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Abstract. We consider special families of orthogonal polynomials satisfying differential equa-
tions. Besides known hypergeometric cases, we look especially for Heun ’s differential equa-
tions.We show that such equations are satisfied by orthogonal polynomials related to some classical
weight functions modified by Dirac weights or by division of powers of binomials. An appropriate
set of biorthogonal rational functions, or 2-point Padé approximations, is also described.
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1. Introduction.

Classical orthogonal polynomials satisfy hypergeometric differential equations. Their descrip-
tion fills many textbooks and handbooks [1, 19] [82, §18.3] etc.

The hypergeometric differential equations are second order differential equations of Fuchsian
type with three singular points. The usual canonical setting sends one singular point to ∞ and
the equation is

(u − a)(u − b)

{
d2Y

du2
+

[
γ

u − a
+

δ

u − b

]
dY

du

}

− λY = 0. (1)

For instance Jacobi polynomials, orthogonal with respect to the weight function
(1−x)p(1+x)q on (−1, 1) satisfy (1) with a = −1, b = 1, γ = q+1, δ = p+1, λ = n(n+p+q+1) [1,
22.6.1] [82, §18.3] etc.

The simplest second order differential equation of Fuchsian type just above the hypergeometric
one is the Heun’s equation, after Karl Heun 1859-1929 [89]. It has now four singular points and,
when one of them is sent to ∞, has the form

1



orth pol Heun October 18, 2020 version 3 2

(u − a)(u − b)(u − c)

{
d2Y

du2
+

[
γ

u − a
+

δ

u − b
+

ǫ

u − c

]
dY

du

}

+ (Pu − Q)Y = 0. (2)

Near a, b, or c, a solution behaves like a power (u − a)ρ etc. with ρ(ρ − 1) + γρ = 0, whence
a regular solution (ρ = 0) and a solution showing the exponent 1 − γ, and similar results at the
other singular points.

When u → ∞, a uρ behaviour implies now ρ(ρ− 1) + (γ + δ + ǫ)ρ + P = 0 ⇒ ρ = −α and −β,
where α+β = γ + δ+ ǫ−1 and αβ = P [61, Example 3, p. 394], [11,27,37,58,60,87,89,92], that’s
where the symbols α and β are used, and they will not be found with another meaning here.

However, orthogonal polynomials related to what seems the simplest generalization of a Jacobi
weight function w(x) = xp(1 − x)q(x − t)r are shown to satisfy a differential equation more
complicated than (2). This will be considered in § 2.2.

Non classical orthogonal polynomials satisfying differential relations and equations have been
studied in the 19th century by Laguerre [73] these polynomials are sometimes called semi-classical,
the corresponding measure may contain point masses

dµ(x) = w(x)dx +
∑

k

ρkδ(x − ξk)dx,

where w satisfies W (x)w′(x) = V (x)w(x) with polynomials W,V [39,56,85,86]. The orthogonal
polynomials P0, P1, . . . are found to be solutions of linear second order differential equations, a
different equation for each new degree. See also Atkinson & Everitt [6], Shohat [91].

Semi-classical orthogonal polynomials which are not classical are not eigenfunctions of a second
order differential operator. A very small number of higher order operators with a set of polynomial
eigenfunctions of all degrees have been found [72,76,107]

Recently, more second order operators with polynomial eigenfunctions have been investigated,
where some degrees are missing, although the set of eigenfunctions is complete in a reasonable
L2−space. These new families are often called ”exceptional orthogonal polynomials” [12, 13, 43–
45,59,83].

After some transformations, the invariant, or Schrödinger, form is considered,

LY = d2Y/dX2 + VY,

leading to research on interesting new special potentials V with simple formulas of eigenfunctions
[62,63,83,84],

Heun’s differential equation is of course the first choice of this theory [20, 21, 27–33, 50, 63, 95]
, [61, Example 3, p. 394], we give a short survey and some new proofs in § 4.

2. Semi-classical orthogonal polynomials satisfying Heun’s

differential equations.

After an introduction to basic tools (recurrence relation, etc.) in § 2.1, and excerpts of the
Laguerre theory of differential equations in § 2.2, we conclude that the measure must be a Jacobi
measure plus a point mass, a complete proof being given. Addition of a point mass is discussed in
§ 2.4, using a technique of W. Hahn, also following Belmehdi, Maroni, and Kiesel & Wimp. The
last sections give more details on the recurrence relation and the differential equation, special and
limit cases (Laguerre-type and Hermite-type).
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2.1. Recurrence relations and Stieltjes-Markov function.

Let P0, P1, . . . , be orthogonal polynomials with respect to the measure

dµ(x) = w(x)dx +
∑

k ρkδ(x − ξk)dx,

∫ b

a
Pm(x)Pn(x)dµ(x) = 0 if m 6= n.

Here, w is piecewise analytic and need not be a positive weight function, not even a true
integrable function on (a, b), the integral may have to be considered on a particular contour,
including a double loop called Pochhammer contour [82, pp. 326, 389], such contours are needed
with Jacobi weights with negative exponents [102, §12.43, p.257].

A finite number of point masses may also be present. Of course, we could use a more abstract
setting with a linear form [16,17,78,80], but the function w will be too useful later on.

Such orthogonal polynomials must satisfy a recurrence relation of the following form [16,17,19,
34,41,65] etc.

Pn+1(x) = (rnx + r′n)Pn(x) − snPn−1(x), P−1(x) ≡ 0, P0(x) ≡ 1. (3)

Pn has degree n and its main coefficient is Xn = r0 · · · rn−1. Sometimes we will need the
coefficient Yn = Xntn of xn−1 as well: Yn+1 = rnYn + r′nXn, or tn+1 = Yn+1/Xn+1 = tn + r′n/rn,
so

Pn(x) = r0 · · · rn−1(x
n + tnxn−1 + · · · ), tn =

r′0
r0

+ · · · + r′n−1

rn−1
. (4)

and a relation for the square norms ‖Pn‖2 =

∫ b

a
P 2

n(x)dµ(x) = r0 · · · rn−1

∫ b

a
xnPn(x)dµ(x):

0 =

∫ b

a
xn−1Pn+1(x)dµ(x) = rn

∫ b

a
xnPn(x)dµ(x) − sn

∫ b

a
xn−1Pn−1(x)dµ(x), or

rn‖Pn‖2 = rn−1sn‖Pn−1‖2 (5)

We will also need the numerator polynomials satisfying the same recurrence relation (3):

Nn+1(x) = (rnx + r′n)Nn(x) − snNn−1(x), N0(x) ≡ 0. (6)

Nn(x)

Pn(x)
=

N1

r0x + r′0 −
s1

. . .

rn−2x + r′n−2 −
sn−1

rn−1x + r′n−1

P0 = 1, P1(x) = r0x + r′0, P2(x) = (r0x + r′0)(r1x + r′1) − s1.
N0 = 0, N1 is a constant, N2(x) = (r1x + r′1)N1, etc.
Note that the degree of Nn is n−1. One sometimes prefers to write Nn(x) = Pn−1(x; 1), called

the first associated polynomial to {Pn} [74,75,98,104].
The Stieltjes-Markov function related to the measure dµ is

S(x) =

∫ b

a

dµ(t)dt

x − t
=

µ0

x
+

µ1

x2
+ · · · , x /∈ [a, b] (7)

where µk =
∫ b
a tkdµ(t), k = 0, 1, . . . , are the power moments of dµ. The shown expansion in

negative powers of x is an asymptotic expansion at x → ∞. If (a, b) is bounded, the expansion is
convergent for all real or complex x with |x| > max(|a|, |b|) [98], [101, chap. XIII, XIV].

A very important solution of the recurrence relations (3-6) is given by the functions of the

second kind
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Qn(x) =

∫ b

a

Pn(t)dµ(t)

x − t
= Pn(x)S(x) − Nn(x), n = 0, 1, . . . (8)

[97, §5.4] [98]. Under mild conditions (determinated case of the moment problem), if x is not
in the support of dµ, Qn(x)/Pn(x) → 0 which also means that Nn(x)/Pn(x) → S(x) when
n → ∞, [40], [41, Thms 1.41, 1.43].

Of course, S = Q0. Next, Q1(x) = r0(x − µ1/µ0)(µ0/x + µ1/x
2 + µ2/x

3 + · · · ) − r0µ0 =

r0(µ2 − µ2
1/µ0)/x

2 + o(x−2) = s1µ0/(r1x
2) + o(x−2). We also have Pn(x)Qn(x) =

∫ b

a

P 2
n(t)dµ(t)

x − t
[98, (2.8)] [97, §5.4.3], so that the expansion of Qn(x) in negative powers of x starts with
‖Pn‖2 = s1 · · · snr0µ0/rn

r0 · · · rn−1 xn+1
.

There is another interesting property of Pn(x)Qn(x) related to the inverse of the tridiagonal
matrix of the recurrence relation (3) see Wall [101, §60]







r0x + r′0 −1
−s1 r1x + r′1 −1

−s2 r2x + r′2 −1
. . .

. . .
. . .



















AP0(x)
...

APn−1(x)
APn(x)

BQn+1(x)
...












=












0
...
0
1
0
...












giving the nth column of the

inverse matrix if APn(x) = BQn(x) and −snAPn−1(x) + (rnx + r′n)APn(x)
︸ ︷︷ ︸

APn+1(x)

−BQn+1(x) = 1, so

the nth (starting with 0) diagonal element of the inverse matrix is APn(x) =
Pn(x)

Pn+1(x) − Pn(x)Qn+1(x)/Qn(x)
=

Pn(x)Qn(x)

s1 · · · snr0µ0
(Casorati)

Pn(x)Qn(x)

s1 · · · snr0µ0
=

1

rnx
− r′n

r2
nx2

+ o(x−2), or

Pn(x)Qn(x) = s1 · · · snr0µ0

[
1

rnx
− r′n

r2
nx2

]

+ o(x−2)

Divide by Pn(x) = r0 · · · rn−1x
n
[
1 + tn/x + o(x−1)

]
:

Qn(x) =
s1 · · · snr0µ0

r0 · · · rnxn+1
[1 − tn+1/x] + o(x−n−2) from tn+1 = tn + r′n/rn in (4).

