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Although general methods led me to a complete solution,
I soon saw that the result is obtained faster

when the general procedure is left, and when one follows the path
suggested by the particular problem at hand.

S. Bernstein
first lines of [6]

Abstract. One establishes inequalities for the coefficients of orthogonal polynomials

Φn(z) = zn + ξnzn−1 + · · · + Φn(0), n = 0, 1, . . .

which are orthogonal with respect to a constant weight on the arc of the unit circle S = {eiθ, απ < θ <
2π − απ}, with 0 < α < 1. Recurrence relations (Freud equations), and differential relations are used.
Among other results, it is shown that Φn(0) > 0, n = 1, 2, . . .

1. Introduction and statement of results.

1.1. Introduction. The analysis of orthogonal polynomials on the unit circle has been limited for a
long time to measures supported on the whole circle (theories of Szegő, and, later on, of Rakhmanov).
Orthogonal polynomials on circular arcs were only known through special cases (Geronimus, Akhiezer).
They now enter a general theory as an important subclass, as can be seen in Khrushchev’s paper [19].

Actually, only a very special set of such orthogonal polynomials will be studied here, namely the Legendre
polynomials on an arc, i.e., Φ0, Φ1, . . . are polynomials, with Φn of degree n, and

∫ 2π−απ

απ

Φn(eiθ)Φm(eiθ) dθ = 0

when n 6= m, and where α is given (0 < α < 1).
A property of these polynomials is needed in the solution of the following problem:

“3. The following Toeplitz matrix arises in several applications. Define for i 6= j, Ai,j(α) =
sin πα(i − j)

π(i − j)
and set Ai,i = α. Conjecture: the matrix M = (I − A)−1 has positive entries. A proof is known for
1/2 6 α < 1. Can one extend this to 0 < α < 1? Submitted by Alberto Grünbaum, November 3, 1992.
(grunbaum@math.berkeley.edu)” [17].

I − A is the Gram matrix [〈zi, zj〉], i, j = 0, 1, . . . , N of the weight w = 1 on the circular arc απ <
θ < 2π − απ. For all the entries of all the (I − A)−1 to be positive, it is necessary that all the coefficients
Φn(0) > 0, n = 1, . . . , N , and the condition is known to be sufficient [8, p. 645].

In [8], Delsarte & al. study the robustness of a signal recovery procedure amounting to find the polyno-
mial p = p0 + · · ·+ pNzN minimizing the integral of |f(θ)− p(eiθ)|2 on the circular arc shown above. This
elementary least-squares problem involves the Gram matrix I −A of the problem above, and the stability
of the recovery procedure is related to the size of the smallest eigenvalue of the matrix. The corresponding
eigenvector is shown to have elements of the same sign. The theory of this eigenvalue-eigenvector pair sould
be more complete if it could be shown that (I −A)−1 has only positive elements, for any N = 1, 2, . . . , and
any α ∈ (0, 1). It is also reported in [8, p. 644] that Grünbaum stated this conjecture as early as 1981.

Now, the elements of (I −A)−1 are positive combinations of coefficients of the polynomials Φn, and it is
sufficient to show that the sequence {Φn(0)} is positive (the opposite of Φn(0) is the reflection coefficient
a(n + 1, n + 1) of [8, p. 645]).
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If α > 1/2, all the zeros of Φn have negative real part (Fejér), so Φn(0) = (−1)n times the product of
all the zeros must be > 0 (conjugate pairs have no influence on the sign, and the number of real zeros is
n− an even number).

From continuity of the zeros with respect to α, we are trying to show that the real zeros of Φn all
remain negative for all 0 < α < 1. Most zeros are close to the support anyhow, and there are probably
only a small number of real zeros which are not close to −1.

Here are some results containing the solution of the problem:

1.2. Theorem. The monic polynomials

Φn(z) = zn + ξnzn−1 + · · · + Φn(0), n = 0, 1, . . .

which are orthogonal with respect to a constant weight on the arc of the unit circle S = {eiθ, απ < θ <
2π − απ}, with 0 < α < 1, have real coefficients satisfying the following inequalities:

(1) 0 < Φn(0) < σ, n = 1, 2, . . .
(2) nσ2 < ξn < (n − 1)σ2 + σ, n = 1, 2, . . . ,
(3) nΦn(0) < (n + 1)Φn+1(0) , n = 1, 2, . . . ,
(4) Φn(0) is an increasing function of α, for any integer n > 0.

where σ = sin(πα/2).

1.3. Conjecture. Under the same conditions as above,

Φn(0) < Φn+1(0) , n = 1, 2, . . .

1.4. Method of proof of the theorem.

The proof mimics an algorithm of numerical calculation of the sequence {Φn(0)} through a (non linear)
recurrence relation. It happens that a naive calculation based on an approximate value of Φ1(0) produces
unsatisfactory values, and that such numerical instabilities in recurrence calculations can be fixed

Wimp

• In section 2, a recurrence relation for the Φn(0)’s (Freud equations) will be produced,
• in section 3, the set of solutions of the latter recurrence relations will be shown to be a one-

parameter set of sequences {xxx = {x1, x2, . . . } }, each solution xxx being completely determined by
x1.
It will also be shown that there is at most one positive solution.

