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ABSTRACT

We present a conjecture on the first order asymptotics of the polynomials forming multipoint Pade
approximants to certain entire functions, including some of the form exp[polynomial]. The conjecture is
very simple to state (see @uation (5.4)), and leads to two inhanogeneous Hilbert problems on arcs, for
which solutions are given. The conjecture is motivated and supported by a number of examples and
previous results. An outline of a proof of the conjecture in a special case is provided.

1. INTRODUCTION

Having been stimulated by the question d the asymptotic behavior of the N-soliton solution d the
nortlinear Schrodinger equation [Mi98], we have generated some speculations about the first order (strong
asymptotic form of the polynomials in the[m/ n] multi-point Pade approximant (MPA) to certain entire
functionsas m,n — oo . We propose a compact characterization d the form which we speculate applies to

a variety of cases. From the compact characterization we derive ejuations for the zero and first order
approximations.

Sections 2, 3, and 4 describe previous work on special cases of MPA polynomials which points the
way towards our conjecture. The main features of the previous results on PA polynomials are summarised
in Appendix A. The conjecture is st out in Section 5 and some technical details of the solution d the
required equations are given in Section 6.

We have derived an extension d the integral equation described in Section 4 that may perhaps be
used to prove the conjecture in some cases, although it will need modfication in the NLS case This
equation and some numerical tests which support the conjecture are na included in this version d the
report.

We are concerned here with the formal approximation d a function F(A) of the complex variable
A by theratio of polynomials Q(A), P(A) of degrees m,n respectively. The polynamials are chosen with
the help of prescribed interpolation points { A=l m+n+1} in the extended complex plane by
solving the equations

QA)-F(\)P(A,)=0, j=Ln+m+1. (1.1)

If say k of the points)\j coincide at the poink, then (1.1) is replaced at that point by



Q) —FA)PA) =O((A —A )", N = A,. (1.2)

The MPA to F(A), the ratio Q(A) / P(A), is ometimes called a rational interpolant or other
names. If al the points of interpolation coincide at A, the ratio is called the Pade approximant (PA) to
F(A) at the poind ;.

With z=1/A define the functionf (z) and polynomialgy(z), p(z) of degreesm,n respectively, by
f(9=FQ), a(@d=2"QM), p(2=2"P(Q). (1.3)
Denote byM the set{uj Jj=Ln+m+1}, wherep; =1/,

Suppose that f (2)is snde-valued and analytic outside a compact set V , withV n M =0. Then
it is known and easy to show thp{z) is a (generalized) orthogonal polynomial in the sense that

J’dzw(z) p(2)z“ =0, k=1L,n-1 (1.4)
Here

w(z2)=z2""f(2)/d(2) (1.5)
with d(2) = nﬁﬂ(z— K, (1.6)

and [is a closed curve containing V' but nat containing any point of M . In the case of diagorel
(m=n)PAs aboutz = o0, (1.5) reduces to

w(2)=1(2). 1.7)

Thereis an explicit representation for a polynomial satisfying (1.4) which Szegoin his book [Sz78]
declares “is nat suitablein general for derivation d properties of the polynomials in question’. Actually, as
an aid to guesdng the correct result, as we show below, the formula has proved to be very useful. The
representation is

p(2) = const.J’dzl...J’dznl l‘l (z-z)w(z). (1.8)
where

| = |_|(zi —zj)z. (1.9

i<j=1



2. DIAGONAL PADE APPROXIMANTS TO FUNCTIONS WITH BRANCH POINTS

The asymptotic behavior of Q(2), p(2) as n — cofor this smplest case of the family we are

considering is reasonably well understood Beow we have chosen three simple examples to ill ustrate a
number of properties that reappear in the later development.

Example 2.1 Two branch points [Nuun]

Assume that the branch points arezat +1, and thatf () has a representation of the form

f(2) = J’dtcy(t)(t2 -2 (t-2)" (2.1)

where Qis an arc joining —1,1, and 0(2)is analytic where required. Asaume for simplicity that 0(2)is
nonzero onthe line segment [—:Ll] . It appears that the processthat determines q(z), p(2) , which in this
case is the equations

a2-f(2)p(2) =0(z"™),z - =, (2.2)
is‘designed’ sothat q(2) / p(z) approximates f (z)as‘well’ as possble. The function being approximated

is nat singe-valued but the approximationis. It turns out that approximation simulates a cut, an arc joining
-11, by distributing the zeros of q(z), p(2) close to the arc for large n. This is ‘better’ than making

f (2) single-valued by using a connected set of positive area contaifjhg

The ‘desigrer’ may be a physicist since the location d the chasen arc, which we call S, is found
by solving a two-dimensional eectrostatic equili brium problem. Suppose that the limit density of zeros of
p(2)is p(2), real, positive and normalized to unity, and define the funafi¢n) by

W@ = [ (-2 (2.3)

The dectric field E(2) dueto the charge p(2) has components E, = Rey(2), E, =—Imyi(2). Thearc

Sand the density p(Zz) are characterized by the condtions on S that the narmal force on the charge at
zdue to the remaining charge be zero, and that there is no tangential force on the charge, which gives

P +Y@ =0, zOS. (2.4)

Thus the charge is in equilibrium on a flexible conducting wire that is itsdf in a position d unstable
equilibrium.

It is easy and instructive to solve (2.4) using the techniques described by Muskhelishvili [Mu53. Define
y(2) = (22 -1)"?, single-valued orS and approachingas z — . Then (2.4) gives

[y@uw@)| =[y(@w@] . zO0S (2.5)



which means that y(z)y(z) must be etire, in fact —1, since Y(z)+1/z - 0, z - oc. Hence
P(2) = -y(2)™*, from which it follows that

n(2) = —(2ni)'1[y(z)+]'1, z0S. (2.6)
and, sincep(2) is real, thatSis the line interva[—:Ll] .

Now define

o(2) = J’|dt|p(t) log(z—1) (2.7)

do(2)

SO thatd— = —(2) . Considering that
z

log(p(2)) = exp(n} log(z-t;), (2.8)

where{tj} are the zeros of)(2) ,it is not surprising to find that

log(p(2)) =n@(2) +h(2) +O(n™), z - o for zOS, (2.9)
where h(2) is independent of n.

We cal the teem n@(z)in (2.9) the zero ader term in the asymptotic expansion, and the
combination n@(z) + h(z) the first order term. Note that only the real part of n@(z) is of any significance
in zero ader, since the addtion d an integer multiple of 21t does not change p(2). If we
defineX, (2) by X, (2) = exp(n®(z) + h(2)) it turns out that X, (Z) may be characterized as the solution d
the equation

X.(D"X.(9" =0(20", zOS (2.10)

which is analytic outside S, approaches z" as z — o, and hes an appropriate behavior near z=+1. The
function X ,(2) that approximatesj(z) to first order away frons is given byx,(2) = f (2)X,(2) .