We shall need another division by Pn

Qn(x)

Pn(x)
=

s1 · · · snr0µ0

r2
0 · · · r2

n−1rnx2n+1
[1 − (tn + tn+1)/x] + o(x−2n−2). (9)

2.2. Differential relations and equations.

Differential properties are not to be expected in general, unless the weight function itself satisfies
a differential equation. In the simplest case, if w′/w is a rational function piecewise in (a, b), i.e.,
up to a finite number of singular points, the same rational function V/W on each subinterval, the
Stieltjes-Markov function satisfies

WS′ = V S + U (10)

with polynomial coefficients, the Laguerre’s starting point [73] (almost the same notation).
Indeed, we perform (7) on subintervals (ai, bi) where w is regular, and add the effect of possible

Dirac masses as a rational function R:
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S(x) =
∑

i

∫ bi

ai

w(t)dt

x − t
+ R(x),

W (x)S(x) =
∑

i

[∫ bi

ai

[W (x) − W (t)]w(t)dt

x − t
+

∫ bi

ai

W (t)w(t)dt

x − t

]

+W (x)R(x), where the integrals

involving (W (x) − W (t))/(x − t) are polynomials, as well as the product WR, if we care to have
W to vanish at every singular point. We derivate, and perform integration by parts, using the
rational function w′/w = V/W ,

(W (x)S(x))′ =
∑

i

∫ bi

ai

(V (t) + W ′(t))w(t)dt

x − t
+ polynomial ,

and we get (10), where U is still another polynomial, if we added a sufficient number of common
factors to V and W to have a polynomial product (V + W ′)R. For instance we will find in the
next section an example with R(x) = κ/(x − a) and W (x) = (x − a)2(x − b), V (x) being (x − a)
times a first degree polynomial.

We may also perform all the operations of calculus on distributions containing Dirac distribu-
tions and their derivatives xδ(x) = 0, xδ′(x) = −δ(x) [24, Problem 9.8].

Let the expansions of the polynomials W and V be W (x) =
∑s+2

0 wkx
k and V (x) =

∑s+1
0 vkx

k,
then putting these expansions in (10), using the power moments expansion (7), we get the recur-
rence relation for these moments

−
s+2∑

k=0

wk(n + k)µn−1+k =

s+1∑

k=0

vkµn+k, n = 0, 1, . . . (11)

which is equivalent to (10) [80, eq. (7.2)] [81, Prop. 1.21].
From (10), Laguerre achieved a number of remarkable results culminating in the differential

equation

P ′′

n +

{
V + W ′

W
− Θ′

n

Θn

}

P ′

n +
Kn

WΘn
Pn = 0, (12)

[73], where Θn and Kn are polynomials. In particular,

Θn = W (NnP ′

n − N ′

nPn) + V NnPn + UP 2
n

= P 2
n

[

W

(

S − Nn

Pn

)′

− V

(

S − Nn

Pn

)]

= P 2
n

[

W

(
Qn

Pn

)′

− V

(
Qn

Pn

)]

(13)

from (8)
As S(x)−Nn(x)/Pn(x) = Qn(x)/Pn(x) = O(x−2n−1) (Padé property), the degree of Θn is s =

max (degree(W )−2, degree(V )−1), the class of the semi-classical orthogonal polynomials [9,10].
We look at the coefficients of xs and xs−1 of Θn(x), let
W (x) = Ws+2x

s+2 + Ws+1x
s+1 + · · · , and V (x) = Vs+1x

s+1 + Vsx
s + · · · ,

then (13) becomes
Θn(x) = s1 · · · snr0µ0/rn

[
x2n + 2tnx2n−1 + · · ·

] {
(Ws+2x

s+2 + Ws+1x
s+1 + · · · )

[
−(2n + 1)x−2n−2 + (2n + 2)(tn + tn+1)x

−2n−3 + · · ·
]
− (Vs+1x

s+1 + Vsx
s + · · · )

[
x−2n−1 − (tn + tn+1)x

−2n−2 + · · ·
]}

, from (4) and (9) put in (13), or
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Θn(x) = −s1 · · · snr0µ0

rn
{((2n + 1)Ws+2 + Vs+1)x

s

+ [((2n + 1)Ws+2 + Vs+1)(tn − tn+1) + (2n + 1)Ws+1 + Vs − Ws+2(tn + tn+1)] x
s−1 + · · ·

}
(14)

When s = 1, there is no · · · anymore, and Θn(x) = Θ′
n(x − θn), with

θn = tn+1 − tn +
W3(tn + tn+1) − (2n + 1)W2 − V1

(2n + 1)W3 + V2
. (15)

With a Jacobi weight, W (x) = (x− a)(x− b), Θn is a constant, and we have only two singular
points in the finite plane. No wonder, as one just recovers then the hypergeometric differential
equation of Jacobi orthogonal polynomials!

However, with the simplest generalized Jacobi weight (x− e)p(x− d)q(x− c)r, the degree of Θn

now raises to 1, and we have four singular points in the finite plane, one too much!
(12) becomes (when c = 0, d = 1, e = t)

P ′′
n +

{
r + 1

x
+

q + 1

x − 1
+

p + 1

x − t
− 1

x − θn

}

P ′
n +

λnx2 + ωnx + ω′
n

x(x − 1)(x − t)(x − θn)
Pn = 0, which is NOT

of Heun’s type, and where θn, λn etc. depend on n and, if also considered as functions of t, may
be shown to be Painlevé functions [22,77].

Invariant, or Schrödinger form: we see that Zn(z) = x(r+1)/2(x − 1)(q+1)/2(x − t)(p+1)/2(x −
θn)−1/2Pn(x) satisfies the equation without first order derivative Z ′′

n+InZn = 0, with the invariant

In(x) = −
(

Z ′
n

Zn

)′

−
(

Z ′
n

Zn

)2

. Here,

In(x) =
(r + 1)/2

x2
+

(q + 1)/2

(x − 1)2
+

(p + 1)/2

(x − t)2
− 1/2

(x − θn)2
+

λnx2 + ωnx + ω′
n

x(x − 1)(x − t)(x − θn)

−
(

(r + 1)/2

x
+

(q + 1)/2

x − 1
+

(p + 1)/2

x − t
− 1/2

x − θn

)2

(16a)

considered by D. Chudnovsky [22, eq. (3.5) p.401] to compare with Heun’s eq. with invariant

Ih(x) =
Px − Q

x(x − 1)(x − c)
− 1

4

(
γ

x
+

δ

x − 1
+

ǫ

x − c

)2

+
1

2

(
γ

x2
+

δ

(x − 1)2
+

ǫ

(x − c)2

)

(16b)

[33,63]
Of course, the only way to have In(x) ≡ Ih(x) in (16a) and (16b) is by the confluence of two

singular points, here, t → 0. Then, γ = p + r + 2, δ = q + 1, ǫ = −1, c = θn, and we will also have
to check that ω′

n = 0.

We return to the example of the simplest generalized Jacobi weight
w(x) = (x − c)r(x − d)q(x − e)p, satisfying Ww′ = V w with the polynomials
W (x) = (x − c)(x − d)(x − e) and V (x) = r(x − d)(x − e) + q(x − c)(x − e) + p(x − c)(x − d)

and look at what happens when d → c. However, the actual complete description of the weight
function is some constant C times (x − c)r(d − x)q(e − x)p on the subinterval (or arc) (c, d), and
another constant D times (x − c)r(x − d)q(e − x)p on (d, e), see fig. 1.

If we make d → c, do we return to a simple Jacobi weight D(x − c)r+q(e − x)p on the whole

interval (c, e)? No. If C depends on d − c so that the total weight
∫ d
c w(x)dx on (c, d) has

a nonzero limit, say, κ, the true limit of the measure on its whole support [c, e] is dµ(x) =
D(x− c)r+q(e− x)pdx + κδ(x− c)dx [9, eq. 4.27, p. 265](C must have a (d− c)−r−q−1 behavior).

Remark also that x − c is a common factor of the limits W (x) → (x − c)2(x − e) and
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x

c d e

C(x − c)r(d − x)q(e − x)p

D(e − x)p(x − d)q(x − c)r

Figure 1. Generalized Jacobi weight on two subintervals (c, d) and (d, e).

V (x) → (x − c)[(r + q)(x − e) + p(x − c)], so that δ(x − c) is indeed a particular solution of
Wy′ = V y, see the simplest example of Encyc [100], also Davies [24, Problem 9.8] x2δ′(x) and
xδ(x) ≡ 0.

Here is a complete proof that orthogonal polynomials satisfying Heun’s equations must be
related to a Jacobi weight augmented by a point mass:

2.3. Theorem. Let {Pn}∞0 be a sequence of orthogonal polynomials, degree(Pn) = n. Then, if

each Pn satisfies a Heun’s differential equation

(x − an)(x − bn)(x − cn)

{
d2Pn(x)

dx2
+

[
γn

x − an
+

δn

x − bn
+

ǫn

x − cn

]
dPn(x)

dx

}

+ Kn(x)Pn(x) = 0,

(17)
with distinct an, bn, cn in the finite complex plane, and first degree polynomials Kn, we have

(1) two of an, bn, cn are independent of n, say, an = a, bn = b,
(2) the orthogonality measure has support [a, b], and is dµ(x) = w(x)dx+ κδ(x− c)dx, where

w is a Jacobi weight function λ(b − x)p(x − a)q, and c = a or c = b,
(3) let c = a, then γn = q + 2, δn = p + 1, ǫn = −1.

The full formulas for cn and the coefficients of the first degree polynomials Kn will be given in

sections 2.4-2.8.

Proof. The first part of the proof comes from a paper [54] where W. Hahn supposes the
existence of second order differential equations (not necessarily of the Heun kind) for each Pn,
and supposes nothing on the orthogonality measure, which could not exist, but even in the most
formal setting [16,17,34,42,78,80], we have the recurrence relation (3), where one only supposes
sn 6= 0, n = 1, 2, . . . so that Pn and Pn−1 have never common zeros. Then, the (difficult) proof
of Hahn produces various differential relations resulting in the disclosure of a linear recurrence
relation of the form (11), so that we are back to the Laguerre-Shohat-Atkinson-Everitt theory of
(10). From this equivalence of Laguerre and Hahn theories, the name Laguerre-Hahn is sometimes
used [14,39,85].

