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Abstract. We apply recent findings of complex approximation theory to best rational approxi-
mation of degree n to the exponential of −(n+ ν)x on [0, c]. The error norm behaves like the nth
power of the main approximation rate times the ν th power of a secondary approximation rate.
The computation of the first rate is a consequence of works of A.A.Gonchar, E.A. Rakhmanov,
and Herbert Stahl done in the 1980s; the complete asymptotic description has been achieved by
A. Aptekarev in the first years of the 21st century. The solution is given in terms of elliptic
integrals of the three kinds.

1. Introduction.

1.1. The subject matter.

Our subject is the asymptotic behaviour of best rational approximation to the exponential
function on a real interval [0, c].

This subject became heavily investigated when it appeared that the error norm decreases
geometrically fast with the degree, even when the approximation interval is unbounded c = ∞
[22, 89]. A full asymptotic description was given by Gonchar and Rakhmanov as an application
of their theory [36].

We consider here a normally bounded interval [0, c] with c <∞.
One will establish statements like exp(−x) − rn(x) ∼ sn(x), with a formula for sn(x). The

symbol ∼ means here that An ∼ Bn when n→ ∞ if An/Bn → 1 then. When An and Bn depend
on x, it usually means that the limit is reached uniformly in compacts in some set, sometimes
uniformly in the whole set. We will sometimes encounter An ∼ Bn + Cn, where Bn and Cn

oscillate with n. The meaning is then An = Un + Vn with Un ∼ Bn and Vn ∼ Cn, see some cases
in section 5.4.2.

Cleverly designed polynomial and rational approximations to holomorphic functions in some
domain are known to involve a potential function related to the approximation region and a
valuable holomorphy domain as will be recalled in § 2.
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A proper scaling of the variable for the exponential function is necessary, we look at exp(−A(n)x)
on a fixed interval [0, c]. It appears then that A(n) must behave like a polynomial of first degree,
see section 1.2.

We consider the best rational approximation qn(z)/pn(z) of degree n to the exponential function
exp(−(n+ ν)z) on the bounded interval E = [0, c].

According to the Gonchar-Rakhmanov-Stahl theory [36], the root asymptotics

[pn(z)]1/n → exp[Vp(z)],

[qn(z) − pn(z) exp(−(n + ν)z)]1/n → C exp[2Vz(z) − Vp(z)],

hold, where the complex potentials

Vp(z) =

∫

F
log(z − t)dµp(t), Vz(z) =

∫

E
log(z − t)dµz(t)

involve the limit distributions of poles on an arc F joining a to b, and interpolation points on E.
The final complex potential V(z) = Vz(z)−Vp(z) must have a constant real part on E, and the real
part of V(z) + z/2 must be (another) constant on F (the ”external field” problem). Finally, C =
exp(−2V(a)−a), so that the nth root of the error norm converges towards | exp(2V(0)−2V(a)−a)|.

Formulas for V, a, b, F will be given in § 3. The modulus k = sin(θ/2), where θ = arg(a/(a−c))
(fig. 8) is of particular interest (§ 4). It will be found that k increases from 0, when c = 0, to
k∞ = 0.9089... when c = ∞.

The geometry, or topological properties, of the limit locus of poles F is the same for c = ∞ as
for c <∞: it is a single arc joining a to b, where a and b depend on c (sections 3.2.1 and 3.2.4).

Things change when we come to exp(−x2), where it seems that F is now made of TWO
arcs [52, § 6] [56, § 5] [80, § 6.3], a case deserving more investigation.

Strong asymptotics are worked according to the theory of A. Aptekarev [6] in (5.1)

pn(z) ∼ [(z − a)(z − b)]−1/4e(n+1/2)Vz (z) exp[−(n+ ν)V(z) + (ν − 1/2)V∗(z)],

pn(z) exp(−(n+ ν)z) − qn(z) ∼ Cn[(z − a)(z − b)]−1/4

exp[(n+ 1/2)Vz(z) + (n+ ν)V(z) − (ν − 1/2)V∗(z)],

where V∗(z) = C ′
∫ z

∞

dt√
t(t− c)(t− a)(t− b)

is an auxiliary complex potential whose real part is

a constant on E and another constant on F , or any arc joining a to b without crossing E (usual
plane condenser problem), and Cn = exp[−(n+ ν)(2V(a) + a) + (2ν − 1)V∗(a)]. Near the cuts E
and F , one must add the contributions from the two sides in the formulas above.

It is useful to establish that the various features V, a, etc. when c < ∞, do converge to the
better known corresponding items in the c = ∞ case [21, 36, 52–54, 89]. This is seen in the last
rows of table 1, in an incidental remark in § 4.3, at the end of § 4.3.3, at 4. and exercise of § 5.5.2,
and in the second paragraph of § 5.5.3.

We remind in § 6 how the Adamyan- Arov- Krein (AAK) theory, initially a theory of approxima-
tion on the unit circle of meromorphic functions [2], has been brilliantly applied to approximation
algorithms by Gutknecht and Trefethen [85,86] in the 1980s.

Some curios follow, some of them may be considered as open problems: electrical images,
integral Hankel operator, quadratic relations, B-spline shapes, ”beyond ∞”, or exploring the
modulus k > k∞.

1.2. Scaling.

Best L∞ rational approximation of degree n to exp(−x) on [0, 1] yields, for n = 1, 2, . . . , 5 the
error norms 1.580... 10−3, 1.645... 10−6, 7.345... 10−10, 1.822... 10−13, 2.875... 10−17.

The approximations of degree 1, 3, 5 have a real negative pole at −1.572..., −4.176...,−6.813....
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The asymptotic history of this approximation is quite short, as zeros and poles recede to ∞, on
such a large scale that the interval [0, 1] looks like a mere point, so that the approximation comes
close to the Padé approximation. This approximant has a real pole which is almost −C ′′n with
C ′′ = 1.3255 . . . (Driver & Temme 1999 [24, p.10]).

Also, the asymptotic formula for the error norm (Meinardus ed. of 1967 [59, §9.3], Braess [16])
adapted1 here to approximation to exp(−x) on [0, L] is

‖e−x − qn(x)/pn(x)‖∞,[0,L] ∼
L2n+1(n!)2 exp(−L/2)

24n+1(2n)!(2n+ 1)!
=
L2n+1 exp(−L/2)π(n+ 1/2)

28n+2(Γ(n+ 3/2))2

∼ 2 exp(−L/2)
(

Le

16n + 8

)2n+1

(Stirling). The accuracy of the Meinardus-Braess formula is

striking, as we have L = 1, n = 1 : e−1/2/384 = 1.579 . . . 10−3; n = 2 : e−1/2/368640 =
1.6453 . . . 10−6.

n

βn

5

2.5
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b
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α = −1/10

−1/2

Figure 1. The importance of being n+ 1/2: in the best rational approximation
of degree n to exp(−βnx) on [0, 1], the parameter βn is tuned so to have a real
pole at a given point α < 0. For each α, βn tends to behave like a constant
times n + 1/2. If c 6= 1, use cβn and α/c. When α = −0.1, the values are
β1 = 7.49 . . . , β3 = 17.60 . . . , β5 = 27.68 . . . , β7 = 37.76 . . . , β9 = 47.88 . . . .

We avoid the drift of the locus of poles by choosing a moving scale for the x−variable. A simple
experiment is to freeze the real pole α of the odd degree approximants by the appropriate scaling
βnx. It is found in Fig. 1 that βn is strikingly close to a constant times n+ 1/2. This feature will
be discussed at the end of § 5.4.1 and in § 5.5.1.

So we may stick to exp(−(n+ 1/2)x) or, more generally, to exp(−(γn+ δ)x). There is no loss
of generality by taking γ = 1, we will work with exp(−(n+ ν)x) from section 3 onward.

We now consider the approximation of exp(−(n + 1/2)x) on a fixed interval [0, c]. With x

changed to (n + 1/2)x, and c = L/(n + 1/2), the error norm behaves like 2
( ce

16

)2n+1
exp(−(n+

1/2)c/2) = 2[c2e2−c/2/256]n+1/2 for moderately small c = L/n < 4 × 1.325 = 5.3.
A more detailed view of the best rational approximation of degree 5 on [0, 1] to exp(−5.5x) is

given in Fig. 2.

1Using an idea of Németh and Newman [47], Braess considers Padé approximations to exp(z/2) and exp(z/2),
where x = cos θ = (z + z)/2. Here, exp(−x) on [0, L] = exp(−L/2) times exp(Lx/2) on [−1, 1], the Meinardus
error norm estimate has to be multiplied by (L/2)2n+1 exp(−L/2), provided L is not too large, as Padé poles must
remain outside the unit disk in z : L/4 < 1.325n.
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4.243e-10 = exp(-5.5 *3.924...)

1

2

3

b

b

b

b

b

M = −5.5 × 2.453

−5.5 × 0.454
−5.5 × 0.096

M = 5.5 × 0.245

-0.25-0.5-0.75

4

-1 c = 1

Figure 2. Best rational approximation of degree 5 to exp(−5.5x) on [0, 1]: 1.
graph of the error function; 2. M(x) = logarithm of the absolute value of the
error function at x; 3. distribution function µz,5 of the 11 interpolation points;
4. a contour plot of M in the complex plane, and the 5 poles. Outside a contour
containing the poles, M(z = x+ iy) ∼ 5.5max(2V (z),−x), where V is the appro-
priate potential function. The y scales are not the same in the various parts of the
figure.
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2. Potential function and approximation in the complex plane

2.1. Potential of a set of charged points. Let us consider a system of charged particles in

the complex plane and a function of the form −
∑

k

wk log |z − zk|, z and zk ∈ C, which is the

potential function of the system. Remark that a positive charge wk gives +∞ at the particle
position, and a negative charge creates a potential well at its position.

This writing is compatible with the notation seen before
∫
C log |z − t| dν(t), by considering

dν(t) to be a discrete measure.
As an example of how such potential functions enter approximation, consider polynomial

interpolation at z1, . . . , zn of a function defined in the complex plane by an integral f(z) =∫
C ρ(t)dt/(z − t), where C may be a contour or a system of arcs, and ρ(t)dt a real or complex

measure (Markov-type, or Stieltjes-type functions), then the Hermite-Walsh formula [90, §3.1] of
the interpolation error is

f(z) − pn(z) =

∫

C

n∏

k=1

z − zk
t− zk

ρ(t)dt

z − t
,

so, |f(z) − pn(z)| 6 exp(n[Wn(z) − inft∈C Wn(t)])

∫

C

|ρ(t)dt|
|z − t| , where

Wn(z) = n−1
∑

k log |z − zk| is here the potential of a total negative unit charge on the zks.
Up to now, the language of potential seems only to be a shorthand for interpolation error

function description. But consider now the problem of polynomial best approximation of such a
function f on a set E. The interpolation points zk on E must now be such that the error function
has equal local extremal values of E, as in the first part of fig. 2 (this is exact if f is real on
the real set E). Let Vn,E be the relevant potential of a total negative unit charge on the zks.
Assuming the behaviour of the error function dominated by the exp(nVn,E(z)) term, we expect
Vn,E to be close to the harmonic function VE taking a constant value on E (as in the second part
of fig. 2). We are now at the center of potential theory, the determination of a harmonic function
in a domain through boundary values! Actually, VE is the Green function of E with a logarithmic
singularity at ∞ : VE(z) − log |z| bounded when z → ∞ [28, chap. II,§3], [90, chap. 4].

For instance, if E = [a, b], VE(z) = log |Φ(z)|+ const., where

Φ(z) = [z − (a+ b)/2 +
√

(z − a)(z − b)]/(|b− a|/2) maps conformally the exterior of E to the
exterior of the unit disk (and the reverse connection is Φ+Φ−1 = 2(2z−a− b)/|b−a|, the famous
Joukowski map).

Let pn be the denominator of a rational approximation of degree n to a function f , with zeros

p
(n)
1 , . . . , p

(n)
n in a set F , and qn be the interpolation of pnf at n+ 1 points z

(n)
1 , . . . , z

(n)
n+1 in a set

E. It is then possible to relate best rational approximations to functions analytic outside F and
potential functions taking (different) constant values on the boundaries of E and F [8,28,29,90],
also seen as condenser potential [7,23,31]. For instance, when E and F are intervals [a, b] and [c, d],

the potential is the real part of C

∫ z

∞

dt√
(t− a)(t− b)(t− c)(t− d)

, which will be encountered in

§ 5.4.2.
Remark that Bogatyrev prefers Riemann surfaces to Green functions (criticism of Akhiezer’s

methods, [12, p. XX]).

2.2. Rational interpolation at 2n+ 1 points. Rational approximation of degree n defined by
n poles and interpolation at n+1 points does not always explain best approximation performance.
Instead, we consider now rational approximation of numerator and denominator of degree n, the
n poles being unknowns. These n new degrees of freedom allow normally interpolation at 2n+ 1
points instead of n+ 1.
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Let {fn} be a family of functions analytic in a region containing a contour C. So, for any z
inside C,

fn(z) =

∫

C

ρn(t) dt

z − t
, (2.1)

with ρn(t) = −fn(t)/(2πi). It may also happen that C shrinks towards an arc or a system
of arcs, by deformation (through the point at infinity, if needed), ρn(t) is then the difference
(f−n (t) − f+

n (t))/(2πi) on the two sides of the cut, or even a real interval where the ρns are
positive functions (then, (2.1) is a (true) Markov function), see [32, 35], also the history in [71].
An example will be found at (5.7).

The best rational approximation of degree n on E to fn is expected to interpolate fn(z) =∫
C ρn(t)(z − t)−1dt at 2n+ 1 points instead of n+ 1 points, say, z

(n)
1 , . . . , z

(n)
2n+1, so

pn(z)fn(z) − qn(z) = (z − z
(n)
1 ) · · · (z − z

(n)
2n+1)

∫

C

pn(t)ρn(t)dt

(z − t)(t− z
(n)
1 ) · · · (t− z

(n)
2n+1)

, (2.2)

by the Hermite-Walsh formula again, should the numerator qn have degree 2n, with

qn(z) =

∫

C

[(t− z
(n)
1 ) · · · (t− z

(n)
2n+1)pn(z) − (z − z

(n)
1 ) · · · (z − z

(n)
2n+1)pn(t)]ρn(t)dt

(z − t)(t− z
(n)
1 ) · · · (t− z

(n)
2n+1)

. We find indeed

qn(z) =

∫

C

{[−z2n + [z
(n)
1 + · · · + z

(n)
2n+1 − t]z2n−1 + · · · ]pn(t) + · · · }ρn(t)dt

(t− z
(n)
1 ) · · · (t− z

(n)
2n+1)

of degree2 2n, unless

the integrals of pn(t), tpn(t), . . . , tn−1pn(t) do vanish, i.e., when pn is orthogonal to the polynomi-

als of degree< n on C with respect to the (probably complex) weight function
ρn(t)

(t− z
(n)
1 ) · · · (t− z

(n)
2n+1)

,

from (z − t)−1 = z−1 + tz−2 + · · · + tn−1z−n + tnz−n(z − t)−1.