The above results may be obtained by a straightforward extension d the methods used by Szego
[Sz78] in the case whep(2) is real, positive orf.

Example 2.2 Four branch points

This example is close to those treated by Dumas in his 1908 thesis [Du08]. Béfinby

X(2) = ﬁl (z=by) (2.11)



where by,..,b, are distinct points in the complex plane. Let R y* = X(2) be a two-sheded Riemann

surface with shed 1 such that y(o¥) ~ 2%,z — o . Suppose that f (2) =1+ y(2)™, which defines a
meromorphic function ofR. Define another meromorphic functi@z) by

r(@=1(2p(2d-a(?, (2.12)
which on account of (2.2) has a zero of orfier1 at co® .

Because we can write
r(2?)=r(2")-2y(z") ™ p(2) (2.13)

it follows that r(z) has poles only at («®)"?,b,,..,b,and zeros at («0?)™*. The function r(2z) must
have one more zero, say at ¢ R, since a meromorphic function hes the same number of zeros as poles.
The Jacobi inversion theorem shows that Cis unique. By writing (2.12) for z =z, z® and solving for
p(z) we find

p(2) = K, (z9) + K, (2?), (2.14)
here
K, (2 =y(2r(2/2, zOR. (2.15)

It follows that K, (2) has poles afeo® )" and zeros afeo™® )", c.

The above information is enough, as Dumas|Du0g showed (see Nuttall [Nu84 for a more
accessble treatment), to dotain exact explicit formulas for r(2z),q(z), p(2) interms of Welerstrass { and
o functions, and to determine the asymptotic the form of the polynomials and location of their zeros.

We now restate the Dumas results in a language similar to that of the previous example. It is found
as N — oothat all but at most one of the zeros of q(z), p(z) approach aset S, which now consists of two

arcs each joining a different pair of branch points. We now suppose that the two sheds of Rare joined at
thearcsof S. If cisonshed 2, q(2), p(2) will each have a zero closeto ¢. We give the name ‘Dumas
zeros' to zeros of (2),q(2), p(2) that are related tG.

Thereis again afunction Y(z) , obtained by solving (2.4), from which can be obtained the location
of Sand the densitp(2) . In this case we have

W(2) =-(z-a)X(2)™? (2.15)

with adetermined by the conditions

Re f:z dzu(2) = Re I:fdzw(z) =0. (2.16)



Integrating Y/ (2) gives the function(z) which tells us the zero arder asymptotic behavior (away
from cand S) of q(2), p(2) via

log(|p(2)]) = nRey(2) +O(Y, zOSc, (2.17)
whereRe@(z) >0, zUOS. Dumas also shows that
log(Ir(z™)]) = -nReg(2) +O(1), zOS.c. (2.18)

We can describe the asymptotic behavior &), p(z),q(2z) by introducing functions
X1(2), X,(2), X5(2), analytic in thez-plane cut alond5, defined by

X.(2) = r(z®); X.(2) = Kz(z(z)); X3(2) = f(Z(l)))(z(Z), zJS (2.19)

which are the first order approximations to r(z), p(2),q(z) respectivey away from S. The functions
{ Xi (z)} may be characterized as the functions analytic away Bavhich satisfy the equations

Xs(2=1(z)x,(2, zOS, (2.20)

F(D7Xx.(2° - Xx:(d* = x.(97, zOS, (2.21)
with x,(2) =0(z™"™);  Xx,(2),x5(2 =0(z"), z - o, and behave appropriately at the endSof

To solve (2.20), (2.21) first use (2.20) to eliminate(z) from (2.21), giving
(F@' - 1@ )x.(* =Fx,(97, zOS. (2.22)
Cross-multiplication shows that
X, (2 x,(2) =congt.y(2) ™ (z-c) (2.23)

for some chaice of C, so that, with appropriate choice of narmalization, x,(2) satisfies the euivalent of
(2.10),

X2 X2 = z=¢ , z0S (2.24)
Y (f(9"-1(2")

On taking logarithms (2.22) and similar equations reduce to an inhanogeneous Hilbert problem that may
be solved using the techniques of Muskhelishvili [Mu53].

Example 2.3 Three branch points




Shortly before his death Laguerre [La85] was working without success on the asymptotics of
diagonal PAs to a class of functions which included the example

3
f(2=[1(z-b)" (2.25)
whereb;, j =1,2,3 are distinct, finite, noncollinear points in the complex plane and

ivjzo. (2.26)

1=1

With the help of aresult of Stahl [St97], Nuttall [Nu86 Jwas able to solve this problem, and we summarize
the results. Again all the zeros q(z), p(2) but at most one approach a &t This time we define

X(2) = ﬁl (z=by) (2.27)

in terms of whichy (2) is given by
W(2) =—-(z-a)"? X(2) ™2 (2.28)

whereais determined by
Re['dz(¢/(" ~w(2)") = Re['dz¢ (@ ~¥(2)) =0. (2.29)

In this case the Riemann surface neaded to describe the asymptotics has the branch point ain addtion to
the branch points of the function being approximated. We call the point a a pseudo-branch point. Part of

the solution is to find afrom (2.29). This is a new Property which will reappear in extensions to entire
functions. Otherwise the results are similar to Example 2.2.

3. MULTIPOINT PADE APPROXIMANTS TO ENTIRE FUNCTIONS

Our aim is to extend the theory summarized in Appendix A to the problem of MPAs to at least
some aitire functions (and possbly further). In this sction we present some information that helps in
formulating and supporting such an extension.

The cover of the proceedings of the Conference on Rational Approximation reld in Tampa in 1976
[Sa77] suggests that progressin understanding aur topic might be possble. It shows a plot of the poles and
zeros of a non-diagoral PA to exp(A) which lie close to two smoath arcs, ore for the poles and ore for the

zeros, which med at their ends to form a closed curve containing the origin. Such a pleasing picture
strondy suggests that there is an underlying mathematical structure which could well be susceptible to
analysis. Indeal there is, due to Saff and Varga [Sa77], as we summarize below, but we believe that the
same reasoning could well apply to ather cases where the structureis nat yet known. The abili ty to compute
such plots gives us a great advantage over Laguerre and his contemporaries.



Example 3.1 Pade approximants to the exponential function

The results of Saff and Varga gply to the nondiagoral case but for ease of explanation we
consider only diagoral PAs. When F(A) = exp(A) and m=n it may be shown that Q(A) = P(-A) and
that
Q1) =AW, (A), (3.1)

wherev =n+ % andW, , (A)is the Whittaker function of [OI74] p. 260 which satisfies

d'w _0O vi-y0
=+ . 3.2
dA? HK‘ P (3:2)

This means that the three functions € *2A™"Q(A), €A™ P(A), e*?A™"R(A) all satisfy (3.2) with
R(A) defined by

R(A) = F(A)P(A) —Q(A) . (3.3)

Olver [OI74] provides the tods for a rigorous Liouville-Green analysis, including error bounds, of
the solutions of (3.2) for large n, and he discusses this example in detail (pp. 260, 401)hO¥fime

h(A) = %+, (3.4)

so that h(A) has zeros at the turning points A, ,A_ = £2iv. Then, except near the turning points, first
order approximations to the three functions satisfying (3.2) are given by appropriate linear combinations of

h(A) ™ exp(xd(A) ), (3.5)
where
D) = J': dt h(t)¥? . (3.6)

The locus Re®(A) =0 is independent of which shee ®(A)is evaluated on and it consists of threearcs
joining A, to A_, intersecting only at these two points (see Fig. 1).