We compare now the coefficient of dPn(z)/dz in (12) and (17):
V (x) + W ′(x)

W (x)
− Θ′

n(x)

Θn(x)
=

γn

x − an
+

δn

x − bn
+

ǫn

x − cn

If degree(W ) 6 2, we are back to the hypergeometric case instead of a true Heun situation,
if degree(W ) > 3, we saw that degree(Θn) > 1, and that makes at least four bounded poles,

unless
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W has a double zero, say W (x) = (x − a)2(x − b), so the three poles are a, b, and the zero θn

of Θn.
As V/W has simple poles, V must vanish at the double zero of W :

V (x) = (x− a)[p(x− a)+ q(x− b)], so
w′(x)

w(x)
=

γ − 2

x − a
+

δ − 1

x − b
. Let γ = q + 2, δ = p + 1, w(x) =

λ(x − a)q(b − x)p on (a, b).

Finally, WS′−V S = U , what is U? Let S(x) =

∫ b

a

w(t)dt

x − t
+ R(x), where R takes the singular

part of the measure into account. Let {µ̃n}∞0 be the power moments of w alone.
We start with (x−a)(x−b)S′(x)−[p(x−a)+q(x−b)]S(x), which is not W (x)S′(x)−V (x)S(x) =

U(x), but the rational function U(x)/(x − a).

(x − a)(x − b)S(x) = N(x) −
∫ b

a
λ

(b − t)p+1(t − a)q+1

x − t
dt + (x − a)(x − b)R(x),

where N is the polynomial N(x) =

∫ b

a

(x − a)(x − b) − (t − a)(t − b)

x − t
w(t)dt = µ̃0x + · · · , and

µ̃0 =

∫ b

a
w(t)dt = λ

∫ b

a
(b − t)p(t − a)qdt = λ(b − a)p+q+1B(q + 1, p + 1)

= λ(b − a)p+q+1 Γ(p + 1)Γ(q + 1)

Γ(p + q + 2)
.

d[(x−a)(x− b)S(x)]/dx = µ̃0 −λ

∫ b

a

d[(b − t)p+1(t − a)q+1]/dt

x − t
dt+ d[(x−a)(b−x)R(x)]/dx =

µ̃0 − (p + q + 2)µ̃0 + [(p + 1)(x − a) + (q + 1)(x − b)][S(x) − R(x)] + [(x − a)(x − b)R(x)]′,

(x − a)(x − b)S′(x) − (p(x − a) + q(x − b))S(x)
= −(p + q + 1)µ̃0 + (x − a)(x − b)R′(x) − [p(x − a) + q(x − b)]R(x), see Grosjean [49, eq. (80)
p. 283], which is the rational function U(x)/(x − a), so we have a differential equation for R.
The general solution of the homogeneous equation is constant times (x − a)q(x − b)p discarded
if p + q + 1 6= 0, as R(x) ∼ (µ0 − µ̃0)/x for large x. A particular solution is κ/(x − a). Indeed,
U(x) = −(p + q + 1)µ̃0(x− a)− κ[p(x− a) + (q + 1)(x− b)], so that κ = U(a)/[(q + 1)(b− a)]. Of
course, κ/(x − a) is the Stieljes-Markov function of κδ(x − a), and we complete the proof:

dµ(x) = λ(x − a)q(b − x)pdx + κδ(x − a)dx. �

See also Belmehdi [9, eq. (4.27), p. 265].

More details on the recurrence coefficients, on θn = cn, and Kn(0) in Kn(x) = K ′
nx + Kn(0),

with K ′
n = −n(n + p + q + 1), will now be given.

2.4. Addition of a mass point.

We survey known results about a single mass point addition.
Let us consider the measure

dµ(x) = w(x)dx + κδ(x − c)dx, (18)

where w is a known weight function. The orthogonal polynomials Pn with respect to dµ are
often given by their expansion in the basis of the orthogonal polynomials P̃m with respect to
w alone, and this involves the corresponding kernel polynomial of degree n (simplest Uvarov
formula, [65, 2.9] [88]).

Indeed, if m < n, 0 =

∫ b

a
Pn(x)P̃m(x)dµ(x) =

∫ b

a
Pn(x)P̃m(x)w(x)dx + κPn(c)P̃m(c), so

that the mth coefficient in the expansion of Pn in the {P̃m} basis is −κPn(c)P̃m(c)/‖P̃m‖2, and
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the closure Pn(c) = Pn(c) involves the kernel polynomial k̃n−1(x; c) =

n−1∑

0

P̃m(x)P̃m(c)/‖P̃m‖2.

Building and using kernel polynomials may be difficult in general, but k̃n is known to be the
orthogonal polynomial of degree n with respect to (x − c)w(x) which may be easier to handle.
For instance, we shall use the Jacobi weight w(x) = (b − x)p(x − a)q on (a, b) and c = a so that
(x − c)w(x) is still a Jacobi weight (with parameters p and q + 1).

So, we start with the set {P̂n} of orthogonal polynomials with respect to
ŵ(x)dx = (x− c)w(x)dx, which is the same measure as (x− c)dµ(x), as (x− c)δ(x− c) ≡ 0 [24,

Problem 9.8] so P̂n is some constant, say Cn times the kernel polynomial kn (and also another

constant C̃n times k̃n, which will not be needed here).

P̂n(x) = Cnkn(x; c) = Cn

n∑

0

Pm(c)Pm(x)

‖Pm‖2
= Cn

Pn(c)Pn+1(x) − Pn+1(c)Pn(x)

rn‖Pn‖2(x − c)
(19)

the last term being Christoffel-Darboux. We shall need the relations between the moments µn of
dµ and µ̂n of ŵ(t)dt = (t − c)w(t)dt = (t − c)dµ(t):

µ̂n =

∫ b

a
tn(t − c)dµ(t) = µn+1 − cµn, n = 0, 1, . . . (20)

so that µ1 = µ̂0 + cµ0, µ2 = µ̂1 + cµ̂0 + c2µ0 etc. if the µ̂ns are known. The value of µ0 remains a
degree of liberty.

First polynomials are P0 ≡ 1 with ‖P0‖2 = µ0, and P1 with P1(x) = r0(x − µ1/µ0) = r0(x −
c − µ̂0/µ0), ‖P1‖2 = r2

0(µ2 − µ2
1/µ0) = r2

0(µ̂1 − cµ̂0 − µ̂2
0/µ0) = r2

0µ̂0(−r̂′0/r̂0 − c − µ̂0/µ0)

The first Cns are C0 = ‖P0‖2 = µ0;C1 = the ratio of the main coefficients of P̂1 and k1:

C1 =
r̂0

r0P1(c)/‖P1‖2
=

r̂0µ̂0(−r̂′0/r̂0 − c − µ̂0/µ0)

−µ̂0/µ0
,

C0 = µ0; C1 = µ0(r̂0c + r̂′0) + µ̂0r̂0. (21)

We have

Pn(x) =
‖Pn‖2

Pn(c)
(kn(x; c) − kn−1(x; c)) =

‖Pn‖2

Pn(c)

(

P̂n(x)

Cn
− P̂n−1(x)

Cn−1

)

(22)

giving Pn as a combination of P̂n and P̂n−1 (the coefficients Cn, Pn(c), etc. being still unknown).
W. Hahn discussed in [51,52], how to form a new sequence of orthogonal polynomials {Pn} from

a known set {P̂n} satisfying a differential equation (12). He found the new differential equation

solved by a combination of P̂n and P̂n−1 provided that the combination is such that it makes
an actual set of orthogonal polynomials satisfying a recurrence relation of the required form (3).

There is no weight function discussion there, but Hahn’s results on Pn and P̂n are equivalent to
(19).

When there are several mass points, Pn is a combination of a higher number of P̂n, . . . , P̂n−s

which may be condensed as a polynomial combination P̂n and P̂n−1, as found in Ronveaux &
Marcellán [88, eq. (13)], also Kiesel & Wimp [69,105].

We now look for a recurrence relation for the Cns. Hahn [51, p.95-96], [52], and Kiesel &

Wimp [105] relate the recurrence coefficients of the Pns and the P̂ns and find a four-term recurrence
relation for Cn, curiously simplified as a three-term one. We follow the much faster derivation of
Maroni [79], the result is that Cn satisfies the recurrence relation of P̂n at x = c:

Cn+1 = (r̂nc + r̂′n)Cn − ŝnCn−1, n = 1, 2, . . . (23)

Zhedanov [107, § 6] gives the same result from papers of Geronimus of 1940.
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Indeed, it is obvious from (22) that Pn(x) is orthogonal to all polynomials (x − c)p(x) with

degree p < n − 1, as P̂n and P̂n−1 are orthogonal to polynomials up to the degree n − 2 with
respect to ŵ(x) = (x − c)w(x) = (x − c)dµ(x). It only remains to settle Cn so that Pn in (22) is
orthogonal to the constants with respect to dµ:

0 =
∫ b
a Pn(x)dµ(x) =

‖Pn‖2

Pn(c)

(∫ b
a P̂n(x)dµ(x)

Cn
−
∫ b
a P̂n−1(x)dµ(x)

Cn−1

)

, and it follows that

∫ b
a P̂n(x)dµ(x)/Cn is a constant independent of n, and is µ0/µ0 = 1 from (21) at n = 0:

Cn =

∫ b

a
P̂n(x)dµ(x), for n = 0, 1, . . . , (24)

and the 3-term recurrence relation

Cn+1 − (r̂nc + r̂′n)Cn + ŝnCn−1 =

∫ b

a
[P̂n+1(x) − (r̂nc + r̂′n)P̂n(x) + ŝnP̂n−1(x)]dµ(x)

= r̂n

∫ b

a
P̂n(x)(x − c)w(x)dx = 0, n = 1, 2, . . . follows.