• In section 4, for each N = 1, 2, . . . , one will show how to construct the unique solution xxx(N)

satisfying 0 < x
(N)
n < σ for n = 1, 2, . . . , N and x

(N)
N+1 = σ.

• Finally, in section 5, we will see that, for each n = 1, 2, . . . , x
(N)
n decreases when N increases and

reaches therefore a limit x∗
n with which we build a nonnegative solution xxx∗. This solution will

finally be shown to be positive, ensuring the long sought existence of the positive solution!

1.5. Known results.

There are many results on asymptotic behaviour [12, 13, 14, etc.]
More subtle asymptotic estimates are also of interest in random matrix theory [1, 30]

1.6. General identities of unit circle orthogonal polynomials.

Monic polynomials orthogonal on the unit circle with respect to any valid measure dµ:

Φn(z) = zn + ξnzn−1 + · · · + Φn(0) , 〈Φn, Φm〉 =

∫ 2π

0

Φn(z)Φm(z) dµ(θ) = 0 if m 6= n, (z = eiθ)

satisfy quite a number of remarkable identities, most of them stated by Szegő in his book [26, § 11.3-11.4].
The central one is that, with

Φ∗
n(z) = Φn(0) zn + · · · + ξn z + 1,

Φ∗
n/‖Φn‖

2 is the kernel polynomial with respect to the origin:

(1)
Φ∗

n(z)

‖Φn‖2
= Kn(z; 0) =

n
∑

k=0

Φk(0)

‖Φk‖2
Φk(z)
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implying

(2) ‖Φn+1‖
2 = (1 − |Φn+1(0)|2) ‖Φn‖

2

(3) Φn+1(z) = zΦn(z) + Φn+1(0)Φ∗
n(z)

(4) 〈Φn, zn〉 = ‖Φn‖
2 ; 〈Φn, z−1〉 = −Φn+1(0) ‖Φn‖

2.

For the last one: 〈Φn, z−1〉 = 〈zΦn, 1〉 = Φn+1(0)〈Φ∗
n, 1〉, and 〈Φ∗

n(z), P (z)〉 = ‖Φn‖
2〈Kn, P 〉 = ‖Φn‖

2 P (0)
if P is a polynomial of degree 6 n.

(5) Φ∗
n+1(z) =

‖Φn+1‖
2

‖Φn‖2
Φ∗

n(z) + Φn+1(0)Φn+1(z)

(6) Φn+1(z) =
‖Φn+1‖

2

‖Φn‖2
zΦn(z) + Φn+1(0)Φ∗

n+1(z)

Identities for the general kernel polynomial

Kn(z; a) =
n

∑

k=0

Φk(a) Φk(z)

‖Φk‖2

which is the only polynomial of degree 6 n such that

〈f, Kn〉 =

∫

|z|=1

f(z)Kn(z; a) dµ(θ) =

∫

|z|=1

f(z) Kn(a; z) dµ(θ) = f(a)

for any f of degree 6 n, are best introduced through the determination of the polynomial Fn of degree n
of minimal norm with Fn(a) = 1. As Fn is orthogonal to any polynomial g of degree 6 n vanishing at a,
it must be a scalar multiple of Kn, i.e.,

Fn(z; a) =
Kn(z; a)

Kn(a; a)
.

Moreover, with g(z) = (z−a)h(z), 0 = 〈g, Fn〉 = 〈(z−a)h(z), Fn(z; a)〉 = 〈zh(z), (1−az)Fn(z; a)〉, so that
(1−a z)Fn(z; a) is orthogonal to z, z2, . . . , zn, there is a constant C such that (1−a z)Fn(z; a)−CKn(0; z)
is orthogonal to 1, z, . . . , zn, so is a constant multiple of Φn+1(z). The final formula is

(7) Kn(z; a) =
Φ∗

n(a) Φ∗
n(z) − az Φn(a) Φn(z)

(1 − a z)‖Φn‖2
.

N.B. The norm ‖Fn‖ = 1/
√

Kn(a; a) = ωn(µ; a), the famous Christoffel function [23].
This latter piece of argument about Kn(z; a) will not be needed in the proof of the Theorem 1.2, but 1)

we will use similar constructions, and 2) the formula may be useful in going further with conjecture 1.3.
Finally, (3) yields expressions for the coefficients of zn−1 and z in Φn(z):

(8) ξn = ξn−1 + Φn(0)Φn−1(0) = Φ1(0) + Φ2(0)Φ1(0) + · · · + Φn(0)Φn−1(0)

(9) Φ′
n(0) = Φn−1(0) + Φn(0)ξn−1 = (1 − |Φn(0)|2)Φn−1(0) + Φn(0)ξn

2. Recurrence relations (Freud equations).

2.1. The Laguerre-Freud equations. In looking for special non classical orthogonal polynomials related
to continued fractions satisfying differential equations, Laguerre found some families of recurrence relations
for the unknown coefficients. Among the people who rediscovered some of these relations, G. Freud showed
how to achieve progress in analysis by deriving from these relations a proof of inequalities and asymptotic
properties, see [5, 10, 21, 23] for more.