From now on, to correspondto aur previous treatment, we will use the variable z=1/ A so that
(3.5) becomes, apart from a constant factor,

y(2) ™ exp(xve(2)), (3.7)

where



o(2) = J’ dtt2y(t) , (3.8)

z,,z =+ (2v) " and y(2) = (2% + (2v) ¥

+ 1

With the natation d (1.3) and (2.12), f(2) =exp(1l/z), and first order approximations to
r(2), p(2),q(2)) are

(2 X:(2) =€ y,(2)™ exp(-ve, () + (22) )
@) X.(2) = v,(2 ™ exp(ve, (2) - (22 ) (3.9)
A2 Xs(2) = (2™ exp(veps(2) +(22) )

In each o the expressons of (3.9) for x(2), j =12,3, the function Yy, (2) is taken to be singe-valued
outside the arc S;shown in Fig. 2, which shows the same arcs as Fig.1 bu in the z-plane, and also
Y;(2) ~2, Z » . The path o integrationin @, (z) must nat cross S;. We take (2)"? to mean the
same thing on the positive real axis for gll

For zOA, of Fig. 2 the functiors y; (2), X ; (2) are independent of j, and Reg,(z) >0, so
that, forn large, x,(2) is much smaller thary, (2), X 5(2) , which satisfy the relation

f(Dx,(2—x5(2=0, zUOA,. (3.10)
In A\,,A\; itis found that
X:@+x:(2=0, zOA,;  Xx,(D-T(@x,(2)=0, zOA, (3.11)

These relations follow because, for example,

2" =07 0D =0:,(27; 0.(2" =-,(2", z0OS, (3.12)
and
(=@") =(%2"): ¢*(v.@") =(».(@"). z0s,. (3.13)

In A\,, A\, we find thatx, (2), X ;(2) respectively are much smaller than the other yudor large n.

From relations such as (3.12), (3.13) it also follows that

-1

X %0 =(%.@ @) X0 x:@ =(%.@") . (3.14)

Now let us consider the zero order appraion which for p(z) we might regard as



X2(2) =ep(ng,(2) - (227) . (3.15)

Previously in Section 2 we had the equivalent of

w,(@ = - SORLLEe) - 2 ) (anzty (3.16)

in this case. Now, instead of (2.4) or (A.2) we have

W, +y,(@d ==(nz)7, z0S,; ¢, +y,(9” = ()", zOS,.  (3.17)

Again the PA appears to be daing its best. The closed curve S, U S; forms a boundary between
A ,, where the rational approximation is good and the essential singularity. In the z-plane the set
N, O A;, where the rational approximation is poor, shrinks to the origin as n — . The poles on S,
approach the origin in the sector where f(2)is large, and the zeros on S, where f(2)is small. The
determination of the location of the ‘branch points’, the zerog(a@j , is discussed below.

We show next how a heuristic treatment of (1.8) can derive (2.4), (3.17) and a formula for the
MPA case that will also be a consequence of our general conjecture.

Heuristic Derivation of Zero Order MPA Asymptotics from the Szeqo Formula

A heuristic sadde point method approximation to the integral in (1.8) proved to be hepful in the
initial analysis of the asymptotics of PAs for functions with branch points [Nu77, Nu80, Nu84a]. Later the
approach was extended to dbtain (3.17) and similar equations for other entire functions. It appears to apply
equally well to at least a class of MPAs, as we shall explain below.

The asaumption d the methodis that, for a given chaice of contour I, there will be a set of points
z) O, k =1,n, unique apart from permutation, for which the modulus of the dominant factor in the

integrand d (1.8) will be maximum. Distort the contour [ within the corstraints allowed until this
maximum is snallest. Then the approximate value of the integral is obtained by expandng the integrand

about the resulting poi{nzf,...,zﬁ’} as in the saddle point method.

Initially [Nu8Q this methodwas applied to dagorael PAs for functions with branch points, with the
dominant factor in (1.8) taken to be | , which leads to (2.4), (A.1). Later [Nu84 it was applied to non
diagorel PAs to the exponential and dher entire functions. It just as easily applies to the general MPA case
where w(z) is given by (1.5), and we now outline the method in that case. For the dominant factor we

n
chooseJ = | D w(z,), so that the equations fézfz,?} become
=1

JdlogJd _
0z,

0, k=1n, (3.18)



which leads to

ZZ(ZK -z)"+(m-nz'+9(z)=0 k=1n. (3.19)
IE3

Here we have set

f(2)/d(2) = exp(9(2)) - (3.20)

We now asume that the points {zf z'?} are distributed smoathly on the stationary corntour
Swith line densityp (z) > 0 and for largen replace (3.19) by

2PJ’|dt|p(t)(z—t)‘1 +(n-Dz*t+n'g(2)=0, zOS, (3.21)
S
with n =m/n. In terms ofyY , (z) defined by (2.3), equation (3.21) may be written as
n+m+1

W, +y,(2 =(n-Dz* +n*(logf (2))-n Z (z-u,)™". (3.22)

Application of the Heuristic Method to Example 3.1

Suppose that we did nd know about the results of Saff and Varga on exp(A), and let us try to

deduce them from (3.22) and the properties st out in Appendx A. For the case of the diagoral PA to
exp(A), Example 3.1, we havé (z) = exp(1/ z), and (3.22) reduces to (3.17).

In this case there can be only pseudo-branch points, number and location unknown, so we shall try
the simplest possibility, two branch poitig b, first. Let y,(2) = [(z— b)(z- bz)]ll2
with 'y, (2) singe-valued autside the unknown arc S, joining b,,b,, and y,(2) ~z, z — «. To solve
(3.17) we apply the techniques of Muskhdishvili [Mu53 to what he would call an inhanogeneous Hil bert
problem for arcs. Multiply byy,(2)" = -y, (2)” to give

[v.Qw,@] -[y.@¥,d] =-v,("(nz*)*, zOS (3.23)
which, in view of the behavior oy, (Z)y/,(Z) at z= =, leads to
Y2 (2W,(2) = -1~ (2mri) [ty )t (t -2 (3.24)

The integral may be turned into an integral on a closed contour cortaining S and evaluated by residues to
give



1[4y, (07 +Yz+2Y)]

Z)=-— + 3.25
VD= o 4ny, (0)y,(2)2* 829
where
Y,(2)* =2° +Y,z+Y,. (3.26)

Condtion (A.4) on pseudo-branch points means that the expresson in square brackets in (3.25) has to be
proportiordl to y,(2)?, sothat Y, =0 and y,(0) =—(2n) ™, or equivaently b,,b, = +i(2n) . Thisis
almost, but not quite, the same as Example 3.1. We attribute the difference to the chfige{3.4).