Cn is therefore a combination of P̂n(c) and N̂n(c), say, σN̂n(c) + τP̂n(c), n = 0, 1, . . . At
n = 0, τ = µ0 follows; at n = 1, C1 = µ0(r̂0c + r̂′0) + µ̂0r̂0 = σµ̂0r̂0 + µ0(r̂0c + r̂′0), so, σ = 1:

Cn = N̂n(c) + µ0P̂n(c), n = 0, 1, . . . (25)

The Stieltjes-Markov functions of dµ and dµ̂ are related by Ŝ(x) =

∫ b

a

(t − c)w(t)dt

x − t
=

∫ b

a

(t − c)dµ(t)

x − t
=

−µ0 +(x−c)S(x). From S̃(x) =

∫ c

a

w̃(t) = w(t)

x − t
dt, S̃(x) =

∫ c

a

ŵ(t)dt

(t − c)(x − t)
+

∫ b

c

ŵ(t)dt

(t − c)(x − t)
,

and its first moment µ̃0 =

∫ b

a
w̃(t)dt =

∫ c

a

ŵ(t)dt

t − c
+

∫ b

c

ŵ(t)dt

t − c
. We still have Ŝ(x) = −µ̃0 + (x−

c)S̃(x), so

S(x) = S̃(x) +
µ0 − µ̃0

x − c
, confirming the point mass (µ0 − µ̃0)δ(t − c) [79].

2.5. Jacobi weight +κδ(x − a).

2.5.1. Formula for Pn.

We consider dµ(x) = λ(x − a)q(b − x)p + κδ(x − a)dx.
We start with ŵ(x) = λ(b − x)p(x − a)q+1 corresponding to Jacobi polynomials [82, §18.3.1]
P̂n(x) = P

(p,q+1)
n

(
2x − a − b

b − a

)

=
(n + p + q + 2)(n + p + q + 3) · · · (2n + p + q + 1)

2n n!

×
[(

2x − a − b

b − a

)n

+
n(p − q − 1)

2n + p + q + 1

(
2x − a − b

b − a

)n−1

+ · · ·
]

, so that

r̂0 · · · r̂n−1 =
Γ(2n + p + q + 2)

(b − a)nn!Γ(n + p + q + 2)
, t̂n = −n(a + b)/2 +

n(p − q − 1)

2n + p + q + 1

b − a

2
. (26)

Recurrence relation from [82, 18.9.1,2]

P̂n+1(x) =
2n + p + q + 3

(n + 1)(n + p + q + 2)

[
2n + p + q + 2

b − a
(x + t̂n+1 − t̂n)P̂n(x) − (n + p)(n + q + 1)

2n + p + q + 1
P̂n−1(x)

]

.

(27)
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Also, P̂n(a) = P
(p,q+1)
n (−1) = (−1)n

(
n + q + 1

n

)

[82, 18.5.8]

Moments µ̂0 = λ(b − a)p+q+2B(p + 1, q + 2) = (b − a)p+q+2 Γ(p + 1)Γ(q + 2)

Γ(p + q + 3)
,

µ̂1/λ = −(b− a)p+q+3B(p + 2, q + 2) + b(b− a)p+q+2B(p + 1, q + 2) =
(q + 2)b + (p + 1)a

p + q + 3
µ

(p,q+1)
0 ,

Ŝ(x) = µ̂0

[
1

x
+

(q + 2)b + (p + 1)a

(p + q + 3)x2
+

(q + 2)(q + 3)b2 + 2(p + 1)(q + 2)ab + (p + 1)(p + 2)a2

(p + q + 3)(p + q + 4)x3
+ · · ·

]

Finally we need from (25) at c = a, Cn = N̂n(a) + µ0P̂n(a) asking for special values of N̂n

satisfying the Jacobi polynomials recurrence relation (26-27)

2(n+1)(n+p+q+2)(2n+p+q+1)
{

N̂n+1(a) − (2n + p + q + 1)(2n + p + q + 2)(2n + p + q + 3)
(

(n + 1)(p − q − 1)

2n + p + q + 3
− n(p − q − 1)

2n + p + q + 1
− 1

)

N̂n(a)

}

+ 2(n + p)(n + q + 1)(2n + p + q + 3)N̂n−1(a) = 0

First items are N̂0(a) = 0, N̂1(a) =
µ̂0(p + q + 3)

b − a
, N̂2(a) = − µ̂0(p + q + 4)(pq + 4p + 5q + 8 + q2)

2(p + q + 3)(b − a)

Special solutions of the form (−1)n
Γ(n + u)

Γ(n + v)
must satisfy

2(n + 1)(n + p + q + 2)(2n + p + q + 1)(n + u)

n + v
=

(2n+p+q+2)[(2n+p+q+1)(2n+p+q+3)−p2+(q+1)2]−2(n + p)(n + q + 1)(2n + p + q + 3)(n + v − 1)

n + u − 1

Solved by (u, v) = (q + 2, 1), corresponding to P
(p,q+1)
n (−1) = (−1)n

(q + 2) · · · (q + n + 1)

n!
, [82,

table 18.6.1] and also by (u, v) = (p + 1, p + q + 2).

So, N̂n(a) is a linear combination of (−1)n
Γ(n + q + 2)

Γ(n + 1)
and (−1)n

Γ(n + p + 1)

Γ(n + p + q + 2)
and we

match n = 0 and n = 1:

N̂n(a) = (−1)n−1 µ̂0(p + q + 2)

(q + 1)(b − a)

[
Γ(n + q + 2)

Γ(q + 2)Γ(n + 1)
− Γ(p + q + 2)Γ(n + p + 1)

Γ(p + 1)Γ(n + p + q + 2)

]

Interesting confirmation by Lewanowicz [74], also Wimp [104], who considers associated poly-

nomials of level ℓ, R
(α,β)
n (x; ℓ) = P

(α,β)
n (2x − 1; ℓ) [104, eq.(13)], P

(α,β)
n (−1; ℓ)

=
(−1)n

β(α + β + 2ℓ)

[
Γ(ℓ + 1)Γ(n + β + ℓ + 1)(α + β + ℓ)

Γ(β + 1)Γ(n + ℓ + 1)
− ℓΓ(α + β + ℓ + 1)Γ(n + α + ℓ + 1)

Γ(α + ℓ)Γ(n + α + β + ℓ + 1)

]

[104,

(33) p.990], which we apply with p, q + 1, n − 1 and ℓ = 1:

P
(p,q+1)
n (−1; 1) =

(−1)n−1

(q + 1)(p + q + 3)

[
Γ(n + q + 2)(p + q + 2)

Γ(q + 2)n!
− Γ(p + q + 3)Γ(n + p + 1)

Γ(p + 1)Γ(n + p + q + 2)

]

see also [49,75]

N̂n(a) =
(−1)n−1µ

(p,q+1)
0

(b − a)(q + 1)

[

(p + q + 2)
(q + 2)(q + 3) · · · (q + n + 1)

n!
− (p + 1) · · · (p + n)

(p + q + 3) · · · (p + q + n + 1)

]

= µ̂0
1

(b − a)(q + 1)

[

−(p + q + 2)P (p,q+1)
n (−1) + (−1)n

(p + 1) · · · (p + n)

(p + q + 3) · · · (p + q + n + 1)

]

We shall write Cn = N̂n(a) +
(p + q + 2)µ̂0

(b − a)(q + 1)
P̂n(a) + κP̂n(a) instead of N̂n(a) + µ0P̂n(a), and

we show that κ is the Dirac mass, indeed,

µ
(p,q)
0 = µ̃0 = λ

∫ b
a (b−t)p(t−a)qdt = λ(b−a)p+q+1B(p+1, q+1) = λ(b−a)p+q+1 Γ(p + 1)Γ(q + 1)

Γ(p + q + 2)
=

µ̂0(p + q + 2)

(b − a)(q + 1)
, so, µ0 = µ

(p,q)
0 + κ, and dµ(t) = λ(b − t)p(t − a)q + κδ(t − a) is confirmed.
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Final formula for Cn is (−1)n

[

µ
(p,q)
0 (p + 1) · · · (p + n)

(p + q + 2) · · · (p + q + n + 1)
+ κ

(q + 2) · · · (q + n + 1)

n!

]

, so

Cn = (−1)n
[
λ(b − a)p+q+1Γ(p + n + 1)Γ(q + 1)

Γ(p + q + n + 2)
+ κ

(q + 2) · · · (q + n + 1)

n!

]

(28)

See also Zhedanov [107, eq. (7.7)].

Final check from (24) Cn =

∫ b

a
P̂n(x)dµ(x) =

∫ b

a
P̂n(x)[λw(x) + κδ(x − a)]dx

=

∫ b

a
P̂n(x)

[

λ
ŵ(x)

x − a
+ κδ(x − a)

]

dx = λ

∫ b

a
P (p,q+1)

n ((2x − a − b)/(b − a))(x − a)q(b − x)pdx +

κP (p,q+1)
n (−1) = λ(b − a)p+q+1 Γ(q + 1)Γ(p + n + 1)(−1)(−2) · · · (−n)

n!Γ(p + q + n + 2)
+ κP (p,q+1)

n (−1) from [38,

§16.4, (1), (2) p.284] with α = p, β = q + 1, σ = q (a n! seems to be missing in the denominator
of (1)).

Remark that
Cn

Cn−1
= − p + n

p + q + n + 1
if κ = 0; −q + n + 1

n
if λ = 0.

The polynomial Pn(x) is a constant times P̂n(x) − CnP̂n−1(x)

Cn−1
= P

(p,q+1)
n (x) − CnP

(p,q+1)
n−1 (x)

Cn−1

which is here
(n + p + q + 2)(n + p + q + 3) · · · (2n + p + q + 1)

(b − a)n n!

×
[

xn − n(a + b)xn−1/2 + (b − a)
n(p − q − 1)

2(2n + p + q + 1)
xn−1 + · · ·

]

− Cn

Cn−1

(n + p + q + 1)(n + p + q + 2) · · · (2n + p + q − 1)

(b − a)n−1 (n − 1)!
[xn−1 + · · · ].

