent if they give rise to the same
homeomorphism of ∂∞Td,k. The multiplication in AAut(Td,k) is inherited
from the composition in Homeo(∂∞Td,k).

We mention the following result, whose proof is easy and left to the
reader, which gives an alternative definition of the group of almost auto-
morphisms AAut(Td,k).

Lemma 3.3. Let T1, T
′
1, T2, T

′
2 be finite complete rooted subtrees of Td,k.

Then two triples (ψ1, T1, T
′
1), (ψ2, T2, T

′
2) are equivalent if and only if there

exist finite rooted complete subtrees T, T ′ so that T (resp. T ′) contains both
T1 and T2 (resp. T ′

1 and T ′
2) and ψ1, ψ2 : Td,k \ T → Td,k \ T ′ are equal.

Remark 3.4. By the previous lemma, when considering a triple (ψ, T, T ′)
representing an element of AAut(Td,k), we can always assume that T and
T ′ both contain a given finite subtree of Td,k.

Note that since the only automorphism of Td,k inducing the trivial home-
omorphism on ∂∞Td,k is the identity, the group AAut(Td,k) contains a copy
of the group Aut(Td,k) of automorphisms of the tree Td,k.

80



3.1.2 Higman-Thompson groups

History. R. Thompson introduced in 1965 three groups F ≤ T ≤ V ,
an introduction to which can be found in [CFP96], while constructing a
finitely generated group with unsolvable word problem. The groups T and
V turned out to be the first examples of finitely presented infinite simple
groups. Higman then generalized Thompson group V to an infinite family of
groups (which were originally denoted by Gd,k, but we will use the notation
Vd,k to keep in mind the analogy with Thompson group V , which is nothing
else than V2,1). The proof of the following result, which will be used in 3.2.2,
is due to Higman [Hig74] (see also [Bro87]).

Theorem 3.5. Higman-Thompson groups Vd,k are finitely presented.

K. Brown later generalized Higman’s construction to an infinite family
of groups Fd,k ≤ Td,k ≤ Vd,k such that F2,1 ≃ F and T2,1 ≃ T . These groups
were originally defined as automorphism groups of certain free algebras. We
refer the reader to [Bro87] for an introduction from this point of view.

The definition of the groups Vd,k we give below is in terms of homeomor-
phism groups of the boundary of the quasi-regular rooted tree Td,k. From
this point of view, elements of these groups can be represented either as
homeomorphisms of ∂∞Td,k or by combinatorial diagrams, and we will use
the interplay between these two representations.

Higman-Thompson groups Vd,k as subgroups of AAut(Td,k). The
point of view which is adopted here to define Higman-Thompson groups
Vd,k is mostly borrowed from [CDM11]. Note that when k = d the group
Vd,d will be denoted by Vd for simplicity.

Definition 3.6. An element of AAut(Td,k) is called locally order-preserving
if it can be represented by a triple (ψ, T, T ′) such that T, T ′ are complete
rooted subtrees of Td,k and ψ : Td,k \T → Td,k \T ′ preserves the order of the
boundary at infinity on each connected component.

It follows from the order-preserving condition that such a forest isomor-
phism ψ is uniquely determined by the induced bijection between the leaves
of T and the leaves of T ′. Locally order-preserving almost automorphisms
are easily checked to form a subgroup of AAut(Td,k).

Definition 3.7. The Higman-Thompson group Vd,k is defined as the sub-
group of AAut(Td,k) of locally order-preserving elements.

Every locally order-preserving v ∈ Vd,k has a unique representative
(ψ, T, T ′) so that T, T ′ are complete rooted subtrees of Td,k, the map ψ :
Td,k \ T → Td,k \ T ′ preserves the order of the boundary on each connected
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component, and T is minimal for the inclusion. Then T ′ is also minimal
and (ψ, T, T ′) will be called the canonical representative of v. This notion
coincides with the classical notion of reduced tree pair diagrams commonly
used to study Thompson groups. The tree T will be called the domain tree
of v and T ′ the range tree. When considering a triple representing a locally
order-preserving element, we will without further mention assume that this
is the canonical representative.

Saturated subsets. We now introduce a notion of saturated subsets inside
the group Vd,k, which will be used in the proof of Theorem 3.17 to perform
the cost estimates carefully.

Definition 3.8. A subset Σ ≤ Vd,k is said to be saturated if for every
σ = (ψ, T, T ′) ∈ Σ and every u ∈ Aut(Td,k), all the elements of Vd,k of the
form (ψ′, u(T ), T ′) belong to Σ.

Lemma 3.9. Every finite subset Σ ≤ Vd,k is contained in a finite saturated
subset.

Proof. Let Σ′ be the subset of Vd,k consisting of elements of the form
(ψ, u(T ), T ′), where u ∈ Aut(Td,k) and T is the domain tree of the canonical
representative of some element of Σ. Clearly Σ′ contains Σ and is saturated.
Since Σ is finite, the number of such trees T is finite, and so is the set of
u(T ), u ∈ Aut(Td,k). The result then follows from the following observa-
tion: if T is a fixed finite complete rooted subtree of Td,k, then there are
only finitely many elements of Vd,k having a canonical representative of the
form (ψ, T, T ′).

A lower bound for the word metric in Vd,k. Here we give a lower
bound for the word metric in the group Vd,k in terms of a combinatorial
data contained in the diagrams (ψ, T, T ′) representing elements of Vd,k.

Recall that a caret in Td,k is a subtree spanned by a vertex of level n ≥ 1
and its d neighbours of level n + 1. We insist on the fact that we do not
consider the subtree of Td,k spanned by the root and its k neighbours as a
caret. If T is a finite complete rooted subtree of Td,k with κ carets, then the
number of leaves of T is (d− 1)κ+ k. In particular if v ∈ Vd,k has canonical
representative (ψ, T, T ′), then T, T ′ have the same number of leaves, and
consequently they also have the same number of carets. By abuse we will
call it the number of carets of v and denote it by κ(v).

Metric properties of Higman-Thompson groups of type F and T can be
essentially understood in terms of the number of carets of tree diagrams, the
latter being quasi-isometric to the word-length associated to some finite gen-
erating set. The use of this point of view shed light on some interesting large
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scale geometric properties of these groups (see [Bur99], [BCS01], [BCST09]).
However metric properties of Higman-Thompson groups of type V are far
less well understood, as it follows from the work of Birget [Bir04] that the
number of carets is no longer quasi-isometric the the word-length in Thomp-
son group V .

Nevertheless, the following lemma gives a lower bound for the word
metric in Vd,k in terms of the number of carets. Note that the same result
appears in [Bir04] for the case of Thompson group V .

Proposition 3.10. For any finite generating set Σ of Vd,k, there exists a
constant CΣ > 0 such that for any v ∈ Vd,k, we have κ(v) ≤ CΣ|v|Σ.

Proof. Define CΣ = maxσ∈Σ κ(σ). Now remark that when multiplying, say
on the right, an element v ∈ Vd,k by an element σ ∈ Σ, we obtain an
element vσ having a canonical representative with trees having at most
κ(v) + CΣ carets. This is because when expanding the domain tree of v
to get a common expansion with the range tree of σ, we have to add at
most CΣ carets. So it follows from a straightforward induction that every
element of length at most n with respect to the word metric associated to
Σ has a canonical representative with at most CΣn carets, and the proof is
complete.

3.1.3 Generalizations of Neretin’s group

Almost automorphisms of Td,k are homeomorphisms of the boundary
∂∞Td,k which are piecewise tree automorphisms. In this subsection we in-
troduce a family of subgroups of AAut(Td,k) consisting of almost automor-
phisms whose local action satisfies a rigidity condition.

Almost automorphisms of type W (D). Let D ≤ Sym(d) be a subgroup
of the symmetric group on d elements. Recall that D is known to give rise to
a closed subgroup of the automorphism group Aut(Td), by considering the
infinitely iterated permutational wreath product W (D) = (. . .≀D)≀D. More
precisely, define recursively D1 = D, seen as the subgroup of Aut(Td) acting
on level one; and Dn+1 = D ≀Dn for every n ≥ 1, where the permutational
wreath product is associated with the natural action of Dn on the set of
vertices of level n of Td. We now let W (D) be the closed subgroup generated
by the family (Dn). Elements of W (D) are rooted automorphisms whose
local action is prescribed by D. For any k ≥ 2 we let Wk(D) be the subgroup
of Aut(Td,k) fixing pointwise the first level and acting by an element of
W (D) in each subtree rooted at level one. The group Wk(D) is naturally
isomorphic to the product of k copies of the group W (D).
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Definition 3.11. An almost automorphism of Td,k is said to be piecewise of
type W (D) if it can be represented by a triple (ψ, T, T ′) such that T, T ′ are
finite rooted complete subtrees of Td,k and ψ : Td,k \ T → Td,k \ T ′ belongs
to W (D) on each connected component, after the natural identification of
each connected component of Td,k \ T and Td,k \ T ′ with Td.

We observe that by construction of W (D), if a triple (ψ1, T1, T
′
1) is such

that ψ1 : Td,k\T1 → Td,k\T ′
1 belongs to W (D) on each connected component,

then for any equivalent triple (ψ2, T2, T
′
2) such that T2 (resp. T ′

2) contains
T1 (resp. T ′

1), then ψ2 : Td,k \ T2 → Td,k \ T ′
2 belongs to W (D) on each

connected component.

Proposition 3.12. The set of almost automorphisms AAutD(Td,k) which
are piecewise of type W (D) is a subgroup of AAut(Td,k).

Proof. The only non-trivial fact that one needs to check is that AAutD(Td,k)
is closed under multiplication, but this follows from the previous observation
and from the fact that W (D) is a subgroup of Aut(Td).

Roughly, the group AAutD(Td,k) consists in homeomorphisms of ∂∞Td,k

that are piecewise tree automorphisms whose local action is prescribed by
D. This family of groups generalizes Neretin’s groups because when D is the
full permutation group Sym(d), the group W (D) is the full automorphism
group of Td, and we can check that AAutSym(d)(Td,2) ≃ Nd. On the opposite,
if D is the trivial group, then being piecewise trivial means being locally
order-preserving and AAutD(Td,k) = Vd,k. It is straightforward from the
definition that if D′ contains D then AAutD′(Td,k) contains AAutD(Td,k).
In particular we note that for every subgroup D ≤ Sym(d), the group
AAutD(Td,k) always contains Vd,k.

The groups AAutD(Td,k) appear in [CDM11], where a careful study of the
abstract commensurator group of self-replicating profinite wreath branch
groups is carried out (we refer to [BEW11] for an introduction to abstract
commensurators of profinite groups). Under the additional assumption that
D ≤ Sym(d) is transitive and is equal to its normaliser in Sym(d), the
group AAutD(Td,k) turns out to be isomorphic to the abstract commensu-
rator group of Wk(D). In particular Neretin’s group Nd is the abstract
commensurator group of W2(Sym(d)), or equivalently the group of germs of
automorphisms of Aut(Td+1) in the language of [CDM11].

Topology on AAutD(Td,k). By definition the group AAutD(Td,k) also con-
tains a copy of the tree automorphism group Wk(D). The latter comes
equipped with a natural group topology, which is totally disconnected and
compact, defined by saying that the pointwise stabilizers of vertices of level
n form a basis of neighbourhoods of the identity. We would like to extend
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this topology to the group AAutD(Td,k), i.e. define a group topology on
AAutD(Td,k) for which the subgroup Wk(D) is an open subgroup. For, let
us first recall the following well known lemma, a proof of which can be
consulted in [Bou71, Chapter 3].

Lemma 3.13. Let G be a group and let F be a family of subgroups of G
which is filtering, i.e. so that the intersection of any two elements of F
contains an element of F . Assume moreover that for every g ∈ G and
every U ∈ F , there exists V ∈ F so that V ⊂ gUg−1. Then there exists
a (unique) group topology on G for which F is a base of neighbourhoods of
the identity.

Recall that a subgroup H of a group G is said to be commensurated by
a subset K of G if for every k ∈ K, the subgroup kHk−1 ∩ H has finite
index in both H and kHk−1. The following easy lemma, whose proof is left
to the reader, provides an easy way to check commensurability.

Lemma 3.14. Let G be a group and S a generating set of G. Then a
subgroup H of G is commensurated by G if and only if it is commensurated
by S.

Now let F be the family of open subgroups of Wk(D), which is a base
of neighbourhoods of the identity in Wk(D). It follows from Lemma 3.13
that if G is a group containing Wk(D) as a subgroup, then there exists a
group topology on G such that the inclusion of Wk(D) in G is continuous
and open as soon as Wk(D) is commensurated in G.

Now remark that Lemma 3.14 together with Proposition 3.20 (a corollary
of which is that AAutD(Td,k) is generated by Wk(D) and Vd,k) imply that
Wk(D) is commensurated by AAutD(Td,k), because it is trivially commen-
surated by itself and commensurated by Vd,k by Lemma 3.19. We therefore
obtain:

Proposition 3.15. There exists a (unique) group topology on AAutD(Td,k)
turning Wk(D) into a compact open subgroup. In particular AAutD(Td,k) is
a t.d.l.c. group (which is discrete if and only if Wk(D) is trivial, if and only
if D is trivial).

Remark 3.16. 1) It is interesting to point out that whereas the topol-
ogy on Aut(Td,k) coincides with the compact-open topology induced
from Homeo(∂∞Td,k), this is no longer true for the group AAut(Td,k).
Indeed, the inclusion AAut(Td,k) →֒ Homeo(∂∞Td,k) is continuous but
has a non-closed image. In other words, the topology on AAut(Td,k)
is strictly finer than the compact-open topology. Actually the image
of AAut(Td,k) →֒ Homeo(∂∞Td,k) is even dense, because one can check
that the group Vd,k is a dense subgroup of the homeomorphism group
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of ∂∞Td,k with respect to the compact-open topology.

2) We also insist on the fact that for any permutation group D, the
inclusion AAutD(Td,k) →֒ AAut(Td,k) is always continuous, but its im-
age is never closed unless D is the full permutation group Sym(d).
Indeed, AAutD(Td,k) contains the subgroup Vd,k which is dense in
AAut(Td,k) by Remark 3.21, and therefore AAutD(Td,k) is never closed
inside AAut(Td,k) unless it is the whole group.

3.2 Compact presentability and Dehn func-

tion

3.2.1 Background

Recall that a locally compact group G is said to be compactly presented
if it admits a compact generating subset S such that G has a presentation, as
an abstract group, with S as set of generators and relators of bounded length
(but possibly infinitely many relators). When the group G is discrete, this
amounts to saying that G is finitely presented, and like in the discrete case,
for a locally compact group, being compactly presented does not depend on
the choice of the compact generating set S.

Compact presentability can be interpreted in terms of coarse simple con-
nectedness of the Cayley graph of the group with respect to some compact
generating subset. In particular, among compactly generated locally com-
pact groups, being compactly presented is preserved by quasi-isometries.
For a proof of this result see for instance [CH15, Proposition 8.A.3].

Having obtained compact presentability of a locally compact group G
naturally leads to the study of an invariant of G, having both geometric
and combinatorial flavors, called the Dehn function of G.

From the geometric point of view, the Dehn function δG(n) is the supre-
mum of areas of loops in G of length at most n. In other words, it is the
best isoperimetric function, where isoperimetric function can be understood
like for simply connected Riemannian manifolds.

From the combinatorial perspective, the Dehn function is a quantified
version of compact presentability: δG(n) is the supremum over all relations
w of length at most n in the group, of the minimal number of relators needed
to convert w to the trivial word.

If G is compactly presented and if S is a compact generating set, then
for some k ≥ 1 the group G has the presentation 〈S | Rk〉, where Rk is set
of relations in G of length at most k. The area a(w) of a relation w, i.e. a
word in the letters of S which represents the identity in G, is the smallest
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integer m so that w can be written in the free group FS as a product of m
conjugates of relators of Rk. Now define the Dehn function of G by

δG(n) = sup {a(w) : w relation of length at most n} .

This function depends on the choice of S and k, but its asymptotic behavior
does not, and is actually a quasi-isometry invariant of G.

3.2.2 Presentation of AAutD(Td,k)

Statement of the theorem. One of the reasons why combinatorial group
theorists became interested in Thompson groups is because of the combi-
nation of simplicity and finiteness properties. While simplicity results for
AAutD(Td,k) have recently been obtained in [CDM11], here we settle in the
positive the question if whether or not these groups satisfy the locally com-
pact version of being finitely presented, i.e. being compactly presented, and
give the following upper bound on their Dehn function.

Theorem 3.17. For any k, d ≥ 2, and any subgroup D ≤ Sym(d), the group
AAutD(Td,k) is compactly presented, and the Dehn function of AAutD(Td,k)
is asymptotically bounded by that of Vd,k.

As mentioned earlier, the group AAutD(Td,k) contains a dense copy of the
Higman-Thompson finitely presented group Vd,k. Here we insist on the fact
that for a locally compact group, although having a dense finitely generated
subgroup is a sufficient condition for being compactly generated, this does
not hold for compact presentation, i.e. having a dense finitely presented
subgroup does not imply compact presentation of the ambient group. For
example, for any non-Archimedean local field K, the group K2 ⋊ SL2(K)
has a central extension with non-compactly generated kernel, and is there-
fore not compactly presented (see for instance [CH15, Proposition 8.A.26]).
However the reader can check that this group admits dense finitely gener-
ated free subgroups.

We also emphasize the fact that for the case of Neretin’s group, Theorem
3.17 cannot be obtained by proving finite presentation of a discrete cocom-
pact subgroup because these do not exist [BCGM12]. However we note that
it seems to be unknown whether Neretin’s group Nd is quasi-isometric to a
finitely generated group.

As a by-product of Theorem 3.17 and the main result of [BCGM12], we
also obtain that locally compact simple groups without lattices also exist in
the realm of compactly presented groups.

On the other hand, the Dehn function of AAutD(Td,k) is not linear
because having a linear Dehn function characterizes Gromov-hyperbolic
groups among compactly presented groups, and the group AAutD(Td,k) is
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easily seen not to be Gromov-hyperbolic. So by a general argument (see for
example [Bow91]), the Dehn function of AAutD(Td,k) has a quadratic lower
bound.

In the case d = 2, all the groups V2,k turn out to be isomorphic to
Thompson group V . While the Dehn function of Thompson group F has
been proved to be quadratic [Gub06], it is not known whether the Dehn
function of V is quadratic or not. However, using a result of Guba [Gub00]
who showed the upper bound δV 4 n11, we obtain:

Corollary 3.18. Neretin’s group N2 has a polynomially bounded Dehn func-
tion (4 n11).

We believe that the result of Guba could be extended to the family of
groups Vd,k, i.e. that every group Vd,k satisfies a polynomial isoperimet-
ric inequality. By Theorem 3.17 this would imply that the Dehn func-
tion of AAutD(Td,k) is polynomially bounded for arbitrary k, d ≥ 2 and
D ≤ Sym(d).

Preliminary results. In this subsection we establish preliminary results
about the groups AAutD(Td,k). Recall that D ≤ Sym(d) is a finite permuta-
tion group, and we define recursively a family of finite subgroups of Aut(Td)
by D1 = D and Dn+1 = D ≀ Dn for every n ≥ 1, where the permutational
wreath product is associated with the natural action of Dn on the dn vertices
of level n of Td. We denote by D∞ the subgroup generated by the family
(Dn) (which also coincides with the increasing union of the family (Dn))
and by W (D) the closure of D∞ in Aut(Td). For n ∈ {1, . . . ,∞} we will
also denote by Dk

n the subgroup of Wk(D) fixing pointwise the first level of
Td,k and acting by an element of Dn on each subtree rooted at the first level.
Note that these groups have a natural decomposition Dk

n = D(1)
n ×. . .×D(k)

n ,
where D(i)

n is the subgroup of elements acting only on the ith subtree rooted
at level one.

If σ = (ψ, T, T ′) ∈ Vd,k, we let Wk(D)σ be the subgroup of Wk(D) con-
sisting of automorphisms which are the identity on the subtree T . Note
Wk(D)σ always contains some neighbourhood of the identity and is conse-
quently an open subgroup of Wk(D). The latter being compact, we obtain
that Wk(D)σ is a finite index subgroup of Wk(D).

Lemma 3.19. For every σ ∈ Vd,k, we have the inclusion

σWk(D)σ σ
−1 ⊂ Wk(D),

and σWk(D)σ σ
−1 is an open subgroup of Wk(D). In particular Wk(D) is

commensurated by Vd,k.
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Proof. If σ = (ψ, T, T ′) and u ∈ Wk(D)σ, the reader will easily check that
the element σuσ−1 ∈ AAutD(Td,k) is represented by a triple (ψ′, T ′, T ′),
where ψ′ permutes trivially the connected components of Td,k \ T ′. Now if
we consider the tree automorphism u′ ∈ Wk(D) being the identity on T ′

and acting on Td,k \ T ′ like ψ′, it is clear that u′ is represented by the triple
(ψ′, T ′, T ′), and therefore σuσ−1 = u′ ∈ Wk(D).

The next result yields a decomposition of the group AAutD(Td,k) in
terms of the two subgroups Wk(D) and Vd,k. It will be essential for proving
Theorem 3.17.

Proposition 3.20. For any g ∈ AAutD(Td,k) there exists (u, v) ∈ Wk(D)×
Vd,k such that g = uv.

Proof. Let (ψ, T, T ′) be a triple representing g ∈ AAutD(Td,k). Let us con-
sider the element v ∈ AAutD(Td,k) represented by the triple (ξ, T, T ′) where
ξ is defined by declaring that each tree of the forest Td,k \ T is globally
sent on its image by ψ, but so that ξ is order-preserving on each connected
component of Td,k \ T . Clearly we have v ∈ Vd,k. Now the default between
g and v can be filled by performing the rooted tree automorphism induced
by g on each subtree rooted at a leaf of T ′. But all of these can be achieved
at the same time by an element of Wk(D), namely the automorphism being
the identity on T ′ and acting as the desired rooted tree automorphism on
each connected component of Td,k \ T ′.

Remark 3.21. Actually in Proposition 3.20, Wk(D) can be replaced by the
pointwise stabilizer of the nth level of Td,k in Wk(D), for every n ≥ 1, the
proof being the same. It yields in particular that Vd,k is a dense subgroup
of AAutD(Td,k).

Now given g ∈ AAutD(Td,k), there is not a unique (u, v) ∈ Wk(D) ×
Vd,k such that g = uv because the two subgroups Wk(D) and Vd,k have a
non-trivial intersection (as soon as D is non-trivial). The measure of how
this decomposition fails to be unique naturally leads to the study of the
intersection of these two subgroups.

Lemma 3.22. The intersection between Vd,k and Wk(D) in AAutD(Td,k) is
Dk

∞.