The simplified result fow) , (2) is

v, = -2% SEL (ZZ) (3.27)
nz Z

with

Y,(2)* =2°+(2n). (3.28)

The fact that y,(0) = —(2n) ™ tells us which o the threepossble arcs emanating from b, is S, . It means
that the arcS, must intersect the positive real axis as we indicated in Fig. 2.

We could repest the analysis for ¢(z) and ¢/,(2), starting from the secondequationin (3.17). The
result would lead to the same branch points but an arc S; which in this case is the reflection d S, in the
origin.

To find the precise location &, we use the fact from (2.3) that, wighas the arc length,
AY,(D=y,(2" -¢,(2)” =2mip(2)ds/dz, z0OS,, (3.29)

so that the equation fo&, is

dz _ilAy,(2)|

. (3.30)
ds Ay,(2

4. RIGOROUS ASYMPTOTIC RESULTS

Here we summarize some relevant more general rigorous results on PA and MPA asymptotics.

Results of Stahl and Gonchar/Rakhmanov on Zero Order Asymptotics




Stahl [St89] has devised a method d obtaining zero arder asymptotics for close to dagoral PA and
MPA polynomials. Defingu( p) , the measure associated with the polynorpigd) of degreen, as

u(p)=n—%y o, . (4.1)
J

where O, is the Dirac measure with support at the point t, and the sum is over al zeros of p(counting
multiplicity). Under certain asuumptions Stahl shows that, for the polynomial p(z) defined in (1.3),
U(p) converges weakly to a measure 0 as n — cowith m/n — 1. This leads to the conclusion that the
rational approximants converge in capacity away from @aprsee [St89] for details).

Animportant case included in Stahl’s resultsiswhen F(A) isthe sum of an algebraic function and

a function analytic except for essential singularities on a set of capacity zero. When the algebraic function
has branch points, for the PA it is found that supp(0) is a set S, obtained by solving (A.2), and

do/ds istheassciated line density p(z) . Almost al the zeros of p(z) approach thearcs of S,. When

there are no branch points almost all the zeros approach the essntial singularities. For a function d the
same type, the results for the MPA are similar, but now the set S, is obtained from an acceptable solution

of (3.22). The MPA results had orly when the set S, does nat intersect the support of the weak limit of
the measurgu(d) , whered is given by (1.6)

Gonchar and Rakhmanov [Go89] have used Stahl’s method to extend hs results to a class of
functions which include the case F(A) =exp(nM(A)), where M(A)is a polynomial with coefficients
independent of n. Consider for example the diagorel case. They assumethat p(d) — o, andthat the limit
of (3.22)

_dn@zh)
dz

W, +y,(2)° J’da(t)(z—t)‘l, z0s, (4.2)

has an acceptable solution (/, () satisfying the condtions (A.4), (A.5) which leads to a line density

p(2) positiveon S,. Theset S, must be bounded and must nat intersect supp(ar) . If these condtions had
then u( p) converges weakly to the measure corresponding to line dgmsity

Gonchar and Rakhmanov do no prove that there is always an acceptable solution d (4.2), and
indeed we know from examples that there are cases in which for several reasons the condtions canna be

met, but there are also cases to which the theory does apply. One of these is the PA to F(A) = exp(nA)
which can, by writing A '=nA , be transformed into Example 3.1. Apart from this case it does nat appear

that the results of Stahl and Gonchar/Rakhmanov include information about the detailed structure of the
polynomial zeros for the MPA to entire functions which are independemt of

Gonchar and Rakhmanov also provided a rigorous proof of the derivation d the value of the “1/9”
constant made by Magnus [Ma88] using heuristic arguments similar to those above.

The method d prodf invented by Stahl and used by Gonchar/Rakhmanov is by contradiction. They
suppose that 11(p) does not converge to the measure 0 associated with an acoeptable set S, , in which



case there must be ancther measure g’ such that a subsequence of p( p) does converge weakly to o' .

They then show using a stegoest descent argument that the correspondng polynomials cannd satisfy the
defining orthogonality relation (1.4) in the linmit — oo .

First Order Asymptotics

Rigorous results onfirst order PA asymptotics are lessextensive than those for zero arder, and first
order results for MPA s are even more limited. However, what is known daes auggest, as the examples
above imply, that, for many functions, stronger results exist than just the weak conwergence of the
polynomial measurg( p) .

Nuttall and Singh[Nu77] considered the case of diagoral PAs to a function with 2| actual branch
points {bj} such that the set S that follows from the Properties in Appendx A has no pseudo-branch

points. The functiony (z) has the form

Y(2) = —Ij(z—c'al,-)/X(Z)”2 (4.3)
where
X(2) = U(z—bj) , (4.4)

and the coefﬁcient%aj } are determined from (A.5). The sBtconsists ofl non-intersecting arcs.

Nuttall and Siagh studied functiond (z) of the form
@ =[d[x®)] " oit-2> (4.5)
S

with appropriate restrictions on 0 . They effectively showed that the first order approximation X, (2)to
p(2)is given by solving (A.10), where g =1 -1, and described techniques for obtaining the solution,

including the determination of the approximate ze{ro% that do not approach.

Nuttall and Singh[Nu77] used an extension d the Bernstein-Szego integral equation method which
relates the exact polynomial p(z)on S to polynomials orthogoral with respect to a weight in which

o(t) of (4.5) is approximated by the reciprocal of a polynomial.

Later Nuttall [Nu9(Q derived a singular integral equation that applies to dagoral PAs to functions
of the form (2.1). The eyuationis for the remainder function r(z) of (2.12) and invdves what we expect to

be the first order approximation X,(z)of r(z). If o(t)has the necessary analyticity, the path o
integration in the equation can be distorted so that analysis of the solution is straightforward.