By replacing (z−t)−1 by its interpolation at the zeros of pn, t = p
(n)
1 , . . . , p

(n)
n , with interpolation

error pn(t)/[(z − t)pn(z)], so

fn(z) − qn(z)

pn(z)
= (z − z

(n)
1 ) · · · (z − z

(n)
2n+1)

∫

C

p2
n(t)ρn(t)dt

(z − t)p2
n(z)(t− z

(n)
1 ) · · · (t− z

(n)
2n+1)

. (2.3)

We define now

Vn(z) = V
(n)
z (z) − V

(n)
p (z) =

1

2n+ 1

2n+1∑

1

log |z − z
(n)
k | − 1

n

n∑

1

log |z − p
(n)
k | ,then

lim sup
n→∞

|fn(z) − qn(z)/pn(z)|1/n
6 exp[2V (z) − min

t∈C
(2V (t) − φ(t))], (2.4)

where φ(t) = limn→∞ n−1 log |ρn(t)|, should Vn have the limit V when n→ ∞.

2.3. Conjectures and proofs. The conditions of existence and the properties of the limit of Vn

when n → ∞ depend on our knowledge of asymptotic behaviour of orthogonal polynomials with
respect to complex weights, which has been heavily investigated [31,36,37,49–51,55,58,66,70–72,
76,77,79]. This research was mostly started by A.A. Gonchar, as early3 as the 1960s-1970s [30,31],
and culminated in famous conjectures [33, 34], mostly proved from the no less famous works of
H.Stahl [76–78].

The final proof by Gonchar & Rakhmanov 1987 [36, 37] establishes that the orthogonal poly-

nomials pn of above do satisfy |pn(z)|1/n → exp(Vp(z)) when n → ∞, if the functions ρn

of (2.1) are analytic in a domain containing C, and n−1 log ρn has a limit Φ when n → ∞,

2The coefficients of z2n, z2n−1, . . . , zn+1 are found by applying the Ruffini-Horner scheme to the division of

−(z − z
(n)
1 ) · · · (z − z

(n)
2n+1) by z − t.

3The first author remembers vividly his surprise -and delight!- to have seen in [31] a short introduction to
2-dimensional condensers and their relation to rational approximation!
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let φ be the real part of Φ, and where the final potential function V (z) = Vz(z) − Vp(z) =∫

E
log |z − t|dµz(t) −

∫

F⊆C
log |z − t|dµp(t), is a constant, say, γE/2, on E, 2V (z) − φ(z) = is

another constant, say, γF , on F ⊆ C, with γF > γE , 2V −φ has equal exterior normal derivatives
on the two sides of F (Stahl’s symmetry property, or S−curve property [58, 70, 71]), in a form
adapted to the Cauchy-like formula (2.1) by Aptekarev [6, §1.1].

Then, for the best rational approximations rn on E, Vn → V when n→ ∞, and

‖fn − rn‖1/n
E → ρ := exp(γE − γF ) < 1.

The convergence rate is also written ρ = exp(−2/cap(E,F, φ)), where
cap(E,F, φ)) = 2/(γF − γE) = 1/[(V − φ/2)F − (V )E ] is the weighted condenser capacity of
the system (E,F, φ), i.e., the ratio of a charge (negative unit charge on E, positive on F ) and an
augmented potential difference from E to F [74]. Aptekarev considers also more complete, and
more symmetric, systems (E,F, φ, ψ) [6].

There is a wonderful association of the theory of best approximation and the theory of minimal
capacity, at least in the weightless case (φ(t) ≡ 0), but things are less obvious when φ(t) 6≡ 0 [19].

The complete theory and history are surveyed by Mart́ınez-Finkelshtein and Rakhmanov [55,
58,70,71].

For strong asymptotics lim ‖fn − rn‖E/ρ
n, see section 5.

2.4. Complex potential. Let −∑k wk log(z−zk) be a complex potential, where one must make
an appropriate choice of the complex logarithm, such as the usual convention of a real logarithm
for a positive argument, with a discontinuity on the negative half line. Then, with real values of
(zk, wk), the imaginary part of the potential is a staircase function on the real values of z, such
as the staircase function seen in part 3 of the figure 2.

A test particle of positive unit charge is submitted to a force which is the complex conjugate of
the derivative of the complex potential. Gauss started studies relating complex function theory
to the 2-dimensional mathematical physics [62,91].

Note however that the actual poles and interpolation points of a particular best rational ap-
proximation problem are normally NOT exactly the solutions of a problem of electrostatics. Only
the LIMIT distributions µp and µz have a physical meaning. As an example, fig. 5 in § 6.2 shows
a set of poles not far, but not exactly the same, from a set of equilibrium points found by a
discretization of the continuous problem.

The conditions on V are now [6, §1.2]
(I) the charge distributions µz and µp on the two regular compact sets E and F , making

V(z) = Vz(z) − Vp(z) =

∫

E
log(z − t)dµz(t) −

∫

F⊆C
log(z − t)dµp(t), satisfy

∫
E dµz(t) =

∫
F dµp(t) = 1,

(II) the functions ρn of (2.1) are analytic in a domain containing C, and
n−1 log ρn → Φ when n→ ∞,

(III) Re(2V(z) − Φ(z)) = the constant γF on F ⊆ C,

(IV) Re(2V(z) − Φ(z)) > γF on the remaining part of C,

(V) ReV(z) = the constant γE/2 on E,

(VI) 2V ′(z) − Φ′(z) has opposite limit values on the two sides of F .

From Sokhotskyi-Plemelj [39, 3 §14.1], the limit values of V ′(z) − Φ′(z)/2 =

∫

E

dµz(t)

z − t
−

∫

F

dµp(t)

z − t
− Φ′(z)/2 on the two sides of F are

∫

E

dµz(t)

z − t
−
∫

F

dµp(t)

z − t
± πiµ′p(z) − Φ′(z)/2, must
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be opposite, so,

V ′(z) =
Φ′(z)

2
± πiµ′p(z), z ∈ F, (2.5)

where

∫
means principal value. The condition (VI) above means that the first integral of the

right-hand side and the principal value add to Φ′(z)/2 on F .
For V itself, V(z) = V(a) + Φ(z)/2 −Φ(a)/2 ∓ iπµp(z) on the right side and the left side of F .
The central part of the theory is how to establish the asymptotic behaviour of the denominator

pn as the polynomial orthogonal to all polynomial of degree smaller than n with respect to the

complex weight exp(n(Φ(t)−2Vz(t))) on F , as seen in § 2.2. As Vp(z) =

∫

F
log(z− t)dµp(t) is the

potential of the expected limit distribution of poles, pn(z) ∼ exp(nVp(z)) is the obvious starting
formula. However, Vp(z) is singular on F (discontinuous derivative when crossing F ), and where
are the zeros of pn? An exponential function has no zero. A better tentative formula for z near
F is pn(z) ∼ A(z) exp(nVp,+(z)) + B(z) exp(nVp,−(z)), referring to values on the right side and
the left side of F .

Remind that the two parts making the complex potential function are written here V(z) =

Vz(z)−Vp(z), where Vz,p(z) =

∫

E,F
log(z − t) dµz,p(t), µz and µp being positive measures of unit

total weight on their supports E and F .
From above, −V±(z) = constant − Φ(z)/2 ± iθq(z), where θq(z) = π(µp(z) − µp(a)) on the

right side of F increases from 0 to π when z runs from a to b on the right side of F (positive unit
charge on F ), and from π to 2π (or from −π to 0) when z return to a on the left side of F .

Remark also that dθq/dz = i(V ′(z) − Φ′(z)/2) = πµ′(z) on the right side of F ; −πµ′(z) on the
left side.

So, as Vp,±(z) = Vz(z) − V±(z) = Vz(z) − Φ(z)/2 ± iθq(z), our estimate of pn is pn(z) ∼
enVz(z)−nΦ(z)/2[A(z) exp(niθq(z))+B(z) exp(−niθq(z))], showing already a satisfactory oscillating
behaviour on F ! The still unknown functions A,B will follow from a check of orthogonality of pn

and all polynomials of degree < n. We use the test functions pn(z)/(z − p) for the n zeros p of
pn. Then,
∫

F
pn(t)

pn(t)

t− p
exp(nΦ(t) − (2n + 1)Vz(t))dt

∼
∫

F

[
A(t)eniθq(t) +B(t)e−niθq(t)

]2 exp(−Vz(t))dt

t− p
.

The integrals of the e±2niθq(t) terms are high index Fourier coefficients, therefore have vanishing
limit when n→ ∞. What remains is the integral of

2A(t)B(t)
exp(−Vz(t))

t− p
and does not depend on n. A more complete discussion of the principal

value integral is needed and will be done in § 5.4.2.

3. The complex potential of the present problem.

3.1. Theorem. Let qn/pn be the best rational approximant of degree n to the exponential func-
tion exp(−(n+ ν)x) on E = [0, c]. The limits

(pn(z))1/n → exp[Vp(z)],

(qn(z) − pn(z) exp(−(n + ν)z))1/n → C exp[2Vz(z) − Vp(z)],

exist when n→ ∞, z /∈ E
⋃
F , where F is an arc in the complex plane.

The complex potential V = Vz − Vp, with

Vp(z) =

∫

F
log(z − t)dµp(t), Vz(z)) =

∫

E
log(z − t)dµz(t)
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satisfies V(∞) = 0 and

√
z(z − c)

(z − a)(z − b)
V ′(z) =

−1

2πi

∫ b

a

√
t(t− c)

(t− a)(t− b)

dt

z − t
, (3.1)

where the integral is taken on the right side of F = [a, b], the square roots being determined as
being positive for large positive z and t, and continuous outside the cuts E = [0, c] and F .

One also has

V ′′(z) =
ν0z + ν1√

z3(z − c)3(z − a)(z − b)
, (3.2)

where

ν0x+ ν1 =
1

4πi

∫ b

a

√
t(t− c)

(t− a)(t− b)

[
ab(x− c)

t
+

(a− c)(b− c)x

t− c

]
dt. (3.3)

The unit charge conditions on E and F lead to
∫ b

a

(ν0x+ ν1)dx√
x(x− c)3(x− a)(x− b)

= πi (3.4)

Finally, the rate of error decrease is ρ with

‖ exp(−(n+ ν)x) − qn(x)/pn(x)‖1/n
E → ρ = exp[2V (0) − 2V (a) − Re a]

= exp

[
2 Re

∫ a

0

(ν0t+ ν1)dt√
t(t− c)3(t− a)(t− b)

]
(3.5)

3.2. Proof.

In (2.1) we have exp(−(n+ν)z) =
∫
C ρn(t)dt/(z− t) on a contour C containing z as an interior

point, with ρn(t) = − exp(−(n + ν)t)/(2πi), so that Φ(t) = limn−1 log ρn(t) = −t everywhere in
the complex plane.

3.2.1. First formula. The existence of the limits follows from the Gonchar-Rakhmanov-Stahl the-
ory recalled in § 2.3, that we apply to the present problem.

As E is a real set, we enjoy an important simplification by trying a symmetric set F with
respect to the real axis, so that the potential V satisfies the Schwarz’s symmetry, or reflection,
property V (z) = V (z). It also means that the complex potential V and its derivative V ′ at z are
the complex conjugates of V(z) and V ′(z) [40, vol. 1 Th. 7.7.2] [65, §5.5]. On the two sides of E,
as the real potential V is constant, its gradient is vertical, so V ′ takes opposite pure imaginary
values!

The two conditions on V ′ on the two sides of E and F will almost immediately give a formula
for the complex potential, up to a small number of unknown constants.

We assume F to be an arc joining a to b = a, the two main unknown constants to be determined
later on.

As V ′(z) must take opposite values on the two sides of [0, c],
√
z(z − c)V ′(z) is a meromorphic

function outside the second cut F (elementary instance of homogeneous Privalov’s problem [39,

§14.8, example 1 with d = 1/2]) the same is true after division by
√

(z − a)(z − b) , so that√
z(z − c)

(z − a)(z − b)
V ′(z) =

1

2πi

∮ √
t(t− c)

(t− a)(t− b)

V ′(t) dt

z − t
on a contour shrinking to the two

sides of the cut F . Let V ′(t) be the value on the right side of F . When we proceed with the
integral from b to a on the left side, the square root of (t− a)(t− b) changes its sign, so that we



10

have to consider the SUM of the values of V ′(t) = −1/2 ± πiµ′p(t) on the two sides of F , from
(2.5). Then, (3.1) follows.

The values of V near E and F give µz and µp from the Sokhotskyi-Plemelj relations seen above,
and Vz and Vp can then be reconstructed. However, curious quadratic relations (6.8) in § 6.3 do
the job for our particular problem!

Remark that we do not need to know where F is: as Φ is analytic in a region containing F
(here, Φ(z) = −z), the right-hand side of (3.1) is the same for any arc joining a and b without
crossing E = [0, c]. Later on, the true set F will be found as a part of the locus where 2V (z)+x =
2V (a) + Re a = 2V (b) + 2Re b, see fig. 3.

It will also be necessary to find a contour C such that 2V (z) − φ(z) = 2V (z) + x is larger on
C \ F than its constant value on F .

b

b

b

b b

b

b

b

0 1 2
∞

F
E

a

bb

b

c = 1
b b

− − +

Figure 3. F−cut for various values of c; the full locus V (z) + x/2 = V (a)+ Re
a/2 for c = 1. The sign of V (z) + x/2 − V (a)− Re a/2 in the three regions is
shown too. The contour C of the theory contains the arc F and is closed by an
arc within the “+” region. Should the complex potential function be reduced to
its first expansion term ν0/(2z), with ν0 < 0, the locus should be the imaginary
axis x = 0 and the circle x2 + y2 = −ν0 as first approximation with a = −√−ν0 i.

3.2.2. First equation for the parameters. From V(z) =

∫

E
log(z− t)dµz(t)−

∫

F
log(z− t)dµp(t) =

−
∫

E
S

F
log(z − t)dµ(t) =

µ1

z
+

µ2

2z2
+ · · · , V ′(z) is only O(z−2) at ∞, we have

∫ b

a

√
t(t− c)

(t− a)(t− b)
dt = 0 (3.6)

as a bonus!! (3.6) gives our first equation for a and b, knowing c, and another equation will be
worked later on, from the unit charge condition

∫
E dµz(t) =

∫
F dµp(t) = 1.

When c = 0, (3.6) is solved when b = −a, as we integrate the odd function t/
√
t2 − a2 on (a,−a).

Moreover, as we know that F must be symmetric with respect to the real axis, we deduce that a
and b are two opposite pure imaginary numbers. There is no more information in (3.6), but (3.1)

yields the explicit formula
z√

z2 − a2
V ′(z) =

−1

2πi

∫ −a

a

t√
t2 − a2

dt

z − t
=

1

2
− z

2
√
z2 − a2

from the

Chebyshev-Markov example (5.7), so V ′(z) = −1

2
+

√
z2 − a2

2z
shows a potential well of charge

−ia/2 at the origin, whence a = −2i:
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c = 0 : V(z) = −z/2 +
√
z2 + 4/2 − log[(

√
z2 + 4 + 2)/z] (3.7)

has indeed a potential well const. + log z coming from a negative unit charge at z = 0. Moreover,
the derivative shows that V ′(z)+1/2 takes indeed opposite values on the two sides of any cut joining
−2i to 2i avoiding the origin. The actual line of poles is the locus where the two determinations
of the square root of z2 +4 yield the same real part in the formula for V(z) [24], so, where V ′(z)dz
is pure imaginary, the quadratic differential (z2 + 4)dz2/z2 < 0. For real negative z = −2 sinh θ,
cosh θ− log(cosh θ+1) = − cosh θ− log(cosh θ−1), or 2 cosh θ = 2 log coth(θ/2), θ = 0.6219..., z =
α = −1.3255...