For orthogonal polynomials on the unit circle, the crux of the matter is that the weight function satisfies

(10) dw/dθ = Rw,

where R is a rational function of z = exp(iθ), the same rational function iP/Q on the whole unit circle,
up to a finite number of points [2]. One shall also need that Qw = 0 at the endpoints of the support.
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2.2. The family of Legendre measures.

Let us consider the measure dµ(θ) = w(θ)
dθ

2π
, with the following weight function:

w(θ) = A , απ < θ < 2π − απ,

= B , −απ < θ < απ,
(11)

with A and B > 0, A + B > 0.
Our problem deals only with B = 0, but we will need the full family (11) in a further discussion.
From symmetry with respect to the real axis, the polynomials Φn have real coefficients.
Let Q(z) = (z − eiαπ)(z − e−iαπ) = z2 − 2 cos(απ)z + 1 = 2z(cos θ − cos(απ)).

2.3. The differential relation for the orthogonal polynomials. We show that QΦ′
n is a remarkably

short linear combination of some Φs and Φ∗s [2]. To this end, we look at the integral of
d

dz
[z−1Q(z)f(z)Φn(z−1)]

on the two arcs of (11) for various polynomials f . Of course, the two integrals vanish, as Q vanishes at the
endpoints. So,

0 = A

∫ e−iαπ

eiαπ

d[z−1Q(z)f(z)Φn(z−1)] + B

∫ eiαπ

e−iαπ

d[z−1Q(z)f(z)Φn(z−1)]

= 2πi

∫ 2π

0

z
d

dz
[z−1Q(z)f(z)Φn(z−1)]w(θ)dθ,

as dz = deiθ = iz dθ.
The value is also

〈z(z−1Qf)′, Φn〉 − 〈z−2Qf, Φ′
n〉 = 0.

The second scalar product is also 〈f, QΦ′
n〉, as z−2Q(z) = Q(z−1), so

〈f, QΦ′
n〉 = 〈z(z−1Qf)′, Φn〉,

showing already that QΦ′
n is a polynomial of degree n + 1 which is orthogonal to z, . . . , zn−2.

By subtracting a suitable multiple of the kernel polynomial QΦ′
n − XnKn−1 is orthogonal to all the

polynomials of degree 6 n − 2, where Xn = 〈QΦ′
n, 1〉 = 〈z − z−1, Φn〉 = Φn+1(0)‖Φn‖

2.

(12) QΦ′
n = Xn‖Φn‖

−2Φ∗
n−1 + nΦn+1 + YnΦn + ZnΦn−1,

with the value of Xn found above, even when n = 1, as there is no other orthogonality constraint. The
coefficient of Φn+1 is obvious from the leading coefficient of QΦ′

n. By looking at the coefficient of zn in the
expansion of QΦ′

n, we get

Yn = (n − 1)ξn − 2n cos(απ) − nξn+1 = −ξn − 2n cos(απ) − nΦn+1(0)Φn(0).

For Zn,

Zn‖Φn−1‖
2 = 〈QΦ′

n, Φn−1〉 − Xn〈Kn−1, Φn−1〉

= 〈z(z−1QΦn−1)
′, Φn〉 − XnΦn−1(0)

= 〈nzn + · · · − Φn−1(0)z−1, Φn〉 − XnΦn−1(0)

= n‖Φn‖
2.

QΦ′
n = (1 − Φn(0)2)Φn+1(0)Φ∗

n−1 + nΦn+1 − [ξn + 2n cos(απ) + nΦn(0)Φn+1(0)]Φn + n(1 − Φn(0)2)Φn−1

or also

(13) QΦ′
n = (n + 1)(1 − Φn(0)2)Φn+1(0)Φ∗

n−1 + [nz − ξn − 2n cos(απ)]Φn + n(1 − Φn(0)2)Φn−1

which we evaluate at z = 0:

2.4. Recurrence relation for Φn(0).

(14) (n + 1)Φn+1(0) − 2
ξn + n cos(απ)

1 − Φn(0)2
Φn(0) + (n − 1)Φn−1(0) = 0,

for n = 1, 2, . . . , and where ξn = Φ1(0) + Φ1(0)Φ2(0) + · · · + Φn−1(0)Φn(0).
Which is the recurrence relation determining Φn+1(0) from Φ1(0), . . . , Φn(0), and which will be discussed

in more detail in the next section.
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2.5. Differential equation for Φn. Now, (13) can be transformed into a differential system for Φn and
Φ∗

n:

zQ(z)Φ′
n(z) = [nQ(z) − (ξn + (n + 1)Φn(0)Φn+1(0))z]Φn(z) + [(n + 1)Φn+1(0)z − nΦn(0)]Φ∗

n(z)