In the thesis of Nuttall’s dudent N. H. Li [Li91] this approach was extended and improved to
provide the framework that it is hoped will 1ead to the rigorous derivation d first order asymptotics for
diagorel PAs to a class that includes algebraic functions. For a function f (z) with nosingularities other
than branch points, assume that we have found the unique (seethe references in [St97]) set S that has the
Properties listed in Appendx A. Take the limit (for the purposes of this outline assume all li mits and
integrals exist) of (2.12) a8 — Sfrom either side to give

(" =t@"p2@-a@, z-S

(4.6)
(9 =13 p@-a3@. z-S.
Subtract to eliminatg)(z) so that
r(2"-r@ =(f@" -f(@)p@, z- S. 4.7)

Now we use the functions X,(2), X,(2)that we epect to gve the first order approximations to
r(2), p(2) . These functions are determined from (2.20), (2.21) for the particular f (z)in question, and
they satisfy (2.22). If we define

U@ =r(9/x.(2; V(@ =p2)/!Xx,(2 (4.8)
then (4.7), (2.22) lead to
U@ =V(@) -U@ W@@); U@ =V@)'-U@'W@™*, z0S, (4.9)
whereW(2) = x,(2)™ / X,(2) "
Equations (4.9) may be decoupled by defining

K(2) =U(2) +V(2); J(2)=U(@2)-V(©2 (4.10)
to give
K(2)" -K(2)" =-U(2) " W(2) +U(2)"W(2) ™

z0S, (4.11)
@) +3@) =-U(@) W@ -U@) W)™

In the simplest case f () has two branch points, Sis a line segment, X, (2) has no finite zeros,
and we can solve (4.11) to give

K(2) = C, +(2m)™ [t -U (1) WD) +U (1) WD) [t -2

(4.12)



3(2) = (2mi)y(@) [ -U () WD) +U () WO *|y®) ) -2

where y(2) is defined as in Example 2.1 and C, is a corstant dependng on nemalization. A singular
integral equation folJ () results by writingU (z) = (K(2) + J(2)) / 2 to give
U (@) = C, / 2+ (4mi) ™ [e[1- y(2(y(®) ") WO U ®) " (t -2

S

(4.13)
~(4mi) = [dt[1- y@(y®) ) ) U (-2

and taking the limits ag - S*,S™.

Li [Li9]] shows how, if f(2)is witably analytic, the contours in (4.13) can be distorted away

from S in such a way that W(t) ™, W(t) are small for large n. The new integral equation invalves an
operator that is gnall in a certain B-space, and asymptotic results follow. Li also deals with the case when
the underlying Riemann surface has genus 1 so that x,(z) may have a special zero cas in Example 2.2,

and with the case when there is a pseudo-branch point as in Example 2.3. The etension to more general
functions with branch points should be straightforward.

5. CONJECTURE ON THE ASYMPTOTICS OF MULTIPOINT PADE APFROXIMANTS TO
ENTIRE FUNCTIONS

Now we describe a conjecture about the asymptotics of MPA polynomials for certain entire
functions. The conjecture is built on the information presented in the earlier sections.

We restrict attention to two classes of functions

1 FQ)=exp(NQ))
2. F(\) =exp(nn(}))

where 1(A) is a polynomial with coefficients independent of A , althoughwe expect the conjecture to apply
to a broader class of functions.

For simplicity we shall consider only the diagorel case. We work in the z-plane (z=A") so that,
for f(2) = F(z'), we are looking for polynomial®(z), q(z) of degreen that are determined by

r(n;)=0, j=12n+1 (5.1)

where

r(9=1(2p(2-a02, (5.2)



and M isaprescribed set of interpolation points{uj ,J=12n+1 } depending onn. We assume that no

point in M is in a fixed neghborhood d z= 0. Here we shall nat be concerned with the question d the
uniquenessof the polynomials p(z),q(z) . SeeStahl [St89] and references therein for a discusson d this

point.

We set out the conjecture as a set of properties analogaus to those for PA in Appendx A. The
logical development requires that the properties be presented in a different order.

Property B1

Apart from Dumas zeros and zeros close to the interpolating points of st M, the zeros of

r(2), p(2),q(z) approach sets of analytic arcs S, S,,S, respectively as n — o, with analytic

(except at z=0in the case of r(z)) real, limit line densities p;(2), j =12,3, where p,(2),p,(2) are
positive except at the arc ends.

For Class1, the sets of arcs probably approach zero as n — oo. For Class 2 they approach limit
sets.

For at least some cases the arcs are arranged as a whed with spokes. The rim consists of
dlternating arcs of sets S, S;, and arcs of S, are spokes which join the origin to the points on the rim

where two arcs meet (see Fig. 3).

Property B2

The points on the rim where one arc of each type med are pseudo-branch points, and the anges
between the arcs a@sv/3.

Property B5

The first order approximations to r(z), p(z),q(z) are functiorsy;(z), analytic in the z-plane
cutalongS;, j =123, respectively. With

N,(2 =X.(2; N, (20 =-1(Dx,(2: n;:(2 =x:(2 (5.3)

functionsy ; (2), j =12,3, may be found by solving ( Fig. 3 gives the meaning\¢j

N (2+n (=0 zOA,, j=123, (5.4)

where j,k,| are a permutation df2,3.

The function n,(2) has zeros when z[OM . This implies from (5.4) that n,(2z) has zeros for
zUM n A;, and similarly fon,(2).

We also require



X1(2),X,(2.X3(0 =0(z"), z - o, (5.5)
and at a pseudo-branch polmtthat
X (2=Cj(z-b)¥, z-b j=123 (5.6)

for some non-zero constarﬁﬁ .

Now suppose that there are 2(g + 1) pseudo-branch points {bj } (of coursein this case there are no
real branch points) and define

(9+1) 2

y(2 =g |(z-b)
i=

N (5.7)
O

with y(z) singevalued autside S, and y(z) = O(z%*!), z — oo . Define the piecewise analytic function
Q(2) as
Q2 =X, (Dx3(2), zOA,ON;; Q2 =Xx,(9x,(2, zUOA,. (5.8)

Obviously Q(z) is analytic forz A, O A,;. On S, we have from B5

F]Z(Z)+ = _rll(z)+ = _rll(z)_; r|3(z)+ = r|3(z)‘ = —F]Z(Z)_, ZDSZ (5.9)
so that

Q(2'/Q2) = f@DX, 2" X:(D" /x.(2 T (DX,(2” =1, zOS,. (5.10)
Similarly

Q@) /(2" =-1 zOS,. (5.11)

Note that the side d§,, S, in /A is denoted by-,+ respectively.
Now define®(z) = y(2)Q(2) so that (5.9), (5.10) give
D(2)"/d(2)” =1, z0OS,0S,, (5.12)

which, since ®(2) is bounded, with (5.5) shows that ®(Zz) is a polynomial of degree 2n+ g +1. We know
that ®(z) is zero at each point &l , so that

@(2) = Cd(2)6(2) (5.13)



for some constai@, d(z) defined by (1.6), and@(z) given by
[¢]

8(2) = I_| (z-c)), (5.14)
1=1

with the Dumas zero%cj} still to be determined.

For z[JS, we note that from (5.8), (5.9) and (5.13)
Cd(98(2) = (2 = ¥Y(I X.(D X.(2” =¥(D" F(DX.(D"X.(9", z0S,  (5.19)
so that, if we choose normalization to md&e= 1, we have the equivalent of Property A6
Property B6
X.(2 "X, (2~ =d(28(2)/f(29y@)", z0S,. (5.16)

Having solved (5.16) for X,(2), the functions X,(2),X;(2) follow immediatdy from (5.4) and (5.8).
Thus for example,

Xs(2 =d(26(2)/y(2X.(2), zOA,OA;. (5.17)

In this way we can also obtain two more equations analogous to (5.16), namely

f(9d(28(2/y(2) , z0S,

X3(2) " X5(2)"
(5.18)

X.(2"X:.(2” = f(29d(28(2)/y(@) , z0S,.