In general, for a given c 6= 0, we shall have to work a non homegeneous equation expressing
that E carries a negative unit charge, and F a positive unit charge. From ReV = constant on E,
and Sokhotskyi-Plemelj [39, §14.1], V ′(x ± i0) = ∓πiµ′i(x) on x ∈ E, and we will need formulas
for V, so to use V(c+ i0) − V(i0) = −πi.

Near F , a positive test particle is repelled, so, the gradient of V (z) + x/2 is directed towards
F , and so is the complex derivative V ′ + 1/2. On the right side of F , V ′ + 1/2 has a negative real
part, and the integral times dz from a to b has a negative imaginary part.

3.2.3. Second derivative of the complex potential. We need more formulas for V and its derivatives.
We build the differential equation (3.2) for V from (3.1), first multiply by

(z − a)(z − b), let R(z) =
√
z(z − c)(z − a)(z − b) :

R(z)V ′(z) =
1

2πi

∫ b

a

R(t)

(t− a)(t− b)

t(z − t) + (t− a)(t− b)dt

z − t
, from (z − a)(z − b) = (t − a)(t −

b) + (z − t)(z + t− a− b), and using (3.6) as

∫ b

a

R(t)dt

(t− a)(t− b)
= 0. Divide by R(z), differentiate

and integrate by parts:

V ′′(z) =
1

2πi

∫ b

a

[ −tR′(z)R(t)

(t− a)(t− b)R2(z)
+

[R′(t)/R(z) −R′(z)R(t)/R2(z)]

z − t

]
dt,

R(z)V ′′(z) =
1

2πi

∫ b

a
R(t)

[ −tR′(z)

(t− a)(t− b)R(z)
+

[R′(t)/R(t) −R′(z)/R(z)]

z − t

]
dt,

which is therefore a rational function of poles 0, c, a, and b,
seeing that 2R′(z)/R(z) = 1/z + 1/(z − c) + 1/(z − a) + 1/(z − b). More precisely,

R(z)V ′′(z) =
1

2πi

∫ b

a
R(t)

[ −t
(t− a)(t− b)

(
1

2z
+

1

2(z − c)
+

1

2(z − a)
+

1

2(z − b)

)

+
1

2tz
+

1

2(t− c)(z − c)
+

1

2(t− a)(z − a)
+

1

2(t− b)(z − b)

]
dt

=
1

2πi

∫ b

a

R(t)

(t− a)(t− b)

[
− (a+ b)t− ab

2tz
− (a+ b− c)t− ab

2(t− c)(z − c)
− b

2(z − a)
− a

2(z − b)

]
dt

=
1

4πi

∫ b
a

R(t)

(t− a)(t− b)

[
ab

tz
+

(a− c)(b− c)

(t− c)(z − c)

]
dt, using again (3.6). There is therefore no pole at

z = a and b, the residues at 0 and c are the integrals of ab/t and (a− c)(b− c)/(t− c) divided by
4πi, and this leads to (3.2-3.3).

The final result (3.2) for V ′′(z) is as in Gonchar & Rakhmanov [36, p. 323 ].
Here, ν0 is the sum of the two residues, and ν1 is −c times the residue at 0. ν0 is also 2µ1 from

the behaviour of V(z) = µ1/z + · · · for large z in §3.2.2.
From the usual definition of the square root as positive for large positive z, and continuous

outside the cuts, the denominator of (3.2) is negative imaginary on the upper side of the cut [0, c],

V ′′(z) = −πiµ′′(z) behaves like
ν0c+ ν1√
abc3

(z−c)−3/2 near z = c, V ′(z) = −πiµ′(z) ∼ −2
ν0c+ ν1√
abc3

(z−

c)−1/2, and V(z) ∼ constant − 4
ν0c+ ν1√
abc3

(z − c)1/2. As µ′ must be positive, ν0c + ν1 < 0.
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c name ρ a = b k ν0 ν1

0 Padé 0 −2i 0 −2 0

c→ 0 c2e2−c/2/256 c/2 − 2i c/4 −2 c
0.5 1/177.934 0.234 − 1.992i 0.1245 -2.0155 0.565894
1 1/57.0700 0.437 − 1.970i 0.2458 -2.0608 1.27279
2 1/23.2287 0.746 − 1.890i 0.4626 -2.2248 3.11261
5 1/12.4330 1.088 − 1.646i 0.7696 -2.9314 11.1496
20 1/9.86048 1.183 − 1.447i 0.8865 -5.5344 83.6351
∞ ’1/9’ 1/9.28903 1.195 − 1.389i 0.9089 −∞ ∞

Table 1. c, ρ, a, k, ν0, and ν1.

Near z = 0, V ′′(z) = −πiµ′′(z) ∼ ν1i√
abc3

z−3/2,V ′(z) = −πiµ′(z) ∼ −2
ν1i√
abc3

z−1/2,V(z) ∼

constant − 4
ν1i√
abc3

z1/2, and ν1 > 0.

Finally, V ′ and V are

V ′(z) =

∫ z

∞

(ν0x+ ν1)dx√
x3(x− c)3(x− a)(x− b)

, (3.8)

V(z) =

∫ z

∞

(ν0x+ ν1)(z − x)dx√
x3(x− c)3(x− a)(x− b)

= zV ′(z) −
∫ z

∞

(ν0x+ ν1)dx√
x(x− c)3(x− a)(x− b)

. (3.9)

Behaviour of V(z) and its derivatives near a and b: let
ν0b+ ν1√

b3(b− c)3(b− a)
= ReiΦ, so V ′′(z) ∼

ReiΦ(z − b)−1/2, near b, V ′(z) ∼ −1/2 + 2ReiΦ(z − b)1/2, as we know that V ′(a) = V ′(b) = −1/2,

and V(z) ∼ constant − z/2 + (4R/3)eiΦ(z − b)3/2, where the constant is V(b) + b/2. As the
square roots must remain continuous outside the cut F , we follow z − b = |z − b|eiθ from θ = θ0
on the right side of F , to θ = θ0 + 2π on the left side. The real part of V(z) + z/2 − V(b) − b/2
must vanish at the starting point, so Φ + 3θ0/2 = π/2 and the real part of exp(iΦ + 3θ/2) is
cos(π/2+ 3(θ− θ0)/2) = − sin(3(θ− θ0)/2) is indeed negative for θ− θ0 < 2π/3, positive between
2π/3 and 4π/3, and negative again between 4π/3 and 2π, explaining the pattern of signs in fig.
3.

Some values are in table 1, their formulas will be established in section 4 of the present study.

3.2.4. Second equation for the parameters. Unit charges: on the sides of the cut F bearing a unit
positive charge, we know that

V ′(z) = −1/2 ± πiµ′p(z), (3.10)

(from (2.5), Sokhotskyi-Plemelj, again), or near any arc joining a and b not crossing E = [0, c].
So, as seen above, the integral of V ′(z) + 1/2 from a to b on the right side of the cut has a

negative imaginary part, and

V(b) − V(a) = (a− b)/2 − πi (3.11)

on the right side of the cut F . From (3.9),

V(b) − V(a) = bV ′(b) − aV ′(a)︸ ︷︷ ︸
(a− b)/2

−
∫ b

a

(ν0x+ ν1)dx√
x(x− c)3(x− a)(x− b)

= −πi, knowing that V ′(a) =

V ′(b) = −1/2, our second equation is (3.4).
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Remark that we could have taken in (3.9),

V(z) = (z − c)V ′(z) −
∫ z

∞

(ν0x+ ν1)dx√
x3(x− c)(x− a)(x− b)

, leading to

∫ b

a

(ν0x+ ν1)dx√
x3(x− c)(x− a)(x− b)

= −πi as well, so that one must have

∫ b

a

(ν0x+ ν1)dx√
x3(x− c)(x− a)(x− b)

=

∫ b

a

(ν0x+ ν1)dx√
x(x− c)3(x− a)(x− b)

, (3.12)

and V ′(a) = V ′(b) means

∫ b

a

(ν0x+ ν1)dx√
x3(x− c)3(x− a)(x− b)

= 0, but is a consequence of (3.12):

with R(x) =
√
x(x− c)(x− a)(x− b) as before,∫ b

a

ν0x+ ν1

xR(x)
dx−

∫ b

a

ν0x+ ν1

(x− c)R(x)
dx = 0 = −c

∫ b

a

ν0x+ ν1

x(x− c)R(x)
dx = 0.

When c→ +0, the second part of (3.4) tends to
1

4πi

∫ −a

a

t√
t2 − a2

−2a2x

t
dt = a2x/2; and the first part is the half of the contour integral about

the cut F of (ν0/x + ν1/x
2)/
√

(x− a)(x− b) leaving πi times the residue ν0/
√
ab at x = 0, so,

ν0 ∼ −
√
ab = −|a|. This leaves ν0 ∼ a2/2 ∼ −|a| → −2 when c→ 0, in agreement with numerical

tests.

Rate of decrease of error norm is (3.5).

4. Elliptic integrals of first, second, and third kind.

4.1. Change of variables.

We follow Byrd & Friedman [20, p.133]:
A convenient transformation sending the four branchpoints z = 0, c, a, and b = a on and from

a symmetric set {∓1,∓ik′/k} , is

v = cn u =
Az +B(z − c)

Az −B(z − c)
⇔ z = − Bc

A−B
+

2ABc/(A−B)

A+B − (A−B)v
=

Bc(1 + v)

A+B − (A−B)v
,

where A and B are the absolute values |a− c| and |a|. So,

v =

z

|a| +
z − c

|a− c|
z

|a| −
z − c

|a− c|
. (4.1)

In particular, at z = a and b, v = [exp(±i arg a)+exp(±i arg(a−c))]/[exp(±i arg a)−exp(±i arg(a−
c))] = ∓i cot[arg(a/(a− c))/2] = ∓i cot(θ/2), where θ is the angle at a or b in the figure 8. These

values for v = cn u must be ±ik′/k, so that s = sn u = ±
√

1 + k′2/k2 = ±1/k there. We also

have eiθ/2 = k′ + ik.

As neither a nor b is known, we may as well take k and ζ =
A−B

A+B
.

A = (A+B)(1 + ζ)/2, B = (A+B)(1 − ζ)/2,
c2 = A2 +B2 − 2AB cos θ = (A+B)2[1 + ζ2 − (1 − ζ2) cos θ]/2

= (A+B)2(k2 + ζ2k′2).

a, b =
(1 − ζ)c(1 ∓ ik′/k)/2

1 + ±iζk′/k , a+ b =
(1 − ζ)c(k2 − k′2ζ)

k2 + ζ2k′2
, c− a− b =

cζ

k2 + ζ2k′2
,

ab =
(1 − ζ)2c2

4(k2 + ζ2k′2)
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b = z(ik′/k)

a = z(−ik′/k)

0 c
ik′/k

−ik′/k

−1 1

−K + iK′
K + iK′

0 2K

v = cn u

Figure 4. The z− plane, the v−plane, and the u−plane.

Also, a, b =
c

1 − A(k′ ± ik

B(k′ ∓ ik

=
c

1 − |a− c|
|a| e±iθ

.

z =
(1 − ζ)c(v + 1)

2(1 − ζv)
=

(1 − ζ−1)c

2
+

(1 − ζ2)c

2ζ(1 − ζv)
, z−c =

(1 + ζ)c(v − 1)

2(1 − ζv)
, z−a, b =

(1 − ζ2)c(kv ± iζk′)

2(1 − ζv)(k ± iζk′)
,

(z − a)(z − b) =
(1 − ζ2)2c2(k2v2 + k′2)

4(1 − ζv)2(k2 + ζ2k′2)
[20, 361.54 p.215].

4.2. Theorem. The best rational approximation problem of exp(−(n + ν)z) involves the sets
E = [0, c] and F = [a, b] , which are mapped by (4.1) on [−1, 1] and an arc joining −ik′/k to
ik′/k avoiding [−1, 1], see fig. 4.

A first equation for the modulus k and ζ =
|a− c| − |a|
|a− c| + |a| is

E + (k2 − α2)
K − Π

α2
= 0, (4.2)

where k′ =
√

1 − k2, α2 = −k2(1 − ζ2)/ζ2, ζ2 = k2/(k2 − α2) and

K =

∫ π/2

0

dϕ√
1 − k2 sin2 ϕ

, E =

∫ π/2

0

√
1 − k2 sin2 ϕdϕ,

Π =

∫ π/2

0

dϕ

(1 − α2 sin2 ϕ)
√

1 − k2 sin2 ϕ
=

∫
K

0

du

1 − α2 sn2 u

(4.3)

are the complete elliptic integrals of first, second, and third4 kind.
The second equation for k and α (or k and ζ) is

E(K − E) =
π2ζ

c(1 − ζ2)
=
π2k

√
k2 − α2

−α2c
. (4.4)

Finally, the rate of decrease is given by

log ρ =
π

1 + ζ

[
− ζE′

K− E
+

E
′ − K

′

E

]
(4.5)

4.3. Proof.

4α2 is often written n, or −n, or 1 − p in the literature.
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k name α2 2K/π 2E/π 2Π/π

0 Padé −∞ 1 1 0
k → 0 −4/k4 1 + k2/4 1 − k2/4 k2/2
0.25 -972.90 1.016199 0.984187 0.032076
0.50 -49.130939 1.073182 0.934215 0.143696
0.75 -4.78774 1.216574 0.839365 0.465456

k∞ = 0.908909 . . . , ’1/9’ 0 1.477626 0.738813 1.477626
0.95 0.55037 1.648852 0.702014 2.746061
0.99 0.928447 2.13688 0.654748 13.9059

Table 2. α2,K,E, and Π as functions of k from (4.2).

4.3.1. First equation.

The integral (3.6) is a constant times

∫ −ik′/k

ik′/k

√
1 − v2

k2v2 + k′2
dv

(1 − ζv)2
, integrating from ik′/k to

−ik′/k through ±i∞, or, with v = cnu,∫
K+iK′

−K+iK′

sn2u

(1 − ζ cnu)2
du =

∫
K

−K

1

(k sn u− iζ dn u)2
du

from sn(u + iK′) = 1/(k snu), cn(u + iK′) = dnu/(ik snu), (Jahnke & Emde [42, VI A 4.2]

= 2
∫

K

0

ζ2 dn2 u− k2 sn2 u

(k2 sn2 u+ ζ2 dn2 u)2
du = 2

∫
K

0

ζ2 − k2(1 + ζ2) sn2 u

(ζ2 + k2(1 − ζ2) sn2 u)2
du = a constant times (4.2),

see [20, 362.15 & 16, also 410.07 & 08].