Proof. Dk
n lies inside Vd,k and Wk(D) for any n ≥ 1, so the inclusion Dk

∞ ⊂
Vd,k ∩Wk(D) is clear. To prove the reverse inclusion, let g be an element of
Vd,k ∩Wk(D). Such an element g is an automorphism of Td,k and therefore
does act on the tree fixing setwise each level, so it is enough to prove that
there exists an element of Dk

∞ acting like g on Td,k. Since g ∈ Wk(D),
for every n ≥ 1 there exists gn ∈ Dk

n acting like g on the first n levels of
Td,k. But now since g ∈ Vd,k, it is eventually order-preserving and therefore
g = gn for n large enough, which completes the proof.
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Figure 3.2 – The diagram of δ1,j when k = 2.

The end of this paragraph is devoted to establishing Lemma 3.23, which
will be applied in the proof of Lemma 3.26. Roughly, the idea is to find a
finite set of elements ∆ ≤ Vd,k, so that given an element u ∈ D(i)

∞ , we can
find δ ∈ ∆ so that conjugating by δ increases by one the level of the action
of u.

If i = 1 . . . k, recall that T ai

d,k denotes the full subtree of Td,k rooted at
ai, and that (a1, . . . ak) (resp. (aib1, . . . , aibd)) denotes the ordered vertices
of level one of Td,k (resp. T ai

d,k). In what follows, by convention indexes will
be taken modulo k (for example ak+1 will denote the vertex a1).

For every i = 1 . . . k and j = 1 . . . d, we define an element δi,j =
(ψ, T, T ′) ∈ Vd,k by the following manner:

— T is the smallest finite complete rooted subtree containing the d de-
scendants of ai;

— T ′ is the smallest finite complete rooted subtree containing the d de-
scendants of ai+1;

— ψ is defined by the formulas

— ψ(aℓ) = aℓ for every ℓ /∈ {i, i+ 1};

— ψ(ai+1) = ai+1bj;

— ψ(aibℓ) = ai+1bℓ for every ℓ 6= j;

— ψ(aibj) = ai.

For example the diagram of δ1,j is represented in Figure 3.2.2 in the case
k = 2. We denote by ∆ the set of δi,j, for i = 1 . . . k, j = 1 . . . d.

Lemma 3.23. For any i = 1 . . . k, j = 1 . . . d, any n ≥ 1 and any element
u ∈ D(i)

∞ being an automorphism of T aibj

d,k with at most n + 1 carets, the
element δi,juδ

−1
i,j is an automorphism of T ai

d,k and has at most n carets.

Proof. This is a direct consequence of the fact that δi,j maps the subtree
T aibj

d,k to the the subtree T ai

d,k.
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Proofs of the theorem. The remaining of this subsection consists in
writing down an explicit presentation of the group AAutD(Td,k) for any
k ≥ 1, d ≥ 2 and D ≤ Sym(d), and proving Theorem 3.17.

Let Σ denote a finite generating set of the group Vd,k, which is sup-
posed to contain ∆. Enlarging Σ if necessary, we can also assume that Σ is
saturated by Lemma 3.9. This implies the following:

Lemma 3.24. We have the inclusion ΣWk(D) ⊂ Wk(D) Σ.

Proof. It follows from the proof of Proposition 3.20 that any σ1u1 ∈ ΣWk(D)
can be written u2σ2 with u2 ∈ Wk(D) and σ2 ∈ Vd,k being of the form
(ψ, u−1(T ), T ′), where T is the domain tree of σ. Since Σ is saturated, σ2

belongs to Σ and therefore σ1u1 ∈ Wk(D) Σ.

According to Proposition 3.20, the set S = Σ ∪ Wk(D) is a generat-
ing set of AAutD(Td,k). The strategy to prove Theorem 3.17 will be to
list some particular relations between the elements of S satisfied in the
group AAutD(Td,k), and then to prove that they generate all the relations
in AAutD(Td,k).

(RΣ) According to Theorem 3.5 there exists a finite set of words RΣ ≤ Σ∗

so that 〈Σ | RΣ〉 is a presentation of Vd,k.

(RD) We let RD be the set of words of the form u1u2u
−1
3 , ui ∈ Wk(D),

whenever the relation u1u2 = u3 is satisfied in the group Wk(D).

(R1) The set of relations R1 will correspond to commensurating relations
in AAutD(Td,k). Recall that if σ ∈ Vd,k and u ∈ Wk(D)σ then σuσ−1 ∈
Wk(D) by Lemma 3.19. We let R1 be the set of words of the form
σu1σ

−1u−1
2 , where σ ∈ Σ, u1 ∈ Wk(D)σ, u2 ∈ Wk(D), whenever the

relation σu1σ
−1 = u2 holds in AAutD(Td,k).

(R2) We add relations corresponding to the fact that the subgroup Dk
1 of

AAutD(Td,k) lies in the intersection of Vd,k and Wk(D). More precisely,
for every i ∈ {1, . . . , k} and every u ∈ D

(i)
1 , we choose a word wu ∈ Σ∗

so that u = wu in AAutD(Td,k). We denote by R2 the set of words
uw−1

u , and by ri the maximum word length of the words wu when u

ranges over D(i)
1 .

(R3) By Lemma 3.24, for every σ1 ∈ Σ and u1 ∈ Wk(D) we can pick some
u2 ∈ Wk(D) and σ2 ∈ Σ so that σ1u1 = u2σ2 in AAutD(Td,k). We
denote by R3 the set of words σ1u1σ

−1
2 u−1

2 .

Denote by R = RΣ ∪RD ∪iRi the union of all these relations. Note that
elements of R have bounded length with respect to the compact generating
set S = Σ ∪Wk(D) of AAutD(Td,k).
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We let G be the group defined by the presentation 〈S | R〉, that is we
have a short exact sequence

1 → R = 〈〈R〉〉 → FS → G → 1,

where FS is the free group over the set S and 〈〈R〉〉 is the normal subgroup
generated by R. Denote by a : FS → [0,+∞] the corresponding area
function, which by definition associates to w ∈ R the least integer n so that
w is a product of at most n conjugates of elements of R, and a(w) = +∞ if
w /∈ R. We also define the associated cost function c : FS × FS → [0,+∞]
by c(w1, w2) = a(w−1

1 w2). This function estimates the cost of converting w1

to w2, or the cost of going from w1 to w2, in the sense that c(w1, w2) is the
distance in FS between w1 and w2 with respect to the word metric associated
to the union of conjugates of R. In particular the cost function is symmetric
and satisfies the triangular inequality c(w1, w3) ≤ c(w1, w2) + c(w2, w3) for
every w1, w2, w3 ∈ FS. This, combined with the bi-invariance of the cost
function, yields the following inequality, which will be used repeatedly: for
every ℓ ≥ 1 and every w1, . . . , wℓ, w

′
1, . . . , w

′
ℓ ∈ FS, we have:

c(w1 . . . wℓ, w
′
1 . . . w

′
ℓ) ≤

ℓ
∑

i=1

c(wi, w
′
i).

Two words w1, w2 ∈ FS are said to be homotopic if they represent the
same element of G, i.e. if c(w1, w2) < +∞. A word w is said to be null-
homotopic if it represents the identity, i.e. if w ∈ R.

We are now able to state the main theorem of this paragraph, which
proves Theorem 3.17.

Theorem 3.25. The natural map G → AAutD(Td,k) is an isomorphism.
Furthermore, the Dehn function of the presentation 〈S | R〉 is asymptotically
bounded by that of Vd,k.

It is clear that the map fromG to AAutD(Td,k) is a well defined morphism
because relations RΣ, RD, (Ri) are satisfied in AAutD(Td,k), and it is onto
because S generates the group AAutD(Td,k). So proving the first claim
comes down to proving that this morphism is injective, i.e. any word in FS

representing the identity in the group AAutD(Td,k) already represents the
trivial element in the group G. This will be achieved, as well as the proof
of the upper bound on the Dehn function, in Proposition 3.29, using both
geometric and combinatorial arguments.

The goal of Lemma 3.26 and Corollary 3.27 is to prove that relations
in the group AAutD(Td,k) coming from the fact that the subgroups Wk(D)
and Vd,k intersect non-trivially, are already satisfied in the group G, and to
obtain a precise estimate of their cost.
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Lemma 3.26. Fix i ∈ {1, . . . , k} and let Ci = 2d + max(2, ri) (recall that
ri has been defined with the set of relators R2). Then for every n ≥ 0 and
every u ∈ D(i)

∞ having at most n carets, there exists a word w ∈ Σ∗ of length
at most Cin so that the relation u = w holds in G and has cost at most Cin.

Proof. We use induction on n. The result is trivially true for n = 0 because
the only element of D(i)

∞ with zero caret is the identity, and is true for n = 1
thanks to the set of relators R2.

The idea of the proof of the induction step is the following. Given
u ∈ D(i)

∞ with at most n+1 carets, we begin by multiplying it by an element
of D(i)

1 in order to ensure that it acts trivially on the first level of T ai

d,k. The
resulting automorphism has a natural decomposition into a product of d
elements of D(i)

∞ , coming from its action on the subtrees T aib1

d,k , . . . , T aibd

d,k ,
with a nice control on the number of carets of each element of this product.
We then apply the induction hypothesis to each of these elements, after
having reduced their number of carets by conjugating by an element of ∆,
which has the effect of increasing by 1 the level of the subtree on which they
act.

Henceforth we assume that u ∈ D(i)
∞ is an element having at most n+ 1

carets, with n ≥ 1. If we let ū denote the element of D(i)
1 acting like u on

the first level of T ai

d,k, it is clear that u′ = uū−1 stabilizes pointwise the first
level of T ai

d,k. Using relators from R2, we pick a word wū ∈ Σ∗ so that the
relation ū = wū holds in G and has cost at most one.

Now in the group AAutD(Td,k), since u′ acts trivially on the first level
of T ai

d,k, it has a natural decomposition u′ = u1 . . . ud, where each uℓ ∈ D(i)
∞

acts on the subtree of T aibℓ

d,k . Note that each uℓ has at most n+ 1 carets and
that

∑

ℓ κ(uℓ) ≤ κ(u) + d − 1 ≤ n + d, because the caret corresponding to
the root of T ai

d,k can appear d times in this sum, whereas it is counted only
once in κ(u). Note also that thanks to the set of relators RD, the relation
u′ = u1 . . . ud also holds in the group G and has cost at most d.

Remark that by construction of the set ∆, every element ofWk(D) acting
trivially on the second level of Td,k lies inside Wk(D)δ for every δ ∈ ∆. In
particular if ℓ ∈ {1, . . . , d} and if δℓ = δi,ℓ, we have uℓ ∈ Wk(D)δℓ

and thanks
to R1, the word δℓuℓδ

−1
ℓ represents in the group G an element ũℓ ∈ D(i)

∞ with
at most κ(uℓ) − 1 ≤ n carets according to Lemma 3.23. Note in particular
that

∑

ℓ

κ(ũℓ) ≤
∑

ℓ

(κ(uℓ) − 1) ≤
∑

ℓ

κ(uℓ) − d ≤ n. (3.1)

For every ℓ ∈ {1, . . . , d}, we now apply the induction hypotheses to ũℓ

and obtain a word w̃ℓ of length at most Ciκ(ũℓ) so that ũℓ = w̃ℓ in G and
c(ũℓ, w̃ℓ) ≤ Ciκ(ũℓ). If we denote by wℓ = δ−1

ℓ w̃ℓδℓ, then the relation uℓ = wℓ
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holds in the group G and has cost

c(uℓ, wℓ) ≤ c(uℓ, δ
−1
ℓ ũℓδℓ) + c(δ−1

ℓ ũℓδℓ, wℓ) ≤ 1 + Ciκ(ũℓ).

We now want to put all these pieces together and conclude the proof of
the induction step. For, let w = w1 . . . wdwū ∈ Σ∗. Its length easily satisfies

|w|Σ ≤
d
∑

ℓ=1

|wℓ|Σ+|wū|Σ ≤
d
∑

ℓ=1

(2+|w̃ℓ|Σ)+ri ≤ Ci

d
∑

ℓ=1

κ(ũℓ)+2d+ri ≤ Ci(n+1),

because
∑

ℓ κ(ũℓ) ≤ n according to (3.1), and Ci ≥ 2d + ri. Furthermore,
we claim that the relation u = w is satisfied in G and has cost at most
Ci(n+ 1), which follows from the following summation of cost estimates:

c(u,w) ≤ c(u, u′ū) + c(u′ū, w)

≤ 1 + c(u′, w1 . . . wd) + c(ū, wū)

≤ 1 + c(u′, u1 . . . ud) + c(u1 . . . ud, w1 . . . wd) + 1

≤ 2 + d+
∑

c(uℓ, wℓ)

≤ 2 + d+
∑

(1 + Ciκ(ũℓ))

≤ 2 + 2d+ Ci

∑

κ(ũℓ)

≤ 2 + 2d+ Cin

≤ Ci(n+ 1),

so the proof of the induction step is complete.

Corollary 3.27. There exists a constant C > 0 such that for every u ∈ Dk
∞,

there exists a word w ∈ Σ∗ of length at most Cκ(u) so that the relation u = w
holds in G and has cost at most k + κ(u).

Proof. Let C = maxi Ci, where the constant Ci is defined in Lemma 3.26.
Any u ∈ Dk

∞ can be written u = u1 . . . uk in AAutD(Td,k), with ui ∈ D(i)
∞

and κ(u) = κ(u1) + · · · + κ(uk). Applying Lemma 3.26 to ui, we get a word
wi of length at most Ciκ(ui) so that the relation ui = wi holds in G and
has cost at most κ(ui). Let w = w1 . . . wk. Then

|w|Σ ≤
k
∑

i=1

|wi|Σ ≤
k
∑

i=1

Ciκ(ui) ≤ C
k
∑

i=1

κ(ui) = Cκ(u).

Moreover the relation u = u1 . . . uk holds in G thanks to the set of relators
RD. Consequently in G we have u = w at a total cost of at most

c(u, u1 . . . uk) + c(u1 . . . uk, w) ≤ k +
k
∑

i=1

c(ui, wi)

≤ k +
k
∑

i=1

κ(ui) = k + κ(u).
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The next lemma will reduce the estimate of the area function to its
estimate for words of the special form Wk(D)Σ∗.

Lemma 3.28. There exists a constant c1 > 0 such that for any n and any
word w ∈ S∗ of length at most n, there exists a word w′ = uσ1 . . . σj of
length at most n, where u ∈ Wk(D), σ1, . . . , σj ∈ Σ, so that w′ is homotopic
to w and c(w,w′) ≤ c1n log(n).

Proof. For any word w ∈ S∗, define

τ(w) = inf {c(w,w′) : w′ ∈ Wk(D)Σ∗ and w′ is homotopic to w} ,

and
f(n) = sup {τ(w) : w ∈ S∗ has length at most n} .

Note that both τ and f take finite values thanks to relators from R3 and
RD. We want to prove that f(n) ≤ c1n log(n) for some constant c1.

We use an algorithmic strategy. Given a word w, we first divide it into
two subwords, then apply the algorithm to each of them and finally merge
the results. More precisely, let us consider a word w of length 2n+1, and
divide it into two subwords w1, w2 of length 2n. By definition of the function
f , there exists words w′

1, w
′
2 ∈ Wk(D)Σ∗ such that c(w1, w

′
1), c(w2, w

′
2) ≤

f(2n). Now in the word w̄ = w′
1w

′
2 ∈ Wk(D)Σ∗Wk(D)Σ∗ we can move the

Wk(D) part of w′
2 to the left by applying at most 2n − 1 relators of R3, and

merge it with the Wk(D) part of w′
1 with cost 1 thanks to the set of relators

RD. We therefore get a word w′ ∈ Wk(D)Σ∗ homotopic to w and so that
c(w,w′) ≤ 2f(2n)+(2n −1)+1, which implies that τ(w) ≤ 2f(2n)+2n. By
definition of f , we obtain f(2n+1) ≤ 2f(2n) + 2n, from which we easily get
the inequality f(2n) ≤ n2n−1. The result then follows from this inequality
together with the fact that f is non-decreasing.

Proposition 3.29. There exists a constant c > 0 such that if w ∈ FS is
a null-homotopic word of length at most n in AAutD(Td,k), then w already
represents the identity in G and has area

a(w) ≤ cn log(n) + δ(cn),

where δ is the Dehn function of the presentation 〈Σ, RΣ〉 of Vd,k.

Proof. We first apply Lemma 3.28 to w and get a word w′ = uσ1 . . . σj so
that c(w,w′) ≤ c1n log(n). Since w is null-homotopic, so is w′ and therefore
the element u−1 belongs to Wk(D)∩Vd,k = Dk

∞, and has length at most n in
the group Vd,k because w′ has length at most n. According to Proposition
3.10, we have κ(u−1) ≤ CΣn. Applying Corollary 3.27 to u−1 yields a word
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w′′ ∈ Σ∗ of length at most Cκ(u−1) ≤ CCΣn so that the relation u−1 = w′′

holds in G and has cost at most k + CΣn. Therefore we obtain that

a(w) ≤c(w,w′) + c(u−1, w′′) + c(w′′, σ1 . . . σj)

≤c1n log(n) + (k + CΣn) + δ (CCΣn+ n) ,

because w′′ and σ1 . . . σj represents the same element in Vd,k and w′′(σ1 . . . σj)
−1

has length at most CCΣn + n, so c(w′′, σ1 . . . σj) is at most δ(CCΣn + n)
by definition of the Dehn function. Therefore a(w) ≤ cn log(n) + δ(cn) for
some constant c depending only on Σ, and the proof is complete.

In particular we deduce from Proposition 3.29 that the Dehn function
of AAutD(Td,k) is 4 n log n+ δVd,k

. But now the group Vd,k is not Gromov-
hyperbolic since it has a Z2 subgroup, so its Dehn function is not linear and
consequently at least quadratic [Bow91]. Therefore n log n 4 δVd,k

, and the
Dehn function of AAutD(Td,k) is thus asymptotically bounded by δVd,k

.

3.2.3 Compact presentability of Schlichting comple-
tions

In this paragraph, which is completely independent, we establish a gen-
eral result about compact presentability of Schlichting completions. Our
result, which we believe is of independent interest, will be applied in the
next paragraph to almost automorphism groups associated with closed reg-
ular branch groups.

If Γ is a group with a commensurated subgroup Λ, the Schlichting com-
pletion process builds a t.d.l.c. group Γ//Λ and a morphism Γ → Γ//Λ, so
that the image of Γ is dense and the closure of the image of Λ is compact
open. It was formally introduced in [Tza03], following an idea appearing
in [Sch80].

We would like to point out that Schlichting completions are sometimes
called relative profinite completions [SW13, EW13], but we choose not to
use this terminology in order to avoid confusion with the notion of localised
profinite completion appearing in [Rei12]. Although we will not use this
terminology, we also note that a group together with a commensurated
subgroup is sometimes called a Hecke pair.

The main theorem of this paragraph is a general result about compact
presentability of Schlichting completions:

Theorem 3.30. Let Γ be a finitely presented group and let Λ be a finitely
generated commensurated subgroup. Then the t.d.l.c. group Γ//Λ is com-
pactly presented.

96



Before going into the proof, let us mention the following result which can
derived from Theorem 3.30. As mentioned above, the notion of Schlichting
completion is different but closely related to the notion of profinite comple-
tion of a group localised at a subgroup [Rei12]. More precisely, it is proved
in [Rei12, Corollary 3, (vii)] that the Schlichting completion Γ//Λ is the quo-
tient of the profinite completion of Γ localised at Λ by a compact normal
subgroup. Now since a locally compact group is compactly presented if and
only if one of its quotient by a compact normal subgroup is, we obtain:

Corollary 3.31. If Γ is a finitely presented group with a finitely generated
commensurated subgroup Λ, then the profinite completion of Γ localised at
Λ is compactly presented.

From commensurated subgroups to t.d.l.c. groups. We start by re-
calling the definition of the process of Schlichting completion.

Let Γ be a group and let Λ be a subgroup of Γ. The left action of Γ on
the coset space Γ/Λ yields a homomorphism Γ → Sym(Γ/Λ), whose kernel
is the normal core of Λ, i.e. the largest normal subgroup of Γ contained in
Λ (or equivalently, the intersection of all conjugates of Λ). The Schlichting
completion of Γ with respect to Λ, denoted Γ//Λ, is by definition the closure
of the image of Γ in Sym(Γ/Λ), the latter group being equipped with the
topology of pointwise convergence.

Recall that Λ is said to be commensurated by a subset K of Γ if for
every k ∈ K, the subgroup kΛk−1 ∩Λ has finite index in both Λ and kΛk−1.
We say that Λ is a commensurated subgroup if it is commensurated by the
entire group Γ. It can be checked that if this holds, then the closure of the
image of Λ in Γ//Λ is a compact open subgroup. In particular Γ//Λ is a
t.d.l.c. group. Note that by construction the image of Γ in Γ//Λ is a dense
subgroup.

From now Λ will be a commensurated subgroup of a group Γ. We point
out that although the map Γ → Γ//Λ is generally not injective, for the sake
of simplicity we still use the notation Λ and Γ for their images in the group
Γ//Λ.

The next two lemmas are straightforward, we provide proofs for com-
pleteness.

Lemma 3.32. We have Γ//Λ = Λ · Γ.

Proof. Since Λ is an open subgroup of Γ//Λ, Λg is an open neighbourhood of
g for any g ∈ Γ//Λ. Therefore the dense subgroup Γ intersects Λg, meaning
that there exist γ ∈ Γ and λ ∈ Λ so that λg = γ, i.e. g = λ−1γ.

Lemma 3.33. The subgroups Λ and Γ intersect along Λ.
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Proof. The subgroup Λ stabilizes the coset Λ in Sym(Γ/Λ), so every element
of Λ must stabilizes this coset as well by definition of the topology. Therefore
Λ ∩ Γ ⊂ Λ. The reverse inclusion is clear.

The following result is a useful tool to identify some t.d.l.c. group G
with the Schlichting completion of one of its dense subgroup. It is due to
Shalom and Willis [SW13, Lemmas 3.5-3.6].

Proposition 3.34. Let G be a topological group with a compact open sub-
group U . If Γ is a dense subgroup of G, then Γ ∩ U is commensurated in Γ
and the embedding of Γ in G induces an isomorphism of topological groups
ϕ : Γ//(Γ ∩U) → G/KU , where KU is the normal core of U . In particular if
U contains no non-trivial normal subgroup of G, then ϕ is an isomorphism
between Γ//(Γ ∩ U) and G.

Example 3.35. Elder and Willis [EW13] considered the Schlichting com-
pletion Gm,n of the Baumslag-Solitar group BS(m,n) = 〈t, x | txmt−1 = xn〉
with respect to the commensurated subgroup 〈x〉. Theorem 3.30 can be
applied and yields that Gm,n is compactly presented. However in this case
this can be seen more directly because Gm,n coincides with the closure of
BS(m,n) in the automorphism group of its Bass-Serre tree, and therefore
Gm,n acts on a locally finite tree with compact vertex stabilizers. It follows
that Gm,n is Gromov-hyperbolic, and consequently automatically compactly
presented.