We can formally obtain the equation for the zero order approximatign (@) by writing
X,(2) = exp[ng, (2) + O(1)], (5.19)
substituting in (5.16) and taking logarithms to give

n(@,(2" +¢,(2)7) =log(d(2) - log(f(2)) + O, zUS,. (5.20)

Differentiating with respect to z, dividing by n, and dsregarding terms O(1) leads to (3.22), i.e. the
equivalent of Property A3

Property B3



2n+1

0,2+, =n"(logf ) -n* (z-u))*, 208, (5.21)
J=1
with @, (2) = —dg, /dz, whera), (z) has a representation

P,(2) = l dt|o, ()t -2)™". (5.22)

We can definal), (2),9,(2), P ;(2), 9;(2) in the same way as above.

We maintain conditions (A.4), (A.5) which are now:
Near a pseudo-branch point , (z) has an expansiony, (z) = Z B (z—b)*? (5.23)
=0

which in particular means that

AY,(b) =0 at each pseudo-branch poimt (5.24)
where AY(2) = Y (2)" - W(2)~.
ReJ':thqu(t) = 0 for any two pseudo-branch poirtish'. (5.25)

We conjecture that, given a solution d (5.21), equations (5.24), (5.25) and the positivity of
P,(2),z0S, are sufficient to determine g, the pseudo-branch points, and the arc locations and line
densities, if a solution exists.

It is of interest to show that the above procedure applied to Y, (Z) will give rise to the same values

for the pseudo-branch points. From formulas such as (5.9) it is posdble to show that there is a double-
valued function, analytic on a closed curve surrounding ore branch point, that on ore circuit takes on the
values

X2 /., z0S; X,(@ /X,(d" , z0S,;
(5.26)

X:" /X2, 208,  x.@ /x.(2", zOS.

This means that the functions A ;(2), | = 12,3, are analytic continuations of each ather up to a sign,
so that (5.24), (5.25) are independent of the subscript.

6. TECHNICAL DETAILS RELATING TO THE CONJECTURE



Starting from the smple equations (5.4) we have shown that the conjecture leads to two boundary
value problems. First we must solve (5.21) to describe the zero arder behavior and then (5.15) to dbtain the
first order results. We comment on these two problems.

Zero Order Boundary Value Problem

Asaming a knowledge of the pseudo-branch points {bj} , we can easlly solve (5.21) to gve an

expresson for {/,(2), just as we solved (3.17) to gve (3.24). There are several alternative ways of

proceading, but the method that gave (3.24) provides a solution d (5.21) (when all pseudo-branch points
are finite) in the form

U g1 U

U, =y@ ™ EFz°+ Z oWa +(2ni)‘1Idty(t)+a(t)(t -270 (6.1)
= =0 S =

where

o(2) =n*(logf (2)) —n-lnzj(z—uj)-l, 20S,, 6.2)

and y(2) isgiven by (5.7). From (6.1) may be derived an explicit expresson for Ay, (2) to be inserted into
the 2(g+1) complex eguations (5.24) and the 2g real equations (5.25) for the complex quantities

{bj} and the C, of (6.1). A solution is acceptable only if the density p(z) defined in (5.22) is positive on

thearcsof S, (except at the ends, whereit is zero). Thearcsof S, arelocated by the procedure described
at the end of Section 3.

If the conjectureis correct, only for at most one value of g will there be an acceptable solution d

(5.24) and (5.25), and that solution will be unique, at least for large n . Except for simple cases the
equations will have to be solved rumerically. Often there is a parameter in f (Z), the function being

approximated, and the solution will depend smoathly on the parameter in certain regions of parameter
space. For a particular value of the parameter there may be symmetries in the problem which simplify the
solution, in which case it is snsible to find the solution there and then travel through the parameter space
using a non-linear equation solver or a differential equation.

Such a procedure can fail at a value of the parameter where the required value of g changes. It can
also fail becausethereis no solution d the equations for any value of g. The NL S problem shows that, for
functions of Class2, it may be necessary to change the function F(A) being approximated in arder for the
conjecture to work. Thus, the MPA polynomials are unchanged if we multiply F(A) by a function H(A),
possibly piecewise analytic, such that

H(A,)=1 j=12n+1. (6.3)

Only for ore particular choice of H(A ) will the remainder function r(z) be relatively small in A ;. How to
determineH (A ) in general is an interesting open problem.



First Order Boundary Value Problem

After findng the pseudo-branch points {bj} it remains to solve (5.16) for x,(2), the first order
approximation to p(2z).This dore, approximations to ((2),r(z)follow immediately. Included in the
solution of (5.16) is the determination of the Dumas zécq}.

The techniques needed for the solution d (5.16) have been previously developed to solve euations
such as (2.24) that arise in the case of PAs to functions with branch points. Lemma 5.2 of Nuttall and
Singh [Nu77a] gives the solution to Equation (5.2) of that article which is very similar to (5.16) in its
essntials. Results of much the same form are found in Widom [Wi69] who treats the problems of true
orthogoral polynomials (with complex conjugation) and Chebychev polynomials on a set of arcs, where the
location of the arcs is predetermined.

Equation (5.16) can be turned into an inhanogeneous Hilbert problem on a set of arcs [Mu53 by
taking logarithms. However the function X, (Z) may have zeros at the zeros of d(Zz),d(z), andit will have

a pole at infinity, which shauld all be removed from X,(z)before taking logarithms to avoid the
introduction d singularities outside S,. Thus, we suppose that X,(z)has finite zeros at
Z=W;, j=1Lm andat z=c;, j=1m, andfor ease of explanation we assume that no zeros of

d(2),9(2)lie on S,. We defineé(z) by

my m, 0
X»(2) = £(2)(z~by)™ ™™ Q_l (z- u,@] 2=¢)g ©4

and insert in (5.16) before taking logarithms, with the result that

)" 86D =0(@9,@) 19,2, 208, 69
Here
m, O 09 O
191(2)=§'|(Z-C,-)D 9.2 =0[(z-¢)0 6.
=1 0 =mp+L B
and
0(d) = d,((z-b) " JA,() T @YD), 208, 6.7
with
my H [J2n+1 0
d1(2)=§"|(z-u,-)m 4,2 =010 - ©9
- 0 LI 0



In arder to solve (6.5) asin [Nu77a] we need to definearcs L;, j=1,2g, joining b, to b;, that
do not intersecS, except at their ends. Also define differentials of the first kind on the Riemann surface

2(9g+1)
y? =X(2) = |_| (z-b)) (6.9)
j=1
as
dw, =z“'y(2"dz, k=19, (6.10)

and the periods

Qy =2[dw, . (6.11)
LJ

The solution of (6.5) may then be written
&(2) = exp[Y(2)(2)] (6.12)

where

9 m, 0
Z log(t—c;) - Zlog(t—cj)g

J:mc+1

O
(2= (27Ti)'1£0|t(y(t)+)‘1(t - Z)'laogw(t) +
(6.13)