The equation (4.2) has exactly one root α2 ∈ (−∞, k2) when −1 < k < 1, as the left-hand side

of (4.2) is E −
∫ π/2

0

k2 − α2

1 − α2 sin2 ϕ

sin2 ϕ dϕ√
1 − k2 sin2 ϕ

which is an increasing function of α2, starting

with E − K < 0 at α2 = −∞, and reaching E > 0 at α2 = k2.

Incidentally (!), at α = 0, we have E −
∫ π/2

0

k2 sin2 ϕ dϕ√
1 − k2 sin2 ϕ

= E − (K − E) = 2E − K,

known to vanish when c = ∞, the ’1/9’ case ... The value of the modulus is then k∞ =
0.9089085575485414782361189087447935049010139693404... [53].

When c is small, (4.2) is α2π/2 times (2/π)(E − K) + 2Π/π ∼ −k2/2 + 1/|α| [42, V.C.1] and∫
du/(1 − α2 sn2 u) ∼

∫∞
0 du/(1 − α2u2) = π/(2|α|) for α2 strongly negative), so, the left hand

side of (4.2) is about α2π/2 times −k2/2 + 1/|α| whence α2 ∼ −4/k4, or ζ ∼ k3/2.
We could not resist looking ”beyond ∞”, when α2 > 0 in table 2.

4.3.2. Second equation.
We now keep track of all the constants in (3.4).

From (3.3) with t =
c(1 − ζ)(v + 1)

2(1 − ζv)
=

(1 − ζ−1)c

2
+

(1 − ζ2)c

2ζ(1 − ζv)
,

ν0x+ ν1 =
1

4πi

∫ −ik′/k

ik′/k

√
(v2 − 1)(k2 + ζ2k′2)

(1 − ζ2)(k2v2 + k′2)
[
2ab(1 − ζv)(x− c)

(1 − ζ)c(v + 1)
+

2(a− c)(b− c)(1 − ζv)x

(1 + ζ)c(v − 1)

]
(1 − ζ2)cdv

2(1 − ζv)2
,
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integrating from ik′/k to −ik′/k through ±i∞, or, with v = cnu, and with χ =
−1

4π

√
k2 + ζ2k′2

1 − ζ2
,

ν0x+ ν1 = χ
∫

K+iK′

−K+iK′ [(1 + ζ)ab(x− c)(1 − cnu) − (1 − ζ)(a− c)(b− c)x(1 + cnu)]
du

1 − ζ cnu
,

= χ
∫

K

−K

(1 + ζ)ab(x− c)(ik snu− dnu) − (1 − ζ)(a− c)(b− c)x(ik snu+ dnu)

ik snu− ζ dnu
du

= 2χ
∫

K

0

(1 + ζ)ab(x− c)(k2 sn2u+ ζ dn2u) − (1 − ζ)(a− c)(b− c)x(k2 sn2 − ζ dn2u)

k2 sn2u+ ζ2 dn2u = ζ2(1 − α2 sn2u)
du

= 2χ

[
(1 + ζ)ab(x− c)

(
K

1 + ζ
+

Π

ζ(1 + ζ)

)
− (1 − ζ)(a− c)(b− c)x

(
K

1 − ζ
− Π

ζ(1 − ζ)

)]

=
−c2

8π
√

(1 − ζ2)(k2 + ζ2k′2)

[
(1 − ζ)2(x− c)

(
K +

Π

ζ

)
− (1 + ζ)2x

(
K− Π

ζ

)]

=
−c2
8πζ

√
1 − ζ2

k2 + ζ2k′2
[(1 − ζ)(x− c)(K − (1 − ζ)E) + (1 + ζ)x (K − (1 + ζ)E)]

using ab =
(1 − ζ)2c2

4(k2 + ζ2k′2)
, (a − c)(b − c) =

(1 + ζ)2c2

4(k2 + ζ2k′2)
from above, and (4.2) in the form

Π = K − (1 − ζ2)E, so

ν0 =
−c2
4πζ

√
1 − ζ2

k2 + ζ2k′2
[
K − (1 + ζ2)E

]
, ν1 =

c3

8πζ

√
1 − ζ2

k2 + ζ2k′2
(1 − ζ) [K− (1 − ζ)E] . (4.6)

We now need (3.4) and (3.12)

πi =

∫ b

a

(ν0 + ν1/x)dx√
x(x− c)(x− a)(x− b)

=

∫ −ik′/k

ik′/k

[
ν0 + ν1

2(1 − ζv)

(1 − ζ)c(v + 1)

]
(1 − ζ2)c dv

2(1 − ζv)2√
(1 − ζ2)3c4(v2 − 1)(k2v2 + k′2)

16(1 − ζv)4(k2 + ζ2k′2)

π = 2

√
k2 + ζ2k′2

1 − ζ2

∫ −ik′/k

ik′/k

[
ν0 + ν1

2(1 − ζv)

(1 − ζ)c(v + 1)

]
( dv = − snu dnu du)

c
√

(1 − v2)(k2v2 + k′2)

=
−2

c

√
k2 + ζ2k′2

1 − ζ2

∫
K+iK′

−K+iK′

[
ν0 + ν1

2(1 − ζ cnu)

(1 − ζ)c(1 + cnu)

]
du

=
−2

c

√
k2 + ζ2k′2

1 − ζ2

∫
K

−K

[
ν0 + ν1

2(k snu+ iζ dnu)

(1 − ζ)c(k snu− i dnu)

]
du

=
−2

c

∫
K

0

[−c2
2πζ

(K − (1 + ζ2)E) +
c2

2πζ
(K − (1 − ζ)E)(−ζ + (1 + ζ)k2 sn2u)

]
du

=
c

πζ
[K(K − (1 + ζ2)E) − (K − (1 − ζ)E)(−ζK + (1 + ζ)(K − E)]

=
c

πζ
(1− ζ2)E(K−E), using

∫
K

0
sn2u du = (K−E)/k2 [1, 16.26.1] and (4.4) follows, completing

with (4.2) the two equations for the two real unknowns k and α2 (or k and ζ). Table 1 is done
with numerical solutions of equations (4.2) and (4.4) (and (4.8) for ρ).

As c is a continuous function of k and ζ, existence of solution follows. It is even possible to
look at k > 0.9089..., where c < 0, the meaning of this region being a small enigma (§8 ).

It is also strongly suspected, but without proof here, that c is an increasing function of k and
ζ, implying unicity of solution.

When c → 0, we expect k and ζ → 0, K − E very small ∼ πk2/4, and we know ζ ∼ k3/2, so,
c ∼ 4k.

A curious consequence of (4.4) is the quadratic relation
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(ν0c+ ν1)
2

(c− a)(c− b)
− ν2

1

ab
= −c

3

4
. (4.7)

Indeed, from ab =
(1 − ζ)2c2

4(k2 + ζ2k′2)
, (a − c)(b − c) =

(1 + ζ)2c2

4(k2 + ζ2k′2)
and (4.6),

(ν0c+ ν1)
2

(c− a)(c− b)
=

c4(1 − ζ2)

16π2ζ2
[−K+(1+ζ)E]2,

ν2
1

ab
=
c4(1 − ζ2)

16π2ζ2
[K−(1−ζ)E]2, so that the difference is

c4(1 − ζ2)

16π2ζ2
4ζE(E−

K) and the result follows from (4.4).

4.3.3. Rate of error norm decrease. From (3.5)

log ρ = 2 Re

∫ a

0

(ν0t+ ν1)dt√
t(t− c)3(t− a)(t− b)

= 2 Re
4(1 − ζ)

c2

√
k2 + ζ2k′2

(1 − ζ2)3

∫ −ik′/k

−1

(1 − ζv)

[
ν0

(1 − ζ)c(v + 1)

2(1 − ζv)
+ ν1

]
dv

(v − 1)
√

(v2 − 1)(k2v2 + k′2)

= 2 Re
4(1 − ζ)

c2

√
k2 + ζ2k′2

(1 − ζ2)3

∫ −ik′/k

−1

2(1 − ζ)(ν0c+ ν1) + ((1 − ζ)ν0c− 2ζν1)(v − 1)

2(v − 1)
√

(v2 − 1)(k2v2 + k′2)
dv

= 2 Re
4i(1 − ζ)

c2

[∫ −K+iK′

2K

2c3((1 + ζ)E− K)

8πζ( cn u− 1)
du− c3(K − E)

4πζ
(−3K + iK′)

]

= 2 Re 4ic(1 − ζ)


−

(1 + ζ)E− K

4πζ
[∆(u− E(u)]−K+iK′

2K︸ ︷︷ ︸
−3K + iK′ + 3E − i(K′ − E

′)

−K− E

4πζ
(−3K + iK′)




log ρ = −c(1 − ζ)

πζ
[((1 + ζ)E − K)E′ + (K − E)K′], (4.8)

from [20, 119.02, p.26 Fig. 12, 361.51] and [5, p.81, 82]. and (4.5) follows.
When c is small, k ∼ c/4, E and K ∼ π/2, K− E ∼ πk2/4 ∼ πc2/64,

ζ ∼ k3/2 ∼ c3/128, E
′ ∼ 1, and K

′ ∼ log(4/k) ∼ log(16/c), so,
log ρ ∼ −c[1/2− (πc2/64)/(πc3/128)[1− log(16/c)]] = −c/2+2−2 log(16/c), same as Meinardus-
Braess in § 1.2.

And when c→ ∞, the ’1/9’ case, it is better to use (4.4),

log ρ =
π

1 + ζ

[
K − (1 + ζ)E

E(K − E)
E
′ − K

′

E

]

If c→ ∞, ζ → 1, and we know that K − 2E → 0, so, log ρ ∼ −πK′/K remains!

5. Strong asymptotics.

5.1. Introduction. We considered expressions like Xn = Ane
Bn , where An is convergent, and

where Bn increases linearly, say, Bn = nB∗ + O(1). The root asymptotics deals only with eB
∗

=

the limit of X
1/n
n . We now try a more accurate asymptotic expression Xn ∼ A∞enB∗+B∗∗

meaning

limn→∞
Xn

A∞enB∗+B∗∗
= 1, where A∞ and B∗∗ are the limits of An and Bn − nB∗, if these limits

exist.

Consider fn(z) =

∫

C

ρn(t) dt

z − t
, with ρn(t) = exp(−(n + ν)t), so that, as in (2.1), fn(z) =

−2πi exp(−(n+ ν)z) for z inside the contour C containing the F−cut.
We look for more than just the main behaviour with respect to n of the rational approximation,

that’s why the parameter ν must not be neglected.
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We proceed with accurate asymptotic descriptions of pn, qn, pnfn − qn, and
‖fn − qn/pn‖E/ρ

n.

5.2. Theorem. The best rational approximation qn/pn of degree n to
exp(−(n+ ν)x) on [0, c] satisfies

pn(z) ∼ [(z − a)(z − b)]−1/4 exp((n+ ν)Vp(z) − (ν − 1/2)V∗,p(z)),

pn(z) exp(−(n + ν)z) − qn(z) ∼ Cn[(z − a)(z − b)]−1/4

exp[(n + ν)(2Vz(z) − Vp(z)) − (ν − 1/2)(2V∗,z(z) − V∗,p(z))],

(5.1)

when n→ ∞, and where V is the complex potential introduced in § 3, and V∗ = V∗,z −V∗,p is
the auxiliary complex potential

V∗(z) = C

∫ z

∞

dt√
t(t− c)(t− a)(t− b)

, C =

√
1 − ζ2

k2 + ζ2k′2
πc

4K
. (5.2)

and with Cn = exp(−(n+ ν)(2V(a) + a) + (2ν − 1)V∗(a)).
On F , one must add the contributions from the two sides of F :

pn(z) ∼ [(z − a)(z − b)]−1/4e(n+ν)Vz(z)−(ν−1/2)V∗,z(z)

{exp[−(n+ ν)V+(z) + (ν − 1/2)V∗,+(z)] + exp[−(n+ ν)V−(z) + (ν − 1/2)V∗,−(z)]}, z ∈ F .
Finally, the error norm

‖ exp(−(n + ν(z)) − qn(z)/pn(z)‖E ∼ 2ρn+νρ
1/2−ν
∗ , (5.3)

where ρ = exp(−2V (a) − a+ 2V (0)) is the main rate of decrease discussed in (4.5)-(4.8); and

ρ∗ = exp(2(V1(0) − V1(a)) = exp

(
−πK

′

K

)
. (5.4)

5.3. Lines of poles. We have a combination of enB∗

+(z)+B∗∗

+ (z) and enB∗

−
(z)+B∗∗

−
(z) in the region

of interest for Pn(z). Poles of the rational approximant, i.e., zeros of Pn occur when the two
exponentials have a common absolute value, so when nB∗

+(z)+B∗∗
+ (z) and nB∗

−(z)+B∗∗
− (z) have

the same real part. When n → ∞, the limit locus is given by B∗
+(z) − B∗

−(z) pure imaginary.
This limit locus is reached especially fast if B∗∗

+ (z) − B∗∗
− (z) is pure imaginary too on the limit

locus. This happens obviously in (5.5) and just above when ν = 1/2. This explains the n + 1/2
phenomenon of Fig. 1 when c = 0. The same conclusion holds for c 6= 0 too, as seen from the
second formula of (5.1).

5.4. Proof.

5.4.1. Padé case. Consider first the limit case c = 0.
The Padé approximant of degree n to exp(−(n+ ν)z) is known to be

1F1(−n,−2n,−(n+ ν)z)

1F1(−n,−2n, (n+ ν)z)
[9, (5.39)] [69, §75], where the 1F1 expansions are limited to their n+ 1

first terms.
The monic denominator is

Pn(z) =
(2n)!

n!(n+ ν)n
1F1(−n,−2n, (n + ν)z) = znyn(2/((n + ν)z)),

where yn(u) = 2F0(−n, n+ 1;−u/2) is a Bessel polynomial and satisfies

u2d
2yn(u)

du2
+ 2(u+ 1)

dyn(u)

du
− n(n+ 1)yn(u) = 0, [67, §18.34 with a = 2], or

d2[ue−1/uyn(u)]

du2
+

(
− 1

u4
− n(n+ 1)

u2

)
ue−1/uyn(u) = 0,

d2[xe−(n+ν)/(2x)yn(2x/(n + ν))]

dx2
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−
(

(n+ ν)2

4x4
+
n(n+ 1)

x2

)
xe−(n+ν)/(2x)yn(2x/(n + ν)) = 0, with x = (n + ν)u/2 = 1/z, a differ-

ential equation with a large parameter
d2Y (x)/dx2 + q(x, n)Y (x) = 0 [26, §4.2] q(x, n) = −(1/x2 + 1/(4x4))n2

− (1/x2 + ν/(2x4))n+ · · · with turning points near x = ±i/2 or z = ±2i.

The first approximation of the solution of this Liouville-Green-Steklov-WKB problem is (−q(x, n))−1/4

times a combination of the two exponential functions exp

(
±
∫ x√

−q(ξ, n)dξ

)
[11, §10.1] amount-

ing for yn(u) to be a combination of

x−1e(n+ν)/(2x)(1/x2 + 1/(4x4))−1/4 exp

(
±
∫ x√

n(n+ 1)/ξ2 + (n+ ν)2/(4ξ4)dξ

)
,

or zne(n+ν)z/2(1/4 + 1/z2)−1/4 exp

(
±
[∫ z√

n(n+ 1)η2 + (n+ ν)2η4/4
dη

η2

])
for Pn(z) at last.

