An instance of the Maroni's touch.

Let P_{n} and \mathbb{P}_{n} be monic orthogonal polynomials related to the measures $d \mu(t)$ and $d \tilde{\mu}(t)=\frac{d \mu(t)}{t-c}+\kappa \delta(t-c) d t$. As $\int \mathbb{P}_{n}(t) P_{m}(t) d \mu(t)=\int \mathbb{P}_{n}(t)(t-c) P_{m}(t) \frac{d \mu(t)}{t-c}=$ $\int \mathbb{P}_{n}(t)(t-c) P_{m}(t) d \tilde{\mu}(t)=0$ when $m<n-1$ (the multiplication by $t-c$ kills the
mass point at $c!$), we have the quasi orthogonality representation mass point at $c!$), we have the quasi orthogonality representation
$\mathbb{P}_{n}(x)=P_{n}(x)+c_{n} P_{n-1}(x)$,
what is c_{n} ? The P_{n} s are kernel polynomials, as $d \mu(t)=(t-c) d \tilde{\mu}(t)$ (same killing), so, by Christoffel-Darboux (Pascal would have written "Darboux-Christoffel")
$(x-c) P_{n}(x)=\mathbb{P}_{n+1}(x)-\frac{\mathbb{P}_{n+1}(c)}{\mathbb{P}_{n}(c)} \mathbb{P}_{n}(x)$.
So, $(x-c) P_{n}(x)=P_{n+1}(x)+c_{n+1} P_{n}(x)-\frac{\mathbb{P}_{n+1}(c)}{\mathbb{P}_{n}(c)}\left(P_{n}(x)+c_{n} P_{n-1}(x)\right)$, to compare to the P_{n} recurrence relation, for instance $a_{n}=-\frac{\mathbb{P}_{n+1}(c)}{\mathbb{P}_{n}(c)} c_{n}$, or the eq. for the $c_{n} \mathrm{~S} a_{n}\left(P_{n}(c)+c_{n} P_{n-1}(c)\right)=-\left(P_{n+1}(c)+c_{n+1} P_{n}(c)\right) c_{n}$, etc.

Wimp \& Kiesel [WK] 1.9, 1.15 ask when a combination of P_{n} and P_{n-1} satisfies a recurrence relation of the required form. We want $\mathbb{P}_{n+1}(x)=\left(x-\tilde{b}_{n}\right) \mathbb{P}_{n}(x)-$ $\tilde{a}_{n} \mathbb{P}_{n-1}(x)$ and $P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-a_{n} P_{n-1}(x)$,
$0=\underbrace{P_{n+1}(x)}_{\left(x-b_{n}\right) P_{n}(x)-a_{n} P_{n-1}(x)}+c_{n+1} P_{n}(x)-\left(x-\tilde{b}_{n}\right)\left\{P_{n}(x)+c_{n} P_{n-1}(x)\right\}-$ $\tilde{a}_{n}\left\{P_{n-1}(x)+c_{n-1}\left[P_{n-2}(x)=\frac{-P_{n}(x)+\left(x-b_{n-1}\right) P_{n-1}(x)}{a_{n-1}}\right]\right\}$, whence $[\mathrm{WK}] \S 2$, $x-b_{n}+c_{n+1}-\left(x-\tilde{b}_{n}\right)+\frac{\tilde{a}_{n} c_{n-1}}{a_{n-1}}=-a_{n}-\left(x-\tilde{b}_{n}\right) c_{n}-\tilde{a}_{n}-\frac{\tilde{a}_{n} c_{n-1}\left(x-b_{n-1}\right)}{a_{n-1}} \equiv 0$. They solve these equations, and more difficult ones too, by computer algebra.

Even the great Wolfgang Hahn has to struggle a short while with this problem [H52] p. 95-96, [HChr] eq. (7) and (8), finding that c_{n} is a ratio of solutions of the 3 -term recurrence relation for P_{n}.

