- a) $w(x)p_n^2(x)$ is negligible outside an interval $S_n = [\alpha_n, \beta_n]$ where bounds for α_n and β_n can be given by the extreme abscissaeof the maximal values of $I \times I^{2n}w(x)$ (see [11] §6, [12], [14] for conditions on w and precise formulation); $Ia_n I$ and $Ib_n I$ are also bounded by $c^t \max(I\alpha_n I, I\beta_n I)$; most of the zeros of p_n are in S_n .
- b) If $w(x)p_n^2(x)$ is assumed to be approximately equioscillating on S_n (this seems to hold, up to a factor $[(x \alpha_n)(\beta_n x)]^{-1/2}$ [22] §2),

(3) maximum
$$\log(\beta_n - \alpha_n)/4 + \frac{1}{2n\pi} \int_{-1}^{1} (1-x^2) \log w(\frac{\alpha_n + \beta_n}{2} + \frac{\beta_n - \alpha_n}{2} \times) dx$$

gives sharp estimates of α_n and β_n [19]. Many works on these subjects suggest a connection with the Szegö's theory of orthogonal polynomials on a bounded interval. A promising extension of Szegö's estimates is $\log p_n(z) = \frac{n}{\Sigma} \log(z - \frac{\alpha_k + \beta_k}{2} + [(z - \alpha_k)(z - \beta_k)]^{1/2} + o(n)$ for nonreal z. When $z = x + i\epsilon$ is almost real $(\epsilon > 0)$, the imaginary part is close to π times the number of zeros of p_n between x and β_n . A fair estimate of the density of zeros of p_n is therefore π^{-1} $\sum_{k \le n, x \in [\alpha_k, \beta_k]} [(x - \alpha_k)(\beta_k - x)]^{-1/2}$, with α_k and β_k given by (3).

c) Important simplifications in proofs and increase of knowledge occur if the recurrence coefficients behave smoothly

(4)
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1 , \lim_{n\to\infty} \frac{b_n}{a_n} \text{ exists.}$$

Then, one has

(5)
$$\alpha \wedge x_1 \wedge b - 2a$$
, $\beta \wedge x_1 \wedge b + 2a$, $\alpha \wedge x_1 \wedge b + 2a$,

where α_n and β_n agree with (3), and general asymptotic behaviour,

[21] distribution of zeros ([24], [29]) can be investigated with accuracy.

In 1973, Freud and Nevai initiated intensive study of the case $w(x) = |x|^{\rho} \exp(-|x|^{\alpha})$ $\alpha > 0$. Advances that have been made include: inequalities and bounds [4][11][13][20][23]; launching of the conjecture [1] by Freud [5] with a proof for $\alpha = 4$ and [6] [6] and [6] [6] is almost classical [6] [6] asymptotics for these polynomials in