The next example shows that the almost automorphism group AAutD(Td,k)
is a Schlichting completion of the Higman-Thompson group Vd,k. In par-
ticular Neretin’s group is the Schlichting completion of Vd,2 with respect to
an infinite locally finite subgroup, a point of view which does not seem to
appear in the literature. This will be generalized in Theorem 3.51.

Example 3.36. Let us consider the t.d.l.c. group AAutD(Td,k) and its com-
pact open subgroup Wk(D), which is easily seen not to contain any non-
trivial normal subgroup of AAutD(Td,k). The Higman-Thompson group Vd,k

is a dense subgroup intersecting Wk(D) along Dk
∞ by Lemma 3.22. So it

follows from Proposition 3.34 that the group AAutD(Td,k) is isomorphic to
the Schlichting completion Vd,k//D

k
∞.

However, note that compact presentability of AAutD(Td,k) cannot be
obtained by applying Theorem 3.30 because Dk

∞ is not finitely generated.

Presentation of Γ//Λ. We will now prove the main result of this subsec-
tion, namely Theorem 3.30, which will follow from Proposition 3.38.

From now Γ is a finitely presented group and Λ a finitely generated
commensurated subgroup. Recall that by abuse of notation, we still denote
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by Γ and Λ their images in the group Γ//Λ. We let S = {s1, . . . , sn, . . . , sm}
be a finite generating set of Γ such that the elements s1, . . . , sn generate Λ.
It follows from Lemma 3.32 that S ∪ Λ is a compact generating set of Γ//Λ.
To prove that the group Γ//Λ is compactly presented, we will consider a set
R = R1 ∪ R2 ∪ R3 ∪ R4 of relations of bounded length in Γ//Λ, and prove
that it is a set of defining relations, i.e. that relations of R generate all the
relations in Γ//Λ.

We let R1 be a set of words so that 〈S | R1〉 is a finite presentation of Γ.
Let us also consider relations corresponding to the inclusion Λ ≤ Λ in

the group Γ//Λ. That is, for every i ∈ {1, . . . , n}, we let s̄i ∈ Λ be such that
si = s̄i in Γ//Λ, and denote by R2 the set of words sis̄i

−1.
We denote by R3 the set of relations of the form u1u2 = u3, ui ∈ Λ.
Now let us define the abstract group G1 =

〈

S ∪ Λ | R1, R2, R3

〉

. Note
that by construction there is a homomorphism G1 → Γ//Λ.

Proposition 3.37. Let w be a word in the elements of S and u ∈ Λ. If
the word u−1w represents the identity in Γ//Λ, then it already represents the
identity in G1.

Proof. The fact that u−1w represents the identity in Γ//Λ means that the
element represented by w lies in Γ ∩ Λ, which is reduced to Λ according to
Lemma 3.33. Therefore there exists a word wΛ in the letters s1, . . . , sn, so
that w = wΛ in Γ//Λ. But thanks to R1, the relation w = wΛ is also satisfied
in G1. Now for each letter of wΛ we can apply a relation from R2 to obtain
a word wΛ in the letters s̄1, . . . , s̄n, so that w = wΛ in G1. Consequently
the relation wΛ = u holds in Γ//Λ, and thanks to R3 this relation also holds
in G1, meaning that w = u in G1.

We finally consider a last family of relations in Γ//Λ. According to
Lemma 3.32, for every i ∈ {1, . . . ,m} and u ∈ Λ, we can pick some u′ ∈ Λ
and some word w ∈ S∗ so that siu = u′w in Γ//Λ. We denote by R4 the set
of corresponding relations.

Now let us define the abstract group G2 =
〈

S ∪ Λ | R1, R2, R3, R4

〉

.
Note that the group G2 is a quotient of G1.

Proposition 3.38. The natural homomorphism G2 → Γ//Λ is an isomor-
phism.

Proof. It is clear that this morphism is onto because S ∪ Λ is a generating
set of Γ//Λ. So we only have to prove that it is injective. For, let us consider
a word w in the elements of S ∪ Λ representing the identity in Γ//Λ. We
want to prove that w represents the identity in G2. Applying successively
relators from R4, we can move each occurrence of an element of Λ in w
to the left, and obtain a word w′ of the form w′ = u1 · · ·uksi1

· · · siℓ
, with
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ui ∈ Λ, sj ∈ S, so that w = w′ in G2. Now thanks to R3, the word w′ can
be transformed into a word w′′ of the form w′′ = usi1

· · · siℓ
, u ∈ Λ. But now

since w represents the identity in Γ//Λ, the same holds for w′′. Therefore by
Proposition 3.37, the word w′′ represents the identity in G1, and a fortiori
it also represents the identity in G2, the latter being a quotient of G1. It
follows that the word w represents the identity in G2, and the proof is
complete.

Corollary 3.39. Let G be a topological group with a compact open subgroup
U . Assume that G admits a dense finitely presented subgroup intersecting
U along a finitely generated group. Then G is compactly presented.

Remark 3.40. Here we do not try to get an estimate on the Dehn function
of Γ//Λ, because a careful reading of the proof reveals that the best we
could hope in this level of generality is to obtain that the Dehn function
of Γ//Λ is bounded by the Dehn function of Γ. However this would be far
from being sharp, as for example the Baumslag-Solitar group BS(1, n) has
an exponential Dehn function for n ≥ 2 (see for instance [GH01]), whereas
its Schlichting completion Qn ⋊n Z is Gromov-hyperbolic, and therefore has
a linear Dehn function.

3.2.4 Almost automorphism groups and branch groups

Statement of the result. In this subsection we restrict ourselves to the
case k = d for the sake of simplicity, but the results could naturally be
extended to almost automorphism subgroups of AAut(Td,k).

Almost automorphisms of Td are homeomorphisms of the boundary ∂∞Td

which locally coincide with a tree automorphism. It seems natural to ex-
tend this definition by considering a subgroup G ≤ Aut(Td), and homeo-
morphisms of ∂∞Td which locally coincide with an element of G. In other
words, we want to define homeomorphisms of ∂∞Td which are piecewise in
G. It turns out that the notion naturally appearing for G is self-similarity.
The notions of self-similarity and branching appear naturally in the theory
of groups acting on rooted trees. Basic definitions are recalled below, and
we refer the reader to the surveys [Nek05], [BGŠ03] for more on self-similar
and branch groups.

To any self-similar group G ≤ Aut(Td) we naturally associate a subgroup
AAutG(Td) ≤ AAut(Td), consisting of almost automorphisms acting locally
like an element of G. A more precise definition of this group is given in
the sequel. The group AAutG(Td) always contains the Higman-Thompson
group Vd and is generated by Vd together with an embedded copy of G. It is
worth noting that the definition of the group AAutG(Td) makes sense when
G ≤ Aut(Td) is an abstract subgroup. In particular we make a priori neither
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topological (e.g. closed) nor finiteness (e.g. finitely generated) assumption
on G.

The first example of such a group was studied by Röver in the case
when G is the first Grigorchuk group. He proved that AAutG(Td) is finitely
presented and simple [Röv99]. The case of a general self-similar group was
then studied by Nekrashevych [Nek04], who proved that these groups enjoy
properties rather similar to the properties of the Higman-Thompson groups
(see [Nek04], [Nek13]).

Later Barnea, Ershov and Weigel [BEW11] made use of Röver’s simplic-
ity result to prove that the profinite completion of the Grigorchuk group,
which coincides with its topological closure in Aut(T2), embeds as an open
subgroup in a topologically simple group, namely the group of almost au-
tomorphisms acting locally like an element of the closure of the Grigorchuk
group.

Here we are interested in almost automorphism groups associated with
closed regular branch groups. These can also be seen as generalizations of
Neretin’s group. It turns out that in this setting, the group AAutG(Td) is
naturally a totally disconnected locally compact group, admitting G as a
compact open subgroup. Under some more assumptions on G, we prove:

Theorem 3.41. Let G ≤ Aut(Td) be the closure of some finitely generated,
contracting regular branch group, branching over a congruence subgroup.
Then AAutG(Td) is a t.d.l.c. compactly presented group.

Examples of groups covered by Theorem 3.41 include the aforementioned
topologically simple group constructed in [BEW11], as well as other groups
described below. As an application, we obtain that the profinite completion
of the Grigorchuk group embeds as an open subgroup in a topologically
simple compactly presented group.

Note that any group G appearing in Theorem 3.41 can be explicitly de-
scribed in terms of the notions of patterns and finitely constrained groups,
an introduction of which can be found in [Šun07]: G is the finitely con-
strained group defined by allowing all patterns of a fixed size appearing in
the group of which it is the closure. See also the comment at the end of this
subsection.

The proof of Theorem 3.41 consists in two separate steps. The first
one is the main purpose of this paragraph, and consists in identifying our
group with the Schlichting completion of one of its dense subgroup (see
Theorem 3.51). The second one will consist in making use of a recent result
of Nekrashevych, which will allow us to apply Theorem 3.30.

Preliminary results on branch groups. This paragraph is devoted to
reviewing basic definitions and facts about self-similar and branch groups,
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and establishing some preliminary results. We refer the reader to [Nek05],
[BGŠ03], for more on self-similar and branch groups.

Recall that vertices of Td are labeled by words over a finite alphabet X
of cardinality d, and we freely identify a vertex with the word associated to
it.

If G is a subgroup of the automorphism group Aut(Td) and if n ≥ 0, we
will denote by Gn the nth level stabilizer of G, that is the subgroup of G
fixing pointwise the nth level of Td. Note that Gn is always a finite index
subgroup of G, but the converse is far from true because there may exist
some finite index subgroup of G not containing any level stabilizer. This
motivates the following definition.

Definition 3.42. A finite index subgroup of G is a congruence subgroup if
it contains some level stabilizer.

If g ∈ Aut(Td) is an automorphism and v ∈ X∗ is a vertex of Td, the
section of g at v is the unique automorphism gv of Td defined by the formula

g(vw) = g(v)gv(w)

for every w ∈ X∗.

Definition 3.43. A subgroup G ≤ Aut(Td) is self-similar if every section
of every element of G is an element of G.

Self-similar groups appear naturally when studying holomorphic dynam-
ics and fractal geometry. The study of self-similar groups is also motivated
by the fact that this class contains examples of groups exhibiting some ex-
otic behavior. Among self-similar groups is a class of groups which is better
understood, namely contracting self-similar groups.

Definition 3.44. A self-similar group G is said to be contracting if there
exists a finite subset N ≤ G such that for every g ∈ G, there exists k ≥ 1
so that all the sections of g of level at least k belong to N .

Here we are interested in a particular class of self-similar groups, namely
regular branch groups, whose definition is recalled below.

Definition 3.45. Let G ≤ Aut(Td) be a self-similar group. By definition,
G comes equipped with an injective homomorphism ψ : G → G ≀ Sym(d)
(sometimes called the wreath recursion). We say that G is regular branch
over its finite index subgroup K if ψ(K) contains K× . . .×K as a subgroup
of finite index.
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Remark 3.46. We note that being regular branch is stable by taking the
topological closure in Aut(Td). More precisely, if G is regular branch over
K then the closure of G is regular branch over the closure of K. Note also
that if K contains some level stabilizer of G then its closure contains the
stabilizer of the same level in the closure of G, so being regular branch over
a congruence subgroup is also stable by taking the topological closure.

The most popular example of a self-similar group is the Grigorchuk group
of intermediate growth introduced in [Gri80]. It is a regular branch group,
branching over a subgroup containing its stabilizer of level 3. Other exam-
ples are the Gupta-Sidki group as well as the Fabrykowski-Gupta group,
which are regular branch over their commutator subgroup, the latter con-
taining their level 2 stabilizer. For the definitions and properties of these
groups we refer the reader to Sections 6 and 8 of [BG02]. In view of Theorem
3.41, we note that all these examples are contracting.

In the following standard lemma, a proof of which can be consulted
in [Šun07, Lemma 10], the isomorphism is obtained via the wreath recursion,
which is usually omitted.

Lemma 3.47. Let H ≤ Aut(Td) be a regular branch group, branching over
a subgroup containing the level stabilizer Hs. Then for every n ≥ s, the
level stabilizer Hn+1 is isomorphic to Hn × . . .×Hn.

If H is a subgroup of the automorphism group Aut(Td), it is in general
very hard to describe its topological closure in Aut(Td). In the case of
the Grigorchuk group, the closure has been described by Grigorchuk in
[Gri05]. We will use a generalization of this result due to Sunic, which is
the following:

Proposition 3.48. Let H ≤ Aut(Td) be a regular branch group, branching
over a subgroup containing the level stabilizer Hs, and let G be the topological
closure of H in Aut(Td). Then an element γ ∈ Aut(Td) belongs to G if and
only if for every section γv of γ, there exists an element of H acting like γv

up to and including level s+ 1.

Proof. The statement is a reformulation of the implication (ii) ⇒ (i) of
Theorem 3 of [Šun07]. Note that the author requires level transitivity in
the definition of a regular branch group, but the proof given there does not
use this assumption.

This description of the closure of a regular branch group allows us to
deduce the following result, which does not seem to appear in the literature,
and which may be of independent interest.

103



Proposition 3.49. Let H ≤ Aut(Td) be a regular branch group, branching
over a congruence subgroup, and let G be the topological closure of H in
Aut(Td). Then the intersection in Aut(Td) between G and H ≀ Sym(d) is
equal to H.

Proof. By self-similarity the subgroup H ≀ Sym(d) of Aut(Td) contains the
group H, so the inclusion H ⊂ G ∩ (H ≀ Sym(d)) is clear. To prove that
equality holds, we prove that H and G∩ (H ≀ Sym(d)) have the same index
in the group H ≀ Sym(d).

Assume that H is branching over a subgroup containing Hs. By multi-
plicativity of the index, we have

[H ≀ Sym(d) : Hs+1] = [H ≀ Sym(d) : H] × [H : Hs+1] ,

that is

[H ≀ Sym(d) : H] =
[H ≀ Sym(d) : Hs+1]

[H : Hs+1]
.

Now the number of possibilities for the action of an element of H ≀ Sym(d)
on the first level is |Sym(d)| = d!. Moreover the first level stabilizer of
H ≀ Sym(d) is H × . . .×H, so

[H ≀ Sym(d) : Hs+1] = d! [H × . . .×H : Hs+1] . (3.2)

Furthermore we can apply Lemma 3.47 to obtain that Hs+1 is equal to
Hs × . . .×Hs, which yields

[H × . . .×H : Hs+1] = [H × . . .×H : Hs × . . .×Hs] = [H : Hs]
d .

Going back to (3.2), we obtain

[H ≀ Sym(d) : H] =
d! [H : Hs]

d

[H : Hs+1]
.

Let us now compute the index of G ∩ (H ≀ Sym(d)) in H ≀ Sym(d). Ac-
cording to Proposition 3.48, an element γ ∈ Aut(Td) belongs to G if and
only if for every section γv of γ, there exists an element of H acting like γv

up to level s + 1. Since elements of H ≀ Sym(d) have all their sections of
level at least 1 in H, it follows that an element γ ∈ H ≀ Sym(d) belongs to
G if and only if there exists an element of H acting like γ up to level s+ 1.
It follows that the index of G ∩ (H ≀ Sym(d)) in H ≀ Sym(d) is the number
of possibilities for the action on level s + 1 for H ≀ Sym(d), divided by the
number of possibilities for the action on level s+ 1 for H. The latter being
[H : Hs+1] and the former being d! [H : Hs]

d, we have

[H ≀ Sym(d) : G ∩ (H ≀ Sym(d))] =
d! [H : Hs]

d

[H : Hs+1]
.
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Definition of the groups. Let G ≤ Aut(Td) be a self-similar group. We
will say that an almost automorphism of Td is piecewise of type G if it
can be represented by a triple (ψ, T, T ′) such that T, T ′ are finite rooted
complete subtrees of Td and ψ : Td \ T → Td \ T ′ belongs to G on each
connected component, after the natural identification of each connected
component of Td \T and Td \T ′ with Td. We observe that by self-similarity,
if a triple (ψ1, T1, T

′
1) is such that ψ1 : Td \T1 → Td \T ′

1 belongs to G on each
connected component, then for any equivalent triple (ψ2, T2, T

′
2) such that

T2 (resp. T ′
2) contains T1 (resp. T ′

1), then ψ2 : Td \ T2 → Td \ T ′
2 belongs to

G on each connected component. It follows from this observation that the
set of almost automorphisms which are piecewise of type G is a subgroup
of AAut(Td), which will be denoted by AAutG(Td). Note that AAutG(Td)
obviously contains the group G.

It is worth pointing out that the definition of the group does not re-
quire any topological (e.g. closed) or finiteness (e.g. finitely generated)
assumption on G.

Following [Nek13], we let L(G) ≤ Aut(Td) be the embedded copy of G
acting on the subtree hanging below the first vertex of level 1. Since the
Higman-Thompson group Vd acts transitively on the set of proper balls of
∂∞Td, it is not hard to see that the group AAutG(Td) is generated by Vd

together with L(G). See Lemma 5.12 in [Nek13] for details. In particular
if G is a finitely generated self-similar group, then AAutG(Td) is finitely
generated as well.

The first example of such a group was considered by Röver when G
is the first Grigorchuk group. He proved that AAutG(Td) is finitely pre-
sented and simple [Röv99]. Then Nekrashevych [Nek04] introduced the
group AAutG(Td) for an arbitrary self-similar group G and generalized both
simplicity and finiteness results (see Theorem 4.7 in [Nek13] and Theorem
3.56 cited below).

Remark 3.50. It is worth noting that AAutG(Td) is always a dense sub-
group of AAut(Td), since it contains the subgroup Vd which is already dense.
In particular if N is a non-trivial normal subgroup of AAutG(Td), then the
closure of N in AAut(Td) is normalized by the closure of AAutG(Td), which
is AAut(Td). By simplicity of the latter, the closure of N has to be equal to
AAut(Td). This proves that any non-trivial normal subgroup of AAutG(Td)
is dense in AAut(Td). In particular G can not contain any non-trivial normal
subgroup of AAutG(Td).

Almost automorphism groups arising as Schlichting completions.
The main result of this paragraph is the following.

105



Theorem 3.51. Let H ≤ Aut(Td) be a regular branch group, branching over
a congruence subgroup, and let G be the topological closure of H in Aut(Td).
Then the inclusion of AAutH(Td) in AAutG(Td) induces an isomorphism of
topological groups between AAutH(Td)//H and AAutG(Td).

For example this brings a new perspective to the topologically simple
group constructed in [BEW11]: this is the Schlichting completion of Röver’s
group [Röv99] with respect to the Grigorchuk group.

Theorem 3.51 will be proved at the end of this paragraph. We begin by
showing how to endow the group AAutG(Td) with a natural topology when
G is a closed regular branch group. We will need the following:

Proposition 3.52. Any regular branch group G ≤ Aut(Td) is commensu-
rated in AAutG(Td).

Proof. Since AAutG(Td) is generated by Vd and L(G), it is enough to prove
that these two subgroups commensurate G.

Let us first prove that Vd commensurates G. Henceforth we assume that
K is a branching subgroup of G. For every finite rooted complete subtree
T of Td, we denote by KT the subgroup of Aut(Td) fixing pointwise T and
acting by an element of K on each subtree hanging below a leaf of T . Since
G is regular branch over K, KT is a finite index subgroup of G for every
finite rooted complete subtree T . Now if σ ∈ Vd and if T, T ′ are respectively
the domain and range tree of the canonical representative triple of σ, we
easily check that σKTσ

−1 = KT ′ . So conjugation by σ sends a finite index
subgroup of G to another finite index subgroup of G, which exactly means
that σ commensurates G.

Now let us prove that L(G) commensurates G. It is classic that since
K is a finite index subgroup of G, there exists a finite index subgroup N
of K that is normal in G. Therefore ψ(G) contains N × . . .×N as a finite
index subgroup, and the latter is normalized by L(G) because N is normal
in G. This proves an even stronger result that commensuration, namely the
existence of a finite index subgroup of G which is normalized by L(G).

Now assume that G ≤ Aut(Td) is a closed regular branch group. Ex-
amples of such groups include the topological closure of any of the finitely
generated regular branch groups mentioned earlier. In this context, the
group G comes equipped with a profinite topology, inherited from the profi-
nite topology of Aut(Td). The fact that G is commensurated in AAutG(Td)
together with Lemma 3.13 allows us to extend the topology of G to the
larger group AAutG(Td):

Proposition 3.53. Assume that G ≤ Aut(Td) is a closed regular branch
group. Then there exists a (unique) group topology on AAutG(Td) turn-
ing G into a compact open subgroup. In particular AAutG(Td) is a t.d.l.c.
compactly generated group.
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We now prove some preliminary results which will be used in the proof
of Theorem 3.51.

Until the end of this subsection, H ≤ Aut(Td) is a regular branch group,
branching over a congruence subgroup, and G is the topological closure of
H in Aut(Td).

Proposition 3.54. AAutH(Td) is a dense subgroup of AAutG(Td).

Proof. We let L be a branching congruence subgroup of H, and we denote
by K the closure of L in Aut(Td). For every finite rooted complete subtree
T of Td, we still denote by KT the subgroup of Aut(Td) fixing pointwise
T and acting by an element of K on each subtree hanging below a leaf of
T . Note that since L contains some level stabilizer of H, the subgroup K
contains some level stabilizer of G and is therefore an open subgroup of G.
It follows that (KT ) forms a basis of neighbourhoods of the identity in G,
when T ranges over all finite rooted complete subtrees. By definition of the
topology, it is also a basis of neighbourhoods of the identity in AAutG(Td).

Let g be an element of G. By definition there exists a sequence (hn)
of elements of H converging to g. Since L has finite index in H, we may
assume that all the elements hn lie in the same left coset of L, that is there
exists h ∈ H such that hn ∈ hL for every n. From this we deduce that
g ∈ hK.

Now let γ be an element of AAutG(Td). We will prove that AAutH(Td)
intersects every neighbourhood of γ. Let (ψ, T, T ′) be a triple representing
γ such that ψ : Td \T → Td \T ′ belongs to G on each connected component
of Td \ T . This means that for every leaf v of T , there exists an element
gv ∈ G so that ψ sends the subtree hanging below the leaf v to a subtree
hanging below a leaf of T ′ via the element gv. According to the above
remark, there exists some element hv ∈ H such that h−1

v gv ∈ K. Now let
us consider the almost automorphism γ̂ represented by the triple (ψ̂, T, T ′),
where ψ̂ induces the same bijection between the leaves of T and the leaves
of T ′, but does not act on the subtree hanging below the leaf v by gv but by
the element hv. By construction, we have γ̂ ∈ AAutH(Td) and γ̂−1γ ∈ KT .
Since on the one hand we can choose T to be as large as we want, and on
the other hand (KT ) is a basis of neighbourhoods of the identity, we obtain
that AAutH(Td) intersects every neighbourhood of γ.