Pascal solves the problem in a matter of seconds [M] p. 225, in showing that "il faut et il suffit" that \mathbb{P}_{n} be orthogonal to constants, so, that $c_{n}=-\frac{\int P_{n}(t) d \tilde{\mu}(t)}{\int P_{n-1} d \tilde{\mu}(t)}, n=$ $1,2, \ldots$, and that $\int P_{n}(t) d \mu(t) /(t-c)$ is the numerator polynomial, or first associated orthogonal polynomial $N_{n}(c)+$ a constant times $P_{n}(c)$.

About forms. Pascal writes $L f$ for the more familiar (to whom?) measure writing $\int f(t) d \mu(t)$. Let $M f$ be our $\int f(t)(t-c)^{-1} d \mu(t),(x-c) M$ applied to a test function f gives $L f$ of course, but Maroni's $(x-c)^{-1} L f$ is NOT $M f$, it gives L applied to $(f(t)-f(c)) /(t-c)$, corresponding to $d \mu(t) /(t-c)-m_{0} \delta(t-c) d t$, where m_{0} is the zeroest moment of $d \mu /(t-c)$, reminding the formula of the numerator polynomials: in terms of Kiesel \& Wimps's favorite representations by Stieltjes functions (my favorite too) $F(x)=\int d \mu(t) /(x-t)$, the numerator, or associated, polynomial N_{n} is the polynomial part of

$$
F(x) P_{n}(x)=\int P_{n}(x) d \mu(t) /(x-t)=\underbrace{\int \frac{P_{n}(t)-P_{n}(x)}{t-x} d \mu(t)}_{N_{n}(x)=P_{n-1}^{(1)}(x)}+\underbrace{\int \frac{P_{n}(t)}{x-t} d \mu(t)}_{Q_{n}(x)=O\left(x^{-n-1}\right)}
$$

$$
\text { so } N_{n}(c)=(x-c)^{-1} L P_{n}
$$

Where are forms coming from? They became often used since the 1980s [Brez80] [Draux] and of course [M], shall we speak of a French touch? Pascal thought highly of Geronimus [Geronimus].
[Brez80] C. Brezinski, Padé-Type Approximation and General Orthogonal Polynomials, ISNM, vol. 50, Birkhäuser-Verlag, Basel, 1980,
[Draux] A. Draux, Polynômes Orthogonaux Formels - Applications, Lecture Notes in Mathematics Vol. 974, Springer, 1983.
[Geronimus] J. Geronimus, Sur les polynômes orthogonaux relatifs à une suite de nombres donnés et sur le théorème de W. Hahn. (Russian. French summary), Bull. Acad. Sci. URSS, Sér. math. 4, 215-228 (1940).
[H52] W. Hahn, Über lineare Differentialgleichungen, deren Lösungen einer Rekursionsformel genügen, II. Math. Nachr. 7 (1952), 85-104.
[HChr] W. Hahn, Über Orthogonalpolynome mit besonderen Eigenschaften, in: P.L. Butzer, F. Fehér (eds), E. B. Christoffel, Birkhäuser, Basel 1981.
[M] P. Maroni, Sur la suite de polynômes orthogonaux associée à la forme $u=$ $\delta_{c}+\lambda(x-c)^{-1} L$. (French) [On the sequence of orthogonal polynomials associated with the form $u=\delta_{c}+\lambda(x-c)^{-1} L$.] Orthogonal polynomials and their applications (Vigo, 1988), 124-153, Esc. Téc. Super. Ing. Ind. Vigo, Vigo, 1989, = Period. Math. Hungar. 21 (1990), no. 3, 223-248.
[WK] J.Wimp, H.Kiesel, Nonlinear recurrence relations and induced orthogonal polynomials, Computers \& Mathematics with Applications Volume 28, Issues 1-3, August 1994, Pages 325-332.

Alphonse Magnus