Q(z)(Φ∗
n)′(z) = [nΦn(0)z − (n + 1)Φn+1(0)]Φn(z) + [ξn + (n + 1)Φn(0)Φn+1(0)]Φ∗

n(z)
(15)

Remark that, when Q(z) = 0,

Φn(e±iαπ)

Φ∗
n(e±iαπ)

= exp[∓inαπ + 2i argΦn(e±iαπ)] =
(n + 1)Φn+1(0) − nΦn(0)e∓iαπ)

ξn + (n + 1)Φn(0)Φn+1(0)
,

which makes sense if

|ξn + (n + 1)Φn(0)Φn+1(0)| = |(n + 1)Φn+1(0) − nΦn(0)e±iαπ)|,

another interesting indentity about the Φn(0)’s. By squaring2, one has

(16) [ξn + (n + 1)Φn(0)Φn+1(0)]2 = (n + 1)2Φ2
n+1(0) − 2n(n + 1)Φn(0)Φn+1(0) cos(απ) + n2Φ2

n(0).

Also that, if one writes the system (15) as

[

zQΦ′
n

Q(Φ∗)′n

]

=

[

A B
C D

] [

Φn

Φ∗
n

]

, then AD − BC = nξnQ. useful in

the construction of the scalar differential equation for Φn. Although this differential equation will not be
needed here, it would be a sin to neglect to state it. AM Ismail

From (15) a linear differential equation of second order for Φn follows

zQΦ′′
n +

[

zQ′ − (n − 1)Q−
(n + 1)Φn+1(0)zQ

(n + 1)Φn+1(0)z − nΦn(0)

]

Φ′
n

+

[

−nQ′ + (n + 1)ξn+1 + [nQ − (ξn + (n + 1)Φn(0)Φn+1(0))z]
(n + 1)Φn+1(0)

(n + 1)Φn+1(0)z − nΦn(0)

]

Φn = 0

2.6. Other weights: semi classical orthogonal polynomials on the unit circle. As already stated,

similar relations hold whenever
dw/dθ

w
is a rational function of z = exp(iθ), the same rational function

iP/Q on the whole unit circle, up to a finite number of points. Then, Q(z)Φ′
n(z) is a remarkably short

combination of some Φs and Φ∗s [2]. We just do as before, with

0 = 2πi

∫ 2π

0

z
d

dz
[f(z)Q(z)Φn(z)w(θ)] dθ,

where f is a polynomial,

〈z(Q(z) f)′, Φn〉 − 〈z−1f, QΦ′
n〉 − 〈fP (z), Φn〉 = 0,

using the pure imaginarity of P (z)/Q(z) on the unit circle. We see that QΦ′
n is orthogonal to zr−1, . . . , zn−2,

where r is the maximum of the degrees of P and Q (so that P (z) and Q(z) are polynomials of degree 6 r
in z−1 on the unit circle).

As an exercise, consider the Gegenbauer case

w(θ) = A or B| cos(απ) − cos θ|β

on the same arcs as in (11).Then,

dw/dθ

w
=

−β sin θ

cos θ − cos(απ)
=

iβ(z2 − 1)

Q(z)
,

with the same Q as before. We still have (12), but with the coefficient of Φ∗
n−1 which is now

−‖Φn−1‖
−2〈1, QΦ′

n〉 = −‖Φn−1‖
−2〈z(zQ)′ − zP , Φn〉 = (1 + β)(1 − Φn(0)2)Φn+1(0)),

and with the same Yn (i.e., the same formula), and

Zn‖Φn−1‖
2 = 〈QΦ′

n − XnKn−1, Φn−1〉

(17) QΦ′
n = (n + 1 + β)(1−Φn(0)2)Φn+1(0)Φ∗

n−1 + [nz − ξn − 2n cos(απ)]Φn + (n + β)(1−Φn(0)2)Φn−1

2Squaring yields a proof by induction: take the identity at n − 1 and add 2{ξn + Φn(0)[(n + 1)Φn+1(0) + (n −
1)Φn−1(0)]}Φn(0)[(n + 1)Φn+1(0) − (n − 1)Φn−1(0)], so, (16) appears as a kinf of first integral of (14). The form (16)
appears essentially in Adler and van Moerbeke [1], and in Forrester and Witte [9].
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which we evaluate at z = 0:

(18) (n + 1 + β)Φn+1(0) − 2
ξn + n cos(απ)

1 − Φn(0)2
Φn(0) + (n − 1 + β)Φn−1(0) = 0.