Proposition 3.55. The intersection in AAutG(Td) between G and AAutH(Td)
is equal to H.

Proof. The inclusion H ⊂ G∩AAutH(Td) being clear, we only have to prove
the reverse inclusion. First note that the intersection between Aut(Td) and
AAutH(Td) is the increasing union for n ≥ 0 of the subgroupsH ≀Autn, where
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Autn is the subgroup of Aut(Td) consisting of elements whose sections of
level n are trivial; and the permutational wreath product is associated to
the action of Autn on the vertices of level n. In particular

G ∩ AAutH(Td) =
⋃

n≥0

G ∩ (H ≀ Autn).

Let us prove by induction on n ≥ 0 that G∩(H ≀Autn) is reduced to H. This
is true for n = 0 by definition, and true for n = 1 according to Proposition
3.49. Assume that this is true for some n ≥ 1, and let γ ∈ G∩ (H ≀Autn+1).
Then every section of level 1 of γ lies in H ∩ (H ≀ Autn), which is reduced
to H by induction hypotheses. Therefore γ ∈ G ∩ (H ≀ Sym(d)), which is
also equal to H by Proposition 3.49. So we have proved the induction step,
namely G ∩ (H ≀ Autn+1) = G, and consequently G ∩ AAutH(Td) = H.

We are now ready to prove the main result of this paragraph.

Proof of Theorem 3.51. The group AAutG(Td) admits AAutH(Td) as a dense
subgroup by Proposition 3.54, and the latter intersects the compact open
subgroup G along H according to Proposition 3.55. Moreover Remark 3.50
prevents G from containing any non-trivial normal subgroup of AAutG(Td),
so the conclusion follows from Proposition 3.34.

Proof of Theorem 3.41. We conclude by proving Theorem 3.41. The
only missing argument is a recent result of Nekrashevych, generalizing the
previous example of Röver [Röv99].

Theorem 3.56 ( [Nek13], Theorem 5.9).
If H ≤ Aut(Td) is a finitely generated, contracting self-similar group, then
AAutH(Td) is finitely presented.

Proof of Theorem 3.41. Let H be a finitely generated, contracting regular
branch group, branching over a congruence subgroup, having G for topo-
logical closure in Aut(Td). Then by Theorem 3.51 AAutG(Td) is isomorphic
to the Schlichting completion AAutH(Td)//H. Now according to Theorem
3.56 the group AAutH(Td) is finitely presented, and H is finitely generated
by assumption, so the conclusion follows from Theorem 3.30.

We make a brief comment on the fact that any group G appearing in
Theorem 3.41 can be explicitly described in terms of the group of which it
is the topological closure. Indeed, if H is a finitely generated, contracting
regular branch group, branching over a subgroup containing Hs, having G
for topological closure in Aut(Td); then Proposition 3.48 yields that elements
of G are exactly the automorphisms having all their sections acting like an
element of H up to level s+ 1. One can rephrase this in terms of patterns
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and finitely constrained groups (see [Šun07]), by saying that G is the finitely
constrained group defined by allowing all the patterns of size s+1 appearing
in H.

3.3 Metric properties, commensurating ac-

tion and embeddings

3.3.1 D-diagrams

In this subsection we introduce a notion of diagrams to represent ele-
ments of the group AAutD(Td,k). From now and until the end of this subsec-
tion, we fix some integers k, d ≥ 2, a finite permutation group D ≤ Sym(d)
and an embedding of the quasi-regular tree Td,k in the oriented plane. We
will freely use the terminology introduced in 3.1.1.

Let T be a finite complete rooted subtree of Td,k with n leaves. The pla-
narity of Td,k induces a canonical way, say from left to right, of labeling the
leaves of T . In particular the n connected components of the complement
of T in Td,k naturally inherit a labeling T 1, . . . , T n coming from the labeling
of the leaves of T .

Definition 3.57. A D-diagram [ϕ, T−, T+], is the data of a pair of finite
complete rooted subtrees (T−, T+) of Td,k with the same number of leaves,
together with a forest isomorphism ϕ : Td,k\T− → Td,k\T+ acting like W (D)
on each connected component. In other words, if Td,k\T− = T 1

−∪. . .∪T n
− and

Td,k \ T+ = T 1
+ ∪ . . .∪ T n

+, the map ϕ is given by a permutation σ ∈ Sym(n)

together with n isomorphisms ϕi : T i
− → T

σ(i)
+ belonging to W (D), after

the natural identifications of T i
− and T σ(i)

+ with Td. The permutation σ will
be called the permutation of the D-diagram, and the tree isomorphisms
ϕ1, . . . , ϕn will be called the coordinates. The tree T− will be called the
domain tree and T+ the range tree.

Remark 3.58. By definition the range and the domain tree of a D-diagram
have the same number of leaves, and a fortiori the same number of carets.
By abuse we refer to the number of carets of any of these two tree as the
number of carets of the D-diagram.

It is straightforward from the definition that any D-diagram gives rise
to an element of the group AAutD(Td,k). However, given a D-diagram, we
can easily build a new one representing the same element of AAutD(Td,k),
by the process of unfolding a leaf and decomposing the associated tree au-
tomorphism. Consequently in order to obtain a one-to-one correspondence
between D-diagrams and elements of AAutD(Td,k), we have to isolate a
subclass of D-diagrams.
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Definition 3.59. If [ϕ, T−, T+] and
[

ϕ′, T ′
−, T

′
+

]

are D-diagrams, we say

that
[

ϕ′, T ′
−, T

′
+

]

is a simple expansion of [ϕ, T−, T+] if:

— T ′
− is obtained from T− by folding out the ith leaf of T−, and T ′

+ is
obtained from T+ by folding out the leaf σ(i) of T+;

— ϕ′ coincides with ϕ on the unaffected rooted subtrees T k
−, k 6= i, sends

the new leaves of T2 on their images by ϕi and acts on the associated
rooted subtrees according to ϕi.

An expansion of [ϕ, T−, T+] is a D-diagram
[

ϕ′, T ′
−, T

′
+

]

obtained by mak-
ing a finite number of simple expansions. When this is so, [ϕ, T−, T+] is said
to be a reduction of

[

ϕ′, T ′
−, T

′
+

]

. A D-diagram admitting no other reduction
than itself is said to be D-reduced. The reason why we use the terminology
D-reduced rather than reduced is that this notion strongly depend on the
finite permutation group D.

Saying that two D-diagrams are equivalent if they have a common ex-
pansion defines an equivalence relation on the set of D-diagrams. We leave
to the reader the verification of the fact that two D-diagrams are equiva-
lent if and only if they represent the same homeomorphism of the boundary
∂∞Td,k, and that each equivalence class contains a unique D-reduced repre-
sentative.

Definition 3.60. If g ∈ AAutD(Td,k), we denote by CD(g) the number of
carets of the unique D-diagram representing g that is D-reduced . When
D = Sym(d), for simplicity we use the notation C(g) instead of CSym(d)(g).

Remark that the subgroup of AAutD(Td,k) consisting of elements that
can be represented by a D-diagram with trivial coordinates is nothing but
Higman-Thompson’s group Vd,k. Elements of Vd,k are usually represented by
a combinatorial data called a tree pair diagram, an introduction of which can
be found in [CFP96] (see also [Bur99,BCS01]). However we point out that
in general the notion of tree pair diagram does not correspond to our notion
of D-diagram. To illustrate this difference, let us consider the subgroup
Γ = Vd,k ∩ Wk(D) of AAutD(Td,k), which has been described in Lemma
3.22: Γ is a locally finite subgroup, which is infinite as soon as D is non
trivial. It readily follows from the definition that any D-reduced D-diagram
associated to an element of Γ must have zero caret, whereas we easily check
that tree pair diagrams associated to elements of Γ have unbounded size.
Actually one can check that the notion of D-diagram corresponds to the
notion of tree pair diagram if and only if the permutation group D is trivial,
in which case we have AAutD(Td,k) = Vd,k.

A subgroup of AAutD(Td,k) of considerable interest is the group of ele-
ments that can be represented by a D-diagram with trivial coordinates and
trivial permutation. This group is usually denoted Fd,k, and was introduced
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by Brown [Bro87] as a generalization of Thompson’s group F . Obviously
Fd,k is a subgroup of Vd,k. As mentioned above, although D-diagrams are in
general quite different from tree pair diagrams, in the case of Fd,k we have
the following result.

Lemma 3.61. Let k, d ≥ 2, D ≤ Sym(d) and f ∈ Fd,k. If [ϕ, T−, T+] is
the unique D-reduced D-diagram representing f , then (T−, T+) is the unique
reduced tree pair diagram associated to f .

Proof. Saying that f belongs to Fd,k is equivalent to saying that all the
coordinates and the permutation of [ϕ, T−, T+] are trivial. It follows that the
pair (T−, T+) is a tree pair diagram representing f . Assume by contradiction
that (T−, T+) is not reduced in the sense of tree pair diagrams. This means
that a caret can be removed in both trees T−, T+, and at the level of the
D-diagram we obtain a new D-diagram representing f , still having all its
coordinates equal to the identity. Since D surely contains the identity, this
implies that the D-diagram [ϕ, T−, T+] we started from was not D-reduced,
which is a contradiction.

3.3.2 Metric properties in AAutD(Td,k)

In this subsection we explain how our construction of D-diagrams gives
rise to a pseudo-metric on the group AAutD(Td,k), and compare it to the
word-metric associated to a compact generating subset. This allows us to
deduce that some remarkable subgroups of AAutD(Td,k) are quasi-isometrically
embedded in AAutD(Td,k).

A length function on AAutD(Td,k). Recall that a length function on a
group Γ is a map L : Γ → R+ vanishing at the identity, and satisfying
L(g−1) = L(g) and L(gh) ≤ L(g) + L(h) for every g, h ∈ Γ. Note that any
length function on a group Γ gives rise to a left invariant pseudo-metric on
Γ defined by dist(g, h) = L(g−1h).

If f, g : X → R+ are two functions on a setX, we say that f is dominated
by g if there exists some constant c > 0 such that f(x) ≤ cg(x) for every
x ∈ X.

If G is a locally compact group, a length function on G is said to be
locally bounded if for every compact set K, sup {L(k) : k ∈ K} < ∞. The
proof of the following result is easy, and we leave it to the reader.

Lemma 3.62. Let G be a locally compact compactly generated group. Then
any locally bounded length function on G is dominated by any word-length
function.
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It readily follows from the definition that the map CD : AAutD(Td,k) →
R+ vanishes on the compact open subgroup Wk(D) and satisfies CD(g−1) =
CD(g) for every g ∈ AAutD(Td,k). Now if g, h ∈ AAutD(Td,k), one can
obtain a common expansion of the domain tree of g and the range tree of h
by adding at most CD(h) carets to the domain tree of g. This means that we
can construct a D-diagram for the element gh having at most CD(g)+CD(h)
carets. A fortiori the D-reduced D-diagram associated to gh has at most
CD(g)+CD(h) carets, which proves that the function CD is sub-additive. We
therefore obtain the following:

Proposition 3.63. For every k, d ≥ 2 and finite permutation group D ≤
Sym(d), the map CD : AAutD(Td,k) → R+ is a locally bounded length func-
tion on AAutD(Td,k).

Word metric in the group AAutD(Td,k). The aim of this paragraph is to
prove the following estimate for the word-metric in the group AAutD(Td,k),
and to show that the length function CD(g) is not comparable to the word
metric in AAutD(Td,k).

Proposition 3.64. Let k, d ≥ 2, D ≤ Sym(d) and let S be a compact
generating subset of AAut(Td,k). Then we have

CD 4 | · |S 4 CD log(1 + CD).

Note that the lower bound immediately follows from Proposition 3.63
together with Lemma 3.62. The upper bound can be obtained by using
a suitable decomposition of an element of AAut(Td,k) as a product of an
element of Wk(D) times an element of Vd,k, and invoking the analoguous
result for elements of Vd,k that has been proved by Birget [Bir04]. However
Birget’s proof is rather laborious, and here we choose not to go into this
direction. Nevertheless we give below a very elementary proof of the upper
bound in the case when D is a transitive subgroup of Sym(d).

For every n ≥ 1, we let On be the subgroup of AAutD(Td,k) consisting of
elements that can be represented by a D-diagram of the form [ϕ,Bn, Bn],
where Bn is the subtree of Td,k spanned by vertices of level at most n. Note
that the subtree Bn has kdn−1 leaves, and the subgroup On admits a natural
decomposition On = Un ⋊ Sym(kdn−1), where Un is the subgroup of Wk(D)
fixing pointwise the nth level of Td,k. By abuse we freely identify Sym(kdn−1)
with the subgroup of On associated to this decomposition, and we think of
Sym(kdn−1) as acting on the leaves of Bn, which are labeled from 1 to kdn−1.
Note that (On)n is an increasing sequence of compact open subgroups of
AAutD(Td,k), ascending to the subgroup O of AAutD(Td,k) preserving the
visual measure on the boundary ∂∞Td,k.

The content of the following lemma is essentially contained in the proof
of Proposition 3.9 of [Bir04].
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Lemma 3.65. Let k, d ≥ 2, and D ≤ Sym(d). There exists a constant
c > 0 such that for every g ∈ AAutD(Td,k), there exist an integer n ≤
c log(1 + CD(g)) and (f1, on, f2) ∈ Fd,k ×On × Fd,k so that

g = f1onf2

and CD(f1), CD(f1) ≤ CD(g).

For every n ≥ 2, we let tn ∈ On be the transposition (dn−1, dn−1 + 1).

Lemma 3.66. Let k, d ≥ 2 and let D be a transitive subgroup of Sym(d).
Then for every n ≥ 2, the set Sn = {tn,Wk(D)} is a compact generating
subset of On, and

sup
γ∈On

|γ|Sn
≤ 9kdn−1.

Proof. Recall that for every γ ∈ On, there exists u ∈ Wk(D) such that
uγ ∈ Sym(kdn−1). We claim that it is enough to prove that the sub-
group generated by Sn contains every transposition of Sym(kdn−1) and
that transpositions have length at most 9. Indeed, since every permuta-
tion of Sym(kdn−1) is a product of at most kdn−1 − 1 transpositions, and
by the above remark, this will prove that every γ ∈ On has length at most
9(kdn−1 − 1) + 1 ≤ 9kdn−1.

So let 1 ≤ x < y ≤ kdn−1. We prove that the transposition (x, y)
belongs to 〈Sn〉 and has word length at most 9. We distinguish several
cases according to the position of x and y.

First assume that x ≤ dn−1 < y. Since the group D is transitive, there
exists ux,y ∈ Wk(D) sending dn−1 to x and dn−1 + 1 to y, and it follows that
(x, y) = ux,ytnu

−1
x,y has word length at most 3 with respect to Sn.

Now if x, y ≤ dn−1, then we can find ux ∈ Wk(D) (resp. uy) fixing
dn−1+1 and sending dn−1 to x (resp. y). Then we obtain that (x, dn−1+1) =
uxtnu

−1
x and (y, dn−1 + 1) = uytnu

−1
y have length at most 3, and using the

identity
(x, y) = (x, dn−1 + 1)(y, dn−1 + 1)(x, dn−1 + 1)

we see that (x, y) has length at most 9.
The case x, y ≥ dn−1 + 1 is similar.

The following lemma explains how the transposition tn can be con-
structed.

Lemma 3.67. The exists f ∈ Fd,k such that for every n ≥ 2, fn−2t2f
−(n−2) =

tn.
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x. . .

. . .

Proof. Let us denote by x the element of Fd defined by the tree diagram:
We consider the direct product Fd × · · · ×Fd of k copies of Fd embedded

in Fd,k in the natural way, and denote by f the element whose coordi-
nates are (x−1, x, id, . . . , id). The verification of the fact that f satisfies
fn−2t2f

−(n−2) = tn for every n ≥ 2 is an easy computation, and we leave it
to the reader.

In particular this last result implies that for a fixed generating subset of
AAutD(Td,k), the length of tn grows at most linearly with n. This, together
with Lemma 3.66, immediately implies the following:

Corollary 3.68. Let k, d ≥ 2, let D ≤ Sym(d) be a transitive permutation
group and let S be a compact generating subset S of AAutD(Td,k). Then

sup
γ∈On

|γ|S 4 ndn.

We now give the proof of the upper bound of Proposition 3.64 in the
case when D ≤ Sym(d) is transitive.

Proof of Proposition 3.64. Let S be a compact generating subset of AAutD(Td,k),
and let g ∈ AAutD(Td,k). According to Lemma 3.65, there exists an inte-
ger n ≤ c1 log(1 + CD(g)) for some constant c1 > 0, and (f1, on, f2) ∈
Fd,k × On × Fd,k so that g = f1onf2 and CD(f1), CD(f2) ≤ CD(g). Now we
can apply Theorem 3.71 to each fi, which together with Lemma 3.61 imply
that |fi|S ≤ c2CD(fi) for some constant c2 > 0. Therefore we obtain

|g|S ≤ |f1|S+|f2|S+|on|S 4 CD(f1)+CD(f2)+|on|S 4 CD(g)++|on|S 4 CD(g)+ndn,

where the last inequality follows from Corollary 3.68. Since n ≤ c1 log(1 +
CD(g)), we obtain

|g|S 4 CD(g) + CD(g) log(1 + CD(g)) ≃ CD(g) log(1 + CD(g)),

and the proof is complete.

The end of this paragraph is devoted to the proof of the fact that the
length function CD is not comparable to the word metric in AAutD(Td,k).
Towards this result, we need the following volume computation. Note that
similar estimates appear in [BCGM12].
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Lemma 3.69. Let k, d ≥ 2, D ≤ Sym(d) and let µ be a left-invariant Haar
measure on AAutD(Td,k) normalized so that µ(Wk(D)) = 1. Then for every
n ≥ 1, we have

µ(On) =
(kdn−1)!

|D|en
,

where

en = k
dn−1 − 1

d− 1
.

Proof. Recall that we denote by Un the subgroup of Wk(D) fixing pointwise
the ball Bn of radius n around the root of Td,k, which has kdn−1 leaves.
A direct computation shows that the sequence xn = (Wk(D) : Un) satisfies
x1 = 1 and xn+1 = |D|kdn−1

xn for every n ≥ 1. We easily infer from this
that xn = |D|en for every n ≥ 1, and in particular the Haar measure of Un

is
µ(Un) = µ(Wk(D)) × x−1

n = |D|−en .

Now since Un is a normal subgroup of On such that the quotient group
On/Un is isomorphic to the symmetric group Sym(kdn−1), we have

µ(On) = |Sym(kdn−1)| × µ(Un) = (kdn−1)! × |D|−en .

Proposition 3.70. Let k, d ≥ 2, D ≤ Sym(d) and let S be a compact
generating subset of AAutD(Td,k). For every n ≥ 1, set

ℓS(n) := sup |γ|S,
where γ ranges over the compact open subgroup On. Then

ℓS(n) < ndn.

Proof. Let µ be a left-invariant Haar measure on AAutD(Td,k), normalized
so that µ(Wk(D)) = 1. By definition of ℓS(n), the subgroup On lies in the
ball of radius ℓS(n) for the word metric associated to S. It follows that the
Haar measure of On is at most µ(SℓS(n)), so there exists α ≥ 1 such that
µ(On) ≤ αℓS(n). Combined with Lemma 3.69, this inequality yields

(kdn−1)! ≤ αℓS(n) × |D|en ,

where

en = k
dn−1 − 1

d− 1
.

Now taking the log and using that x log x ≤ 2 log x!, we obtain that

(n− 1)dn−1
4 ℓS(n) + en ≃ ℓS(n) + dn,

and the conclusion easily follows.
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Non-distortion of certain subgroups. In this paragraph we show how
the interpretation of elements of AAutD(Td,k) in terms of D-diagrams yields
insights about the study of distortion of certain subgroups in AAutD(Td,k).

Recall that Fd,k is the subgroup of AAutD(Td,k) of elements that can
be represented by a D-diagram with trivial coordinates and trivial per-
mutation. Burillo showed [Bur99] that Thompson’s group F satisfies the
pleasant property that the size of a reduced tree pair diagram representing
an element is comparable to the length of the element with respect to some
finite generating subset. This result has been generalized to the groups Fd,k

in [BCS01, Theorem 5].

Theorem 3.71. For every k, d ≥ 2, the number of carets of the unique tree
pair diagram representing an element f ∈ Fd,k is comparable to the word
length of f with respect to any finite generating subset of Fd,k.

Combined with the lower bound in Proposition 3.64 and the fact that
the notion of reduced tree pair diagrams correspond to the notion of D-
reduced D-diagrams for elements of Fd,k (see Lemma 3.61), we immediately
deduce the following result.

Proposition 3.72. For every d, k ≥ 2 and D ≤ Sym(d), the group Fd,k is
quasi-isometrically embedded inside AAutD(Td,k).

Since the group Fd,k is known to have quasi-isometrically embedded Zn-
subgroups for all n ≥ 1, the same is true in the group AAutD(Td,k) for every
k, d ≥ 2 and D ≤ Sym(d). In particular Neretin’s group has this property.

For the remaining of this subsection we take D = Sym(d). Recall that
if g ∈ AAut(Td,k), we denote by C(g) the number of carets of the unique
Sym(d)-diagram representing g that is Sym(d)-reduced. Recall also that the
set of ordered vertices of level one in Td,k is denoted {a1, . . . , ak}. Note that
the subtree of Td,k obtained by forgetting vertices that do not hang below
either a1 or a2, is isomorphic to the tree Td,2. In particular we have a natural
embedding of AAut(Td,2) inside AAut(Td,k). Now recall that AAut(Td,2) is
nothing but the group AAut(Td+1) of almost automorphisms of the non-
rooted regular tree Td+1 of degree d+ 1 ≥ 3, so that we have an embedding
of AAut(Td+1) inside AAut(Td,k). This embedding can be thought of as the
following. We fix an edge e0 of Td+1, whose vertices are denoted v1 and v2.
We glue the tree Td+1 on Td,k by putting the middle point of the edge e0

on the root of Td,k, and by gluing the half tree of Td+1 emanating from e0

and containing v1 (resp. v2) onto the subtree of Td,k hanging below a1 (resp.
a2). From now we freely identify the tree Td+1 and its copy inside Td,k that
we just described. Note in particular that the original edge e0 is divided
into two edges in Td,k.
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In particular we have an embedding of the automorphism group Aut(Td+1)
inside AAut(Td,k), and the aim of this paragraph is to prove the following
result.

Proposition 3.73. For every k, d ≥ 2, the group Aut(Td+1) is quasi-
isometrically embedded inside AAut(Td,k).

The first step towards Proposition 3.73 is the following description of
the unique Sym(d)-reduced Sym(d)-diagram associated to an element of
Aut(Td+1). For every g ∈ Aut(Td+1), we let D(g) be the unique minimal
complete subtree of Td+1 containing e0 and g−1(e0), and let R(g) be the
image of D(g) by g. By construction D(g) and R(g) both contain the edge
e0, and g maps the complement of D(g) in Td+1 onto the complement of
R(g).