This means that tn = −n(a + b)

2
+

(b − a)n(p − q − 1)

2(2n + p + q + 1)
− Cn

Cn−1

(b − a)n(n + p + q + 1)

(2n + p + q)(2n + p + q + 1)
.

We will need later

tn+1 = −(n + 1)(a + b)

2
+

(b − a)(n + 1)(p − q − 1)

2(2n + p + q + 3)
− Cn+1

Cn

(b − a)(n + 1)(n + p + q + 2)

(2n + p + q + 2)(2n + p + q + 3)
,

with the recurrence relation (26-27) at x = a giving Cn+1:

Cn+1 =
2n + p + q + 3

(n + 1)(n + p + q + 2)

[
2n + p + q + 2

b − a
(a + t̂n+1 − t̂n)Cn − (n + p)(n + q + 1)

2n + p + q + 1
Cn−1

]

,

(n + 1)(n + p + q + 2)

2n + p + q + 3

Cn+1

Cn
= (2n+p+q+2)

(

−1

2
+

(n + 1)(p − q − 1)

2(2n + p + q + 3)
− n(p − q − 1)

2(2n + p + q + 1)

)

−
(n + p)(n + q + 1)

2n + p + q + 1

Cn−1

Cn
,

tn+1 = −(n + 1)(a + b)

2
+(b−a)

(
1

2
+

n(p − q − 1)

2(2n + p + q + 1)

)

+
(n + p)(n + q + 1)(b − a)

(2n + p + q + 1)(2n + p + q + 2)

Cn−1

Cn
,

2.5.2. Heun’s differential equation for Pn.

We build (12) with V (x)/W (x) = w′(x)/w(x) = q/(x − a) + p/(x − b) and
W (x) = (x − b)(x − a)2, so

P ′′

n (x) +

(
p + 1

x − b
+

q + 2

x − a
− 1

x − θn

)

P ′

n(x) − n(p + q + n + 1)x − Kn(0)

(x − a)(x − b)(x − θn)
Pn(x) = 0 (29)

where θn = tn+1 − tn +
W3(tn + tn+1) − (2n + 1)W2 − V1

(2n + 1)W3 + V2
is given by (15) with W3x

3 + W2x
2 +

W1x + W0 = (x − a)2(x − b) and V2x
2 + V1x + V0 = p(x − a)2 + q(x − a)(x − b):
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θn =
(2n + p + q + 2)tn+1 − (2n + p + q)tn + (2n + 1)(2a + b) + 2pa + q(a + b)

2n + p + q + 1

=
(4n + 3p + q + 2)a + (q − p)b

2(2n + p + q + 1)
+ (b − a)

2n + p + q + 2

2n + p + q + 1

(
1

2
+

n(p − q − 1)

2(2n + p + q + 1)

)

+
(n + p)(n + q + 1)(b − a)

(2n + p + q + 1)2
Cn−1

Cn
− 2n + p + q

2n + p + q + 1

(b − a)n(p − q − 1)

2(2n + p + q + 1)
+

(b − a)n(n + p + q + 1)

(2n + p + q + 1)2
Cn

Cn−1

= a +
(n + q + 1)(b − a)

2n + p + q + 1

(

1 +
n + p

2n + p + q + 1

Cn−1

Cn

)

+
n(b − a)

(2n + p + q + 1)2

(

p − q − 1 + (n + p + q + 1)
Cn

Cn−1

)

One readily checks that θn = a when κ = 0 (then, Cn/Cn−1 = −(p + n)/(p + q + n + 1) as seen
above), and also when λ = 0 (with Cn/Cn−1 = (q + n + 1)/n). As θn − a is a quadratic form
in Cn and Cn−1, so of κ and λ, divided by Cn−1Cn, only the λκ term remains. So we expand

CnCn−1(θn − a) =
b − a

(2n + p + q + 1)2
{(n + q + 1)((2n + p + q + 1)Cn−1Cn + (n + p)C2

n−1) + n((p−
q − 1)Cn−1Cn + (n + p + q + 1)C2

n)} and keep only the λκ terms:

CnCn−1(θn − a) = λκ
(b − a)p+q+2

(q + 1)(2n + p + q + 1)2
Γ(q + 1)

(Γ(q + 2))2
×

[

−[(n + q + 1)(2n + p + q + 1) + n(p − q − 1)]

(
Γ(p + n + 1)Γ(q + n + 1)

Γ(p + q + n + 2)(n − 1)!
+

Γ(p + n)Γ(q + n + 2)

Γ(p + q + n + 1)n!

)

+2(n + q + 1)(n + p)
Γ(p + n)Γ(q + n + 1)

Γ(p + q + n + 1)(n − 1)!
+ 2n(n + p + q + 1)

Γ(p + n + 1)Γ(q + n + 2)

Γ(p + q + n + 2)n!

]

neatly simplifies as

θn = a − (b − a)
(p + 1) · · · (p + n − 1)(q + 1)2(q + 2) · · · (q + n)µ

(p,q)
0 κ

n!(p + q + 2) · · · (p + q + n + 1)Cn−1Cn

= a − (b − a)p+q+2 (q + 1)Γ(p + n)Γ(q + n + 1) λκ

n!Γ(p + q + n + 2) Cn−1Cn

(30)

with Cn−1 and Cn from (28).

We proceed now to the Kn(x) term in the differential equation (29)

Kn(x) = − (x − a)(x − b)(x − θn)P ′′

n
(x) + {[(p + q + 3)x − a(p + 1) − b(q + 2)](x − θn) − (x − a)(x − b)}P ′

n
(x)

Pn(x)

P ′′
n (x)

Pn(x)
=

n(n − 1)xn−2 + (n − 1)(n − 2)tnxn−3 + · · ·
xn + tnxn−1 + · · · = n(n − 1)x−2 − 2(n − 1)tnx−3 + · · · ,

P ′
n(x)

Pn(x)
=

nxn−1 + (n − 1)tnxn−2 + · · ·
xn + tnxn−1 + · · · = nx−1 − tnx−2 + · · · ,

we expand in decreasing powers of x, knowing that the final result is an exact polynomial of
degree 1:

Kn(x) = −n(n − 1)x + 2(n − 1)tn + (a + b + θn)n(n − 1) − (p + q + 2)nx + (p + q + 2)tn
− n[−a(p + 1) − b(q + 2) − (p + q + 3)θn) + a + b]

= −n(n + p + q + 1)x + (p + q + 2n)tn + n(n + p + q + 2)θn + n(n + p − 1)a + n(n + q)b
= −n(n+p+q+1)(x−a)+(p+q+2n)(tn+n(a+b)/2)+n(n+p+q+2)(θn−a)+n(q−p)(b−a)/2

= −n(n+ p + q + 1)(x− a) + (p + q + 2n)
(b − a)n(p − q − 1)

2(2n + p + q + 1)
− Cn

Cn−1

(b − a)n(n + p + q + 1)

2n + p + q + 1
+

n(n + p + q + 2)(θn − a) + n(q − p)(b − a)/2
As in the discussion of θn − a above, CnCn−1Kn(a) is a quadratic form in λ and κ.
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When κ = 0, the Heun’s differential equation is (x − a) times the hypergeometric equation, so

Kn(x) = λn(x− a) = −n(n + p + q + 1)(x− a), θn = a, tn = t̃n = −n(a+ b)/2+
n(p − q)

2n + p + q

b − a

2
from (26) (with (p, q) instead of (p, q + 1)), and there is no λ2 term in CnCn−1Kn(a).

When λ = 0, Pn(x) = P
(p,q+1)
n (x) − CnP

(p,q+1)
n−1 (x)

Cn−1
with

Cn

Cn−1
= −q + n + 1

n
, so tn =

−n(a + b)

2
+

(b − a)n(p − q − 1)

2(2n + p + q + 1)
+

q + n + 1

n

(b − a)n(n + p + q + 1)

(2n + p + q)(2n + p + q + 1)
, θn = a and Kn(a) =

(q+1)(b−a) remains, meaning that the κ2 term in CnCn−1Kn(a) is κ2(q+1)(b−a)
Γ(n + q + 2)Γ(n + q + 1)

n!(n − 1)!(Γ(q + 2))2

Finally, we must look at the λκ term in CnCn−1[(p+q+2n)(tn+n(a+b)/2)+n(q−p)(b−a)/2] =

(p + q + 2n)CnCn−1
(b − a)n(p − q − 1)

2(2n + p + q + 1)
− C2

n

(b − a)n(n + p + q + 1)

2n + p + q + 1
+ n(q − p)CnCn−1(b − a)/2

which is λκ
n(b − a)p+q+2

2(2n + p + q + 1)

Γ(p + n)Γ(q + 1)Γ(q + n + 1)

Γ(p + q + n + 2)n!Γ(q + 2)
×

{−[(p + q + 2n)(p − q − 1) + (2n + p + q + 1)(q − p)][(p + n)n + (p + q + n + 1)(q + n + 1)]
− 4(n + p + q + 1)(p + n)(q + n + 1) = −2(q + 1)(p + n)(2n + p + q + 1)},

and −λκ(b−a)p+q+2 Γ(p + n + 1)Γ(q + n + 1)

Γ(p + q + n + 2)(n − 1)!
comes out, and we add n(n+p+ q +2)(θn −a):

Kn(x) = −n(p + q + n + 1)(x − a) − λκ(b − a)p+q+2 (q + 2)Γ(p + n)Γ(q + n + 1)

Γ(p + q + n + 1)(n − 1)!Cn−1Cn

− (b − a)κ2 (q + 1)(q + 2)2 · · · (q + n)2(q + n + 1)

(n − 1)!n!Cn−1Cn
(31)

For derivatives of Dirac distributions, see Arvesú et al. [5].

2.6. Point masses at the two endpoints.

Orthogonal polynomials with respect to a Jacobi weight plus point masses at the two endpoints
have been considered by H.L. Krall and followers, see [72], also [107], for survey and new results,
and were sometimes called Koornwinder polynomials for a short while after [71] was published, but
the name Koornwinder is associated now to the much deeper subject of orthogonal polynomials
in several variables.

Krall and followers looked for eigenproblems of high order for special choices of the Jacobi
exponents; Koornwinder, and also Kiesel and Wimp [69], showed that a second order differential
equation, normally not of spectral type, can always be exhibited. We show that this equation is
normally not a Heun’s equation, unless in special cases with a transformed variable.