The main behaviour with respect to n is zn exp[n(z/2± (V(z)+z/2)] from V ′(z) = −1

2
+

√
z2 + 4

2z
used in (3.7). From the zn behaviour of Pn(z) for large z, we keep only the minus sign, so for the
monic denominator,

Pn(z) ∼ zn(1 + 4/z2)−1/4 exp

(∫ z

∞

[
(n + ν)/2 −

√
n(n+ 1)/η2 + (n+ ν)2/4

]
dη

)
.

Pn(z) ∼ zn(1 + 4/z2)−1/4 exp

(
n+ ν

2

[
z −

√
z2 + 4 + 2 log

(√
z2 + 4 + 2

z

)]

−(ν − 1/2) log

(√
z2 + 4 + 2

z

))
(5.5)

From (3.7), we recognize the exponential of

− (n+ ν)V(z) − (ν − 1/2) log

(√
z2 + 4 + 2

z

)

= −(n+ 1/2)V(z) + (ν − 1/2)[z −
√
z2 + 4]/2.

Remark that the coefficients of zn, zn−1, zn−2 of the monic denominator are

Pn(z) = znyn(2/((n + ν)z)) = zn
2F0(−n, n+ 1;−1/((n + ν)z))

= zn +
n(n+ 1)zn−1

n+ ν
+

(n− 1)n(n + 1)(n + 2)zn−2

2(n+ ν)2
+ · · ·

(5.6)

When z is on the F−cut between −2i and 2i, one must consider the two possible square roots
in (5.5). This will be discussed after a second method.

Wong & Zhang [92] use a generating function yielding here

yn

(
2

(n+ ν)z

)
=

−4n n!

πi(n+ ν)nzn

∮
exp

(
(n+ ν)(1 − ζ)z

2
− (n+ 1) log(1 − ζ2)

)
dζ

on a contour enclosing ζ = 1 but excluding ζ = 0. An accurate asymptotic estimate can then
be achieved with saddle points analysis when z is not close to ±2i, as

yn

(
2

(n+ ν)z

)
∼ −n!

πi

4n

(n+ ν)nzn

× [
√

−2π/f ′′(ζ+) exp(f(ζ+)) +
√

−2π/f ′′(ζ−) exp(f(ζ−))],
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with f(ζ) =
(n+ ν)(1 − ζ)z

2
−(n+1) log(1−ζ2), the saddlepoints ζ± are the two roots of f ′(ζ) = 0,

so of ζ2 +
4(n + 1)

(n+ ν)z
ζ − 1 = 0,

ζ± =
−2(n+ 1) ±

√
4(n+ 1)2 + (n+ ν)2z2

(n+ ν)z
∼ −2 ±

√
z2 + 4

z
+ 2(ν − 1)

1 ∓ 2/
√
z2 + 4

(n+ ν)z

= ζ±,∞

[
1 ∓ 2(ν − 1)

n
√
z2 + 4

]
, where ζ±,∞ =

−2 ±
√
z2 + 4

z
are the limits when n → ∞; f(ζ±) =

f(ζ±,∞) + o(1), from f ′(ζ±) = 0, so

f(ζ±) ∼ (n+ ν)(1 − ζ±,∞)z/2 − (n+ 1) log(1 − ζ2
±,∞)

= (n+ ν)[(1 − ζ±,∞)z/2 − log(4ζ±,∞/z)] + (ν − 1) log(4ζ±,∞/z),

using 1 − ζ2
±,∞ = 4ζ±,∞/z, f ′′(ζ±) = 2(n+ 1)

1 + ζ2
±

(1 − ζ2
±)2

=
(n+ ν)2z2(ζ−1

± + ζ±)

8(n+ 1)ζ±

= ±(n+ ν)z
√

(n+ ν)2z2 + 4(n + 1)2

4(n+ 1)ζ±
∼ ±nz

√
z2 + 4

4ζ±,∞
follows.

This leaves for the accurate asymptotic behaviour of Pn(z) = znyn(2/((n + ν)z)) at most two
terms of the form

− n!

πi

4n

(n + ν)n

√
−2π

4ζ±,∞

nz
√
z2 + 4

exp{(n + ν)[(1 − ζ±,∞)z/2 − log(4ζ±,∞/z)]

+ (ν − 1) log(4ζ±,∞/z)} ∼ 22n+1e−n−ν(z2 + 4)−1/4 exp{(n + ν)[(1 − ζ±,∞)z/2

− log(4ζ±,∞/z)] + (ν − 1/2) log(4ζ±,∞/z)} ∼ e−n−ν(1 + 4/z2)−1/4zn

exp{(n + 1/2)[(1 − ζ±,∞)z/2 − log(ζ±,∞)] + (ν − 1/2)(1 − ζ±,∞)z/2},

confirming (5.5).

When z is large, we only keep the term with ζ+,∞ =

√
z2 + 4 − 2

z
= 1 − 2/z + · · · . In other

regions, the two terms must be considered, as carefully established by Wong & Zhang [92, Thm
A]. The neighbourhood of ±2i is also considered by the same authors [92, Thm B].

The asymptotic estimate is also
(1 + 4/z2)−1/4zn exp[−(n+ ν)V±(z) + (ν − 1/2) log((−2 ±

√
z2 + 4)/z)] from the formula for the

complex potential V in (3.7). The potential V is created by a unit positive charge spread on F
joining −2i to 2i, a negative unit charge concentrated at the origin, and satisfies V+(z)+V−(z) =

−z + πi. The function V0(z) = log[(−2 +
√
z2 + 4)/z] is a potential function too, created by the

same charges, and satisfying V0,+(z) + V0,−(z) = πi on the two sides of any arc joining −2i to
2i avoiding the origin, therefore a potential without ”external field”. This will be discussed in a
more general setting in (5.8).

5.4.2. Formal orthogonal polynomials. We do not expect to be able to use differential equations
in general, and turn to the formal orthogonality property of §2.2.

We follow A. Aptekarev [6, §1.3]:
We add to the hypotheses already given the symmetry conditions with respect to the real axis,

F made of a single connected arc of endpoints a and b with a positive density of poles in the
interior of F , then we get an strong asymptotic of the denominators pn as orthogonal polynomials
on F .

First, we consider the Joukowsky map z =
a+ b

2
+(b−a)Φ0(z) + Φ0(z)

−1

2
defining the algebraic

function Φ0(z) = [2z − a − b + 2
√

(z − a)(z − b)]/(b − a). As long as we consider symmetric

expressions in Φ0 and Φ−1
0 , we must not worry about the sign of the square root, but the current
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convention is to take Φ0(z) ∼ 4z/(b−a) for large z, and Φ0 continuous outside the F−cut joining
a and b. One often writes Φ0 = eiθ, where θ is not limited to real values.

For a useful relation with integrals on arcs, let us defined as above
f(z) = [(z − a)(z − b)]−1/2 as continuous outside F and such that lim zf(z) = 1 when z →
∞. Then the Cauchy formula gives f(z) outside a contour containing [a, b] as the integral of
[2πi(z− t)]−1f(t)dt on the contour, which we shrink on the two sides of the cut, so it becomes the

integral from a to b of (2πi)−1[f−(t)− f+(t)], which is here [(t− a)(b− t)]−1/2/π, the Chebyshev
weight:

Chebyshev example:
1√

(z − a)(z − b)
=

1

π

∫ b

a

dt

(z − t)
√

(t− a)(b− t)
,

∫ b

a

dt

(z − t)
√

(t− a)(b− t)
= 0, z ∈ (a, b).

(5.7)

The latter vanishing principal value follows from the opposite values of f = Φ′
0/Φ0 = V ′

0 on the
two sides of [a, b].

Next, let pn be a polynomial of degree n orthogonal with respect to a possibly complex-valued
weight function w on an arc joining a to b. Actually, we need w to be analytic in a convenient
region, so that several arcs joining a to b may be considered as support of w. This also requires

formal orthogonality 〈f, g〉 =

∫ b

a
f(t)g(t)w(t)dt, where no complex conjugate appears. The poly-

nomial pn(z) is also the denominator of the n, n Padé approximation to the Stieltjes-type, or

Markov-type, function

∫ b

a

w(t) dt

z − t
[35,49–51,58,66].

Then, the Bernstein-Szegő estimate, extended to a general arc [a, b], is an accurate asymptotic
formula for pn involving Φ±n

0 and factors whose product reconstructs w−1. These ideas will be
used in (5.8).

This is already seriously at variance with the classical Markov-Bernstein-Szegő theory associ-
ated to positive weight functions on real supports.

The extension to complex weights has a long history, summarized in [6, §2.1.] , see also [55,58].
Here, pn is not orthogonal with respect to a weight function independent of n, but with respect

to
ρn(t)

(t− z
(n)
1 ) · · · (t− z

(n)
2n+1)

∼ ρn(t) exp(−(2n + 1)Vz(t)) depending on n, as seen in §2.2. Actually,

the interpolation points z
(n)
1 , . . . , z

(n)
2n+1 will have to be described more accurately than through

their limit distribution µz on E. Let (z − z
(n)
1 ) · · ·

(z − z
(n)
2n+1) ∼ exp(Vz,n(z)), with Vz,n(z) − 2nVz(z) bounded but left undefined for the moment.

We return to the settings of § 2.4, the best rational approximation to fn(z) = (2πi)−1

∮
ρn(t)dt

z − t
,

with ρn(t) = exp(nΦ(t) + Ψ(t)). The denominator pn must be orthogonal to all polynomials of
degree < n with respect to
ρn(t) exp(−(2n+ 1)Vz(t)). As in § 2.4, we try

pn(t) = A+(t) exp(n(Vz(t) − Φ(t)/2 + iθq(t))) +A−(t) exp(n(Vz(t) − Φ(t)/2 − iθq(t)))

(from [6, §2.2, 2.3]), and check the orthogonality of pn and pn(t)/(t− p), amounting essentially
to the principal value of the integral on an arc (a, b) of
2A+(t)A−(t) exp(Ψ(t) − Vz(t))/(t − p). This latter principal value must vanish for any p ∈ F .

We consider now a new complex potential VΨ reproducing (I), (II), (III), and (V) and (VI) of
§ 2.4, but with 2Ψ instead of Φ.
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This also means that V ′
Ψ,+(z)+V ′

Ψ,−(z) = 2Ψ′(z), so, each A±(t) will contain a exp(−Ψ±(t)/2)

factor. What remains must be a vanishing principal value, we use (5.7).

In summary, if qn/pn is the best rational approximation of degree n to

fn(z) = A

∫

C
exp(nΦ(t) + Ψ(t))

dt

z − t
on E = [0, c], with Φ and Ψ analytic, then,

pn(z) ∼ [(z − a)(z − b)]−1/4 exp[Vz,n(z)/2 − nV(z) − VΨ(z)/2],

fn(z)pn(z) − qn(z) ∼ 2πiACn[(z − a)(z − b)]−1/4 exp[Vz,n(z)/2 + nV(z) + VΨ(z)/2]
(5.8)

where V and VΨ are the complex potentials related to a unit negative charge on E, and a unit
positive charge on F = an arc joining a to b, with a constant real part on E, and real parts
of −Φ/2 and −Ψ on F , and where Cn = exp(−n(2V(a) − Φ(a)) − VΨ(a) + Ψ(a)), and where
Vz,n = 2nVz + VΨ,z (see the end of the present section).

On F , we must sum the contributions of the two sides:
pn(z) ∼ [(z − a)(z − b)]−1/4e(n+1/2)Vz(z){exp[−nV+(z) − VΨ,+(z)/2]
− exp[−nV−(z) − VΨ,−(z)/2]}, with V+(z) + V−(z) = Φ(z) + constant = Φ(z) + 2V(a) − Φ(a),
VΨ,+(z) + VΨ,−(z) = 2Ψ(z) + constant = 2Ψ(z) + 2VΨ(a) − 2Ψ(a).

The last line of (5.8) follows from (2.3) where we perform the integral of
p2

n(t) exp(nΦ(t) + Ψ(t) − (2n+ 1)Vz(t))/(z − t) dominated as above on F by
2((t− a)(t− b))−1/2 exp(nΦ(t) + Ψ(t) − n[V+(t) + V−(t)] − [VΨ,+(t) + VΨ,−(t)]/2)/(z − t)

= exp(−n(2V(a)−Φ(a))−VΨ(a)+Ψ(a))/[(z− t)
√

(t− a)(t− b)], there is no principal value now,
as z in not on F , we apply the first formula of (5.7).

Aptekarev’s great paper [6, §2.2, 2.3] contains accurate statements on the meaning of ”∼”: it
may be uniform convergence on compacts in the interior of F , but sometimes in the whole of F ,
when the endpoints singularities of [(z − a)(z − b)]−1/4 and V(z) cancel each other. . .

Why this play with 2Ψ and VΨ/2? Because all the complex potential functions V,VΨ considered

here are related to unit charges on E and F , [(z − a)(z − b)]−1/4 represents a charge 1/2 on F
(principle of argument of the logarithm on a contour circling F ), which is cancelled by −VΨ(z)/2
in (5.8); the 2n + 1 interpolation points on E correspond to a charge −(2n + 1) thanks to the
VΨ(z)/2 term in the second line of (5.8).

Even if Ψ(t) ≡ 0, VΨ(t) ≡ 0 would be wrong, as the condition on the charges would not be
fulfilled. We then need V∗(z), the potential of (E,F ) without external field. When E and F

are the two arcs [0, c] and [a, b], we have V∗(z) = C

∫ z

∞

dt√
t(t− c)(t− a)(t− b)

, as encountered in

Zolotarev problems [4, p.319, appendix E english edition] [12, 25, 30, 84], as in investigations on
orthogonal polynomials on two intervals [3], [5, chap. 10]. The constant C is precisely such that

E and F carry unit charges, that V∗(b) − V∗(a) = πi, so C =
πi

∫ b

a
[t(t− c)(t− a)(t− b)]−1/2dt

=

(a− c)(b − c)c

4(ν0 + ν1/x∗)
from (3.3) with 1/x∗ = [(a− c)(b − c) + ab]/(abc).

With elliptic integrals notations (4.6), 1/x∗ =
(1 + ζ)2

(1 − ζ)2c
+

1

c
= 2

1 + ζ2

(1 − ζ)2c
, and C =

√
k2 + ζ2k′2

1 − ζ2

π(a− c)(b− c

c2(1 + ζ

=

√
1 − ζ2

k2 + ζ2k′2
πc

4K
, and (5.2) follows.

