some Bar-le-Duc stuff: manuscript of Nov. 1983 (pdf)   summary 1 (pdf)   summary 2 (pdf)   summary 3 (pdf)
  cover (pdf)   page 1     2     3     4     5     6     7     8     9     10     11  

 http://www.springerlink.com/content/345532gt71117k83/

A proof of Freud's conjecture about the orthogonal polynomials related to |x|ρexp(-x2m), for integer m.

Book Series Lecture Notes in Mathematics
ÉditeurSpringer Berlin / Heidelberg
ISSN0075-8434 (Print) 1617-9692 (Online)
VolumeVolume 1171/1985
Book Polynômes Orthogonaux et Applications
DOI10.1007/BFb0076527
Copyright1985
ISBN978-3-540-16059-5
CategoryII. Conferenciers Ou Contributeurs
DOI10.1007/BFb0076565
Pages362-372
Subject Collection
A proof of Freud's conjecture about the orthogonal polynomials related to |x|ρexp(−x2m), for integer m.

Alphonse P. Magnus1

(1)  Institut de Mathématique, Université Catholique de Louvain, chemin du Cyclotron, 2, 1348 Louvain-la-neuve, Belgium
Abstract
Let anpn(x)=xpn−1(x)−an−1pn−2(x) be the recurrence relation of the orthonormal polynomials related to the weight function |x|ρ exp(−|x|α), ρ < −1, α < 0, on the whole real line. Freud's conjecture states that

$$\left( l \right)    \mathop {lim}\limits_{n \to \infty } \frac{{^a n}}{{\left[ {n/C\left( \alpha  \right)} \right]^{1/\alpha } }} = 1,       C\left( \alpha  \right) = \frac{{2\Gamma \left( \alpha  \right)}}{{\left( {\Gamma \left( {\alpha /2} \right)} \right)^2 }} = \frac{{2^\alpha  \Gamma \left( {\left( {\alpha  + 1} \right)/2} \right)}}{{\sqrt \pi   \Gamma \left( {\alpha /2} \right)}}.$$
The proof for an even integer α=2m uses nonlinear equations Fn(a)=n + ρ odd(n), considered by Freud himself. It is shown that Fn(a*)−n=o(n) when n → ∞, where a*n is the expected asymptotically valid estimate [n/C(α)]1/α. Bounds on an−a*n are obtained through the invertibility properties of the matrix [ak ∂Fn (a)/∂ak], shown to be symmetric and positive definite. The numerical computation of the solution by Newton's method is considered.