The distance between a vertex v and an edge e is by definition the
minimal length of a path from v to a vertex of e, and the distance between
two edges e and e′ is the maximum of d(v1, e) and d(v2, e), where v1, v2 are
the vertices of e′.

Lemma 3.74. Let k, d ≥ 2. For every g ∈ Aut(Td+1), the domain and range
trees of the unique Sym(d)-diagram representing g that is Sym(d)-reduced,
are respectively D(g) and R(g). In particular we have C(g) = d(e0, g(e0)).

Proof. Write Td+1 \D(g) = T 1
− ∪ . . . ∪ T n

− and Td+1 \R(g) = T 1
+ ∪ . . . ∪ T n

+,
where each T i

± is isomorphic to a rooted d-regular tree. By construction g
maps the complement of D(g) in Td+1 onto the complement of R(g), so there
exists a permutation σ ∈ Sym(n) and automorphisms of rooted d-regular
trees g1, . . . , gn such that g maps T i

− onto T σ(i)
+ via gi for each i. Clearly the

diagram having for domain and range trees D(g) and R(g), for permutation
σ and for coordinates the gi’s represents the element g. We leave the reader
to convince himself that this diagram is reduced.

The following lemma is easy, so we omit the proof.

Lemma 3.75. Let e0 be a fixed edge of Td. Then for any compact generating
subset S of Aut(Td+1), there exists c > 0 (depending on e0 and S) so that
for any g ∈ Aut(Td+1),

c−1(1 + d(e0, g · e0)) ≤ |g|S ≤ c(1 + d(e0, g · e0)).

We now give the proof of the non-distortion of Aut(Td+1) inside AAut(Td,k).

Proof of Proposition 3.73. Let e0 still denote a fixed edge of Td+1, let S1 be a
compact generating subset of Aut(Td+1) and S2 a compact generating subset
of AAut(Td,k). According to the lower bound in Proposition 3.64, there
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exists c1 > 0 such that for every g ∈ Aut(Td+1), we have C(g) ≤ c1|g|S2
.

Now by Lemma 3.74, the number C(g) is equal to d(e0, g(e0)). But by
Lemma 3.75, we have |g|S1

≤ c2(d(e0, g(e0)) + 1) for some constant c2 > 0,
so we finally obtain |g|S1

≤ c2(1 + c1|g|S2
). This proves the statement.

A remark on quasi-automorphism groups. Consider the set of permu-
tations of vertices of Td,k fixing the root and preserving the tree structure al-
most everywhere, i.e. sending all but finitely many edges onto edges. Permu-
tations of these types are called quasi-automorphisms. The set QAut(Td,k)
of quasi-automorphisms of Td,k is a group admitting a natural topology,
defined by saying that a basis of neighbourhoods of the identity is given
by a basis of neighbourhoods of the identity in the automorphism group
Aut(Td,k). Therefore it is a totally disconnected locally compact group, and
it is not hard to see that it is compactly generated.

The almost automorphism group AAut(Td,k) is isomorphic to the quo-
tient of QAut(Td,k) by its discrete normal subgroup of finitary permutations.
In other words, we have a short exact sequence of locally compact groups

1 −→ Sym0(Td,k) −→ QAut(Td,k) −→ AAut(Td,k) −→ 1.

In particular we deduce from Proposition 3.73 that Aut(Td+1) is quasi-
isometrically embedded inside QAut(Td). Similarly one can check that the
group Fd,k admits a section in QAut(Td,k), which must be quasi-isometrically
embedded by Proposition 3.72.

3.3.3 A commensurating action

For all this subsection we fix two integers k, d ≥ 2 and a finite permuta-
tion group D ≤ Sym(d).

Construction. Recall that if G is a group and X a G-set, a subset A of X
is commensurated if for every g ∈ G, the symmetric difference gA△A has
finite cardinality.

Although it has never been explicitly written, the idea of the following
construction already appeared in the literature [Far03,Nav02].

Recall that we denote by a1 the first vertex of Td,k of level one. For
every vertex v, we denote by T (v) the subtree of Td,k hanging below the
vertex v. We will say that an almost automorphism sends ∂T (v) onto ∂T (v′)

D-isometrically if g sends ∂T (v) onto ∂T (v′) via an element of W (D). Write
G = AAutD(Td,k), and let H be the open subgroup of G stabilizing ∂T (a1)

and acting on it D-isometrically. More generally we let A be the subset of
G consisting of almost automorphisms sending ∂T (a1) D-isometrically onto
∂T (v) for some vertex v of level at least one. The subset A ⊂ G is a union
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of left cosets of the subgroup H, so that we will freely identify the subset A
with its image in G/H.

Proposition 3.76. For every k, d ≥ 2 and D ≤ Sym(d), the action of
G = AAutD(Td,k) on G/H commensurates the subset A. More precisely, we
have

#(gA△A) = 2CD(g)

for every g ∈ G.

Proof. Write A = ∪vgvH, where v ranges over the of vertices of Td,k of
level at least one, and gv is an element of G sending ∂T (x1) onto ∂T (v)

D-isometrically.
Let g ∈ G, and [ϕ, T−, T+] the uniqueD-reducedD-diagram representing

g, and let v be a vertex of level at least one. If the vertex v is not a
node of the domain tree T−, then by definition the almost automorphism
g sends ∂T (v) onto ∂T (v′) for some vertex v′ via a an element of W (D).
It follows the element ggv sends ∂T (x1) D-isometrically onto ∂T (v′), and
therefore ggvH ∈ A. Conversely if v is a node of T−, then since the diagram
[ϕ, T−, T+] is supposed to be reduced, this exactly means that the element
g does not send ∂T (v) D-isometrically onto ∂T (v′) for some vertex v′, and
therefore ggvH /∈ A. It follows that the number of elements of A which are
not sent into A by g is equal to the number of nodes in the tree T−, which
is nothing but CD(g). By applying the same argument to the inverse of g,
we obtain that the number of elements of gA which does not belong to A
is equal to CD(g) as well, and the proof is complete.

Remark 3.77. By a general principle (see for instance [Cor13]), we de-
duce from the previous construction that there exist a continuous action
of AAutD(Td,k) on a CAT(0) cube complex, and a vertex x0 such that in
the ℓ1-metric d(x0, gx0) = 2CD(g) for every g ∈ AAutD(Td,k). From this
point of view, the fact that the function CD is not comparable to the word
metric, which has been proved in the previous subsection, means that the
orbital map from AAutD(Td,k) into its CAT(0) cube complex is not a quasi-
isometric embedding.

Application to Lp-space compression. In this paragraph we explain
how one can combine the results established previously with the techniques
developed in [AGS06] to study the Lp-space compression of the groups
AAutD(Td,k).

Recall that if G is a locally compact compactly generated group, a map
f : G → Lp(X,µ) is a coarse embedding if for every r > 0,

sup {‖f(g) − f(h)‖ : dS(g, h) ≤ r} < ∞,
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and such that the associated compression function

ρf (r) = inf {‖f(g) − f(h)‖ : dS(g, h) ≥ r}

is proper.
The Lp-space compression exponent αp(G) of G is the supremum of all

α ∈ [0, 1] for which there exists a coarse embedding f : G → Lp(X,µ) with
ρf (r) ≥ Crα for some constant C > 0. Similarly, the equivariant Lp-space
compression exponent α♯

p(G) is obtained when restricting to G-equivariant
coarse embeddings into a space Lp(X,µ) equipped with a G-affine isometric
action. Clearly, α♯

p(G) ≤ αp(G).
Arzhantseva, Guba and Sapir proved in [AGS06] that Thompson’s group

F has a Hilbert space compression exponent equal to 1/2, by exhibiting a
family of cubes in F and using a geometric inequality from [Enf69]. Ac-
tually they proved something stronger, namely that any coarse embedding
of F into a Hilbert space has compression function 4 x1/2 log(x). Their
techniques immediately adapt to the groups Fd,k and the case of Lp-spaces
for p ∈ [1, 2], using the fact that such a space has roundness p (see [Enf69]),
which yields that any coarse embedding of Fd,k into a Lp-space has com-
pression function 4 x1/p log(x) for p ∈ [1, 2]. Now since the group Fd,k is
quasi-isometrically embedded inside AAutD(Td,k) according to Proposition
3.72, a fortiori the same result holds for the group AAutD(Td,k), and in
particular one has αp(AAutD(Td,k)) ≤ 1/p.

On the other hand, using a general argument (see for example [Cor13]),
one can deduce from the construction of the previous paragraph an equiv-
ariant embedding f : AAutD(Td,k) → ℓp(X) for every p ≥ 1, such that
‖f(g)‖p = (2CD(g))1/p for every g ∈ AAutD(Td,k). One can check using the
upper bound in Proposition 3.64 that such an embedding has compression
function < xα for every α < 1/p, and in particular α♯

p(AAutD(Td,k)) ≥ 1/p
for every p ≥ 1.

Therefore we have proved the following result.

Proposition 3.78. For every d, k ≥ 2, D ≤ Sym(d) and p ∈ [1, 2], we have

α♯
p(AAutD(Td,k)) = αp(AAutD(Td,k)) = 1/p.
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Chapter 4

Groups acting on trees with
almost prescribed local action

In this chapter we define and study a family of groups acting on a regular
tree, and whose local action depends on some finite permutation groups. In
Section 4.1 we establish some preliminary results, and exhibit some simple
groups in this family. In Section 4.2 we make the observation that these
groups have asymptotic dimension one, and prove that most of their sub-
groups are not compactly presented. Finally in Section 4.3 we prove that,
under the assumption that F is transitive, the group G(F ) has property
(PW).

I am very grateful to the authors of [BCGM12] who pointed out to my
attention the definition of the groups under consideration here, and espe-
cially to Pierre-Emmanuel Caprace whose comments improved the content
of this chapter.

4.1 Introduction

4.1.1 Notation and terminology

Let d ≥ 3 be an integer, and let Ω = {1, . . . , d} be the set of positive
integers which are at most d. Every partition of Ω gives rise to a subgroup
of Sym(Ω) consisting of permutations of Ω stabilizing each block of the
partition. Such a subgroup is called a Young subgroup of Sym(Ω), and is
naturally isomorphic to the direct product of the symmetric groups on each
block of the partition. In particular when F ≤ Sym(Ω) is a finite permu-
tation group, we can consider the Young subgroup F̂ ≤ Sym(Ω) associated
to the partition of Ω into F -orbits, which is nothing but the subgroup of
Sym(Ω) stabilizing the orbits of F . Note that we always have F ≤ F̂ , and
F̂ = Sym(Ω) if and only if the permutation group F is transitive.

121



Let Td be the regular tree of degree d, whose vertex set will be denoted
V(Td) and set of non-oriented edges E(Td). Let us choose and fix a coloring
c : E(Td) → Ω such that neighbouring edges haves different colors. In
other words, for each vertex v ∈ V(Td), the map c restricts to a bijection
cv from the set E(v) of edges containing v to Ω. For each g ∈ Aut(Td)
and for each vertex v ∈ V(Td), the automorphism g induces a bijection
gv : E(v) → E(gv), which gives rise to a permutation σ(g, v) of Ω defined by
σ(g, v) = cgv ◦ gv ◦ c−1

v . These permutations satisfy the rules

σ(gh, v) = σ(g, h(v))σ(h, v) and σ(g−1, v) = σ(g, g−1(v))−1 (4.1)

for every g, h ∈ Aut(Td) and every v ∈ V(Td).

Remark 4.1. We easily see that an automorphism g ∈ Aut(Td) is uniquely
determined by the value of some vertex together with the collection of per-
mutations σ(g, v), where v ∈ V(Td). This observation will be used repeat-
edly in this chapter.

For every vertex v ∈ V(Td) and every i ∈ Ω, we denote by ei(v) the
unique edge emanating from v having color i, and by vi the vertex of Td

connected to v by ei(v). For every n ≥ 0, we also let B(v, n) be the subtree
of Td spanned by vertices at distance at most n from the vertex v.

We fix an edge e0 of Td such that c(e0) = 1, whose vertices will be
denoted v0 and v1. To every vertex v ∈ V(Td), we associate the subtree of
Td consisting of vertices whose projection to the geodesic between v and e0

is the vertex v. This subtree is naturally isomorphic to an infinite regular
rooted tree of degree d, and will be denoted L(v).

A vertex v of a subtree T of Td is called a leaf of T if v has only one
neighbour in T . A subtree T of Td is said to be complete if all of its vertices
which are not leaves have degree d in T . If T is a complete subtree of Td,
we denote by IV(T ) the set of internal vertices of T , i.e. vertices of T which
are not leaves.

For every subtree T of Td and every group G acting on Td, we denote by
GT the subgroup of G fixing T pointwise. For example if T = e is a single
edge, then Ge is the subgroup of G fixing both vertices of e. The subgroup
of G generated by the subgroups Ge, where e ranges over the set of edges
of Td, will be denoted G+. Note that G+ is a normal subgroup of G, and if
G is endowed with the topology induced from Aut(Td), then G+ is open in
G.

4.1.2 A local rigidity condition almost everywhere

Definitions. In the remainder of this section, we fix an integer d ≥ 3 and
a subgroup F ≤ Sym(Ω) of the symmetric group on the set Ω = {1, . . . , d}.
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Recall that we denote by F̂ the subgroup of Sym(Ω) stabilizing the orbits
of F .

The universal Burger-Mozes’ group [BM00] is defined as the subgroup
of automorphisms of Td whose local action is prescribed by F ,

U(F ) = {g ∈ Aut(Td) : σ(g, v) ∈ F for all v ∈ V(Td)} .

It is a closed subgroup of Aut(Td), which is discrete if and only if the
permutation group F acts freely on Ω, and whose conjugacy class in Aut(Td)
does not depend on the choice of the coloring c : E(Td) → Ω. Clearly U(F ′)
is a subgroup of U(F ) when F ′ ≤ F ≤ Sym(Ω). Combined with the fact
that the group U({1}) acts transitively on the set V(Td), this observation
implies that U(F ) is always vertex-transitive.

One can relate the combinatorics of the finite permutation group F with
the properties of the group U(F ). For example one shows that the group
U(F )+ has finite index in U(F ) if and only if the group F acts transitively
on Ω and is generated by its point stabilizers. When this is so the subgroup
U(F )+ has index two in U(F ). Moreover the group U(F ) acts transitively
on the boundary ∂∞Td if and only if U(F )+ acts transitively on ∂∞Td,
which is equivalent to asking that the group F is 2-transitive on Ω (see for
example [BM00, Lemma 3.1.1]).

The definition of the groups under consideration here can be seen as a
relaxation of the definition of the groups U(F ), in the sense that the local
action is prescribed almost everywhere only. More precisely, we let

G(F ) = {g ∈ Aut(Td) : σ(g, v) ∈ F for all but finitely many v ∈ V(Td)} .

It readily follows from the multiplication rules (4.1) that G(F ) is a sub-
group of Aut(Td), and of course one has U(F ) ≤ G(F ).

For every g ∈ G(F ), we let T (g) be the unique complete subtree of Td

such that σ(g, v) ∈ F for every vertex v ∈ V(Td) that is not an internal
vertex of T (g), and being minimal for this property. Equivalently, T (g) can
be defined as the 1-neighbourhood of the complete subtree of Td spanned
by vertices v such that σ(g, v) /∈ F .

Lemma 4.2. Let g ∈ G(F ), and denote by T = T (g), UT = U(F )T and
Ug(T ) = U(F )g(T ). Then one has gUTg

−1 = Ug(T ).

Proof. Noting that g(T ) = T (g−1), we see that by symmetry it is enough
to prove that gUTg

−1 ⊂ Ug(T ). The fact that gUTg
−1 fixes pointwise g(T )

is easy, so the only thing that needs to be checked is that gUTg
−1 lies in

U(F ). So let u ∈ UT and v ∈ V(Td). According to (4.1), one has

σ(gug−1, v) = σ(g, ug−1(v))σ(u, g−1(v))σ(g, g−1(v))−1. (4.2)
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As observed previously, the element gug−1 fixes pointwise g(T ), so we only
have to deal with the case when v is not an internal vertex of g(T ), i.e.
when g−1(v) is not an internal vertex of T . This implies that ug−1(v) is
not an internal vertex of T either, and by construction of T we deduce that
σ(g, g−1(v)), σ(g, ug−1(v)) ∈ F . Since σ(u, g−1(v)) ∈ F by definition of u,
it follows from 4.2 that σ(gug−1, v) ∈ F .

This implies (see Lemma 3.13) that there exists a group topology on
G(F ) such that the inclusion of U(F ) in G(F ) is continuous and open. In
particular the group G(F ) is discrete if and only if F acts freely on Ω. We
point out that in general this topology on G(F ) is not the topology induced
from Aut(Td) (see Corollary 4.6).

Let v ∈ V(Td) being fixed. For every n ≥ 0, we denote by Kn(v) the set
of automorphisms g ∈ Aut(Td) fixing the vertex v and such that σ(g, w) ∈ F
for every vertex w that is not in B(v, n). Again, it follows from (4.1) that
Kn(v) is a subgroup of G(F ). For example K0(v) is the subgroup of Aut(Td)
consisting of elements g fixing v and such that σ(g, w) ∈ F for every vertex
w 6= v. Each Kn(v) contains the stabilizer of the vertex v in U(F ) as a
finite index subgroup. The latter being compact open, Kn(v) is a compact
open subgroup of G(F ). The stabilizer of the vertex v in G(F ) is nothing
but the increasing union

G(F )v =
ր
⋃

n≥0

Kn(v),

so in particular G(F )v is a locally elliptic open subgroup of G(F ).

Remark 4.3. One can check that the index two subgroup G(F )∩Aut(Td)+

of G(F ) is generated by the vertex stabilizers G(F )v, v ∈ V(Td). Those be-
ing locally elliptic open subgroups, it follows that G(F ) is generated by its
compact subgroups. Since any continuous homomorphism from a compact
group to the group R must vanish, we deduce that any continuous homo-
morphism G(F ) → R must be trivial. In particular the group G(F ) is
unimodular.

Preliminary results. The following result shows that, although elements
of G(F ) are not required to act locally like F everywhere, their local action
exhibits some rigidity.

Lemma 4.4. For every g ∈ G(F ) and every vertex v ∈ V(Td), the permuta-
tion σ(g, v) stabilizes the orbits of F in Ω. In other words, the group G(F )
is contained in U(F̂ ).
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Proof. For a given g ∈ G(F ), let us consider the set Vg of vertices for which
the conclusion does not hold. We want to prove that Vg is empty. It is not
hard to see that every vertex in Vg must have at least two neighbours that
also belong to Vg. It follows that if Vg is not empty, then it must contain
an infinite subtree, which is a impossible by definition of G(F ).

For every permutation group F ′ ≤ Sym(Ω) such that F ≤ F ′ ≤ F̂ ,
we denote by G(F, F ′) the subgroup of G(F ) consisting of elements g ∈
G(F ) such that σ(g, v) ∈ F ′ for all v ∈ V(Td), i.e. G(F, F ′) = G(F ) ∩
U(F ′). Clearly we have G(F, F ′) ≤ G(F, F ′′) as soon as F ′ ≤ F ′′, and
G(F, F ) = U(F ) and G(F, Sym(Ω)) = G(F ). Therefore the family of sub-
groups G(F, F ′) ≤ G(F ) interpolates between U(F ) and G(F ) when F ′

ranges over subgroups of F̂ containing F . Note that G(F, F ′) is always an
open subgroup of G(F ).

In some sense, the following result can be seen as a converse of Lemma
4.4.

Lemma 4.5. Let v ∈ V(Td) and n ≥ 0. If h ∈ Aut(Td) is such that
σ(h,w) ∈ F ′ for every vertex w in B(v, n), then there exists g ∈ G(F, F ′)
such that g and h coincide on B(v, n+ 1) and σ(g, w) ∈ F for every vertex
w that is not in B(v, n).

Proof. We denote by x1, . . . , xk the vertices of Td which are at distance
exactly n from the vertex v. For every j ∈ {1, . . . , k}, we denote by Vj(T )
the set of vertices w such that the unique path between v and w contains
the vertex xj.

Since the group G(F, F ′) acts transitively on the set of vertices of Td

(as it is already the case for U(F )), we may assume that h fixes the vertex
v. So we impose that g fixes v as well, and therefore giving the value of
σ(g, w) for every vertex w is enough to define the element g. Naturally we
put σ(g, w) = σ(h,w) for every vertex w in B(v, n). This implies that g and
h coincide on B(v, n+ 1), and we must explain how extend the definition of
g to an element of G(F, F ′).

For every j ∈ {1, . . . , k} and every i ∈ Ω, there exists σi,j ∈ F such
that σ(h, xj)(i) = σi,j(i) because σ(h, xj) stabilizes the orbits of F . Now
for every vertex w ∈ Vj(T ) different from xj, we let σ(g, w) = σi(w),j, where
i(w) is the color of the unique edge emanating from xj and separating xj

and w. The verification that the definition of the element g is consistent
and that g ∈ G(F, F ′) is easy, and we leave it to the reader.

Recalling that a basis of neighbourhoods for the topology on the group
Aut(Td) is given by pointwise stabilizers of finite sets, we immediately de-
duce the following result.

125



Corollary 4.6. The closure of G(F, F ′) in the topological group Aut(Td) is
the group U(F ′). In particular G(F ) is dense in Aut(Td) if and only if the
permutation group F is transitive.

For every n ≥ 0 and every vertex v ∈ V(Td), we denote by Kn,F ′(v)
the intersection between Kn(v) and G(F, F ′). This is the compact open
subgroup of G(F, F ′) consisting of elements g ∈ G(F, F ′) fixing v and such
that σ(g, w) ∈ F for all vertices w ∈ V(Td) at distance at least n + 1 from
v.

Proposition 4.7. Let k ≥ 0, and g ∈ G(F, F ′) such that there are at
most k vertices v ∈ V(Td) such that σ(g, v) /∈ F . Then there exist vertices
v1, . . . , vk ∈ V(Td) and elements γ ∈ U(F ), gi ∈ K0,F ′(vi), such that g =
γg1 · · · gk.

Proof. We argue by induction on the number k. The result is clear when
k = 0 by definition. Now let g ∈ G(F, F ′) having at most k + 1 vertices w
for which σ(g, w) /∈ F , and let v be one of these vertices. Since the group
U(F ) is transitive on the set of vertices, there exists γ1 ∈ U(F ) such that
g′ = γ1g fixes v. Note that since γ1 ∈ U(F ), for every vertex w we have
σ(g, w) /∈ F if and only if σ(g′, w) /∈ F . According to Lemma 4.5 applied
with n = 0, there exists gv ∈ K0,F ′(v) acting like g′ on the star around
the vertex v. Therefore if we let g′′ = g′g−1

v = γ1gg
−1
v , then there are at

most k vertices w for which σ(g′′, w) /∈ F . So by induction hypothesis
there exist v1, . . . , vk ∈ V(Td) and γ2 ∈ U(F ), gvi

∈ K0,F ′(vi), such that
g′′ = γ2gv1

· · · gvk
, which can be rewritten g = (γ−1

1 γ2)gv1
· · · gvk

gv.