+ zzglfh !'<1|t(>/(t)+)_1(t -2

Theintegers {6,} and the Dumas zeros {Cj} are chosen so that {(2) =O(z %), z - . This

requires that

j=m.+1

0 g M U
(i)™ ldt(y(t)*)'ltkaogww 2 loat=e) =) log(t—c,)g
= (6.14)

+ zzgé,!'dt(y(tf)"ltk, k=0, g-1

It is explained in [Nu77a] how (6.14) is equivalent to the statement that the divisor {c,C,+C, } on the

Riemann surface is the solution d a certain Jacobi inversion problem. There is always a solution which is
uniquewhen g = 1. If g > 1the solution may na be unique, andit is srown in [Nu77a] how, in the case of

certain dagoral Pade approximants, the nornruniquenessrelates to nornuniquenessin the PA polynomials. It
is likely that a similar situation arises in the MPA case.

7. PROOF OF THE CONJECTURE IN A PARTICULAR CASE



We now outline a prodf of the conjecture of Sec. 5 for a particular case. We epect that it will be
possble to generalise the method to ather cases. The approach rdies heavily onthe ideas in the Li thesis
[Li91] and many of the details needed to complete the proof should be similar to material in the thesis.

For this example we chocse F(A) =exp(nal), so that f(2) = exp(noz™), and consider
diagonal approximantsdeg( p) = deg(q) = n) determined on the set of interpolation points is given by

M={z=n/j, =0 £1...4n}. (7.1)

We suppose that o is real, positive and small enough so that it is possble to find pseudo-branch
points b, ,b, , arcs S, S,,S;, and functions X,(2),X,(2),X;(2) that satisfy the properties of Sec. 5 with
g = Ofor sufficiently high n, and such that M [J A, . Numerical calculations suggest that such values of

O exist. We presume that the numerical errors in the calculation can be analyzed in arder to produce a proof
of the eistence of the above objects for appropriate values of o . The arrangement of the arcs and M is
sketched in Fig. 4.

Derivation of the Integral Equation

Define the functiondJ ; (2), j = 12,3, by

U,(d =1 (9/n, (9 =r(2/x,(2
U,(2=-f(2p®a/n, (2 =p>3)/X,(2 (7.2)
U,(2 =a(9/n:(2 =a(2/x:(2

Note that, due to the assumption about M, the functions X, (2), X ;(2) have no zeros, so that U, (2)is
analytic and single-valued outsid, j = 1,2,3. From the definition of () in (5.2) we have

Z n,(du,;(1=0 (7.3)

which forms the basis for the subsequent development.

Now for zOA,, k =1,2,3, divide (7.3) by n,(2), and take thelimit as zapproaches the —side
of S, to obtain

U, (9-U;(@=U,@W 2, 208
U;(9-U; (2 =U,@W (2, z0S, (7.4)
U;(9-U; (@ =U,@W, (2, z0S,

where we have used (5.4), and defined



W (2 =n;@d/n;. (2, j=123 (7.5)

with n, = n,. In(7.4) the + superscripts are superfluous snce U ,(z) is analytic across S, etc., but they
are used in the later discussion.

Next we define three piecewise analytic functidoéz), J(z), M (2) as

K(2) =U,(2) +U,(2), zOA,
K(z) =U,(2) +U,(2), zUOA, (7.6)
K(2) =U,(2+U,(2), zOA,

I@=U,(2-U,(d. zOA,
J(2)=U,(2)-U,(2), zUOA, (7.7)
I =U,(9-U,(2), zDA,

M2 =y (232, zOA,, j=123, (7.8)
where
Y,(2) = ¥5(2) =-Y,(2) = y(2) (7.9)

with y(2) given by (5.7).
It follows that

K" -K@ =-U,,dW,.,(2",
z0S, j=123, (7.10)

]

M@ =M@ =-U.,(QW.. (2 /Y@
which corresponds to (4.11). As in Sec. 4 the Plemelj formula then leads to
3
K(z)=2- (2ni)‘1jzzl!dtu O HON (R
| (7.11)

J(2) = —(2mi) "y, (Z)Z !dt(yjﬂ(t)_)_lu OWLO) (=27, zOA,.

To dbtain the constant in the epresson for K(z) we have used the conjecture€s implication that
U,(2 -1 z- =, effectively a choice of the overall normalisationfu(fz), q(2),r (2) .

Subtracting one equation from the other gives



3
U (2 =1-(4mi)™y !dt(l— Y (@/Yi OV L (OW,, (0 (-2, (7.12)
=13,
zOA,, k=123,
an integral equation fdd, (z), k =1,2,3, analogous to (4.13).

The —sideof S; liesin A
OA,, joining the two branch points, as shown in Fig. 4, without changing the value of the integrals.

i+1» SO that in (7.12) each contour S; may be distorted into a contour
Ej+l
Note that (1— yk(z)/yk (1)(t—2)" is analytic in tfor t,zOA, . The result is that we can rewrite
(7.12) as

U (9 =1~ (4ﬂi)_1z [dtd-y, 2]y, (U OW, (O)(t-2) ™, (7.13)
) zOA,, k=123,

Notethat, in thevicinty of z=0, U, (2)isamultipleof f(z)andan analytic function d z. Even
though f (2)is nat continuousin S O A,at z=0, it is bounded, and the distortion d the contour that
transforms (7.12) into (7.13) is valid.

If we are able to solve (7.13) to find a solution for U, (2), z0O=;, j =123, then we can
obtain the solution at other values from (7.13) and then (7.11), or by analytic continuation of (7.13).

The Form of the Functioriﬂ&/j

In arder to analyse the integral equation (7.13) we need to use some facts about W, (2), zOA ;.
The explicit expressons for X ;(2) derived in Sec.6 can be analysed to provide the necessary information,
but there is a more degant approach, which we describe now. Equivalent to (5.26) is the statement that

there is a double-valued function, say w(z) , analytic on a closed curve surroundng ore branch point, that
on one circuit takes on the values
W (2), zOA;; W, (27, zOA,; W,(2, zOA;; -W.(2™, zOA,. (7.14)
On the arcsS,, S, , S, the properties described in Sec. 5 ensure|thi@)| - 1, n - .
Define the two-sheeted Riemann surfRas

R:y* =(z-b)(z-b,), (7.15)

where the two sheds join at S;, and y(2) is meromorphic on R and such that y(2) ~z, z - @ . It
follows from (7.14) and Property B5 that w(Zz)is a singe-valued function z R, analytic except for



simplepolesat the pointsin M on Shee 2 (i.e. M ®), and essntial singularities at z=0® 0% . Near the
essential singularitiesy(z) has the behavior

w(z) = f(2)Anal(2), z=07; w(2) = f(2)"Anal(2), z=09, (7.16)
where we takéD™ to be on thet side of S, on the Sheet 1. F&@(OM ¥, w(2) has simple zeros.