We will also need V∗,p(z) =

∫

F
log(z − t) dµ∗,p(t) =

∫

F

V ′∗,+(t) − V ′∗,−(t)

2πi
log(z − t)dt

=

∫

F

C log(z − t)dt

πi
√
t(t− c)(t− a)(t− b)

= log(z) − ω

z
+ o(1/z), where



23

ω =

∫ b

a

Ctdt

πi
√
t(t− c)(t− a)(t− b)

=

∫ b

a

tdt√
t(t− c)(t − a)(t− b)

∫ b

a

dt√
t(t− c)(t − a)(t− b)

=
ν0c+ ν1

ν0 + ν1/x∗
, so

V∗,p(z) = log(z) + c(1 − ζ)
K − (1 + ζ)E

2ζKz
+ o(1/z), (5.9)

from (3.3), (4.6).
When z is not close to F , we keep in the first line of (5.8) V(z) and VΨ(z) remaining bounded

for large z, whereas Vz(z) (which is regular on F ) behaves like log z for large z, so that the product

[(z − a)(z − b)]−1/4e(n+1/2)Vz(z) behave as zn, as it should!
Finally, on any z ∈ E, fn(z) − qn(z)/pn(z) ∼ 2πiCn exp[2nV(z) + VΨ(z)], where the two

potential functions have a constant real part, and opposite imaginary parts. On E, we sum the
contributions from the two sides:
fn(z) − qn(z)/pn(z) ∼ 2πiCn{exp[2nV+(z) + VΨ,+(z)] + exp[2nV−(z) + VΨ,−(z)]}.
The common real part yields the strong asymptotics of the error norm

‖fn − qn/pn‖E ∼ 4πA exp[n(2V (0) − 2V (a) + Φ(a)) + VΨ(0) − VΨ(a) + Ψ(a)]. (5.10)

For the imaginary parts, remember that V and VΨ have opposite pure imaginary derivatives
±πµ′z and ±πµ′z,Ψ on the two sides of E = [0, c], so that the error function oscillates like

cos(2nπµz + πµz,Ψ) on E. The corrected formula for the measure of the 2n + 1 interpolation
points is therefore µz,n = 2nµz + µz,Ψ instead of (2n+ 1)µz , and the corresponding potential is

Vz,n = 2nVz + Vz,Ψ. (5.11)

5.4.3. Return to the approximation to the exponential function. With our problem of rational in-

terpolation to fn(z) = exp(−(n+ν)z) = − 1

2πi

∫

C
exp(nΦ(t)+Ψ(t))

dt

z − t
, Φ(t) = −t,Ψ(t) = −νt,

the discontinuity of VΨ is the same as for 2νV, and we recover a unit charge by the combination
VΨ = 2νV + (1 − 2ν)V∗ [62, eq. (10)]. We have now

pn(z) ∼ [(z − a)(z − b)]−1/4 exp[Vz,n(z)/2 − (n+ ν)V(z) + (ν − 1/2)V∗(z)],

∼ [(z − a)(z − b)]−1/4 exp((n+ ν)Vp(z) − (ν − 1/2)V∗,p(z)),

pn(z) exp(−(n + ν)z) − qn(z) ∼ Cn[(z − a)(z − b)]−1/4

exp[Vz,n(z)/2 + (n+ ν)V(z) − (ν − 1/2)V∗(z)],

with Cn = exp(−(n+ ν)(2V(a) + a) + (2ν − 1)V∗(a)), and Vz,n = 2(n+ ν)Vz − (2ν − 1)V∗,z from
(5.11) and Vz,Ψ = 2νVz + (1 − 2ν)V∗,z.

On F , one must add the contributions from the two sides of F :
pn(z) ∼ [(z−a)(z−b)]−1/4eVz,n(z)/2{exp[−(n+ν)V+(z)+(ν−1/2)V∗,+(z)]+exp[−(n+ν)V−(z)+

(ν − 1/2)V∗,−(z)]}, z ∈ F .

Error norm.
‖ exp(−(n+ν(z))−qn(z)/pn(z)‖E ∼ 2 exp[−2(n+ν)(V (a)+a/2−V (0))−(2ν−1)(V∗(a)−V∗(0)],

so, (5.3) follows

‖ exp(−(n + ν(z)) − qn(z)/pn(z)‖E ∼ 2ρn+νρ
1/2−ν
∗ ,

where ρ = exp(−2V (a) − a+ 2V (0)) is the main rate of decrease discussed in (4.8)-(4.5); and
ρ∗ = exp(2(V∗(0) − V∗(a))).
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From V∗(z) = C

∫ z

∞

dt√
t(t− c)(t− a)(t− b)

= πi

∫ z

∞

dt√
t(t− c)(t− a)(t− b)

∫ b

a

dt√
t(t− c)(t− a)(t− b)

, as seen above,

ρ∗ = exp


2πi

∫ 0

a

dt√
t(t− c)(t− a)(t− b)

∫ b

a

dt√
t(t− c)(t− a)(t− b)


 = exp

(
−πK

′

K

)
, K

′ being related to the integral

from 0 to a, and 2K to the integral from a to b.
End of proof!

5.5. Some numerical checks.

We now proceed with various numerical checks of the validity of (5.1):

5.5.1. Real pole position. We look at the real pole of the approximation when n is odd. From
(5.1), poles occur when −(n+ ν)V+(z) + (ν − 1/2)V∗,+(z) and −(n+ ν)V−(z) + (ν − 1/2)V∗,−(z)
have the same real part. Let α be the real root of Re(V+(z) − V−(z)) = 0. We test the O(n−1)
correction by the Newton step

α+ Re
(ν − 1/2)[V∗,+(α) − V∗,−(α)]

(2V ′(α) + 1)n
, (5.12)

where we used V ′
−(z) = −1 − V ′(z) if V+ is taken as V.

1. When c = 0, the real zeros of the Padé denominators 1F1(−n,−2n, z) to e−z are −2,−4.644,
−7.293,−9.944,−12.594 for n = 1, 3, . . . , 9, soon very close to (n+1/2)α, with α = −1.325 . . . , so

the empirical formula for the nth degree approximation real pole to exp(−(n+ν)z) is
(n+ 1/2)α

n+ ν
=

α − (ν − 1/2)α

n
+ o(1/n). Does it fit with (5.12)? From (3.7), 2V ′(z) + 1 =

√
z2 + 4/z and

V∗(z) =

∫ z

∞

2dt

t
√
t2 + 4

= − log[(
√
z2 + 4 + 2)/z] = V(z) + z/2 −

√
z2 + 4/2, and (5.12) follows,

knowing that α is the real root of V+(z) − V−(z) = 0.
2. When c = 1, the real pole is very stable when ν = 1/2 and the value α = −0.9315 follows.

For various values of ν and n, one finds the empirical formula for the real pole α+
1.2(ν − 1/2)

n+ ν
.

One has V ′(α) = 0.4326 found by integrating V ′′ in (3.2) from −∞ to α; V∗,±(α) needed in (5.12)
is obtained by integrating (5.2) between a and α on the half of F , the value is ±1.1468 + πi/2
(the parameter C in (5.2) is precisely such that the imaginary part is π/2, here, C = 2.0019).
One then finds 1.230 in (5.12).

3. When c = 5, we find α = −0.5045, the empirical formula for the real pole is α+
0.63(ν − 1/2)

n+ ν
,

2V ′(α)+1 = 2.295 and V∗,±(α) = ±0.735+πi/2, (C = 2.3416), so Re
V∗,+(α) − V∗,−(α)

(2V ′(α) + 1)
= 0.6405.

5.5.2. Second coefficient of the monic denominator. Let pn(z) = zn + αnz
n−1 + · · · . What is

αn? From the second line of (5.1), one must find the two first terms of the expansions of Vp and
V∗,p. It will be seen in (6.9) that exp((n + ν)Vp(z)) = [z − c(1 − λ) + O(1/z)]n+ν = zn+ν [1 −
(n + ν)c(1 − λ)/z + · · · ], with λ = 4ν2

1/(abc
3), and from (5.9), V∗,p(z) = log(z) − ω/z + o(1/z),

with ω = −c(1− ζ)
K − (1 + ζ)E

2ζK
, so exp(−(ν − 1/2)V∗,p(z)) = z1/2−ν [1 + (ν − 1/2)ω/z + o(1/z)].

Finally, [(z − a)(z − b)]−1/4 = z−1/2[1 + (a+ b)/(4z) + o(1/z)], and pn(z) = zn[1 + (−(n+ ν)(1−
λ) + (ν − 1/2)ω + (a+ b)/4)/z + o(1/z):
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αn = (n+ ν)β + (ν − 1/2)γ + δ, β = −c(1 − λ) = −c
(

1 − 4
ν2
1

abc3

)
,

γ = ω = −c(1 − ζ)
K− (1 + ζ)E

2ζK
, δ = (a+ b)/4.

1. For instance, when c = 0, αn =
n(n+ 1)

n+ ν
= n + 1 − ν + O(1/n) from (5.6), so β = 1, γ =

−2, δ = 0. We also check Vz(z) = log z, so, from (3.7), Vp(z) = Vz(z)−V(z) = z/2−
√
z2 + 4/2+

log(
√
z2 + 4+2) = log z+1/z+ o(1/z) for large z, whence β = 1 again; V∗(z) = − log[(

√
z2 + 4+

2)/z] as seen above, V∗,p(z) = log z−V∗(z) = log(
√
z2 + 4 + 2) = log z+ 2/z + o(1/z), confirming

γ = −2. Finally, the limits when c → 0 of −c(1 − λ) = 4ν2
1/(abc

2) and c
K − E

2ζK
are 1 and

lim
ck2 = c3/16

2ζ = 2c3/64
= 2, from table 1, as they should be.

2. Numerical approximations of β, γ, δ from actually computed denominators for c = 1 are
0.59, -1.51, and 0.19, whereas β = −c(1 − 4ν2

1/(abc
3)) = 0.591401 from (6.8), (6.9), and table 1,

ζ = 0.0076133, 2K/π = 1.015644, 2E/π = 0.984716 : γ = −1.50380, (a + b)/4 = 0.218 there
(table 1);

3.(β, γ, δ) = (0.11,−0.37, 0.50) when c = 5, instead of β = 0.109136, ζ = 0.36530, 2K/π =
1.23593, 2E/π = 0.829238 : γ = −0.36471, (a + b)/4 = 0.544 there, a slightly satisfactory match.

4. From the very accurate data of Carpenter & al. [21] for the approximation of e−z when c = ∞,
p10(z) = z10 + 5.9426z9 + · · · , p20(z) = z20 + 11.9158z19 + · · · , p30(z) = z30 + 17.8898z29 + · · · ,
so, after division by n needed by translation to fn(z) = e−nz, β = γ = 0, δ = 0.597 indeed very
close to (a+ b)/4 of table 1.

Exercise. Show that β = c

(
4
ν2
1

abc3
− 1

)
and γ = −c(1 − ζ)

K− (1 + ζ)E

2ζK
→ 0 when c→ ∞.

Indeed, ab =
(1 − ζ)2c2

4(k2 + ζ2k′2)
and from (4.6),

ν1

c3/2
√
ab

=

√
c(1 − ζ2)

4πζ
[K− (1 − ζ)E], so, ζ → 1

and c→ ∞ in such a way that c(1−ζ) → 2
√
ab = 2|a| at c = ∞. Then,

ν1

c3/2
√
ab

→
√

4|a|
4π

K = 1/2

from the ”1/9” theory
√

|a| = π/K, table 2 of [53] (ξ1 and ξ2 of [53] are
√
−a and

√
−a), also

|a|ω = π [54, eq. (34)]. Finally, use (3.3) as
ν1

c3/2
√
ab

=

−
√
ab

4πi

∫ b

a

√
t/c− 1

t(t− a)(t− b)
dt =

√
ab

4π

∫ b

a

1 − t

2c
+O(1/c2)

√
t(t− a)(t− b)

dt =

√
ab

4π

∫ b

a

1 −
√
t2(1 − t/c)

2c
+O(1/c2)

√
t(t− a)(t− b)

dt =

1/2 + O(1/c2), using the limit 1/2 just found, and (3.6) to get rid of the O(1/c). The result for
γ is mush easier to get, as we know that c(1 − ζ) remains bounded, we have the limit of K − 2E
known to vanish at c = ∞.

5.5.3. Error norm. Check of (5.3-5.4).
For instance, at c = 5, n = 5, ν = 0, 1/2, 1, the error norms are
[1.528 10−6, 1.877 10−6, 2.214 10−6] = 2ρn+ν×[0.227, 0.982, 4.083]; at n = 10, [5.248 10−12, 6.369 10−12,

7.570 10−12] = 2ρ10+ν × [0.231, 0.989, 4.142]. Indeed,
√
ρ∗ = exp(−πK′/(2K)) = 0.237 = 1/4.226

(table 3).

When c = ∞, it has been remarked in (4.5) that ρ = exp(−πK′/K) too, so that ‖ exp(−(n +

ν)z)− rn(z)‖E ∼ 2ρn+1/2 then, a conjecture in [52,53], proved, as a very small by-product, in [6]
!
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For small c, k ∼ c/4, ρ ∼ (c2/256) exp(2− c/2) as seen at the end of § 4.3.3, K
′ ∼ log(4/k),K ∼

π/2, so, ρ∗ ∼ k2/16 ∼ c2/256, the error norm

∼ 2(c2/256)n+1/2 exp((2 − c/2)(n + ν)).
Now, the Meinardus-Braess estimate of § 1.2, adapted to exp(−(n + ν)x) on [0, c], so, L =

(n+ ν)c, error norm ∼ 2 exp(−(n+ ν)c/2)

(
(n+ ν)ce

16n + 8

)2n+1

∼ 2(c2/256)n+1/2 exp[−(n + ν)c/2 + 2n+ 1 + (2n+ 1) log((n + ν)/(n+ 1/2))︸ ︷︷ ︸
∼ (ν − 1/2)/n

].

6. AAK

6.1. Rational approximation through Chebyshev expansions. Consider first the Cheby-
shev expansion of a function which is here

F (t) = exp(−(n+ ν)c(t+ 1)/2) = c0/2 +
∞∑

1

ckTk(t) (6.1)

where x = c(t + 1)/2 sends t ∈ [−1, 1] to x ∈ [0, c]. This does not work when c = ∞,
x = αn(1 + t)/(1 − t), with any αn > 0, is then used [21, p.392]. It is known that the coefficients
in (6.1) are ck = 2exp(−(n+ ν)c/2)Ik(−(n+ ν)c/2), where Ik is the kth modified Bessel function
[68] [75, chap.3 §4].

The recurrence relation satisfied by the cks can be found from Bessel functions identities, or also
from the differential equation satisfied by F in (6.1), in the form F (t) = −((n+ ν)c/2)

∫
F (t)dt+

constant, using formulas for the integral of Chebyshev polynomials (Fox & Parker [27, §5.7]).

ck + (n+ ν)c
ck−1 − ck+1

4k
= 0, k = 1, 2, . . . (6.2)

Check for small c: F (t) = 1− (n+ ν)c(T1(t) + 1)/2 + (n+ ν)2c2(T2(t)/2 + 2T1(t) + 3/2)/8, so,
c0 = 2−(n+ν)c+3(n+ν)2c2/8+· · · , c1 = −(n+ν)c/2+(n+ν)2c2/4+· · · , c2 = (n+ν)2c2/8+· · ·

It is therefore extremely easy and cheap to compute the numerical values of a large sequence of
the coefficients. However, stability requires the coefficients to be computed in a particular order
Miller’s algorithm, introduction §7 of Abr. & Stegun [1]5, also Fox & Parker [27, §5.10]).