The most elegant way to discuss the new polynomials is to extend the Hahn’s trick of the pre-
ceding section by Pn(x) = a combination of P̂n(x), P̂n−1(x), P̂n−2(x), or P̂n(x) and some product

(unx + vn)P̂n−1(x), where the P̂m are known Jacobi polynomials [69,88].
We don’t try to remake the full derivation here, we just consider a symmetric configuration

where the results of the preceding section can be used.
So, let dµ(x) = λ(1 − x2)rdx + (κ/2)(δ(x − 1) + δ(x + 1))dx on [−1, 1].
1. The polynomial of even degree P2n(x) is the orthogonal polynomial of degree n in the

variable y = 1 − x2 with respect to the measure λyr(1 − y)−1/2dy + κδ(y) on y ∈ [0, 1], and we
apply the Heun equation (29) with a = 0, b = 1, p = −1/2, q = r:
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d2P2n(
√

1 − y)/dy2 +

(
1/2

y − 1
+

r + 2

y
− 1

y − θn

)

dP2n(
√

1 − y)/dy

− n(r + n + 1/2)y − Kn(0)

y(y − 1)(y − θn)
P2n(

√
1 − y) = 0, or1

P ′′
2n(x) + 2

(

− r + 2

1 − x2
+

1

1 − x2 − θn

)

xP ′
2n(x) − 4Kn(1 − x2)

(1 − x2)(1 − x2 − θn)
P2n(x) = 0, with θn,Kn

given by (28), (30), (31) with [a, b, p, q] = [0, 1,−1/2, r].
2. The polynomial of odd degree P2n+1(x) is x times the orthogonal polynomial of degree n in

the variable y = 1− x2 with respect to the measure λyr(1− y)1/2dy + κδ(y) on y ∈ [0, 1], and we
apply the Heun equation (29) with a = 0, b = 1, p = 1/2, q = r:

d2

dy2

P2n+1(x)

x
+

(
3/2

y − 1
+

r + 2

y
− 1

y − θn

)
d

dy

P2n+1(x)

x
+

Kn(y)

y(y − 1)(y − θn)

P2n+1(x)

x
= 0, or

P ′′
2n+1(x) + 2

(

− r + 2

1 − x2
+

1

1 − x2 − θn

)

xP ′
2n+1(x)

+

(
2(r + 2)

1 − x2
− 2

1 − x2 − θn
− 4Kn(1 − x2)

(1 − x2)(1 − x2 − θn)

)

P2n+1(x) = 0, with appropriate θn,Kn(0)

by (28), (30), (31) with [a, b, p, q] = [0, 1, 1/2, r].

2.7. Laguerre-type polynomials. We consider the limit λxqe−x+κδ(x) of λxq(1−x/L)L+κδ(x)
when L → ∞.

We build (12) with V (x)/W (x) = w′(x)/w(x) = q/x − 1 = limit of q/x + p/(x − L) and
W (x) = (x − L)x2, so p and b = L → ∞ together, and we have

P ′′

n (x) +

(

−1 +
q + 2

x
− 1

x − θn

)

P ′

n(x) +
Kn(x)

x(x − θn)
Pn(x) = 0. (32)

where Kn(x) is the limit of Kn(x) of (31) divided by −L. We have therefore a confluent Heun
equation [89, Part B, eq. (1.2.27)].

In (32), θn and Kn(x) depend on the limit of Cn of (28) where λ must be replaced by λ/LL. We
also take the Jacobi polynomials times (−1)n for convenience (the limits are Laguerre polynomials
with main coefficients alternating sign with n). Result is

Cn = λΓ(q + 1) + κ
(q + 2) · · · (q + n + 1)

n!
. It figures: from the general theory of (23) in § 2.4,

the auxiliary polynomials P̂n are the Laguerre polynomials L
(q+1)
n , so that Cn must be solution of

the recurrence relation of L
(q+1)
n (0) : (n+1)Cn+1 = (2n+q+2)Cn−(n+q+1)Cn−1. By (21), C0 =

µ0 =
∫
∞

0 λxqe−xdx+κ = λΓ(q+1)+κ, C1 = µ0(r̂0c+r̂′0)+µ̂0r̂0 = (q+2)(λΓ(q+1)+κ)−λΓ(q+2),

Cn = λΓ(q + 1) + κL
(q+1)
n (0) and we recover the formula above. Value λ + κ(n + 1) when q = 0

is found by Ronveaux & Marcellán [88, §4].

From (30), θn is the limit at p = b = L → ∞ of −LL+q+2 (q + 1)Γ(q + n + 1) λκ/LL

n!Lq+2 (−Cn−1Cn)
, so

θn =
κλ(q + 1)Γ(q + n + 1)

n!CnCn−1
. When q = 0, θn =

κλ

(λ + κn)(λ + κ(n + 1))
[76], [88, eq. (38)].

Kn(x) is the Kn(x) of (31) with p = b = L → ∞ divided by −L:

Kn(x) = nx + λκ
(q + 2)Γ(q + n + 1)

(n − 1)!Cn−1Cn
+ κ2 (q + 1)(q + 2)2 · · · (q + n)2(q + n + 1)

(n − 1)!n!Cn−1Cn

= nx + κ
n!λ(q + 2)Γ(q + n + 1) + κ(q + 1)(q + 2)2 · · · (q + n)2(q + n + 1)

(n − 1)!n!Cn−1Cn
.

1One of the authors is so unsure of his differential calculus knowledge that dP2n(
√

1 − y)/dy was obtained by
considering that P2n(

√
1 − y) is a combination of even powers (

√
1 − y)2s = (1 − y)s derivated as −s(1 − y)s−1

whence dP2n(
√

1 − y)/dy = −P ′

2n(x)/(2x), etc.
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For derivatives of Dirac distributions, see Álvarez-Nodarse & Marcellán [3]

2.8. Hermite weight +κδ(x).

Let the measure dµ(x) = |x|r exp(−x2)dx + κδ(x)dx, a (slightly) generalized) Hermite weight
+a point mass at the origin.

The orthogonal polynomials of odd degree ignore the point mass, and are xL
((r+1)/2)
n (x2).

The orthogonal polynomials of even degree P2n(x) is the polynomial of degree n of the preceding
section at x2 , with q = (r − 1)/2 and 2κ, so

d

dx2

[
dP2n(x)

dx2

]

+

(

−1 +
(r + 3)/2

x2
− 1

x2 − θn

)
dP2n(x)

dx2
+

nx2 + Kn(0)

x2(x2 − θn)
P2n(x) = 0, which is

Heun in x2, but the final equation is not:

P ′′
2n(x) +

(

−1/x − 2x +
r + 3

x
− 2x

x2 − θn

)

P ′
2n(x) +

4nx2 + 4Kn(0)

x2 − θn
P2n(x) = 0.

3. An example of biorthogonal rational functions set, or of

2−point Padé approximation.

3.1. Biorthogonal rational functions and rational interpolation.

Let Am and Bn be polynomials of degres m and n, with m,n = 0, 1, . . . such that the rational
functions Am(x)/(x − a)m+1 and Bn(x)/(x − b)n+1 are orthogonal with respect to a (formal)
measure dµ on an interval, or a contour, [c, d]:
∫ d

c

Am(x)

(x − a)m+1

Bn(x)

(x − b)n+1
dµ(x) = 0,m 6= n

Existence and unicity depends on the non vanishing of determinants of moments
∫ d
c (x − a)−r(x − b)−sdµ(x), see general expositions of biorthogonality [15,25,93,108].
It follows then that Am is orthogonal to all polynomials of degree < m w.r.t. to

dµ(x)/[(x − a)m+1(x − b)m], to dµ(x)/[(x − a)n(x − b)n+1] for Bn.
This cries for polynomials Cn orthogonal to all polynomials of degree < n w.r.t.

dµ(x)/[(x − a)(x − b)]n+1.
One often uses the variable z = k(x − a)/(x − b) ⇔ x = (bz − ak)/(z − k), so that 1/(x − a) =

(1 − kz−1)/(b − a) and k/(x − b) = (z − k)/(b − a), and the relevant rational functions are
polynomials in z and polynomials in z−1 (Laurent polynomials).

For a very special case, consider the Jacobi weight (b − x)p(x − a)q on (a, b): Cn is then
the (rather unconventional) Jacobi polynomial of parameters p − n − 1 and q − n − 1 involving
the hypergeometric expansion 2F1(−n, 1 − p; q − n; z) with z = (x − a)/(x − b) [1, 22.5.45] [57,
p.31] [106, eq. (5.5)]. That’s where the Pochhammer contour discussed above is needed [82, pp.
326, 389], [102, §12.43, p.257].

There are recurrence relations between the A,B and the Cs, for instance

An(x) =
Cn(x)An+1(b) − An+1(x)Cn(b)

x − b
, Cn(x) =

An+1(x)Cn+1(a) − Cn+1(x)An+1(a)

x − a
, up to

multiplicative constants (Christoffel-Darboux-type [19,41,65] etc. ), leading to a recurrence rela-
tion of the form

Cn+1(x) = (ξnx + ηn)Cn(x) + ζn(x − a)(x − b)Cn−1(x) (special case of type-II rec of Ismail &
Masson [66, sec. 3])

We now call Pn = Cn, and show that Pn is the denominator of rational function achieving Taylor
match of order n of the Stieltjes-Markov function (7) at a and b (two-point Padé approximation).

Indeed, the required interpolant to PnS is
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Nn(x) =

∫ d

c

{
Pn(x) − Pn(t)

x − t
+ Pn(t)

(t − a)n+1(t − b)n+1 − (x − a)n+1(x − b)n+1

(t − a)n+1(t − b)n+1(x − t)

}

dµ(t)

from Hermite-Walsh formulas [25, Thm 3.6.1] seems to have degree 2n + 1 in x, but the terms
(tk − xk)/(x − t) turn in sums of products tsxk−1−s killed by orthogonality with Pn = Cn when
s < n, so the powers k − 1 − s 6 k − 1 − n 6 n + 1 remain for x.