The above information is almost sufficient to determiv{g) as follows. Definef,(z), z R, as
f,(2) = exp[nO(z‘1 y(2)/y(0™) ] zOR, (7.17)

so that the function w(2)/f,(2) is meromorphic on Rwith zeros, poles at M ,M® respectively, and
thus the function is unique apart from a constant factor. We can writew(z)/ f, (z) explicitly in terms of
ugiven by

SLLLCE
2

(u +u™), (7.18)

so that there are the correspondences
z=b:u=1 z=b,:u=-1 zOSheetl:|u>1 zUOSheet2:|ul<l. (7.19)
The explicit form ofw(z) is

2n+1[ ]y

w(z) = Cf, (z)”%% zOR (7.20)

for some constan , where

Hj:bl+b (b14 (u +u, ) “'lj|>11 j=1---2n+1. (7.22)

2

The formula (7.20) is correct whether or not the condilbri] A, holds.

To find C we use (5.3), (5.9) to show that

_N:(d” _x.(9"

W, (z
(2 = @ X2

0s,. (7.22)

Using (5.6) and taking the limit & — b, whereb is a branch point, leads to

W, (b) = #i, (7.23)



the sign depending onwhether or nat the arcs leave (+) or enter () the branch point. It may be checked
that the two condtions of (7.23) are consistent with (7.20). It follows for the situation described in Fig. 4
thatC=—i .

For the above discusson to make sense it is necessary that threearcs of the locus |W(z)|=1 med
at each branch point. On account of (7.14) the function logw(z) in the vicinity of a branch point b may

be written as an imaginary constant plus an expansion in positive odd powers of (z—b)*2. Threearcs of
|W(2)|=1 will med at b if the coefficient of (z—b)*? in the expansion d logw(2) vanishes. In this
case we will have

Relogw(7)] = Ge" (z-b)** +O(z-b)**, z - b, (7.24)
with G,y real positive, so that, near= b, the locus|w(z)|=1 will be close to the rays
Arg(z-b) =-2y/3+1Y3, —2y/3+T1,-2y/3+51/3 . (7.25)

It may be shown that the condtion for the vanishing d the coefficient of (z—b)*? in the
expansion d logw(z) at each branch point is equivalent to the equations (5.24) which we previously used
to determine the location of the branch points, at least for large n.

For large n the quantit$s in (7.24) will be approximately of the for® = G n, where
G, is real, positive and independentrof Thus the approximate form #¥(z) near to a branch poirlt
is

W(2) = +i exp(G,n(z—-b)¥?), (7.26)
where G, may depend on the branch point.

Analysis of the Integral Equation

The functional analysis of the integral equation (7.13) now proceeds almost exactly asin Li [Li91]
Chap. 8. We suppose that the cortours {E j} used in (7.13) are analytic arcs which approach each branch

point along the bisectors of the anges (each equal to 217/3) between the arcs {Sj} which med at that
branch point.

It follows from the discussion c{ﬂM } that n™ Re(logW, (2)) <0 uniformly with non any
closed interval of = ; not containing branch points, so that the behavior of the kernel of the integral
equation (7.13) is dominated by partsof near branch points. Chapter 8 of [Li91] showed how to treat a

problem with one branch point where the behavior of the kernel near the branch point was effectively the
same as in the present case. The extension of the Li approach to two branch points should be trivial.



APFENDIX A. PROPERTIES OF RESULTS ON DIAGONAL PADE APRROXIMANTS TO
FUNCTIONS WITH BRANCH POINTS

Here we have collected a number of properties of the results on dagoral PAs which are knowvn
and/or conjectured to be of more general applicability. The first four properties relate to zero ader
asymptotics, and the rest to first order.

As a reminder,

e we asaume that f (2) is analytic in the extended complex plane except for a finite number of finite

branch points, and is subject to other restrictions,
* g(2), p(2) are polynomials of degree n,

e 1(z)is defined byr(2) = f(2)p(2) —q(2), and
r(2=0(z"",z- o

Property Al

All but at most a fixed number (see Property 8) of the zeros of Q(2), p(2) approach a set of
analytic arcs Sas n — o, with a smoath real positive limit line density p(2) . This includes the statement
that the polynomial measures (see (4/2§p), 1(q) have the same weak limit.

Property A2

Arcs can end at branch points of the function being approximated (although nd necessrily at all
branch points), with ore arc per branch point. Arcs can also end at points which are nat branch points of
the function being approximated (pseudo-branch points), with three arcs per pseudo-branch point. These
arcs meet at anglgrr/ 3.

Property A3

The location d the arcs S, including the location d pseudo-branch points, the limit line density,
and the zero order asymptotics of (z), p(2) can al be determined from the function (z) with a

representation

@ = [dpt -2 (A1)

S

that satisfies
W +w(@ =0, zOS. (A.2)

Three further conditions usually needed to fifi{iz) are

Near a branch poibof f (z) ¢(2) has an expansiony/(z) = z A (z-b)*? (A.3)
K==1



Near a pseudo-branch poiaty/ (z) has an expansiony(z) = Z B, (z—a)"? (A.4)
=0

ReJ': dz(y(2)" =@ (2)”) =0 for any two arc endb,b'. (A.5)

Property A4

Away from Sthe zero order behavior g§(z) (and similarlyq(z) ) is
log(|p(2)]) = nRe®(2) + O(1),n — o (A.6)
where

dp(z) _

4z ~Y(2). (A7)

Property A5

The first order approximations to r(z), p(z),q(z) are functiors x,(2), X,(2), X 3(2) , analytic in

the z-plane cut along S, with appropriate behavior at the arc ends of S, that may be found by solving the
eqguations

X:(9=1(z)x,(2, zOS, (A.8)
(D" x,(D* - Xx:(d* = x,(27, z0OS, (A.9)
with X,(2) =0(z");  X,(2.X:(2) =0(Z"), z - .

Property A6

The first order approximatiom,(z) to p(z) satisfies

X" X = (v, (f@" - f(zﬂ)'ﬁ (z-c,), 208, (A.10)

2(9g+1)
where g isthe genus of the two-sheded Riemannsurface Y, (2)* = |_| (z—b;) , the product running ower
i=1
real and pseudo-branch points at which arcs end.

Property A7

For large n the approximation X,(Z)to r(z)is much smaller than x,(2), x(2) for
ZDN(SD{Cj}),andwe have



f(2-x:2/ x,(2) =small . (A.11)
Property A8

The points § C, ¢ are determined by the requirement that (A.10) has a satisfactory solution, and are
]

obtained by solving a Jacobi inversion problem for integrals of the first kind onthe Riemann surface. For
large n, those points that lie on the second shed of the Riemann surface are close to zeros of
d(2), p(2) ,and those points on the first sheet are close to zengzpf
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