Corollary 4.8. The group G(F, F ′) is compactly generated.

Proof. Let SF denote a compact generating subset of U(F ), and S =
K0,F ′(v0) ∪ SF ⊂ G(F, F ′). Since the group U(F ) is vertex-transitive, the
subgroup of G(F, F ′) generated by S contains all the subgroups K0,F ′(v),
for v ∈ V(Td). Since all these subgroups together with U(F ) generate the
group G(F, F ′) according to Proposition 4.7, one has 〈S〉 = G(F, F ′).

The following proposition gives an explicit characterization of the finite
permutation groups F ′ ≤ F̂ for which the inclusion U(F ) ≤ G(F, F ′) is
proper.

Proposition 4.9. Given F ≤ Sym(Ω), the following statements are equiv-
alent:

(i) U(F ) = G(F, F ′);

(ii) F = F ′;

(iii) G(F, F ′) is a closed subgroup Aut(Td);
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(iv) vertex stabilizers G(F, F ′)v are compact.

In particular when F is transitive, the inclusion U(F ) ≤ G(F ) is proper as
soon as F is a proper subgroup of Sym(Ω).

Proof. The implications (ii) ⇒ (i) ⇒ (iv) being clear, it is enough to prove
(iv) ⇒ (iii) ⇒ (ii).

(iv) ⇒ (iii). This is a general argument: since G(F, F ′) is locally com-
pact and its action on Td is continuous and proper, the subgroup G(F ) must
be closed in Aut(Td).

(iii) ⇒ (ii) Since G(F, F ′) is closed, according to corollary 4.6 we have
G(F, F ′) = U(F ′), and it is not hard to see that this implies that F = F ′.

We end this subsection with the following result, which characterizes
the permutation groups F for which the group G(F ) is transitive on ∂∞Td.
It turns out that the condition arising on F is the same as for the group
U(F ) [BM00] (compare with Proposition 4.17).

Proposition 4.10. The group G(F ) acts transitively on ∂∞Td if and only
if F is 2-transitive.

Proof. Assume that G(F ) is transitive on ∂∞Td. For every i 6= j ∈ Ω,
we want to prove that there is an element σ ∈ F such that σ(1) = i
and σ(2) = j. Let us consider an infinite ray ξ1 whose edges have color
(1, 2, 3, 1, 2, 3 . . .), and another ray ξ2 whose sequence of edges is colored by
(i, j, i, j, i, j . . .). By assumption there is an element g ∈ G(F ) sending the
boundary point defined by ξ1 to the one defined by ξ2. This means that ξ1

admits an infinite subray ξ′
1, whose first edge can be assumed to have color

1, which is sent by g onto an infinite subray ξ′
2 of ξ2 whose first edge is either

colored i or j. For every n ≥ 0, we denote by σn = σ(g, ξ′
1(n)), where ξ′

1(n)
is the vertex of ξ′

1 at distance n from its starting point. Since g ∈ G(F ),
upon replacing ξ′

1 by an infinite subray, we may assume that σn ∈ F for
every n ≥ 0. Now two cases may occur: if the first edge of ξ′

2 has color i
then the permutation σ1 ∈ F sends 1 to i and 2 to j, and if the first edge
of ξ′

2 has color j then the same argument applies for σ4 ∈ F .
The converse implication comes from the fact that the subgroup U(F )

is already transitive on ∂∞Td when the group F is 2-transitive [BM00].

4.1.3 Simplicity

A simplicity criterion. Recall that if T is a simplicial tree, we say that
the action of a group G on T is minimal if G does not stabilize any proper
subtree of T . If T ′ is a subtree of T , we denote by GT ′ the pointwise
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stabilizer of T ′ in G. We also let G+ be the subgroup of G generated by the
set of subgroups Ge, where e ranges over the set of edges of T .

Tits introduced in [Tit70] a simplicity criterion for groups acting on
trees, usually referred to as Tits’ independence property (P), whose defini-
tion is now recalled. Let T be a simplicial tree, and let G ≤ Aut(T ). We
denote by X a non-empty (finite or infinite) path in T . For every x ∈ X,
the group GX induces a permutation group of the set of vertices v whose
projection on the path X is the vertex x, which is denoted GX(x). We
have a natural injective homomorphism ϕX : GX → ∏

x GX(x), and we
say that the group G satisfies Tits’ independence property (P) if ϕX is an
isomorphism for every choice of X.

The main result of [Tit70] says that if G satisfies Tits’ independence
property (P) and acts minimally on T without fixing any end of T , then the
group G+ is simple as soon as it is not trivial. This remarkable result has
been extensively used to establish simplicity of various groups. For example
the group U(F )+ is simple as soon as the permutation group F does not
act freely on Ω.

The goal of this paragraph is to prove a simplicity criterion, namely The-
orem 4.15, by weakening the assumption that the group satisfies Tits’ inde-
pendence property (P). Our motivation comes from the fact that the groups
G(F, F ′) do not satisfy Tits’ independence property (P) in general. More
precisely, one can check that the map ϕX : G(F, F ′)X → ∏

x G(F, F ′)X(x)
is never onto when F is a proper subgroup of F ′ and X is an infinite path.

Definition 4.11. We say that a group G ≤ Aut(T ) satisfies the weak
Tits’ independence property if, with the same notation as before, the map
ϕX : GX → ∏

x GX(x) is an isomorphism as soon as X is a path of length
one.

The weak Tits’ independence property is strictly weaker than Tits’ in-
dependence property (P). However, one can check that these are equivalent
for closed subgroups of Aut(T ) (see for instance [Ama03, Lemma 10]).

The following two lemmas are standard.

Lemma 4.12. Let G be a subgroup of Aut(T ). Assume that the action of G
on T is minimal, that G does not fix any end of T and that G+ is non-trivial.
Then the action of G+ on T is minimal and of general type. Moreover the
same holds for any non-trivial subgroup N ≤ Aut(T ) normalized by G+.

Proof. The fact that the action of G+ is minimal immediately follows from
the fact thatG+ is normal in G, which implies that anyG+-invariant subtree
is G-invariant. Now observe that since G+ is non-trivial by assumption, the
tree T is neither a point nor a line. In particular G+ cannot fix a point or a
line in T . Since G+ is normal in G, if G+ has a fixed point in the boundary
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of T then the same holds for G, contradiction. So the action of G+ on T
must be of general type.

The proof of the statement for a subgroup N normalized by G+ follows
exactly the same lines, and we leave it to the reader.

If e is an edge of T and v a vertex of e, we denote by Te(v) the subtree
of T spanned by vertices whose projection on the edge e is the vertex v. A
subtree T ′ of T is called a half-tree if T ′ = Te(v) for some edge e and vertex
v.

Lemma 4.13. Let G be a subgroup of Aut(T ) whose action on T is minimal
and of general type. Given any half-tree T ′ ⊂ T , there exists a hyperbolic
element in G whose axis is contained in T ′.

Proof. Let X be the set of hyperbolic elements of G. First remark that
there exists x ∈ X having an endpoint in ∂T ′. Indeed, otherwise we would
have a G-invariant subtree (namely the union of the axes of the elements of
X) contained in the complement of T ′, which is a contradiction with the fact
that G acts minimally on T . Now the conclusion follows from the fact that
if y ∈ X does not have any endpoint in common with x, then there exists
some integer k ∈ Z such that the axis of xkyx−k is contained in T ′.

The following result plays an essential role in the proof of Theorem 4.15.
The idea in the proof of using double commutators already appears for
example in [Gri00, Theorem 4].

Lemma 4.14. Let G be a subgroup of Aut(T ), and N a subgroup of Aut(T )
normalized by G. Let T ′ be a half-tree in T . Assume that N contains a
hyperbolic element whose axis is contained in T ′. Then N contains the
derived subgroup of GT ′.

Proof. Let γ ∈ N be a hyperbolic element whose axis is contained in T ′.
We let e be the edge of T and v the vertex of T such that T ′ is the subtree
emanating from e containing v. We denote by w the projection of the vertex
v on the axis of γ. We denote by L the maximal subtree of T containing
w but not its neighbours on the axis of γ. By construction the subtrees
L and γ(L) are disjoint, and γ±1(L) ⊂ T ′. This implies that for every
g ∈ GT ′ , the element [g, γ] = gγg−1γ−1 ∈ N acts like g on L, like γg−1γ−1

on γ(L), and is the identity elsewhere. It follows that for every h ∈ GT ′ ,
the element [[g, γ], h] (which remains in N) acts like [g, h] on L and is the
identity elsewhere, and therefore this element is equal to [g, h].

The difference between the following result and Tits’ theorem [Tit70] is
that the independence assumption is strictly weaker here. This is counter-
balanced by the fact that we need to impose a condition on stabilizers of
edges.
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Theorem 4.15. Let G be a subgroup of Aut(T ) such that:

(a) G acts minimally on T and does not fix any end of T ;

(b) G satisfies the weak Tits’ independence property;

(c) Ge is a perfect group for every edge e of T .

Then any non-trivial subgroup of G normalized by G+ must contain G+. In
particular G+ is simple (or trivial).

Proof. We may assume that G+ is non-trivial, which implies in particular
that T is neither a point nor a line. Let N be a non-trivial subgroup of G
normalized by G+. We want to prove that G+ ≤ N . Given an edge e of T ,
we will prove that the subgroup Ge lies in N . We denote by T ′ and T ′′ the
two half-trees emanating from the edge e. It follows from the assumption
that G satisfies the weak Tits’ independence property that Ge is equal to
the direct product of the subgroups GT ′ and GT ′′ , and we will prove that
both lie in N . By symmetry it is enough to prove that GT ′ ≤ N . Moreover
since Ge is perfect by assumption, the group GT ′ is perfect as well, so we
only need to prove that the derived subgroup of GT ′ is contained in N .

By assumption G acts minimally on T and does not fix any end, so
it follows from Lemma 4.12 that the action of N on T is minimal and of
general type. Therefore we are in position to apply Lemma 4.13, which
ensures the existence of a hyperbolic element of N whose axis is contained
in T ′, and the conclusion then follows from Lemma 4.14.

Application to the groups G(F, F ′). In this paragraph we investigate
the subgroup G(F, F ′)+ ≤ G(F, F ′), and characterize permutation groups
F, F ′ such that G(F, F ′)+ has finite index in G(F, F ′).

Lemma 4.16. Let e ∈ E(Td) and g ∈ G(F, F ′)e. Then for all v ∈ V(Td),
the element σ(g, v) belongs to the subgroup of F ′ generated by its point sta-
bilizers.

Proof. The proof goes by induction on the distance n between the vertex
v and the edge e. If n = 0 then the result is clear because σ(g, v) fixes a
point of Ω. Now let v be a vertex at distance n+ 1 from the edge e. We let
w be the unique neighbour of v at distance n from e, and denote by i ∈ Ω
the color of the edge between w and v. The elements σ(g, w) and σ(g, v)
satisfy σ(g, w)(i) = σ(g, v)(i), which proves the induction step.

Of particular interest is the case when the subgroup G(F, F ′)+ has finite
index in G(F, F ′). Note that in the particular case F ′ = Sym(Ω), the
condition on F is strictly weaker for the group G(F ) than for the group
U(F ) [BM00, Proposition 3.2.1].
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Proposition 4.17. The following conditions are equivalent:

(i) G(F, F ′)+ has index two in G(F, F ′);

(ii) G(F, F ′)+ has finite index in G(F, F ′);

(iii) F is transitive and F ′ is generated by its points stabilizers.

Proof. (ii) ⇒ (iii). We let Ω1, . . . ,Ωr be the orbits of F in Ω. For every
i ∈ Ω, we let w(i) be the unique integer such that i ∈ Ωw(i). We identify
the tree Td with the Cayley graph of the free product of d copies of the
group of order two Γ = 〈x1, . . . , xd |x2

i = 1〉. Let us consider the quotient
ΓF of Γ defined by adding the relation xi = xj when i and j are in the
same F -orbit, i.e. when w(i) = w(j). The Cayley graph Tr of ΓF is a
regular tree of degree r, and we have a natural projection pF : Td → Tr. Let
g ∈ G(F, F ′) fixing some vertex and let v, v′ ∈ V(Td) such that v′ = g(v).
Note that since g fixes a vertex, the distance between v and v′ must be
even. We consider the unique path from v to v′, whose sequence of colors
of edges is denoted by (i1, . . . , i2n). Since the element g fixes a vertex and
stabilizes the orbits of F on the set of edges, the word w(i1) · · ·w(i2n) is a
palindromic word, which implies that the vertices v and v′ have the same
image by the projection pF : Td → Tr. In other words, we have proved that
any g ∈ G(F, F ′) fixing some vertex must stabilize the fibers of vertices of
the map pF , and a fortiori the same holds for the group G(F, F ′)+. Argue
by contradiction and assume that F is not transitive, i.e. r ≥ 2. Then the
tree Tr is infinite, and therefore G(F, F ′)+ must have infinitely many orbits
of vertices in Td, which prevents G(F, F ′)+ from being of finite index in
G(F, F ′). Contradiction.

Now we want to prove that F ′ is generated by its point stabilizers, or
equivalently that the subgroup H of F ′ generated by point stabilizers is
transitive on Ω. We carry out the same construction as in the previous
paragraph by replacing F -orbits by H-orbits. According to Lemma 4.16,
all the elements of G(F, F ′)+ must stabilize the fibers of the projection, and
the conclusion follows by the same argument.

(iii) ⇒ (i). The fact that F ′ is transitive and generated by its point
stabilizers implies that for every vertex v ∈ V(Td), the group G(F, F ′)+

v is
transitive on the set of edges around v. We easily deduce that G(F, F ′)+

is transitive on the set of non-oriented edges of Td, and therefore has index
two in G(F, F ′).

Proposition 4.18. Assume that F is transitive, and that point stabilizers
in F and F ′ are perfect. Then stabilizers of edges in the group G(F, F ′) are
perfect.

Proof. We denote respectively by Fa and F ′
a a point stabilizer in F and F ′.

The stabilizer of an edge in G(F, F ′) is isomorphic to the direct product

131



of two copies of the increasing union of infinitely iterated permutational
wreath products

Cn = . . . ≀ Fa ≀ F ′
a ≀ . . . ≀ F ′

a,

where the group F ′
a appears n times. Clearly, it is enough to show that Cn

is a perfect group for every n ≥ 0. Since Fa and F ′
a are perfect groups by

assumption, we are in position to apply [Nik04, Corollary 1.4] to deduce that
the group Cn has bounded commutator width. So the derived subgroup of
Cn is closed. But since Fa and F ′

a are perfect, this derived subgroup contains
all the finite groups

C(m)
n = Fa ≀ . . . ≀ Fa ≀ F ′

a ≀ . . . ≀ F ′
a,

where the group Fa appears m ≥ 1 times. Therefore the derived subgroup of
Cn is at the same time closed, and contains the increasing union for m ≥ 1
of the subgroups C(m)

n , which is a dense subgroup of Cn, so Cn must be
perfect.

The following result shows that the family of groups under consideration
in this chapter yields some examples of totally disconnected locally compact
compactly generated simple groups.

Theorem 4.19. Let d ≥ 3, and let F ≤ Sym(Ω) be a transitive permutation
group whose point stabilizers are perfect. Assume also that point stabilizers
in F ′ are perfect and generate F ′. Then the group G(F, F ′)+ is compactly
generated and abstractly simple.

Proof. The fact that G(F, F ′) is compactly generated has been proved in
Corollary 4.8. Now since F is transitive and F ′ is generated by its point
stabilizers, the group G(F, F ′)+ has index two in G(F, F ′) by Proposition
4.17, and is therefore compactly generated as well. Now since point stabi-
lizers in F and F ′ are perfect, according to Proposition 4.18 the stabilizers
of edges in G(F, F ′) are perfect. Moreover the group G(F, F ′) satisfies the
weak Tits’s independence property, so we are in position to apply Theorem
4.15 to deduce that G(F, F ′)+ is simple.

When specifying to discrete groups, i.e. when the permutation group F
is moreover assumed to act freely on Ω, we obtain the following result. Note
that in this case Proposition 4.18 is obvious.

Corollary 4.20. Let d ≥ 3, and let F ≤ Sym(Ω) be a permutation group
whose action on Ω is simply transitive. Assume that point stabilizers in F ′

are perfect and generate F ′. Then the group G(F, F ′)+ is a finitely generated
simple group.
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Example 4.21. Examples of permutation groups satisfying the assump-
tions of Corollary 4.20 are

F = 〈(1, . . . , d)〉 and F ′ = Alt(d)

for any d ≥ 7 odd, or

F =

〈

(1, . . . , 2n)(2n+ 1, . . . , 4n),
2n
∏

i=1

(i, 2n+ i)

〉

and F ′ = Alt(4n)

for any n ≥ 2. Note that on the opposite Alt(4n+ 2) does not contain any
element of order two without any fixed point, and therefore cannot contain
a simply transitive subgroup.

4.2 Further properties of the groups G(F )

4.2.1 Asymptotic dimension

Recall that a metric space X has asymptotic dimension at most n ≥ 0
if for every (large) r > 0, one can find n + 1 uniformly bounded families
X0, . . . , Xn of r-disjoint sets, whose union is a cover of the space X. Two sets
are said to be r-disjoint if any point in the first is at distance at least r from
any point in the second. The asymptotic dimension of X is the smallest
integer n such that X has asymptotic dimension at most n. Asymptotic
dimension is an invariant of metric coarse equivalence, so that if G is a
locally compact compactly generated group, the asymptotic dimension of
G is well defined.

Proposition 4.22. Let G be a locally compact compactly generated group
acting on a locally finite tree X such that all vertex stabilizers in G are
locally elliptic open subgroups. Then G has asymptotic dimension at most
one.

Proof. Let x0 be a vertex of X, and let H = Gx0
. Since the tree X is locally

finite, for every r > 0, the coarse stabilizerWr(x0) = {g ∈ G : d(gx0, x0) ≤ r}
of x0 is a finite union of left cosets of H. Since the subgroup H is locally
elliptic, it has asymptotic dimension zero [CH15, Proposition 4.D.4], and
therefore by the previous observation Wr(x0) (endowed with the induced
topology) has asymptotic dimension zero as well. So we are in position to
apply Theorem 2 from [BD01], which implies that G has asymptotic dimen-
sion at most one. Note that the result is stated there for discrete groups,
but the same proof works in the locally compact setting.

This result applies notably to the group G(F ), which clearly does not
have asymptotic dimension zero.
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Corollary 4.23. The group G(F ) has asymptotic dimension one.

Since asymptotic dimension of a closed subgroup is always bounded
above by the asymptotic dimension of the ambient group, it follows that
all the groups G(F, F ′) have asymptotic dimension one. When specifying
to the permutation groups satisfying the assumptions of Corollary 4.20, we
obtain:

Corollary 4.24. Under the assumptions of Corollary 4.20, the group G(F, F ′)+

is a finitely generated simple group of asymptotic dimension one.

4.2.2 Compact presentability

Acting on Td transitively and with compact stabilizers on the set of
vertices, the group U(F ) is quasi-isometric to the tree Td, and in particular
U(F ) is compactly presented. We show that closed unimodular subgroups
of G(F ) which are compactly presented must actually satisfy the much
stronger property to act properly on Td.

We will make use of the following well-known lemma.

Lemma 4.25. Let G be locally compact compactly generated unimodular
group, admitting a proper and continuous action on a tree X. Then compact
open subgroups of G have uniformly bounded Haar measure. In particular
G does not have non-compact locally elliptic open subgroups.

Proof. Upon replacing X by a minimal G-invariant subtree, one may as-
sume that X is a locally finite tree on which G acts with finitely many
orbits of vertices. Since the action is proper, vertex stabilizers are compact
open, and by the previous remark there are only finitely many conjugacy
classes of vertex stabilizers. Moreover G is unimodular, so vertex stabilizers
have a finite number of possible Haar measures. Since every compact open
subgroup has a subgroup of index at most two that is contained in a ver-
tex stabilizer, the first statement is proved. The second statement follows
because any non-compact locally elliptic open subgroup would be a strictly
increasing union of compact open subgroups, which cannot happen.

Proposition 4.26. Let G be a closed unimodular subgroup of G(F ). If G
is compactly presented, then the action of G on Td is proper.

In particular, the group G(F, F ′) is never compactly presented as soon
as F is a proper subgroup of F ′.

Proof. Since G(F ) has asymptotic dimension one by Corollary 4.23, it
follows that G must have asymptotic dimension zero or one. If G has
asymptotic dimension zero then G is compact, so we may assume that
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G has asymptotic dimension one. We now make use of a result of Fuji-
wara and Whyte [FW07, Theorem 1.1], which characterizes locally com-
pact compactly presented groups with asymptotic dimension one as those
which are quasi-isometric to an unbounded tree. So the group G must be
quasi-isometric to a tree. Using Bass-Serre theory and accessiblity results
(see [Cor12, Theorem 4.A.1] and references therein), one obtains that the
group G must actually act geometrically on a locally finite tree. Since G
is unimodular, it follows from Lemma 4.25 that every locally elliptic open
subgroup of G must be compact. In particular vertex stabilizers in G for
its action on Td are compact, so the first statement is proved.

The second statement follows Proposition 4.9.

Corollary 4.27. If F is a proper subgroup of F ′, and if Γ is a lattice in
G(F, F ′), then Γ is not finitely presented.

Proof. Let H = G(F, F ′)v be a vertex stabilizer in G(F, F ′). According to
Proposition 4.9, the subgroup H is non-compact. Assume by contradiction
that Γ is a finitely presented lattice in G(F ). According to Proposition 4.26,
this implies that Γ is virtually free. Therefore the intersection between Γ
and the locally elliptic open subgroup H must be finite. But since Γ is a
lattice in G(F, F ′), the subgroup Γ ∩ H is a lattice in H, so the group H
must be compact. Contradiction.

Here is another proof of the non-compact presentability of G(F ) not
making use of asymptotic dimension, in the particular case when F is 2-
transitive. The main ingredient is the following topological version of a
theorem of Bieri and Strebel.

Theorem 4.28 (Bieri-Strebel). Let G = N ⋊ϕ Z be a locally compact com-
pactly generated group, where ϕ is a topological automorphism of the locally
elliptic open subgroup N . If G is compactly presented, then (upon replacing
ϕ by its inverse) there exists a compact open subgroup K of N such that
ϕ(K) ⊂ K and N = ∪n≥0ϕ

−n(K).

Proof. See for instance [CH15, Corollary 8.C.19].