3. Properties of the solutions of the recurrence relations.

3.1. The set of solutions.

We now want to investigate all the solutions of the recurrence relation

(19) (n + 1)xn+1 − 2
ξn + n cos(απ)

1 − x2
n

xn + (n − 1)xn−1 = 0,

for n = 1, 2, . . . , where ξn = x1 + x1x2 + x2x3 + · · · + xn−1xn.
Each solution is a sequence {x1, x2, . . . } completely determined by the initial value x1 (the value x0 = 1

is common to all the solutions considered here).
The particular solution we are interested in is determined by

x1 = Φ1(0) = −

∫ (2−α)π

απ

e±iθ dθ

∫ (2−α)π

απ

dθ

=
sin(απ)

(1 − α)π
.

But as (14) is valid for all the weights (11), we find that xn is the related Φn(0), and that x1 is the ratio
of moments

(20) x1 = −

A

∫ (2−α)π

απ

e±iθ dθ + B

∫ απ

−απ

e±iθ dθ

A

∫ (2−α)π

απ

dθ + B

∫ απ

−απ

dθ

=
(A − B) sin(απ)

A(1 − α)π + Bαπ
,

relating A/B to any x1 (and even negative values of A/B if x1 /∈ [− sin(απ)/(απ), sin(απ)/((1 − α)π)]).

3.2. Monotonicity with respect to x1. Proposition. While x1, x2, . . . xn−1 are positive and less than
1, and while xn is positive, xn is a continuous increasing function of x1.

Indeed, let us write the ith equation of (19) as

(i + 1)xi+1

ixi

= 2
x1 + x1x2 + · · · + xi−1xi + i cos(απ)

i(1 − x2
i )

−
1

ixi

(i − 1)xi−1

,

for i = 1, 2, . . . , n− 1. As x1, . . . , xn are positive, and 1−x2
1, . . . , 1−x2

n−1 are positive too, the numerators
ξi + i cos(απ) are positive too up to i = n − 1. When i = 1, we see that x2/x1, and therefore x2, is an
increasing function of x1.

If 2x2/x1, . . . , ixi/((i − 1)xi−1) are continuous positive increasing functions of x1, then so is xi+1/xi,
and therefore xi+1, as the two terms of the right-hand side are increasing. �

We look at the evolution of a solution with respect to x1 ∈ (0, 1). We guess that if x1 is too small, some
xn will be negative, and that if x1 is too large, some xn will be larger than 1.

3.3. Unicity of positive solution. Proposition. The recurrence (19) has at most one positive solution.
Indeed, we consider four possibilities for x1, according to the ratio A/B in (20):

(1) x1 =
sin(απ)

(1 − α)π
, corresponding to B = 0. This is the solution we hope to show to be positive.

(2) −
sin(απ)

απ
< x1 <

sin(απ)

(1 − α)π
, corresponding to A > 0 and B > 0. We then have a Szegő weight,

with xn → 0 and ξn remaining bounded when n → ∞. For n large, and p = 0, 1, 2, . . . , P fixed, we
have

xn+p+1

xn+p

∼ 2 cos(απ) −
1

2 cos(απ) −
1

. . . −
xn−1

xn

=
sin((p + 1)απ + ρn)

sin(pαπ + ρn)
,

so that xn+p ∼ Cn sin(ρn + pαπ), p = 0, 1, . . . , P − 1. We now choose P so that Pα is close to
an even integer. The sines must change their signs, as the sum of these P values is close to zero
(actually, is o(Cn)).
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(3) x1 = −
sin(απ)

απ
, corresponds to A = 0, and has of course no chance, as x1 is already negative! The

asymptotic behaviour of xn is known to be

(4) x1 /∈

[

−
sin(απ)

απ
,

sin(απ)

(1 − α)π

]

, corresponds to a non positive weight A/B < 0, and we will either

encounter a negative xn, or xn > 1, but then xn+1 < 0 3.

That means that if we succeed in constructing a positive solution of (19), this solution will have to be
of the type 1) above, and that will be the proof of positivity of the sought solution.

One may also consider for each value of x1 the smallest index ν(x1) where xν < 0. The propositions 3.2

and 3.3 above amount to stating that ν(x1) is an increasing function of x1 ∈

(

0,
sin(απ)

(1 − α)π

)

. The problem

is to know if the limit of ν(x1) will be finite or infinite.

4. Construction of a positive solution for n = 1, 2, ..., N + 1.

4.1. Iteration of positive sequences.

As it is so difficult to “push” a positive solution through an starting value x1, we try to build a positive
solution of (19) through an iterative process keeping positive sequences. A good start is to write (19) as

(21) xn =
√

A2
n(xxx) + 1 − An(xxx) =

1
√

A2
n(xxx) + 1 + An(xxx)

, n = 1, 2, . . .

where

An(xxx) =
x1 + x1x2 + · · · + xn−1xn + n cos(απ)

(n − 1)xn−1 + (n + 1)xn+1
.

