We are interested in sequences satisfying (8), as they are the only candidates for positive solution. Therefore, the sequence $\{\delta_n\}$ is bounded. Using the lower bound of (8) and the lemma, with δ_1,\dots,δ_N as the finite sequence u, the first integral is larger than $S_N = c^t \sum_{n=1}^N n\delta_n^2$. The second integral is a quadratic form in $\delta_{N-m+2},\dots,\delta_{N+m-1}$, with coefficients bounded by c^t N, and is therefore also bounded by c^t $\sum_{n=1}^N n\delta_n^2 = c^t(S_{N+m-1} - S_{N-m+1})$. If a' and a" are both positive solutions of N^{-m+2} $(S_N, S_N < c^t)$ $(S_{N+m-1} - S_{N-m+1})$, or $S_{N+m-1}/S_{N-m+1} > a$ constant $S_N > 1$: a subsequence of $S_N > 0$ would increase exponentially , which is impossible (the δ_n 's being bounded, $S_N > 0$ is bounded by $S_N > 0$ 0, establishing unicity. With a' the positive solution of (6), and a" the expected asymptotic estimate $\{[n/C(2m)]^{1/2m}\}$, we recall that $S_N < c^t \sqrt{\log N} \cdot S_N = 0$ 1, so that the left-hand side of (9) is bounded by $S_N < c^t \sqrt{\log N} \cdot S_N + c^t (S_{N+m-1} - S_{N-m+1})$. In order to avoid exponential increase of a subsequence of $S_N > 0$, one must have $S_N < c^t \log N$, implying $S_N < c^t (\log N/N)^{1/2} \longrightarrow 0$, or $S_N < c^t \log N$, implying

The form of the Newton's algorithm that takes full advantage of the theorem is : 1) solve $J(a^*)$ $\delta^* = F(a^*) - F(a)$ through the Cholesky factorisation of $J(a^*)$

2) the new estimate of a_n is $a^* \exp(-\delta^*)$, $n=1,2,\ldots$ One remarks that any positive estimate of the solution produces an new estimate that is still positive.

Proof of the lemma. Symmetry of J(a): $\frac{\partial A^{2m-1}}{\partial a_k} = \sum_{i=0}^{2m-2} A^i \frac{\partial A}{\partial a_k} A^{2m-2-i},$ $a_k \frac{\partial F_n(a)}{\partial a_k} = 2^m \frac{\partial A}{\partial a_k} a_n \sum_{i=0}^{2m-2} A^i \frac{\partial A}{\partial a_k} A^{2m-2-i},$ $A^{2m-2-i} = \sum_{i=0}^{2m-2} A^i \frac{\partial A}{\partial a$