Proposition 4.29. Let d ≥ 3, and let F ≤ Sym(Ω) be a 2-transitive proper
subgroup. Then the group G(F ) is not compactly presented.

Proof. Let ξ ∈ ∂∞Td be any boundary point, and let H = G(F )ξ be the sta-
bilizer of ξ in G(F ). Since F is 2-transitive, the group G(F ) acts transitively
on ∂∞Td by Proposition 4.10, and it follows that H is a cocompact subgroup
of G(F ). Compact presentability being preserved by passing to a cocompact
subgroup, it is enough to prove that H is not compactly presented.
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Let (ξn) be the sequence of vertices starting at v0 and defining the point
ξ. If h ∈ H is a translation of minimal length, then the group H admits
a semi-direct product decomposition H = N ⋊ 〈h〉, where the subgroup N
consists of elliptic elements ofH. It is not hard to check that such an element
h can be chosen inside U(F ). For every n ≥ 0, we let Nn be the subgroup
consisting of elements g ∈ N fixing the infinite subray of ξ starting at ξn,
and such that σ(g, v) ∈ F for every vertex v at distance at least n2 from ξn.
One can check that (Nn) is an increasing union of compact open subgroups
ascending to N , so the subgroup N is locally elliptic. Consequently we are
in position to apply Theorem 4.28, which implies that if H is compactly
presented then there is a compact open subgroup K of N such that the
〈h〉-conjugates of K cover the entire N . Since K is compact there exists
some integer n0 such that K ⊂ Nn0

. In particular N is the union of the
〈h〉-conjugates of Nn0

, and since h ∈ H, this implies that for every element
of g ∈ H, there are at most n0 vertices v such that σ(g, v) /∈ F . In particular
vertex stabiliers in H are compact, which is a contradiction with the fact
that F 6= Sym(Ω) according to the implication (iii) ⇒ (ii) of Proposition
4.9.

4.3 Diagrams and commensurating actions

In this section we explain how the group G(F ), which is defined in terms
of its action on the tree Td, can be profitably studied by using a notion of
diagrams introduced below. In the case when the group F is transitive, one
shows that this combinatorial data yields an estimate of the word-metric in
the group G(F ) (see Proposition 4.37). We moreover show that the group
G(F ) admits a commensurating action so that the corresponding cardinal
definite function is given by the size of the diagrams, and deduce, by a
general argument, that G(F ) admits a proper action on a CAT(0) cube
complex.

4.3.1 Diagrams

Recall that if T is a complete subtree of Td, we denote by IV(T ) the set
of internal vertices of T , i.e. vertices of T all of whose neighbours in Td

belong to T .
Let g ∈ G(F ). It readily follows from the definition of the group G(F )

that there exists a unique finite complete subtree T−
d (g) of Td such that :

(i) T−
d (g) contains the edges e0 and g−1(e0);

(ii) for every vertex v that is not an internal vertex of T−
d (g), we have

σ(g, v) ∈ F ;
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and being minimal for this property. We let T+
d (g) be the image of T−

d (g)
by g, and denote by N (g) the number of internal vertices or T−

d (g). Note
that by construction, N (g) is also the number of internal vertices of T+

d (g).
One easily check that N (g) = 0 if and only if g ∈ U(F ) and g stabilizes the
edge e0.

Lemma 4.30. Let g ∈ G(F ) and v ∈ V(Td). Then the following statements
are equivalent:

(i) g(L(v)) = L(g(v)) and σ(g, w) ∈ F for every vertex w in L(v);

(ii) v is not an internal vertex of T−
d (g).

Proof. By construction g sends the complement of T−
d (g) onto the comple-

ment of T+
d (g) locally like F , so it clear that if v is not an internal vertex of

T−
d (g) then g(L(v)) = L(g(v)) and σ(g, w) ∈ F for every vertex w in L(v).

For the converse implication, remark that if v is an internal vertex of T−
d (g),

then either there is a vertex w in L(v) such that σ(g, w) /∈ F , or the edge
g−1(e0) belongs to L(v). This last property implies that g(L(v)) contains
the edge e0, and therefore cannot be equal to L(g(v)).

Recall that a length function on a group Γ is a map L : Γ → R+

satisfying L(1) = 0, L(g−1) = L(g) and L(gh) ≤ L(g) + L(h) for every
g, h ∈ Γ. We say that a length function is locally bounded if it is bounded
on compacts subsets.

Proposition 4.31. The map N : G(F ) → R+ is a locally bounded length
function on G(F ).

Proof. By definition it is clear that the function N satisfies N (1) = 0 and
N (g) = N (g−1) for every g ∈ G(F ). Now let g, h ∈ G(F ), and let us prove
the inequality N (gh) ≤ N (g) + N (h). Let T be the subtree of Td spanned
by T+

d (h) and T−
d (g), and let T−

d be the preimage by h of the subtree T .
Note that T is a finite rooted complete subtree with at most N (g) + N (h)
internal vertices, and a fortiori the same holds for T−

d . By construction, the
subtree T−

d contains the edges e0 and (gh)−1(e0), and the product gh acts
locally like F outside T−

d . By minimality it follows that T−
d (gh) must be a

subtree of T−
d , and in particular the number of internal vertices of T−

d (gh)
is at most N (g) + N (h).

Finally N is bounded on compact sets because N is equal to zero on
the compact open subgroup U(F )e0

.

So in particular the map N : G(F ) → R+ gives rise to a left invariant
pseudo-metric on G(F ) defined by dist(g, h) = N (g−1h), and the aim of the
rest of this subsection is to prove that when F is transitive, this pseudo-
metric is quasi-isometric to the word metric in G(F ).
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Lemma 4.32. For every g ∈ G(F ), there exist γ ∈ U(F ) and g′ ∈ G(F )v1

such that g = γg′ and N (g′) ≤ N (g) + 1.

Proof. Let g ∈ G(F ). Since the group U(F ) is transitive on the set of
vertices of Td, we can choose some γ ∈ U(F ) such that γ(v1) = g(v1), and
set g′ = γ−1g. Clearly, g′ ∈ G(F )v1

. Let us consider the finite complete
subtree T−

d of Td obtained by adjoining if necessary the star around the
vertex v1 to the subtree T−

d (g). We check that T−
d contains the edges e0 and

g′−1(e0), and that g′ acts locally like F at every vertex of Td which is not an
internal vertex of T−

d . It follows that N (g′) is at most equal to the number
of internal vertices of T−

d , which by construction is at most N (g) + 1.

From now and until the end of 4.3.1, we assume that F is transitive.

For every i ∈ Ω \ {1}, we choose some σi ∈ F such that σi(1) = i. Let
us consider the bi-infinite line ℓi in Td defined by saying that ℓi contains
the edge e0, and the edge of ℓi in L(v0) (resp. L(v1)) at distance n from e0

has color σ−n
i (1) (resp. σn

i (1)). We let hi be the hyperbolic isometry of Td

of translation length 1 whose axis is ℓi, and such that for every v ∈ V(Td),
we have σ(hi, v) = σi. Note that hi belongs to U(F ) and sends the subtree
L(v1) onto the subtree L(vi

1), and h−1
i sends L(v0) onto L(vi

0). Let SH =
{h2, . . . , hd} and S = SH ∪K0(v0) ∪K(v1).

Lemma 4.33. For every g ∈ G(F )L(v0), we have |g|S ≤ 3(d− 1)N (g) + 1.

Proof. First note that any element fixing L(v0) must fixe the vertex v1 as
well. Let us argue by induction on N (g). The case when N (g) = 0 is easily
settled, because N (g) = 0 easily implies that g ∈ U(F )v1

⊂ K(v1), so we
have |g|S ≤ 1. Now assume that the result holds for every g ∈ G(F )L(v0)

with N (g) ≤ n for some integer n ≥ 0, and let g ∈ G(F )L(v0) such that
N (g) = n + 1. We want to prove that the word length of g is at most
3(d − 1)(n + 1) + 1. There exists an element u ∈ K(v1) such that g′ = ug
fixes the star around the vertex v1. Consequently the element g′ can be
written as a product g′ = g2 · · · gd, where gi ∈ G(F ) acts trivially outside
L(vi

1). Moreover we have N (gi) ≤ N (g) and
∑

i N (gi) ≤ N (g) + d − 2,
because the vertex v1 can be counted d − 1 times in the sum, whereas it
is counted only once in N (g). This last inequality can be rewritten as
∑

i(N (gi) − 1) ≤ n. Now for each gi different from the identity, let us
consider the element g′

i = higih
−1
i . By construction of the element hi, the

element g′
i belongs to G(F )L(v0) and satisfies N (g′

i) = N (gi) − 1 ≤ n. By
induction hypothesis, the word length of g′

i is at most 3(d− 1)N (g′
i) + 1. It

follows that the word length of gi is at most 2 + 3(d− 1)N (g′
i) + 1, and we
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obtain

|g|S ≤ 1 +
∑

gi 6=id

|gi|S ≤ 1 +
∑

gi 6=id

(2 + 3(d− 1)N (g′
i) + 1)

≤ 1 + 3(d− 1) + 3(d− 1)
∑

gi 6=id

(N (gi) − 1)

≤ 1 + 3(d− 1) + 3(d− 1)n = 3(d− 1)(n+ 1) + 1.

Remark 4.34. Note that the conclusion of Lemma 4.33 also holds for
elements of G(F )L(v1), just by replacing K(v1) in the proof by K(v0), and
each hi by its inverse.

Corollary 4.35. For every g ∈ G(F )v1
, we have |g|S ≤ 3(d− 1)N (g) + 3.

Proof. Let g ∈ G(F ) fixing the vertex v1. By definition of K(v1), there
exists u ∈ K(v1) such that g′ = ug ∈ G(F ) fixes the edge e0. Note that
since the element u acts locally like F at every vertex different from v1, we
have N (g′) ≤ N (g). Now the element g′ can be written g′ = g′

0g
′
1, where

g′
0 ∈ G(F )L(v0), g′

1 ∈ G(F )L(v1) satisfy N (g′
0) + N (g′

1) = N (g′). Therefore
Lemma 4.33 can be applied to these elements, and we obtain

|g|S ≤ 1+|g′
0|S+|g′

1|S ≤ 1+3(d−1)N (g′
0)+1+3(d−1)N (g′

1)+1 ≤ 3(d−1)N (g)+3.

Lemma 4.36. For every γ ∈ U(F ), we have |γ|S ≤ d(γ(v1), v1) + 1.

Proof. We argue by induction on d(γ(v1), v1). If γ fixes v1 then γ belongs
to K(v1) and therefore |γ|S ≤ 1. Assume that |γ|S ≤ d(γ(v1), v1) + 1
for every γ ∈ U(F ) such that d(γ(v1), v1) ≤ n, and let γ ∈ U(F ) such
that d(γ(v1), v1) = n + 1. If the vertex γ(v1) belongs to the branch L(v1),
then there exists some integer i such that γ′ = h−1

i γ ∈ U(F ) satisfies
d(γ′(v1), v1) ≤ n. By induction hypothesis, the word length of γ′ is at most
n+ 1, and we deduce that |γ|S ≤ n+ 2. Now if γ(v1) belongs to L(v0) then
the same argument can be applied to hiγ for some integer i.

We are finally able to give the following precise estimate of the word
metric in G(F ).

Proposition 4.37. Assume that F ≤ Sym(Ω) is transitive. Then S is a
compact generating subset of G(F ), and for every g ∈ G(F ), we have

N (g) ≤ |g|S ≤ (3d− 2)N (g) + 3d+ 2.
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Proof. The lower bound easily follows from the fact that the function N is
subadditive and takes value 0 or 1 on elements of S. Let us prove the upper
bound. According to Lemma 4.32, one can write g = γg′ with γ ∈ U(F )
and g′ ∈ G(F )v1

such that N (g′) ≤ N (g) + 1. It follows from Lemma 4.36
that the word length of γ satisfies

|γ|S ≤ d(γ(v1), v1) + 1 = d(g(v1), v1) + 1 ≤ N (g) + 2.

On the other hand, we can apply Corollary 4.35 to the element g′, which
yields

|g′|S ≤ 3(d− 1)N (g′) + 3 ≤ 3(d− 1)(N (g) + 1) + 3.

We finally obtain

|g|S ≤ |γ|S +|g′|S ≤ N (g)+2+3(d−1)(N (g)+1)+3 = (3d−2)N (g)+3d+2.

4.3.2 A commensurating action of G(F )

Recall that e0 is a fixed edge of Td having color c(e0) = 1. Let H denote
the open subgroup of G(F ) consisting of elements g stabilizing L(v0) and
such that σ(g, w) ∈ F for every vertex w in L(v0). For every vertex v ∈
V(Td), we let Mv be the set of elements g ∈ G(F ) such that g(L(v0)) = L(v)
and σ(g, w) ∈ F for every vertex w in L(v0).

Lemma 4.38. For every v ∈ V(Td), Mv is either empty or equal to a single
H-coset.

Actually Lemma 4.38 follows immediately from the following two obser-
vations.

Lemma 4.39. For every v ∈ V(Td), we have MvH = Mv.

Proof. If g ∈ Mv and h ∈ H, then (gh)(L(v0)) = g(L(v0)) = L(v), and
for every vertex w in L(v0), we have σ(gh, w) = σ(g, h(w))σ(h,w). Now
σ(h,w) ∈ F because h ∈ H, and σ(g, h(w)) ∈ F because h(w) remains in
L(v0) and g ∈ Mv. So σ(gh, w) ∈ F , and we have proved that gh ∈ Mv.

Lemma 4.40. For every v ∈ V(Td), all the elements of Mv are in the same
left coset of H.

Proof. If g1, g2 ∈ Mv, then (g−1
1 g2)(L(v0)) = g−1

1 (L(v)) = L(v0) and

σ(g−1
1 g2, w) = σ(g1, g

−1
1 g2(w))−1σ(g2, w) ∈ F

for every vertex w in L(v0). So g−1
1 g2 ∈ H.
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Lemma 4.41. For every v ∈ V(Td), the set Mv is empty if and only if the
color of the unique edge of E(v) that is not in L(v) is not in the F -orbit of
1.

Proof. Let v ∈ V(Td), and let ev be the unique edge of E(v) that is not in
L(v), whose color is denoted by iv.

Assume that Mv is non-empty, and let g ∈ Mv. Since g sends the
subtree L(v0) onto L(v), we have g(e0) = ev. But according to Lemma 4.4,
the permutation σ(g, v0) preserves the orbits of F , so it follows that iv is in
the F -orbit of c(e0) = 1.

For the converse implication, let σ ∈ F such that σ(1) = iv. We let γ be
the automorphism of Td define by declaring that γ(v0) = v, and σ(γ, w) = σ
for every vertex w. Clearly γ ∈ U(F ) and by construction γ must send
L(v0) onto L(v) because σ(γ, v0)(1) = iv. So γ ∈ Mv, which is therefore
non-empty.

From now we assume that F is transitive.

According to Lemma 4.41, this assumption ensures that the set Mv is
non-empty for every v ∈ V(Td).

Lemma 4.42. Let v, v′ ∈ V(Td) and g ∈ G(F ). Then gMv and Mv′ are
either disjoint or equal, and gMv = Mv′ if and only if v′ = g(v) and v is
not an internal vertex of T−

d (g).

Proof. The fact that gMv and Mv′ are either disjoint or equal follows im-
mediately from Lemma 4.38. Assume that gMv = Mv′ . Since the sub-
set Mv is non-empty, there exists gv ∈ G(F ) such that gv(L(v0)) = L(v)
and σ(gv, w) ∈ F for every vertex w in L(v0). Since ggv ∈ Mv′ by as-
sumption, we have ggv(L(v0)) = L(v′) and σ(ggv, w) ∈ F for every vertex
w in L(v0). In particular we have g(L(v)) = L(v′), so v′ = g(v). Since
σ(ggv, w) = σ(g, gv(w))σ(gv, w) and σ(ggv, w), σ(gv, w) ∈ F , we obtain that
σ(g, w′) ∈ F for every vertex w′ in L(v). According to (i) ⇒ (ii) of Lemma
4.30, this implies that the vertex v is not an internal vertex of T−

d (g).
Conversely assume that v is not an internal vertex of T−

d (g). According
to the implication (ii) ⇒ (i) of Lemma 4.30, we have g(L(v)) = L(g(v)) and
σ(g, w) ∈ F for every vertex w in L(v). By the same argument as above, it
follows that gMv ⊂ Mg(v), and therefore gMv = Mg(v).

We denote by M ⊂ G(F ) the union of the subsets Mv, when v ranges
over the set of vertices V(Td). Since M is a union of left cosets of H, we
freely identity the subset M of G(F ) with its image in G(F )/H.

Recall that if G is a group acting on a set X, a subset A ⊂ X is
commensurated if #(gA△A) is finite for every g ∈ G.
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Proposition 4.43. The action of G(F ) on G(F )/H commensurates the
subset M . More precisely, we have #(gM△M) = 2N (g) for every g ∈
G(F ).

Proof. Let g ∈ G(F ). According to Lemma 4.42, the subset gM\M is the
union of gMv, where v ranges over the set of internal vertices of T−

d (g). Since
none of these gMv is empty, this union consists exactly in N (g) left cosets
of H, and therefore #(gM\M) = N (g). By applying the same argument
to g−1, we obtain

#(gM△M) = #(gM\M) + #(M\gM) = N (g) + N (g−1) = 2N (g).

By a general principle (see for instance [Cor13]) and using Proposition
4.37, we deduce the following result.

Corollary 4.44. There exist a CAT(0) cube complex C on which G(F ) acts
properly, and a vertex x0 ∈ C such that in the ℓ1-metric, d(gx0, x0) = 2N (g)
for every g ∈ G(F ). In particular the orbital map G(F ) → C, g 7→ gx0, is
a quasi-isometric embedding.

Remark 4.45. The action of G(F ) on this CAT(0) cube complex is not
cocompact when F is a proper subgroup of Sym(Ω), and more generally one
cannot hope that G(F ) acts properly and cocompactly by isometries on a
CAT(0) metric space. The reason is that the existence of such an action
would imply that G(F ) is coarsely simply connected, a contradiction with
Proposition 4.26.
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Chapter 5

Measuring relations in finitely
generated groups

In this chapter we introduce the notion of relation range of a finitely
generated group, which in some sense measures the size of independent
relations appearing in the group. In Section 5.1 we introduce the definitions
and establish some stability properties of this notion. In Section 5.2 we show
how the process of iterating a non-injective epimorphism yields a large class
of examples of groups with relation range as large as possible. Finally
in Section 5.3 we establish a link between the relation range of a finitely
generated group and simple connectedness of its asymptotic cones.

5.1 Relation range

5.1.1 Definition

Let G be a finitely generated group and S a finite generating subset, so
that we have a short exact sequence

1 −→ N −→ FS −→ G −→ 1,

where FS is the free group on S. For every k ≥ 0, we let N(k) be the normal
subgroup of FS generated as such by elements of N or word length at most
k. By definition (N(k)) is an increasing sequence of normal subgroups of
FS ascending to the subgroup N . For every k ≥ 0, we let xG,S(k) be the
shortest length of a relation in G that is not generated by relations of length
at most k − 1, that is

xG,S(k) = min {|n|S : n ∈ N \N(k − 1)} ∈ R+.

Note that the function xG,S : N → R+ is non-decreasing, and xG,S(k) ≥ k
for every k ≥ 0. Note also that one has xG,S(k) = ∞ if and only if N is
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generated as a normal subgroup by its elements of length at most k − 1, so
in particular xG,S(k) = ∞ for k large enough if and only if the group G is
finitely presented.

We denote by RS(G) the set of finite values taken by the function xG,S.
This is the set of integers ℓ ≥ 0 for which there exists a relation in G of
length ℓ that is not generated by relations of length at most ℓ − 1. We
call RS(G) the relation range of the group G with respect to the finite
generating subset S. Note that since xG,S(0) = 0 by construction, the set
RS(G) always contains 0, and is therefore non-empty. Note also that RS(G)
is finite if and only if the group G is finitely presented.

If X,Y are non-empty subsets of N, we say that X and Y are equivalent,
and write X ∼ Y , if log(X) and log(Y ) are at bounded Hausdorff distance
from each other. It is easy to see that this defines an equivalence relation
on the set of non-empty subsets of N, and the class of a subset X will be
denoted [X]. Note that the union operation on the set of equivalence classes
[X] ∪ [Y ] = [X ∪ Y ] is well defined, and the relation defined by [X] ⊂ [Y ] if
there exists X ′ ∼ X and Y ′ ∼ Y such that X ′ ⊂ Y ′ yields an order on the
set of equivalence classes.

Remark 5.1. If G,G′ are finitely generated groups and S, S ′ two finite
generating subsets, then one can check that RS(G) ∼ RS′(G′) if and only
if there exists some constants c1, c2 > 0 so that has

c1xG,S(c1k) ≤ xG′,S′(k) ≤ c2xG,S(c2k)

for every k ≥ 0. This observation will be used repeatedly in the sequel.

Definition 5.2. A finitely generated group G is said to be fully presented
by a finite generating subset S if RS(G) ∼ N. Otherwise G is said to be
lacunary presented by S.

The following result says that the relation range of a finitely generated
group G is an asymptotic invariant of G, in the sense that the equivalence
class of RS(G) does not depend on the choice of the finite generating subset
S.

Proposition 5.3. Let G be a finitely generated group, and S, T two finite
generating subsets of G. Then RS(G) ∼ RT (G).

Proof. We denote by N (resp. N ′) the kernel of the natural morphism
FS → G (resp. FT → G). For every element s ∈ S, we fix a word ws ∈ FT

such that the equality ws = s holds in the group G. Similarly, for every
t ∈ t, we choose a word wt ∈ FS such that the equality wt = t is satisfied
in G. Since the number of words under consideration is finite, there exists
a constant C ≥ 1 such that |ws|T , |wt|S ≤ C for every s ∈ S, t ∈ T .
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Given any word w ∈ FS, we call a substitution of type (i) the action of
replacing every letter s in w by the corresponding word ws in the elements
of T . Similarly, a substitution of type (ii) is the replacement of every letter
of a word in FT by the corresponding word in the elements of S. Note
that given w ∈ FS, a substitution of type (i) followed by a substitution of
type (ii) yields a new word w̄ representing the same element of G. More
precisely, since S and T are finite, there exists an integer k0 ≥ 1 such that
for every w ∈ FS, the two substitution process builds a word w̄ such that
w̄w−1 ∈ N(k0).

Now let w ∈ N , and let w′ denote the word obtained from w after
having performed substitutions of type (i). Note that the length of w′ is
|w′|T ≤ C|w|S, and since w ∈ N , the word w′ belongs to N ′. Assume that
w′ belongs to N ′(m) for some integer m such that Cm ≥ k0. This means
that w′ can be written as a product of conjugates of elements of N ′ of length
at most m. Performing substitutions of type (ii), we build a word w̄ ∈ FS

which is a product of conjugates of elements of N of length at most Cm,
i.e. w̄ ∈ N(Cm). On the other hand it follows from the above observation
that w̄w−1 ∈ N(k0) ⊂ N(Cm) because Cm ≥ k0, so the word w we started
from belongs to N(Cm).