Indeed, consider (19) as an equation of degree two for xn

x2
n + 2An(xxx) xn − 1 = 0,

and take the unique positive root, which is (21).
Therefore, the positive solution of (19), if it exists, must satisfy (21), and if we find a (positive, of course)

sequence satisfying (21), we will have found the unique positive solution of (19).
One may then consider to iterate (21), hoping to see it to converge towards the long sought positive

solution.
Heavy numerical experiments (see [22, § 4.2]) suggest that convergence indeed holds, but that no easy

proof is at hand. Moreover, some inequalities of Theorem 1.2 do not hold for intermediate steps of appli-
cation of (21).

A modified iterative scheme will be much more satisfactory:

4.2. An iteration of finite positive sequences.Proposition.

• For any α ∈ (0, 1), the function FFF (N,ε) acting on a sequence xxx = {xn}
∞
1 by

F (N,ε)
n =

√

[A
(N,ε)
n xxx)]2 + 1 − A(N,ε)

n (xxx) =
1

√

[A
(N,ε)
n (xxx)]2 + 1 + A

(N,ε)
n (xxx)

, n = 1, 2, . . . , N

= σ, n = N + 1, N + 2, . . .

(22)

where σ = sin
απ

2
, and

(23) A(N,ε)
n (xxx) =

Nσ2 + ε − xnxn+1 − · · · − xN−1xN + n cos(απ)

(n − 1)xn−1 + (n + 1)xn+1
, n = 1, 2, . . . , N,

transforms a positive sequence into a positive sequence;
if xxx > FFF N,ε)(xxx) (element-wise), then, FFF (N,ε)(xxx) > FFF (N,ε)(FFF (N,ε)(xxx)) when ε > 0.

• Iterations of FFF (N,ε), starting with the constant sequence xn = σ, n = 1, 2, . . . , converge to a
positive fixed point xxx(N,ε) of FFF (N,ε), i.e., a positive solution of

(24) (n + 1)xn+1 − 2
Nσ2 + ε − xnxn+1 − · · · − xN−1xN + n cos(απ)

1 − x2
n

xn + (n − 1)xn−1 = 0,

for n = 1, 2, . . . , N , and xn = σ for n > N .

3 If xn−2, xn−1, and xn are positive, with xn−1 < 1, then ξn−1 + (n − 1) cos(απ) > xn/xn−1 − xn−1xn, using (19) with
n − 1. So, ξn + n cos(απ) = ξn−1 + (n − 1) cos(απ) + xn−1xn + cos(απ) > xn/xn−1 + cos(απ) > 0, and xn+1 < 0
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• For any ε > 0, we now consider the function

fN(ε) = Nσ2 + ε − x1 − x1x2 − · · · − xN−1xN

built with the sequence {x
(N,ε)
1 , . . . , x

(N,ε)
N } found above. The set of equations (24) can also be

written as

(25) (n + 1)xn+1 − 2
fN (ε) + ξn + n cos(απ)

1 − x2
n

xn + (n − 1)xn−1 = 0,

Then, fN is an increasing function, fN (0) = σ2 − σ < 0, fN(ε) > σ2 − σ + ε, so that there is a
unique positive zero εN of fN , and the found positive solution xxx(N,εN ) of (24) is then the positive
solution xxx(N) of the equations (19) for n = 1, 2, . . . , N , and xN+1 = σ.

Indeed, whenever xxx is a positive sequence, each A
(N,ε)
n (xxx) is a decreasing function of the xi’s, therefore,

F
(N,ε)
n (xxx) is an increasing function of xxx.

Next, the constant positive sequence xn = σ, n = 1, 2, . . . satisfies xxx > FFF (N,ε)(xxx), as A
(N,ε)
n (xxx) =

nσ2 + ε + n cos(απ)

2nσ
, >

σ−1 − σ

2
, n = 1, 2, . . . , N, from (23), and cos(απ) = 1 − 2σ2.

Each xn will therefore decrease at each new iteration of F
(N,ε)
n , and will reach a nonnegative limit called

x
(N,ε)
n , which satisfies (25), as stated above. Remark that this limit is not non only nonnegative, but

actually positive: if x
(N,ε)
1 = 0, then x

(N,ε)
n = 0 for all n > 0; if x

(N,ε)
n−1 > 0, and x

(N,ε)
n = 0, with n > 0,then

x
(N,ε)
n+1 < 0, and we could not have xN+1 = σ.

We also have x
(N,ε)
n < σ if ε > 0.

Finally, we compare the values of some xn when the iterations (22-23) are performed with two different
values of ε, and find that xn is a decreasing function of ε, whence the increasing character of the function
fN .

�

Much more general iterations with monotonocity properties are worked in Chapter 3 of Collatz’ book [7].

5. Final limit process.

5.1. Proposition . The sequence xxx(N) built above as the unique positive solution of (19) for n =
1, 2, . . . , N with xN+1 = σ, decreases when N increases and converges to the unique positive solution
xxx of (19), whose existence had to be established.