3.2. Chebyshev example.

3.2.1. Chebyshev polynomials formulas [66, Example 3.1].

Consider the measure dµ(t) = a constant times
√

(d − t)(t − c) dt on (c, d) leading to the
Stieltjes-Markov function (7)

S(x) = R(x) − x + (c + d)/2), where R(x) =
√

(x − c)(x − d). We don’t need to tell exactly
how the square root is chosen, we only have to make two choices, at x = a and at x = b (the
germs of [70]).

Let I(x) := ((x− a)R(b)− (x− b)R(a))/(b − a) be the linear interpolant of R, and let L(x) :=
((x − a)S(b) − (x − b)S(a))/(b − a) = I(x) − x + (c + d)/2 be the linear interpolant of S.

We start a continued fraction expansion as
S(x) = L(x) + S(x) − L(x)

= L(x) +
(x − a)(x − b)

(x − a)(x − b)

S(x) − I(x) + x − (c + d)/2
=

S(x) + x − (c + d)/2 + I(x)

[R2(x) − I2(x)]/((x − a)(x − b))

simplifies in
√

(x − c)(x − d) + I(x) = 2I(x) +
γ(x − a)(x − b)

√

(x − c)(x − d) + I(x)
, where

γ = 1 − [R(b) − R(a)]2/(b − a)2 is the coefficient of x2 in R2(x) − I2(x) = γ(x − a)(x − b).
With the Laurent variable z = k(x−a)/(x−b), (k 6= 0), sending c and d to c′ = k(c−a)/(c−b)

and d′ = k(d−a)/(d−b), one has I(x) = [zR(b)−kR(a)]/(z−k), (x−a)(x−b) = (b−a)2kz/(z−k)2,
(x − c)(x − d) = k2(b − a)2(z − c′)(z − d′)/((c′ − k)(d′ − k)(z − k)2), so,
(a− c)(a− d) = (b− a)2c′d′/((c′ − k)(d′ − k)), (b− c)(b− d) = k2(b− a)2/((c′ − k)(d′ − k)), and

R(a) and R(b) are two independent choices of the square root in (b − a)
√

c′d′/((c′ − k)(d′ − k))

and (b − a)k
√

1/((c′ − k)(d′ − k)),

γ = 1 − [k −
√

c′d′]2/((c′ − k)(d′ − k)) = −k[c′ + d′ − 2
√

c′d′]/((c′ − k)(d′ − k)), finally, I(x) =

k(b − a)(z −
√

c′d′)

(z − k)
√

(c′ − k)(d′ − k)
=

(b − a)(z −
√

c′d′)
√−kγ

(
√

c′ −
√

d′)(z − k)
.

Numerators and denominators are solutions of the recurrence relation
Pn+1(x) = 2I(x)Pn(x) + γ(x − a)(x − b)Pn−1(x) with
P0(x) ≡ 1, P1(x) = 2I(x); N0(x) = I(x) − x + (c + d)/2 = L(x),

N1(x) = 4I2(x) + γ(x− a)(x− b)− (I(x) + x− (c + d)/2)P1(x) = 2I(x)L(x) + γ(x− a)(x− b) ⇒
P−1(x) ≡ 0, N−1(x) ≡ 1.

With the variable z, the recurrence relation becomes

Pn+1(x) = 2
(b − a)(z −

√
c′d′)

√
−kγ

(
√

c′ −
√

d′)(z − k)
Pn(x) +

γ(b − a)2kz

(z − k)2
Pn−1(x), or

Xn+1 = 2
z −

√
c′d′

√
z(
√

c′ −
√

d′)
Xn − Xn−1, where Xn =

[
z − k

(b − a)
√
−kγz

]n

Pn(x),

and this recurrence relation is solved by Chebyshev polynomials
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Figure 2. Red and blue dots: zeros and poles for the exponents (1/4,−1/4)
(Suetin [94]); black dots and + signs: divergence locus for the exponents (1/2, 1/2)

for two different choices of the sign of
√

cd. Here, c = 0.45 + 0.55i, d = 2 − 4i,
a = 0 and b = ∞, the Laurent polynomials choice.

Pn(x) = (b − a)n(−γkz)n/2Un

(

z −
√

c′d′
√

z(
√

c′ −
√

d′)

)

/(z − k)n,

Nn(x) = L(x)Pn(x) − (b − a)n+1(−γkz)(n+1)/2Un−1

(

z −
√

c′d′
√

z(
√

c′ −
√

d′)

)

/(z − k)n+1, n = 0, 1, . . .

(33)

Incidentally, convergence occurs in the non oscillatory region, the limit is

L(x)− (b− a)(−γkz)1/2Z(x)/(z − k), where |Z(x)| < 1 and Z(x)+ 1/Z(x) = 2
z −

√
c′d′

√
z(
√

c′ −
√

d′)
,

so that Z(x) =
z −

√
c′d′ ±

√

(z − c′)(z − d′)
√

z(
√

c′ −
√

d′
= (z − k)

I(x) ±
√

(x − c)(x − d)

(b − a)
√
−kγz

. The limit is

checked to be L(x) − I(x) ∓
√

(x − c)(x − d), which is a determination of S(x), as it should!

The divergence locus is the oscillatory region
z −

√
c′d′

√
z(
√

c′ −
√

d′)
= t ∈ [−1, 1], or

Im
z − 2

√
c′d′ + c′d′/z

c′ − 2
√

c′d′ + d′
= 0, a part of a particular cubic curve (Deaux [26]),see fig. 2.

No similar simple results must be expected when the exponents p and q in
dµ(t) = (d− t)p(t− c)q dt on (c, d) are not half integers! Komlov & Suetin [70] built an elaborate
theory of asymptotic behavior; Zhedanov [106] showed that recurrence coefficients have normally
no simple formulas.

3.2.2. Differential equation.

We start with the differential equation of Un (NIST [82, 18.9.19-20] with λ = 2),
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d

dX

[

(1 − X2)3/2 dUn(X)

dX

]

+ n(n + 2)(1 − X2)1/2Un(X) = 0, where X =
z −

√
c′d′

√
z(
√

c′ −
√

d′)
,

from (33), and we see that 1 − X2 = −(z − c′)(z − d′)/z

(
√

c′ −
√

d′)2
. The two solutions of the differ-

ential equation for Un are (X ±
√

X2 − 1)n+1/
√

X2 − 1 = a constant times [
√

z −
√

c′d′/z ±
√

(z − c′)(z − d′)/z]n+1/
√

(z − c′)(z − d′)/z.

We use dX/dz = (z−1/2+
√

c′d′ z−3/2)/(2(
√

c′−
√

d′)), Pn(x) = constant times (
√

z−k/
√

z)−nUn(X)
and get with the help of computer algebra,

d2Pn(x)

dz2
+

(
3/2

z − c′
+

3/2

z − d′
+

2n

z − k
− n

z
− 1

z +
√

c′d′

)
dPn(x)

dz
+

Rn(z)Pn(x)

z(z − c′)(z − d′)(z − k)2(z +
√

c′d′)
=

0, where Rn is a third degree polynomial.
This equation is certainly not Heun, as we already have singular points at c′, d′, 0,∞, k, and

−
√

c′d′. At z = 0 and ∞, particular solutions behave like z±(n+1); at z = k (corresponding to

x = ∞ in z = k(x − a)/(x − b)), one has Rn(k)/(k(k − c′)(k − d′)(k +
√

c′d′)) = n(n− 1), so that

powers near z = k are (z − k)−n and (z − k)−(n−1); finally, −
√

c′d′ is an apparent singularity.
We return to x in z = k(x − a)/(x − b), to have

P ′′
n (x) −

(
n

x − a
+

n

x − b
− 3/2

x − c
− 3/2

x − d
+

1

x − (ak + b
√

c′d′)/(k +
√

c′d′)

)

P ′
n(x)

+
Sn(x)Pn(x)

(x − a)(x − b)(x − c)(x − d)(k(x − a) +
√

c′d′(x − b))
= 0, where Sn(x) = (x − b)3Rn(k(x −

a)/(x − b))/(k(k − c′)(k − d′)). Consider now the symmetric situation a = −b, c = −d, so that

c′ = k(c − a)/(c + a), d′ = k(c + a)/(c − a), and
√

c′d′ is either k or −k.

In the first case, P ′′
n (x)−

(
2nx

x2 − a2
− 3x

x2 − c2
+

1

x

)

P ′
n(x)+

n(n − 1)x2Pn(x)

(x2 − a2)(x2 − c2)
= 0, which does

not always yield a polynomial of degree n, as P1 is a mere constant.

In the second case P ′′
n (x)−

(
2nx

x2 − a2
− 3x

x2 − c2

)

P ′
n(x)+

n[(n − 2)x2 − ((c2 − 2a2)/(a + c) + n(c − a)]Pn(x)

(x2 − a2)(x2 − c2)
=

0, corresponds to the odd Stieltjes-Markov function
√

x2 − c2 − x.
The obvious change of variable is x2 = t, then d/dx = 2

√
td/dt and

d2Pn(x)

dt2
−
(

− 1

2t
+

n

t − a2
− 3/2

t − c2

)
dPn(x)

dt
+

n[(n − 2)t − ((c2 − 2a2)/(a + c) + n(c − a)]Pn(x)

4t(t − a2)(t − c2)
=

0, a Heun differential equation.

4. Polynomial eigenfunctions of a Heun operator.

4.1. The Heun operator.

Heun’s differential equation appears in investigations of special cases of the Schrödinger equa-
tion, through the invariant form (16b) Y ′′(x) − Ih(x)Y (x) = 0 [28–33, 62, 83] with relations to
exceptional orthogonal polynomials, which are sets of eigenfunctions of some differential operators
extending the classical setup [43,48] which includes Heun examples [11,95].

This field of particular Sturm-Liouville operators allowing a full set of polynomial eigenfunctions
has expanded at an incredible rate in a few years. The name ”exceptional orthogonal polynomials”
is given to known non classical cases where the eigenfunctions do not have all possible degrees,
for instance, the equation (34) has no constant solution if q0 6= cp0. It is known however that the
polynomial eigenfunctions make a complete set in the relevant L2 weighted space, new corrected
proofs have been published recently [36,47].