Now let k ≥ k0 +1. We let w ∈ N \N(k−1) be a word such that |w|S =
xS(k), and w′ denote the word obtained from w after having performed
substitutions of type (i). Since w does not belong to N(k−1), it follows from
the last paragraph that w′ does not belong to N ′(m) for m = ⌈(k − 1)/C⌉,
so in particular

xG,T (⌈(k − 1)/C⌉ + 1) ≤ |w′|T ≤ C|w|S = CxG,S(k),

and the result follows by symmetry.

If G is a finitely generated group, we will denote by R(G) = [RS(G)],
where S is a finite generating subset of G, and call it the relation range of
the group G. We will say that the group G is fully presented if R(G) ∼ N,
and lacunary presented otherwise.

5.1.2 Stability properties

In this paragraph we establish stability properties of the relation range.
Recall that a retract H of a group G is a subgroup such that there exists

an epimorphism G։ H whose restriction to H is the identity of H.

Proposition 5.4. Let G be a finitely generated group, and let H be a retract
of G. Then R(H) ⊂ R(G).
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Proof. Let S ′ be a finite generating subset ofG containing a finite generating
subset S of H, and let ϕ : G ։ H be an epimorphism whose restriction to
H is the identity of H. Let w be a relation in the group H in the letters of
S. A fortiori w is a relation in G. If w admits a decomposition in FS′ as
a product of conjugates of elements of smaller length, then replacing each
letter of S ′ by its image by ϕ, we would obtain a decomposition of w in FS

as a product of conjugates of the same elements since ϕ is the identity on
H. It follows that if w is not generated by relations in smaller length in FS,
then the same holds in FS′ , and the result is proved.

The next result shows that the relation range behaves well with respect
to direct and free products.

Proposition 5.5. Let G,H be finitely generated groups. Then

R(G ∗H) ∼ R(G×H) ∼ R(G) ∪ R(H).

Proof. Since both G and H are retracts of G ∗ H and G × H, it follows
from the previous lemma that R(G) ∪ R(H) ⊂ R(G ∗H),R(G×H). Now
by definition every relation in G ∗ H comes either from a relation in G or
in H, so R(G ∗ H) ∼ R(G) ∪ R(H). For the direct product of G and H,
a presentation of it can be obtained by taking presentations of G and H,
and by adding relation forcing generators of G to commute with those of H.
In such a presentation, every relation that is not generated by relations of
length at most 4 comes either from a relation in G or in H, so the conclusion
follows.

In the next result we establish that the relation range of a finitely gener-
ated group is invariant under the operations of modding out by finite normal
subgroup and passing to a finite index subgroup.

Proposition 5.6. Let G be a finitely generated group.

(a) If K⊳G is a finite normal subgroup of G and Q = G/K, then R(Q) ∼
R(G);

(b) If H is a finite index subgroup of G then R(H) ∼ R(G).

Proof. (a). Let S be a finite generating subset of G, whose image in Q is
still denoted by S for simplicity. We let N be the kernel of the morphism
π : FS → G, and N ′ = π−1(K) the kernel of the natural morphism FS → Q.
Since the subgroup K is finite, there exist x1, . . . , xj ∈ N ′ such that N ′ is
the union of left cosets xiN . We fix an integer k0 ≥ 1 such that |xi|S ≤ k0

for every i.
Let k ≥ k0 + 1 and w′ ∈ N ′ \ N ′(k − 1) such that |w′|S = xQ,S(k).

The element w′ belongs to N ′, so there exists xi and w ∈ N such that
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w′ = xiw. Since xi has length at most k0 ≤ k − 1, we have xi ∈ N ′(k − 1).
So w /∈ N ′(k − 1), because otherwise w′ = xiw would belong to N ′(k − 1)
as well, which is a contradiction. A fortiori w /∈ N(k − 1) and we deduce
that

xG,S(k) ≤ |w|S ≤ |w′|S + k0 = xQ,S(k) + k0 ≤ 2xQ,S(k).

We now prove a reverse inequality. Before going into the proof, we make
the observation that for every xi1

, . . . , xiℓ
and every α1, . . . , αℓ ∈ FS, if the

element

w =
ℓ
∏

i=1

αixki
α−1

i

belongs to N then it belongs to N(q) for some bounded integer q ≥ 1.
Indeed, the fact that w belongs to N means that

π(w) =
ℓ
∏

i=1

π(αi)π(xki
)π(αi)

−1

is the identity in G. But now each element π(αi)π(xki
)π(αi)

−1 is an element
of K in G, and this can be seen by imposing a finite number of relations
because K is a finite normal subgroup of G. So the fact that π(w) is the
identity in G is just a relation between elements of K, and since K is finite
all these relations can be deduced from a finite number of them. This proves
the observation.

Now let k ≥ k0 + 1 and w ∈ N \ N(k − 1) such that |w|S = xG,S(k).
Assume that w belongs to N ′(m) for some integer m ≥ 1. Then w can be
written

w =
ℓ
∏

i=1

αiw
′
iα

−1
i

with w′
i ∈ N ′ of length at most m. Now every w′

i can be written w′
i = xki

wi

with wi ∈ N and |wi|S ≤ m+ k0. By substitution we obtain that w can be
written

w =
ℓ
∏

i=1

βixki
β−1

i

ℓ
∏

i=1

αiwiα
−1
i .

Now both the element w and
∏

αiwiα
−1
i belong to N , so it follows that

the element
∏

βixki
β−1

i belongs to N as well. According to the previous
observation, this element belongs to N(m) as soon as m is larger than q.
From this we deduce that both terms in the decomposition of w belong
to N(m + k0), and it follows that w ∈ N(m + k0). But by definition w
does not belong to N(k − 1), so this implies that m + k0 < k − 1. In
particular we have proved that w /∈ N ′(k − k0 − 1), and this implies that
xQ,S(k − k0 − 1) ≤ |w|S = xG,S(k) for every k large enough.

(b). The case of a finite index subgroup uses some rather similar tech-
niques, and we leave the proof to the reader.
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5.2 Direct limits of non-Hopfian groups

5.2.1 Preliminaries

Let us consider the following procedure. Let G be a non-Hopfian finitely
generated group, and let ϕ : G → G be a morphism from G onto G with
non-trivial kernel. Such a data provides an increasing sequence of normal
subgroups of G, namely Kk = ker(ϕk), whose union will be denoted by

Kϕ =
⋃

k≥0

Kk.

We let Gk = G/Kk be the quotient of G by the k-th kernel, and Gϕ = G/Kϕ

be the limit group. In other words, we have a sequence of groups and
epimorphisms

G = G0
π0−→ G1

π1−→ · · · −→ Gk
πk−→ · · ·

whose direct limit is Gϕ.

5.2.2 Direct limits of non-Hopfian groups are fully
presented

With the above notation, it is easy to see that since ϕ has non-trivial
kernel, the inclusion Kk ⊂ Kk+1 is proper for every k ≥ 0. This implies
that Kϕ is not finitely generated as a normal subgroup, and the group Gϕ

is therefore not finitely presented. The following result can be seen as a
strong strengthening of this fact.

Proposition 5.7. Let G be a finitely generated non-Hopfian group and let
ϕ be a non-injective epimorphism. Then the group Gϕ is fully presented.

Proof. Let S be a finite generating subset of G, and π : FS ։ G the
canonical projection. For every k ≥ 0, we denote by Nk = π−1(kerϕk). The
increasing union N∞ of the subgroups Nk is nothing but the kernel of the
natural map from FS to the group Gϕ:

1 −→ N∞ −→ FS −→ Gϕ −→ 1.

For every k ≥ 1 we let N∞(k) be the normal subgroup of FS generated as
such by elements of N∞ of length at most k. We also set

α(k) = min {|w|S | w ∈ N∞ \Nk−1}

and
x(k) = min {|w|S | w ∈ N∞ \N∞(k − 1)} .
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We want to prove that x(k) grows at most linearly.
For any integer k ≥ 1, we let mk be the smallest integer so that the set

of elements of N∞ of word length at most k lies in Nmk
. Note that since

Nmk
is a normal subgroup, we have N∞(k) ⊂ Nmk

.
Let w be a word in N∞ \ Nmk−1 of minimal length, i.e. |w|S = α(mk).

Since the homomorphism ϕ is onto, the set ϕ(S) generates the group G. We
denote by ℓ ≥ 1 the length of the element g = π(w) ∈ G with respect to the
finite generating set ϕ(S). This means that there exist s1, . . . , sℓ ∈ S such
that the equality g = ϕ(s1) . . . ϕ(sℓ) holds in the group G. By construction
the word w′ = s1 . . . sℓ lies in N∞ \ Nmk

, and a fortiori w′ does not belong
to N∞(k). This implies that x(k + 1), which is by definition the smallest
length of an element in N∞ \N∞(k), is at most the length of w′:

x(k + 1) ≤ |w′|S ≤ ℓ = |g|ϕ(S) .

Since two finite generating sets yield bi-Lipschitz equivalent word metrics,
there exists some constant C > 0 such that |g|ϕ(S) ≤ C|g|S. But g = π(w),
so the word length of g with respect to S is at most |w|S = α(mk). Therefore
we have proved that x(k + 1) ≤ Cα(mk). But now by definition of the
integer mk, there exists an element of length at most k in N∞ \Nmk−1. This
implies that α(mk) ≤ k, and combined with the above inequality we obtain
x(k + 1) ≤ Ck.

Remark 5.8. In [GM97, p. 204], a slight variation of the procedure of
iterating a non-injective epimorphism is considered. One can check that the
proof of Proposition 5.7 readily adapts to this construction. This implies in
particular that the Grigorchuk group introduced in [Gri80], which can be
obtained by following the aforementioned procedure [GM97, Theorem 4],
is fully presented. Anticipating Proposition 5.17, this implies in particular
that none of its asymptotic cones are simply connected.

5.2.3 Residually finite and metabelian limits

In this subsection me make the (probably well known) obervations that
when the group Gϕ has certain property (e.g. being residually finite or
metabelian), then actually Gϕ is the largest quotient of G having this prop-
erty. This will be illustrated by various examples in the next paragraph.

If G is group, we denote by Nres the intersection of all finite index normal
subgroups of G, and by Gres = G/Nres its residualization. The group Gres

is the largest residually finite quotient of G, in the sense that any G ։ H
factors through Nres provided that H is residually finite. We also denote
by Gmet the metabelianization of G, i.e. the quotient of G by its second
derived subgroup G′′.

We will make use of the following elementary lemma.
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Lemma 5.9. Let G be a finitely generated group, and ϕ a morphism from
G onto G. Then the kernel of ϕ lies inside Nres.

Proof. We prove that for every k ≥ 1, the kernel of ϕ is contained in all
subgroups ofG of index k. For, we make use of a result due to M. Hall, which
says that the finitely generated group G has a finite number of subgroups
M1, . . . ,Mik

of index k. For i = 1, . . . , ik, set Li = ϕ−1(Mi). Since ϕ is onto,
it can be checked that all the subgroups Li are different and have index k
in G. By the pigeonhole principle, we obtain that the set of subgroups Li

is exactly {M1, . . . ,Mik
}. Being contained in all the Li, the kernel of ϕ is

contained in all the Mi.

Remark 5.10. The above proof also shows that the normal subgroup Nres

is invariant by any morphism from G onto G.

Applying Lemma 5.9 to all positive powers of ϕ, we immediately obtain
the following result.

Proposition 5.11. If G is a finitely generated group and ϕ a homomor-
phism from G onto G, then we have the inclusion Nϕ ⊂ Nres. In particular,
the group Gϕ is residually finite if and only if this inclusion is an equality,
i.e. if and only if Gϕ is the residualization of G.

Remark 5.12. Let G be a finitely generated group. Since finitely generated
metabelian groups are residually finite by a result of P.Hall [Hal59], one has
the inclusion Nres ≤ G′′. It follows that if G is non-Hopfian and ϕ is a
non-injective epimorphism such that the group Gϕ is metabelian, then Gϕ

is exactly the metabelianization of the group G. This situation is illustrated
for instance in Example 5.13.

5.2.4 Examples

In this paragraph we give various examples of groups that can be ob-
tained as direct limits of finitely generated non-Hopfian groups by iterating
a non-injective epimorphism. In particular we highlight the fact that this
class of finitely generated groups seems to be very broad. It follows from
Proposition 5.7 that all the groups appearing in the following examples are
fully presented.

Example 5.13. Let r ≥ 1, and let m,n ≥ 2 be two coprime integers. Let
us consider the group C(m,n, r) defined by the presentation

C(m,n, r) =
〈

x, t | trxmt−r = xn, [txt−1, x] = . . . = [tr−1xt−(r−1), x] = 1
〉

.

This family of groups appeared in [BS76] as a generalization of Baumslag-
Solitar groups, which correspond to the case r = 1. Since m,n ≥ 2 are
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chosen relatively prime, the group G = C(m,n, r) is non-Hopfian. More pre-
cisely, the homomorphism given by ϕ(x) = xm and ϕ(t) = t, is well defined,
surjective but non-injective. In this case the group Gϕ is the metabelian
group Z[1/mn]r⋊M Z, where Z[1/mn] is the additive group of rational num-
bers with denominator a power of mn, and the action is defined by the r×r
companion matrix

M =















0 · · · 0 n/m

1
. . . 0
. . . . . .

...
0 1 0















.

Example 5.14. Let us recall the construction from [Mei82] of non-Hopfian
HNN-extensions. Let A be a finitely generated group and let µ, ν : A → A
be two injective homomorphisms with proper image. Assume that

(a) µ ◦ ν = ν ◦ µ;

(b) 〈µ(A), ν(A)〉 = A;

(c) ∃α /∈ µ(A), β /∈ ν(A); [ν(α), µ(β)] = 1.

Then the HNN-extension of A associated to the subgroups µ(A) and ν(A)

G =
〈

A, t | tµ(a)t−1 = ν(a) ∀a ∈ A
〉

is non-Hopfian. More precisely, the map defined by ϕ(t) = t and ϕ(a) =
µ(a) for every a ∈ A is a non-injective homomorphism from G onto G. One
can check that if moreover A is nilpotent of class s, then the group Gϕ is
(nilpotent of class s)-by-cyclic.

When A = Z2 and µ(x, y) = (x, ny), ν(x, y) = (nx, y) for some integer
n ≥ 2, then the limit group is the metabelian group Z[1/n]2 ⋊Z, where the
action is the multiplication by (n, n−1), which is a well known example of a
finitely generated infinitely presented metabelian group.

When A = H3(Z) is the three dimensional Heisenberg group, and µ, ν
are defined by

µ :







1 x z
1 y

1





 7→







1 x pz
1 py

1





 ,

ν :







1 x z
1 y

1





 7→







1 px pz
1 y

1





 ,

where p is a prime, then one can check that the group Gϕ is the group

A3(Z[1/p]) =







1 Z[1/p] Z[1/p]
pZ Z[1/p]

1





 .
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It is an example of a 3-solvable finitely generated group with non-finitely
generated center.

Example 5.15. Let n ≥ 2, and denote by Fn the ring Z/(n). Consider the
group

Γ =







1 Fn[t±1] Fn[t±1]
tZ Fn[t±1]

1







and its central subgroup

Z =







1 0 Fn[t]
1 0

1





 .

The conjugation by the matrix diag(t, 1, 1) is an isomorphism of Γ, strictly
mapping Z into itself, and thus induces a non-injective epimorphism ϕ of
G = Γ/Z. The union of the iterated kernels of ϕ is easily seen to be the
group Z(Γ)/Z, and thus Gϕ is isomorphic to the quotient of Γ by its center.
Now this group is Fn[t±1]2 ⋊(t,t−1) Z, and is isomorphic to F2

n ≀ Z. It is a
subgroup of index two in the group Fn ≀ Z.

The same procedure can be carried out when considering the subgroup
of GL3(R) generated by







1 1 0
1 0

1





 ,







1 0 0
1 1

1





 and







1 0 0
λ 0

1





 ,

where λ is any transcendental real number. In this situation we obtain Z2 ≀Z
as limit group, which has index two in Z ≀ Z.

5.3 Asymptotic cones of fully presented groups

The following terminology and notation are essentially borrowed from
[Pap96]. We let D = [0, 1]× [0, 1] be the unit Euclidean square of dimension
two, and denote by S1 its boundary. A collection of squares D1, . . . , Dk is
partition of D if Di ∩Dj = ∂Di ∩ ∂Dj whenever i 6= j, and if D is the union
of the squares Di.

If X is a geodesic metric space, a loop in X is by definition a continuous
map c : S1 → X, and we freely identify a loop with its image in X. A
partition π of c is a continuous map extending c to ∂D1 ∪ . . .∪ ∂Dk, where
D1, . . . , Dk is a partition of D. We define the mesh of π as the maximal
length of the paths π(∂Di).
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Lemma 5.16. Let X be a geodesic metric space, and let C = Coneω(X, (xn), (sn))
be an asymptotic cone of X. Then

(a) any loop in C is the ω-limit of a sequence of loops in X;

(b) if c is a loop in C being the ω-limit of a sequence of loops (cn) in X,
then any partition of c is the ω-limit of a sequence of partitions of cn.

Proof. Statement (a) is proved in [Ken12, Lemma 2.2] for paths rather than
loops, but the proof can be easily adapted to realize any loop in C as the
ω-limit of a sequence of loops in X.

Statement (b) is obtained similarly, working in each square of the parti-
tion.

Recall that by a theorem of Gromov, if a finitely generated group G
has all its asymptotic cones simply connected, then G is finitely presented
(and has a polynomially bounded Dehn function) [Gro93]. Of course one
cannot hope to obtain the same conclusion if we weaken the hypothesis
by requiring that one asymptotic cone of G is simply connected, as for
example any non-hyperbolic lacunary hyperbolic group is infinitely pre-
sented [OOS09, Appendix]. Nevertheless, the following result says that if
G has one asymptotic cone that is simply connected, then the group G is
lacunary presented.

Proposition 5.17. Let G be a fully presented finitely generated group.
Then none of the asymptotic cones of G are simply connected.

Proof. Let S be a finite generating subset of G, and let N be the kernel of
the canonical projection FS ։ G. We argue by contradiction, and assume
that there exist a non-principal ultrafilter ω and a scaling sequence (sn)
such that Coneω(G, (sn)) is simply connected. By assumption there exist a
constant C > 0 and a sequence of relations rn ∈ N so that

sn + 1 ≤ |rn|S ≤ C(sn + 1),

and rn does not belong to N(sn). By construction, the sequence of loops
cn : S1 → Cay(G,S) parametrized proportionally to the length associated
to rn yields a loop c : S1 → Coneω(G, (sn)). Since Coneω(G, (sn)) is sup-
posed to be simply connected, the map c : S1 → Coneω(G, (sn)) can be
extended to a continuous function σ : D → Coneω(G, (dn)). Now since
D is compact, the map σ is uniformly continuous, and there exists η > 0
so that dω(σ(t), σ(u)) is at most 1/5 as soon as the distance between t
and u is at most η. Let us consider the partition of D given by the net
{(aη, bη) : a, b ∈ Z, 0 ≤ a, b ≤ 1/η}. Since the mesh of this partition is equal
to 4η, the restriction of σ to this partition yields a partition of the loop c
in Coneω(G, (sn)) of mesh at most 4/5.
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From a geometric point of view, the fact that rn does not belong to the
normal subgroup of N generated by elements of length at most sn implies
that the mesh of any partition of the loop cn is larger than dn. Now we
claim that this implies that the mesh of any partition of the loop c is at
least 1. Indeed according to Lemma 5.16, any partition π of the loop c is the
ω-limit of a sequence of partitions πn of the loop cn in Cay(G,S). Being the
limit over the ultrafilter ω of the mesh of πn rescaled by dn, the mesh of π
is at least 1 by the previous observation. This readily gives a contradiction
with the previous paragraph.

The following is an immediate consequence of Proposition 5.17.

Corollary 5.18. Any finitely generated lacunary hyperbolic group is lacu-
nary presented.

In view of Proposition 5.7, we also deduce the following result.

Corollary 5.19. Let G be a finitely generated non-Hopfian group and let ϕ
be a non-injective epimorphism. Then none of the asymptotic cones of the
group Gϕ are simply connected.

So Proposition 5.17 establishes a link between the relation range of a
finitely generated group and asymptotic properties of the group, and thus
indicates that investigating further the relation range could provide an im-
portant tool to study the asymptotic geometry of finitely generated groups.

154



Open questions

1. Does the metric space Cone(SOL) admit a bi-Lipschitz self-homeomorphism
ϕ so that there exist c1, c2 > 0 such that c1 ≤ d(ϕ(x), x) ≤ c2 for every
x ∈ Cone(SOL) ? A negative answer to this question would imply that
the asymptotic cones of the Lie group H3(R)⋊R are not bi-Lipschitz
homeomorphic to Cone(SOL) (see Section 2.4).

2. Theorem 3.17 asserts that the Dehn function of the group AAut(Td,k)
is asymptotically bounded by the Dehn function of Vd,k. Is the Dehn
function of AAut(Td,k) strictly smaller than the one of Vd,k ?
On the one hand, we observed in Section 3.2 that the group AAut(Td,k)
is the Schlichting completion of Vd,k with respect to a well understood
commensurated subgroup, and it sometimes happen that the Dehn
function becomes smaller after performing such a (non-trivial) com-
pletion. For example the Baumslag-Solitar group BS(1, n) has an
exponential Dehn function for n ≥ 2, while its Schlichting comple-
tion Qn ⋊ Z is Gromov-hyperbolic, and therefore has a linear Dehn
function.
On the other hand, it seems not clear how to deal with the loops in
Vd,k having a large area (see [Gub00]) more efficiently in the group
AAut(Td,k) than in Vd,k.

3. Are the asymptotic cones of AAut(Td,k) (resp. Vd,k) simply connected ?
It seems likely that the results from Section 3.2 (see in particular the
proof of Proposition 3.29) imply that a positive answer for Vd,k would
yield a positive answer for AAut(Td,k).

4. The following question is motivated by Remark 3.77. Does there exist
a CAT(0) metric space X on which the group AAut(Td,k) acts properly
by isometries, and such that for some x0 ∈ X, the orbital map g 7→
g ·x0 is a quasi-isometric embedding ? More generally, does there exist
a quasi-isometric embedding of AAut(Td,k) into a CAT(0) metric space
? The same questions hold for Vd,k as well.

5. Can AAut(Td) be quasi-isometric to AAut(Td′) for d 6= d′ ? Is AAut(Td)
quasi-isometric to a finitely generated group ?
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6. It is a well-known open problem to decide whether there exist finitely
presented groups of intermediate growth. The following question is
strictly weaker: does there exist finitely generated groups of interme-
diate growth that are lacunary presented ?
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