One considers now the approximation of
∑∞

1 ckz
k by meromorphic functions in |z| > 1 with

exactly n poles in that region. Such functions can always be written in the form

r̃(z) =
p(z)

q(z)
=

n∑

−∞
dkz

k

n∑

0

ekz
k

where the n zeros of q must have modulus larger than 1. With respect to the supremum norm on
the unit circle, the best approximation r̃∗ to

∑∞
1 ckz

k in this class is characterized by the property

that except in degenerate cases, the error function
∑∞

1 ckz
k − r̃∗(z) describes an exact circle of

winding number 2n+ 1 centered at the origin, as z describes the unit circle [2, 60,61,82,85]. Let
σn be the radius of this circle. A consequence is that the error function can then be written

∞∑

1

ckz
k − r̃∗(z) = b(z) =

σnb1(z)

b2(z)
= σn

u1 + u2z + · · ·
u1z−1 + u2z−2 + · · · , (6.3)

5This book is a masterpiece, and even the introduction of a masterpiece deserves to be read!
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where the denominator b2 of b is holomorphic in |z| > 1 and must have exactly n zeros in
1 < |z| <∞, which will be precisely the zeros of the denominator q of r̃∗:

b2(z) = u1z
−1 + u2z

−2 + · · · = (en + en−1z
−1 + · · · + e0z

−n)v(z) = z−nq(z)v(z),

where v is still holomorphic (and without zeros in 1 < |z| < ∞). Therefore, multiplying the two
sides of (6.3) by b2(z),

( ∞∑

1

ckz
k

)
b2(z) − z−np(z)v(z) = σnb1(z) , or

( ∞∑

1

ckz
k

)
(u1z

−1 + u2z
−2 + · · · ) = σn(u1 + u2z + · · · ) + negative powers of z,

i.e.

HU = σnU,

where U is the vector [u1, u2, . . . ]
T , and H is the infinite Hankel matrix

H = [ck+m−1], k,m = 1, . . . (6.4)

Numerically, one considers a large finite section k,m = 1, 2, . . . ,N .
σn is the nth singular value, or s−number, of H [60, § 4], (since HU = σnU , i.e., HHU = σ2

nU).
The fact that the nth singular value of H (σ0 > σ1 > . . . ) is indeed related to a vector U such
that u1z

−1 + u2z
−2 + · · · has exactly n zeros in 1 < |z| < ∞ requires a deeper understanding of

Hankel matrices theory [2, 60,61].
If the coefficients ck happen to be real, then σn = |λn|, the absolute value of the nth eigenvalue

of H (starting at n = 0).
The negative powers add to (u1z

−1 + u2z
−2 + · · · )p(z)/q(z) = z−nv(z)p(z) allowing to retrieve

the numerator p.
For instance, with ν = 1/2, c = 1, the coefficients ck are [0.51090,−0.40344, 0.21749,
−0.08709, 0.02749,−0.00713, 0.00157,−0.00030, 0.00005, . . . ], and with n = 5, σ5 = 4.2433 10−10,
U = i[0.00014, 0.00307, 0.03144, 0.17926, 0.54605, 0.59020,−0.52349,

0.20747,−0.05596, 0.01172,−0.00203, 0.00030, . . . ]. The sixth eigenvalue λ5 of H happens to be neg-
ative.

The last step in CF approximation is to project R̃(x) = (c0 + r̃∗(z) + r̃∗(z−1))/2 onto a
rational function of degree n of x = (z + z−1)/2. One naturally chooses Q(x) = q(z)q(z−1)
as the denominator and determines the numerator P (x) such that the Chebyshev expansion of

RCF (x) = P (x)/Q(x) and R̃(x) agree through the Tn(x) = (zn + z−n)/2 term. This operation
destroys the exact equioscillation of the error function, but the perturbation is usually very much
smaller than σn [85].

It may be useful to recover a free parameter in the making of the function F , it is here

F (t) = exp

(
(n+ ν)α(t+ 1)

t− 1 − 2α/c

)
.

We now use F ′(t) =
2(n+ ν)α(1 + α/c)

(t− 1 − 2α/c)2
F (t) as (t− 1 − 2α/c)2F (t)

−
∫

2(t− 1 − 2α/c)F (t)dt = 2(n + ν)α(1 + α/c)

∫
F (t)dt+ const., so

ck−2 + 2ck + ck+2

4
− (1 + 2α/c)(ck−1 + ck+1) + (1 + 2α/c)2ck −

ck−2 − ck+2

2k
+ [1 + 2α/c− (n+

ν)α(1 + α/c)]
ck−1 − ck+1

k
= 0, k = 1, 2, . . . , or
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k − 2

4k
ck−2 −

(k − 1)(1 + 2α/c) − (n+ ν)α(1 + α/c)

k
ck−1 + [1/2 + (1 + 2α/c)2]ck

− (k + 1)(1 + 2α/c) + (n + ν)α(1 + α/c)

k
ck+1 +

k + 2

4k
ck+2 = 0, k = 1, 2, . . . , c−1 = c1 (6.5)

These recurrence relations are numerically solved by a “compact method” [27] producing three-
terms relations ξkck + ηkck+1 + σkck+2 = τkc0 (upper triangular matrix relations), k = 1, 2, . . . ,
themselves solved for k = N,N − 1, . . . , 1 with the approximation cN+1 = cN+2 = 0. The last

unknown c0 follows from F (−1) = c0/2 +
∑N

1 (−1)kck = 1.
The parameter α may be useful if one looks for a faster decrease of the |ck|s with k. If we

expect the ratios ρk = ck+1/ck to be slowly variable with k (Poincaré-Perron [64]),
(ρ + ρ−1)2/4 − (1 + 2α/c)(ρ + ρ−1) − α(1 + α/c)(n/k)(ρ − ρ−1) + (1 + 2α/c)2 = 0 follows from
(6.5) for large k and n. We only look at the roots with |ρ| < 1. Most effective α should be such
that ρ is minimal when k is close to 2N . Numerical tests suggest that it happens in the case of a
double root.

When α → ∞, (n/k)(ρ−1 − ρ)/c + 4/c2 = 0 also from (6.2). If k is close to 2N and is much
larger than nc, then ρ is close to −nc/(8N).

This may also be discussed through a Fourier coefficient formula, or a contour integral:

ck =
1

π

∫ π

−π
exp

(
(n + ν)α(cos θ + 1)

cos θ − 1 − 2α/c

)
e−ikθdθ =

1

πi

∮
exp

(
(n+ ν)α(u+ 2 + u−1)

u− 2 − 4α/c + u−1

)
du

uk+1

estimated at a saddle point

− 4(n+ ν)α(1 + α/c)

(u− 2 − 4α/c + u−1)2
− k + 1

u
= 0. (6.6)

Change of variables: if iµr =
u1/2 + u−1/2

u1/2 − u−1/2
, u+ u−1 = 2

µ2r2 − 1

µ2r2 + 1
,

z = − α(u+ 2 + u−1)

u− 2 − 4α/c + u−1
=

αµ2r2

1 + α/c + (α/c)µ2r2
=

cr2

1 + r2
if µ2 = 1 + c/α.

6.2. Image charges. The change of variable suggested just above z =
cr2

1 + r2

⇔ r = ±
√

1

c/z − 1
sending z ∈ E = [0, c] to r ∈ the whole real line R sheds new light on

the relevant potential function. Indeed, V

(
cr2

1 + r2

)
is a harmonic function of two real variables

which happens to be constant on the real line. This is achieved by any linear combination constant

+
∑

k

wk log

∣∣∣∣
r − rk
r − rk

∣∣∣∣, as |r − rk| = |r − rk| if, and only if, r is real. The potential is therefore

created by charges −wk at the points rk, and charges wk at their images rk = complex conjugate
of rk, [18, p. 485], [45, chap. IX].

There may be a relation with § 7.3.2 (’reflected sets’) of [10].
Considering only points distributions where −rk and rk have the same charge, we have a com-

bination of log

∣∣∣∣
(r − rk)(r + rk)

(r − rk)(r + rk)

∣∣∣∣, or, keeping an analytic form for the complex potential function,

V
(

cr2

1 + r2

)
= constant +

∫

Γ
log

(
r − s

r + s

)
dµ̃(s), where Γ is the set of r− values corresponding

to the cut F in, say, the upper half r−plane. This complex potential V must be the same as
encountered before in the z−plane outside E = [0, c].
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Figure 5. images of the poles in the r = ±
√

1

c/z − 1
− plane, and the forces

acting on them. The dashed vector is −F1−F2, found to be close to F3. An actual
set of 5 points in equilibrium is shown by + marks.

So,
dV(z)

dz
+

1

2
taking opposite values on the two sides of F , the same holds for

dV
dr

+
dz

2dr
=

dV
dr

+
cr

(1 + r2)2
on the two sides of Γ. More precisely, as

dV(z)

dz
+

1

2
= ±πidµp(z)

dz
from (3.10),

on the two sides of F , where dµp is the continuous limit measure of the poles,
dV
dr

+
cr

(1 + r2)2
=

±πi 2cr

(1 + r2)2
dµp(z)

dz
= ±πi

dµp

(
cr2

1 + r2

)

dr
on the two sides of Γ. This means that

dV
(

cr2

1 + r2

)

dr
=

∫

Γ

(
− 1

r − s
+ reg.

)

dµp

(
cs2

1 + s2

)
, where “reg.” is regular in Γ. But we just saw that the conditions for V(z) on

E are fulfilled by an integral of log((r − s)/(r + s)) on Γ, so of −1/(r − s) + 1/(r + s) for the
derivative6, and

dV
(

cr2

1 + r2

)

dr
=

∫

Γ

(
− 1

r − s
+

1

r + s

)
dµp

(
cs2

1 + s2

)

follows. Let pk, k = 1, . . . , n be the poles of the nth degree approximant. Then the integral on

Γ is soundly discretized by
1

n

n∑

k=1

(
− 1

r − rk
+

1

r + rk

)
, where rk is the root in the upper r−plane

of pk = cr2k/(1 + r2k).
c = 1, n = 5, poles rk = ±0.695i,±0.116 ± 0.721i,±0.215 ± 0.809i (endpoints a, b 7→ ±0.244 ±

0.962i)

Check: for large z, we know from (3.2) that V ′ ∼ −ν0/(2z
2), so, near r = i, dV/dr ∼ − ν0

2z2

dz

dr
=

−ν0(1 + r2)2

2c2r4
2cr

(1 + r2)2
→ −iν0/c. We compare with

2

n

n∑

1

rk
1 + r2k

in some cases:

6For the signs: − log(r − s) and −1/(r − s) for positive charges; log(r − s) and 1/(r − s) for negative charges.
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c n = 5 n = 10 n = 15 ν0/c

1 2.2365 i 2.1530 i 2.1233 i −2.0608
2 1.1922 i 1.1544 i 1.1409 i −1.1124
5 0.6085 i 0.5980 i 0.5943 i −0.5863

Interesting confirmation, as the rks have been estimated by the Gutknecht & Trefethen’s ap-
plication of the AAK theory [85], and ν0 has been computed with elliptic integrals in (4.6).

Also, as
dV
dr

+
cr

(1 + r2)2
takes opposite values on the two sides of Γ,

dV
dr

=

∫

Γ

(
− 1

r − s
+

1

r + s

)
dµp

(
cs2

1 + s2

)
= − cr

(1 + r2)2

on Γ. Discretization at rk ∈ Γ is

1

n

n∑

j=1
j 6=k

(
− 1

rk − rj
+

1

rk + rj

)
= − crk

(1 + r2k)
2
, k = 1, . . . , n,

which are equilibrium conditions on Γ, easily seen as the vanishing of the resultant of forces
acting on a positive particle at rk, which is repelled by its neighbours at rj , j 6= k, attracted by
the images −rj, j = 1, . . . , n, and submitted to the supplementary force crk/(1 + r2k). So, the

particle at rk is submitted to the three forces F1, F2 and F3 which are7 the complex conjugates

of
1

n

n∑

j=1
j 6=k

1

rk − rj
,− 1

n

n∑

j=1

1

rk + rj
and −crk/(1 + r2k). The right part of fig. 5 shows an example

of these forces acting on the points corresponding to a set of poles, and how they are close,
but not exactly, to equilibrium. A set of points in equilibrium is also shown nearby. This is
an illustration of how the limit distribution of poles when n → ∞ is the required equilibrium
continuous distribution.

6.3. Quadratic relations. We return to the original variable:

dV(z)

dz
=
dr

dz

∫ b

a

−2s

r2 − s2
dµp(t),

(
with r =

√
1

c/z − 1
, s =

√
1

c/t− 1

)
,

=
c

2z2(c/z − 1)3/2

∫ b

a

−2(z − c)(t− c)(c/t − 1)−1/2

c(z − t)
dµp(t), so,

dV(z)

dz
= −

∫ b

a

√
t(t− c)

z(z − c)

dµp(t)

z − t
, (6.7)

relating the total potential V to the limit distribution of poles µp only, whereas we remind that

we have V = Vz − Vp, and
dVp(z)

dz
=

∫ b

a

dµp(t)

z − t
.

We look now at what happens on the two sides of F : from (2.5), V ′(z) = P1(z)±πiµ′p(z), where
P1 is an appropriate principal value. Actually, P1(z) ≡ −1/2 in our case. Of course, the same
pattern holds for Vp itself: V ′

p(z) = P2(z) ∓ πiµ′p(z), with ∓ instead of ± because V ′
p = V ′

z − V ′.

The same discontinuity ∓πiµ′p(z) appears in V ′2(z) = 1/4 ∓ πiµ′p(z) − π2(µ′p(z))
2 on the two

sides of F , so that V ′
p(z) − (V ′(z))2 has no more discontinuity on F . Remark also that V ′

p has no

singularity on E, and the same is true of V ′2 (as V ′ has opposite values on the two sides of E),
so, V ′

p − (V ′)2 must be a meromorphic function in the whole complex plane. This function will be
determines from its derivative.

7Remind that force = − gradient of potential = − complex conjugate of derivative of complex potential.
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Derivate V ′
p as V ′′

p (z) = −
∫ b

a

µ′p(t)dt

(z − t)2
=

∫ b

a

µ′′p(t)dt

z − t
. Now, on F , µ′′p(t) = V ′′(t)/(πi), so, from

(3.2), V ′′
p (z) =

∫ b

a

(ν0t+ ν1)dt/(πi)

(z − t)
√
t3(t− c)3(t− a)(t− b)

, multiply by z2(z − c)2 = t2(t − c)2 + (z −

t)(z3 + z2t+ zt2 + t3 − 2z2c− 2ztc− 2t2c+ zc2 + tc2):

z2(z − c)2V ′′
p (z) = P (z) +

∫ b

a
(ν0t + ν1)

√
t(t− c)

(t− a)(t− b)

dt

πi(z − t)
, where P is the 3rd degree

polynomial

P (z) =

∫ b

a

(ν0t+ ν1)(z
3 + z2t+ zt2 + t3 − 2z2c− 2ztc− 2t2c+ zc2 + tc2)dt/(πi)√

t3(t− c)3(t− a)(t− b)
.

From (3.1), (3.6), z2(z − c)2V ′′
p (z) = P (z) + 2(ν0z + ν1)

√
z(z − c)

(z − a)(z − b)
V ′(z). A new division

by z2(z − c)2 and integration yield at last

V ′
p(z) = (V ′(z))2 +

∫ z P (t)dt

t2(t− c)2
.