Indeed, from x
(N)
N+1 = σ, and x

(N+1)
N+1 < σ, x

(N+1)
1 < x

(N)
1 must follow, from Proposition 3.2, and then

x
(N+1)
n < x

(N)
n for all n 6 N + 1.

Moreover, xxx is actually positive, and not merely nonnegative, as xn < σ and εN > 0 ⇒ 0 > Nσ2 + εN −

x
(N)
1 − (N − 1)σ2: x1 > σ2. And, as we saw above, we can not have xn−1 > 0, xn = 0, and xn+1 > 0.
This achieves the proof of (1-3) of Theorem 1.2.

5.2. Numerical illustration and software.

we choose α = 1/4, then σ = sin(απ/2) = 0.382683...,
We iterate F (5,0.01), starting with the constant sequence xn = σ :

it. res. x1 x2 x3 x4 x5 x6

1 0.01306 0.38268 0.38268 0.38268 0.38268 0.38268 0.38268

2 0.01053 0.37937 0.38102 0.38157 0.38185 0.38201 0.38268

3 0.00960 0.37673 0.37939 0.38060 0.38118 0.38176 0.38268

4 0.00804 0.37436 0.37803 0.37975 0.38076 0.38157 0.38268

5 0.00679 0.37239 0.37686 0.37913 0.38041 0.38144 0.38268

6 0.00542 0.37074 0.37594 0.37860 0.38017 0.38134 0.38268

7 0.00445 0.36943 0.37517 0.37820 0.37996 0.38126 0.38268

8 0.00352 0.36837 0.37457 0.37787 0.37980 0.38120 0.38268

9 0.00285 0.36753 0.37408 0.37761 0.37968 0.38116 0.38268

10 0.00226 0.36685 0.37370 0.37740 0.37958 0.38112 0.38268

where “res” is the norm of the residue at the particular iteration step, i.e., the largest absolute value of
the left-hand sides of (24), n = 1, 2, . . . , N . This error norm decreases rather slowly, and we proceed up to
the reception of a reasonably small value:
it. res. x1 x2 x3 x4 x5 x6

50 0.00000 0.36420 0.37218 0.37659 0.37918 0.38097 0.38268

one finds f5(0.01) = −0.18493. We already knew that f5(0) = σ2 − σ = −0.23623...
We start the whole process again with various values of ε:
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eps. f(eps) x1 x2 x3 x4 x5 x6

0 -0.23623 0.38268 0.38268 0.38268 0.38268 0.38268 0.38268

0.01 -0.18493 0.36420 0.37218 0.37659 0.37918 0.38097 0.38268

0.02 -0.13634 0.34700 0.36206 0.37061 0.37571 0.37927 0.38268

0.03 -0.09021 0.33097 0.35231 0.36474 0.37228 0.37758 0.38268

0.04 -0.04633 0.31600 0.34291 0.35898 0.36889 0.37591 0.38268

0.05 -0.00450 0.30200 0.33384 0.35333 0.36552 0.37424 0.38268

0.06 0.03544 0.28888 0.32509 0.34778 0.36220 0.37259 0.38268

we find ε5 = 0.0511, and perform the whole thing again for several values of N :
N eps x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

5 0.05110 0.30051 0.33286 0.35271 0.36516 0.37406 0.38268

6 0.04124 0.30024 0.33242 0.35194 0.36370 0.37118 0.37682 0.38268

7 0.03443 0.30015 0.33227 0.35167 0.36319 0.37019 0.37482 0.37853 0.38268

8 0.02953 0.30012 0.33221 0.35157 0.36301 0.36984 0.37411 0.37707 0.37962 0.38268

9 0.02585 0.30011 0.33219 0.35154 0.36295 0.36971 0.37385 0.37654 0.37852 0.38034 0.38268

10 0.02299 0.30011 0.33219 0.35152 0.36292 0.36967 0.37376 0.37634 0.37810 0.37948 0.38084

And we see that we have indeed reconstructed x1 = Φ1(0) =
sin(απ)

(1 − α)π
= 0.3001054....

The gp-pari [4] program used here can be found at
http://www.math.ucl.ac.be/~magnus/freud/grunbd.gp.
A more experimental program, allowing β 6= 0 is at
http://www.math.ucl.ac.be/~magnus/freud/grunb2.gp.
There is also a java program available at
http://www.math.ucl.ac.be/~magnus/freud/grunbd.htm.
The numerical efficiency of this demonstration is close to zero! Should somebody really need a long

subsequence of the Φn(0)’s,

5.3. Proof of (4) of Theorem 1.2. We show that, if xxx is a positive sequence bounded by σ, and with
nxn increasing with n, then the same holds for FFF (N,ε)(xxx). Indeed, by (22),

nFn =
1

An

n
+

√

(

An

n

)2

+
1

n2

is increasing if An/n is decreasing. Now, by (23),

An

n
=

yn + cos(απ)