The name ”exceptional” will probably disappear, we will soon have to consider these new
families within the realm of orthogonal polynomials.
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The still called ”exceptional” orthogonal polynomials related to Heun’s differential equation
are polynomial eigenfunctions of the operator L in

Ly := (x − a)(x − b)

[

y′′(x) +

(
γ

x − a
+

δ

x − b
+

ǫ

x − c

)

y′(x)

]

+
p0x − q0

x − c
y = λny (34)

where y is a polynomial of degree n, but not for any non negative integer, for n ∈ some set A.
The eigenfunctions of the operator L of (34) are orthogonal with respect to a weight function

w of support [a, b] if L can be shown to be (formally) selfadjoint in the relevant scalar product

space, i.e., if

∫ b

a
(Lf)g(x)w(x)dx is symmetric in f and g:

∫ b

a
(Lf)g(x)w(x)dx =

∫ b

a

{

(x − a)(x − b)

[

f ′′(x) +

(
γ

x − a
+

δ

x − b
+

ǫ

x − c

)

f ′(x)

]

+
p0x − q0

x − c
f(x)

}

g(x)w(x)dx,

we perform integration by parts on the term containing f ′′(x), and kill the contributions of the
unsymmetric f ′g:

−[(x − a)(x − b)w(x)]′ + (x − a)(x − b)

(
γ

x − a
+

δ

x − b
+

ǫ

x − c

)

w(x) = 0

leading to

w(x) = constant × (x − a)γ−1(x − b)δ−1(x − c)ǫ, (35)

[43, eq. (32), (36a)], [89, Part A, §5.2].

4.2. Theorem. Non hypergeometric polynomial eigenfunctions of a Heun operator (34) are

related to a Jacobi weight function divided by an even power (x − c)2m.
This means that ǫ is a negative integer −2m in (34) and (35).
When ǫ = −2, the polynomials are the X1 exceptional Jacobi or Laguerre polynomials [43,83,

95].
Exceptional Xℓ polynomials are related to Jacobi or Laguerre weight functions divided by the

square of a polynomial of degree ℓ [35, 45, 59, 84], they are not related to Heun’s equation when
ℓ > 1.

Note already that the operator of (34) has no constant eigenfunction if p0c − q0 6= 0.
It is known that exceptional polynomials are NOT semi-classical orthogonal polynomials [43,

p.353].
Proof: we enter the polynomial eigenfunction

∑n
0 ck(x − c)k in (34)

(x − a)(x − b)
[∑n

2 k(k − 1)ck(x − c)k−2 + ǫ
∑n

1 kck(x − c)k−2
]

+ [γ(x − b) + δ(x − a)]
∑n

1 kck(x − c)k−1 + (p0x − q0)
∑n

0 ck(x − c)k−1 = λn
∑n

0 ck(x − c)k

and look at the coefficient of (x − c)k:
k(k− 1+ ǫ)ck + (2c− a− b)(k +1)(k + ǫ)ck+1 + (c− a)(c− b)(k + 2)(k + 1+ ǫ)ck+2 + (γ + δ)kck

+ [γ(c − b) + δ(c − a)](k + 1)ck+1 + p0ck + (p0c − q0)ck+1 − λnck = 0, k = 0, . . . , n. Of course,
cn+1 = cn+2 = 0, so n(n − 1 + ǫ) + n(γ + δ) + p0 − λn = 0 at k = n, giving λn. The coefficient of
ck is then k(k − 1 + ǫ) + k(γ + δ) + p0 − λn = (k − n)(k + n − 1 + ǫ + γ + δ) vanishing at k = n,
and the recurrence relation is

(k − n)(k + n − 1 + ǫ + γ + δ)ck + χkck+1 + (c − a)(c − b)(k + 2)(k + 1 + ǫ)ck+2 = 0, (36)

for k = n− 1, n− 2, . . . , where χk = [(2c− a− b)(k + ǫ) + (γ(c− b) + δ(c− a))](k + 1) + p0c− q0.
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This recurrence relation (see Andrews & al. [4, App. F], [103]), appears everywhere in relation
with Heun’s equation, function, or polynomials Choun [20, 21] Erdelyi [37, §15.3] Hautot [55]
Ronveaux [89, § 3.3, 3.6] NIST [82, §31.3], see also Alhaidari, [2], Grünbaum et al. [50], Ishkhanyan
[64], for other polynomial expansions.

The recurrence relation at k = n− 1 gives cn−1 as a multiple of cn, then, cn−2, etc. That must
end! We must have c−1 = 0. Then, c−2 = 0 follows from (36) at k = −2, and all cks with negative
index do vanish.

One has (n + 1)(n − 2 + ǫ + γ + δ)c−1 = (p0c − q0)c0 + ǫ(c − a)(c − b)c1 from (36) at k = −1,
c−1 = 0 certainly holds for all n when ǫ = 0 and p0c− q0 = 0, we recover then the hypergeometric
case.

In general, c−1 is a complicated function of n built by solving the steps of (36) from k = n
downto k = −1 (a continued fraction in [37, §15.3], also a determinant in [55]) , BUT, if ǫ is a
negative integer, the ck+2 term vanishes in (36) at k = −ǫ− 1. We now have only to perform the
recurrence steps from k = −ǫ − 1 downto k = −1, so that c−1/c−ǫ is a rational function of fixed
degree in n.

When ǫ = −1, c0 =
χ0

n(n − 2 + γ + δ)
c1 and c−1 =

(p0c − q0)c0 − (c − a)(c − b)c1

(n + 1)(n − 3 + γ + δ)

=

[
(p0c − q0)χ0

(n + 1)(n − 3 + γ + δ)n(n − 2 + γ + δ)
− (c − a)(c − b)

(n + 1)(n − 3 + γ + δ)

]

c1, vanishing for an infinite

set of values of n if p0c − q0 = 0 and c = a or b, again the hypergeometric case.

When ǫ = −2, c1 =
χ1

(n − 1)(n − 2 + γ + δ)
c2, c0 =

χ0c1 − 2(c − a)(c − b)c2

n(n − 3 + γ + δ)

=

[
χ0χ1

n(n − 3 + γ + δ)(n − 1)(n − 2 + γ + δ)
− 2(c − a)(c − b)

n(n − 3 + γ + δ)

]

c2,

(n + 1)(n − 4 + γ + δ)c−1 = (p0c − q0)c0 − 2(c − a)(c − b)c1

=

[
(p0c − q0)χ0χ1

n(n − 3 + γ + δ)(n − 1)(n − 2 + γ + δ)
− 2(p0c − q0)(c − a)(c − b)

n(n − 3 + γ + δ)
− 2χ1(c − a)(c − b)

(n − 1)(n − 2 + γ + δ)

]

c2,

vanishes for all n if χ1 = q0−p0c = a+b−2c+γ(c−b)+δ(c−a) = (1−δ)a+(1−γ)b+(γ+δ−2)c,
and if the residue

χ1−γ(c− b)− δ(c−a)−2(c−a)(c− b)(2−γ − δ)/χ1 = a+ b−2c−2
(c − a)(c − b)

(1 − δ)a + (1 − γ)b

2 − γ − δ
− c

=

2((a + b)/2 − c) − 2
((a + b)/2 − c)2 − (b − a)2/4

(δ − γ)(b − a)

2(2 − γ − δ)
+ (a + b)/2 − c

vanishes too, an equation for c, solved by

c =
a + b

2
+

(2 − γ − δ)(b − a)

2(δ − γ)
.

We recover the X1−theory [43, eq. 36a] [44] [95, eq. 6.3].

When ǫ is a negative integer < −2, we only look at large n, c−ǫ−1/c−ǫ ∼ χ−ǫ−1/n
2, c−ǫ−2/c−ǫ ∼

−ǫ(c − a)(c − b)/n2, and different behaviors occur at even and odd steps:
c−ǫ−2r ∼ urc−ǫ/n

2r, c−ǫ−2r+1 ∼ vrc−ǫ/n
2r, with ur+1 = −(2r+1)(−ǫ−2r)(c−a)(c−b)ur, vr+1 =

χ−ǫ−2r−1ur − 2r(−ǫ − 2r + 1)(c − a)(c − b)vr.
If ǫ is the odd negative integer −2m−1, the main behavior of c−1/c2m+1 is um+1/n

2m+2 leading
to c = a or c = b, the hypergeometric case.

So, only even negative integers ǫ = −2m remain. �

It seems very unlikely that there is a solution when m > 1, so we conjecture that ǫ = −2 is the
only possible solution.
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5. Conclusion.

Sequences of orthogonal polynomials satisfying Heun’s differential equation are only found in
two different classes.

When we try to extend the class of classical orthogonal polynomials {Pn}∞0 by allowing them
to satisfy Heun’s differential equations (variable with the degree n), we only find classical weights
modified by a point mass.

When we look at polynomial sequences {Pn}∞ℓ made of eigenfunctions of a fixed Heun’s oper-
ator, we only find classical weights divided by a power (x − c)2 [43,95].

The subfield relating exceptional polynomials to Heun’s differential equation seems completely
explored. For instance, A.M. Ishkhanyan [63] finds and discusses all the 35 possible forms for the
potential function related in some way to Heun’s differential equation (11 when some equivalence
relations are taken into account).

This simply means that important classes of non hypergeometric orthogonal polynomials are
related to Fuchsian differential equations of higher complexity than the Heun class [22].

However, many applications in mathematical physics are currently worked, as seen in recent
papers [28–33,62].

Progress on new soluble potentials must be expected in new directions [12,13,35,46,48,96] no
more related to Heun’s equation.

There may be however interesting mathematical phenomena deserving more attention: for
instance, there is a striking similarity between the apparent singularities phenomenon in the
Laguerre theory of orthogonal polynomials [53, 54], and the theory of ”exceptional” orthogonal
polynomials, as it appears in the differential equations [67,68,90].

Recently, new asymptotic expansions involving the Heun’s equation have been found [23, § 4],
[18].

And now, discrete Heun operators enter the arena [7, 8, 11,99].
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