A very painful derivation, inspired by, but surprisingly not using (6.7).

Let us look at P more closely. Let mr be the moment

∫ b

a

trdt/(πi)√
t3(t− c)3(t− a)(t− b)

. We have

P (z) = (ν0m1+ν1m0)z
3+(ν0m2+ν1m1)z

2+(ν0m3+ν1m2)z+ν0m4+ν1m3−2c(ν0m1+ν1m0)z
2−

2c(ν0m2+ν1m1)z−2c(ν0m3+ν1m2)+c
2(ν0m1+ν1m0)z+c

2(ν0m2+ν1m1). The actual degree of P

is 2 instead of 3, as the coefficient of z3 is ν0m1+ν1m0 =

∫ b

a
V ′′(t)dt/(πi) = (V ′(b)−V ′(a))/(πi) =

0. The coefficient of z2 is ν0(m2 − 2cm1) + ν1(m1 − 2cm0) = ν0m2 + ν1m1 =

∫ b

a
tV ′′(t)dt/(πi) =

(bV ′(b)− aV ′(a))/(πi)−
∫ b

a
V ′(t)dt/(πi) = −(b− a)/(2πi)+ (V(b)−V(a))/(πi) = −1 from (3.11),

as it should, as V ′
p(z) = 1/z + O(1/|z|2) for large z. The last coefficients λ1 and λ0 of P (t) =

−t2 +λ1t+λ0 are the integrals of (t− c)2 and t(t− c)2, so, λ1 = ν0(m3 − 2cm2 + c2m1)+ ν1(m2 −
2cm1 + c2m0) and λ0 = ν0(m4 − 2cm3 + c2m2) + ν1(m3 − 2cm2 + c2m1).

For m3, the best combination is m3 − cm2 =

∫ b

a

tdt

πi
√
t(t− c)(t− a)(t− b)

=
4(ν0c+ ν1)

(a− c)(b− c)c
,

from (3.3) at x = c.

Next, m2 − cm1 is the complete integral of first kind
1

πi

∫ b

a

dt√
(t− a)(t− b)t(t− c)

=
4(ν0 + ν1/x

∗)

(a− c)(b− c)c
from (3.3) at x = x∗ =

abc

(a− c)(b− c) + ab
ensuring ab(x∗ − c) = −(a− c)(b −

c)x∗.

Note the beautiful m3 − 2cm2 + c2m1 =
4(1 − c/x∗)ν1

(a− c)(b− c)c
= −4ν1

abc
.

The even more beautiful m4 − 2cm3 + c2m2 = 0 follows from (3.6)!
λ1 = ν0(m3 − 2cm2 + c2m1) + ν1(m2 − 2cm1 + c2m0) = ν0(m3 − cm2)

+ ν1(m2 − cm1) + c = 4
ν0(ν0c+ ν1) + ν1(ν0 + ν1/x

∗)

(a− c)(b− c)c
+ c

=
4cν2

0 + 8ν0ν1 + 4
(c − a)(c − b) + ab

abc
ν2
1

(a− c)(b − c)c
+ c =

4(ν0c+ ν1)
2

(a− c)(b − c)c2
+ 4

ν2
1

abc2
+ c =

8ν2
1

abc2
from (4.7).

λ0 = ν0(m4 − 2cm3 + c2m2) + ν1(m3 − 2cm2 + c2m1) = −4ν2
1

abc
.
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P (t) = −t2 + λ1t+ λ0

t2(t− c)2
=

λ0

c2t2
+
λ0 + λ1c− c2

c2(t− c)2
− 2λ0 + cλ1

c2t(t− c)
=
λ0/c

2

t2
+

−λ0/c
2 − 1

(t− c)2
.

So that

V ′
p(z) = (V ′(z))2 +

λ

z
+

1 − λ

z − c
,

V ′
z(z) = (V ′(z))2 + V ′(z) +

λ

z
+

1 − λ

z − c
,

(6.8)

with λ =
4ν2

1

abc3
. For large z,

exp(Vp(z)) = z − c(1 − λ) +O(1/z), exp(Vz(z)) = z + ν0/2 − c(1 − λ) +O(1/z), (6.9)

from V ′(z) ∼ −ν0/(2z
2) in (3.2).

x = k
√
α105
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0

Figure 6. Chebyshev coefficients times k exp(2x/
√
c) as functions of x = k

√
α

for c = 1 and c = 10, n+ ν = 10.5.

6.4. Integral Hankel operator. When α → 0, the cks vary so slowly that H turns into an
integral operator! Indeed, write (6.5) (times 4k) as
∆4((k − 2)ck−2) − (α/c)∆2((k − 1)ck−1) − 4(n + ν)α(1 + α/c)(ck+1 − ck−1) + 16(α/c)2kck = 0.

Consider kck ∼ a function γ(k
√
α). Then,

∞∑

m=0

ck+mf(ym = m
√
α) =

∞∑

m=0

(k +m)ck+m︸ ︷︷ ︸
γ(x+ y)

f(y)[
√
α = ∆y]

(k +m)
√
α = x+ y

∼
∫ ∞

0

γ(x+ y)

x+ y
f(y)dy.

Also, (k+ j)ck+j ∼ γ((k + j)
√
α) = γ(k

√
α) + j

√
αγ′(k

√
α) + (αj2/2)γ′′(k

√
α) + · · · , ∆rkck ∼

αr/2drγ(x)/dxk at x = k
√
α.
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d4γ(x)/dx4 − 1

c
d2γ(x)/dx2 − 8(n + ν)

α(1 + α/c)

kα3/2 = xα
dγ(x)/dx + 16

1

c2
γ(x) = 0.

Main behaviour: the Poincaré-Perron’s ρk behaviour holds for small α with ρ such that |ρ| < 1

and (ρ+ 1/ρ)2 − 4(1 + 2α/c)(ρ + 1/ρ) + 4(1 + 2α/c)2 = 0, so ρ ∼ 1 − 2
√
α/c, ρk = (ρ1/

√
α)x →

exp(−2x/
√
c).

When α is small, the saddle-point equation (6.6) is solved by u ≈ 1, as u− 2 − 4α/c + u−1 ∼
±iA/

√
k, with A =

√
4(n + ν)α(1 + α/c), so u ∼ 1 + 2α/c ± iA/(2

√
k) +

√
4α/c ± iA/

√
k ∼

1 + 2
√
α/c for large k. Then, the main behaviour of

ck =
1

πi

∮
exp

(
(n+ ν)α(u+ 2 + u−1)

u− 2 − 4α/c + u−1

)
du

uk+1
is dominated by

exp(±i4(n + ν)α
√
k/A)(1 + 2

√
α/c)−k ∼ exp(±i4(n + ν)α

√
k/A− 2x/

√
c).

Fig. 6 shows that a exp(−2x/
√
c) envelope is an oversimplification for large c. There must be

a quadratic term, as a exp(−(x+ y)2) kernel has been found when c = ∞ [53, § 3, Thm 1.].

7. Divided differences and B-splines

Denominator of rational interpolation can be interpreted as orthogonal polynomial with respect

to a scalar product related to the interpolation points z
(n)
1 , . . . ,

z
(n)
2n+1, as in § 2.2 for functions defined by a contour integral.

The z
(n)
j are unknowns here, their limit distribution µz and the related complex potential Vz

were found so to fulfill the Gonchar-Rakhmanov-Stahl conditions of sections 2.3 and 2.4. Later
on, a more precise estimate was needed for establishing strong asymptotics formulas, a modified
potential called here Vz,n was introduced in (5.8) in § 5.4.2, by a kind of circular argument,
assuming Vz as a first step. See here some loose considerations on the required orthogonality
concept.

x

5

1

Figure 7. B-spline for c = 5, n = 5, 10, 15, 20.

From elementary polynomial interpolation theory, as the numerator qn times any polynomial q
of degree smaller than n interpolates pnqf at the 2n+ 1 points above, and as the degree of qnq is

still smaller than 2n, the divided difference [z
(n)
1 , . . . , z

(n)
2n+1]pnqf = 0, whence orthogonality of pn
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and q for the formal scalar product

〈p, q〉n = [z
(n)
1 , . . . , z

(n)
2n+1]pqf

=

2n+1∑

j=1

p(z
(n)
j )q(z

(n)
j )f(z

(n)
j )

∏

m6=j

(z
(n)
j − z(n)

m )

=
1

2πi

∫

C

p(t)q(t)f(t) dt

(t− z
(n)
1 ) · · · (t− z

(n)
2n+1)

(7.1)

as seen in (2.2).
Consider now the B-spline formula

〈p, q〉n =

∫ z
(n)
2n+1

z
(n)
1

B(x)

(2n)!

d2n

dx2n
(p(x)q(x)f(x)) dx, (7.2)

where B(x) is actually the Curry-Schoenberg B-spline (deBoor [13, chap. IX], [14])

B(x) = 2n[z
(n)
1 , . . . , z

(n)
2n+1](u−x)2n−1

+

= M(x; z
(n)
1 , . . . , z

(n)
2n+1)

= 2n
B(x; z

(n)
1 , . . . , z

(n)
2n+1)

z
(n)
2n+1 − z

(n)
1

,

where [z
(n)
1 , . . . , z

(n)
2n+1](u−x)2n−1

+
means the divided difference at u = z

(n)
1 , . . . , u = z

(n)
2n+1 of the

function of u whose value is (u− x)2n−1 when u > x, and 0 when u < x.
See in fig. 7 some instances of B(x) on the xis of best approximants to
exp(−(n+ 1/2)x), n = 5, 10, 15, 20.

Problem. Is there a clear limit behaviour for B? When the points z
(n)
j are equidistant (cardinal

case), the (scaled) limit is a Gaussian function [41,87,88].

θ

0 c

b

a

B A
θ

b

a

0

B

A = ∞

c = ∞

θ

0c

b

a

B−A

Figure 8. sin(θ/2) = k < k∞ = 0.9089..., k = k∞, sin(θ/2) = k > k∞.

8. Beyond infinity? Exploring off-limits modulus.

The approximation scheme stops at k = k∞ = 0.9089... when c = ∞. Of course, we want to
know what happens further, and the answer is simply c < 0:
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c 1/rho a k alpha2 nu0 nu1 K E Pi K’ E’

1.0 57.07 0.44-1.97i 0.247 -1043 -2.06 1.27 1.60 1.55 0.05 2.82 1.07

2.5 18.75 0.85-1.84i 0.550 -31.1 -2.33 4.22 1.72 1.44 0.28 2.07 1.24

3.3 15.14 0.97-1.76i 0.657 -11.8 -2.53 6.30 1.80 1.38 0.47 1.92 1.32

5.0 12.43 1.09-1.65i 0.769 -3.85 -2.93 11.1 1.94 1.30 0.81 1.78 1.40

10.0 10.55 1.16-1.51i 0.857 -1.01 -3.98 30.2 2.13 1.22 1.42 1.69 1.46

infty 9.29 1.19-1.39i 0.909 0 infty infty 2.32 1.16 2.32 1.65 1.50

-10.0 8.41 1.20-1.29i 0.938 0.41 3.79i 27.9i 2.49 1.12 3.48 1.62 1.52

-5.0 7.77 1.20-1.21i 0.956 0.61 2.64i 9.6i 2.64 1.09 4.86 1.61 1.54

-3.33 7.29 1.19-1.15i 0.966 0.72 2.13i 5.08i 2.77 1.08 6.43 1.60 1.54

-2.5 6.91 1.17-1.10i 0.973 0.79 1.83i 3.23i 2.89 1.06 8.18 1.59 1.55

-1.0 5.61 1.10-0.92i 0.990 0.93 1.14i 0.76i 3.36 1.03 21.8 1.58 1.56

-0.5 4.72 1.02-0.79i 0.996 0.97 0.81i 0.26i 3.80 1.01 54.2 1.58 1.57

c 1 2.5 3.3 5 10 infty -10 -5 -3.3 -2.5 -1 -0.5

nu0/nu1 -1.62 -0.55 -0.40 -0.26 -0.13 0 0.14 0.28 0.42 0.57 1.50 3.17

c^3/nu_1^2 0.62 0.88 0.93 1.01 1.10 1.19 1.28 1.36 1.43 1.50 1.74 1.92

Table 3. c, 1/ρ, a, k, α2, ν0, ν1,K,E,Π,K
′, and E

′, followed by ν0/ν1 and c3/ν2
1

The parameter A is redefined as |a − c|sign(c) in order to keep the formula c2 = A2 + B2 −
2AB cos θ.

The parameters c, α2, ζ,K,E, etc. vary smoothly when k becomes > k∞. For ν0 and ν1, the
convenient combinations are ν0/ν1 and c3/ν2

1 , see table 3.
So, we can still build the potential, starting with (3.2).
Curiously, V(z) is now pure imaginary on the real axis.
It is not even clear to know what the cut F may be. We have a solution without problem.
Problem. Find a scheme involving a modulus larger than k∞.

9. Algorithms

Elliptic integrals of first and second kind are easily computed with Gauss-Landen transforma-
tions, also related to the arithmetic-geometric mean of two numbers
M(a, b) = limn→∞ an, where a0 = a, b0 = b, an+1 = (an + bn)/2, bn+1 =

√
anbn,

then, K = π/(2M(1, k′)) [1, chap.17] [15, p.14-18], [20, p.39], [46,67].

Indeed, we build an auxiliary sequence cn =
√
a2

n − b2n computed8 for n > 0 as cn = c2n−1/(4an),

then
2dϕn/an√

1 − (cn/an)2 sin2 ϕn

=
dϕn+1/an+1√

1 − (cn+1/an+1)2 sin2 ϕn+1

when ϕ0 = ϕ,

tan(ϕn+1 − ϕn) = (bn/an) tanϕn, or tanϕn+1 =
2an+1 tanϕn

an − bn tan2 ϕn
, or also

sinϕn+1 = an+1 sin 2ϕn/
√
a2

n − c2n sin2 ϕn. The new variable ϕn+1 runs from 0 to π when ϕn

runs from 0 to π/2 (complete integral), so that K(cn/an)/an = K(cn+1/an+1)/an+1 = · · · =
K(0)/M = π/(2M).

For the complete integral of the second kind, E/K = 1 −
∑∞

0 2n−1c2n, still with a = 1, b = k′.
The limits are reached extremely fast (quadratically).

For the complete integral of the third kind (4.3), the algorithm is hardly longer (Bulirsch [17, I,

II], Byrd & Friedman [20, §164.02]), we add three sequences dn, hn, pn with p0 =
√

1 − α2, d0 =
1/p0, h0 = 1, and pn+1 = 4nanbn/pn + pn, hn+1 = dn/pn + hn, dn+1 = 2(4nanbnhn/pn + dn), then,
Π = limn→∞ πdn/(2

2n+1a2
n).

These sophisticated algorithms were used for the computation of the tables. The algorithms
are extended to incomplete integrals as well [17, III], but simpler (and more robust) algorithms
have been preferred when high accuracy is not needed.

8Remark also that c2
n+1 = (an − bn)2/4.
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Most graphs (fig. 1, 2, 3, 5, 6, 7 ) used the incredibly efficient CF algorithm of Trefethen [86]
building very fast excellent near-best rational approximations.
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