(n − 1)xn−1 + (n + 1)xn+1
,

where yn =
Nσ2 + ε − xnxn+1 − · · · − xN−1xN

n
,

has an increasing denominator, and a decreasing numerator. Indeed,

yn+1 − yn =
(n + 1)yn+1 − nyn − yn+1

n
=

xnxn+1 − yn+1

n
< 0,

as xn < σ and ε > 0 ⇒ yn > σ2 . �

6. Differential equations with respect to α.

Let Φn and Φ̃n be the monic orthogonal polynomials of degree n with respect to the measures dµ and
dµ̃. As any polynomial of degree n − 1, Φ̃n − Φn is represented through the kernel polynomial Kn−1:

Φ̃n(z) − Φn(z) =

∫

|t|=1

(Φ̃n(t) − Φn(t))Kn−1(z, t) dµ.

We may suppress in the integral Φn, which is orthogonal to Kn−1; and replace dµ by dµ − dµ̃, as Φ̃n is
orthogonal to Kn−1 with respect to dµ̃:

Φ̃n(z) = Φn(z) −

∫

|t|=1

Φ̃n(t)Kn−1(z, t) (dµ̃ − dµ).

sometimes called the Bernstein integral equation for Φ̃n. [...]

∂Φn(z)

π∂α
= (A − B)[Φn(eiαπ)Kn−1(z, eiαπ) + Φn(e−iαπ)Kn−1(z, e−iαπ)]

At z = 0:
dΦn(0)

πdα
= (A − B)[Φn(eiαπ)Kn−1(0, eiαπ) + Φn(e−iαπ)Kn−1(0, e−iαπ)]

http://www.math.ucl.ac.be/~magnus/freud/grunbd.gp
http://www.math.ucl.ac.be/~magnus/freud/grunb2.gp
http://www.math.ucl.ac.be/~magnus/freud/grunbd.htm
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= (A − B)‖Φn−1‖
−2[Φn(eiαπ)Φ∗

n−1(e
iαπ) + Φn(e−iαπ)Φ∗

n−1(e
−iαπ)]

relating Φn(0) to values at e±iαπ , which may not be easier. However,

dΦn(0)

πdα
= (A − B)

|Φn−1(e
iαπ)|2

‖Φn−1‖2

[

Φn(eiαπ)

Φ∗
n−1(e

iαπ)
+

Φn(eiαπ)

Φ∗
n−1(e

iαπ)

]

,

and we know that
Φn(eiαπ)

Φ∗
n−1(e

iαπ)
= eiαπ Φn−1(e

iαπ)

Φ∗
n−1(e

iαπ)
+ Φn(0)

=
nΦn(0)eiαπ − (n − 1)Φn−1(0)

ξn + (n − 1)Φn−1(0)Φn(0)
+ Φn(0),

and
dΦn(0)

dα
= π(A − B)[1 − Φ2

n(0)]
|Φn−1(e

iαπ)|2

‖Φn−1‖2

(n + 1)Φn+1(0) − (n − 1)Φn−1(0)

ξn + (n − 1)Φn−1(0)Φn(0)

which achieves the proof of (4) of Theorem 1.2. �

We certainly would like more explicit differential relations and equations (Painlevé!) with respect to α
here!

According to a formula in the proof of Prop. 5.3 of [9],

dΦn(0)

dα
= −π

[ξn + n cos(απ)]Φn(0) − (n − 1)[1 − Φ2
n(0)]Φn−1(0)

sin(απ)

= π
[ξn + n cos(απ)]Φn(0) + (n + 1)[1 − Φ2

n(0)]Φn+1(0)

sin(απ)

7. Conclusion: new problems.

We could establish the inequalities of Theorem 1.2 as far as they are related to the unique positive
solution of the recurrence relations (14). The method is to design an iterative scheme converging towards
this positive solution, and to ensure that the required inequalities hold at each intermediate step.

Such a method may fail very easily: for instance, the scheme (21) may have seemed very promising, but
produced sometimes unsatisfactory intermediate iterates.

Also, the conjecture 1.3 cannot be proved by merely feeding the iteration (22) with arbitrary increas-
ing sequences: if σ is very small, we see that the sequence {An(xxx)}n is decreasing only if the sequence
(n + 1)xn+1 + (n − 1)xn−1

n
is increasing, which complels us to look for further inequalities. So, something

smarter is needed.
Final example of drawback of the method: if we want to investigate the Gegenbauer polynomials on

a unit circle arc, we only have to replace (n + 1)xn+1 + (n − 1)xn−1 in the denominator of (23) by
(n+β+1)xn+1+(n+β−1)xn−1, and the results of Section 1 are probably still true, at least if β > 0. But we
will now have to include the initial condition x0 = 1 explicitly, and have a lot of troubles with the inequalities
on the xn’s. The conjecture 1.3 does not hold for any n and β anyhow, as xn → max(−1, β/(n + β)) when
α is small (and ξn → nβ/(n + β) if β > −1/2).
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