Appendix

 \mathbf{to}

"Should developing countries participate in the Clean Development Mechanism under the Kyoto Protocol? The low-hanging fruits and baseline issues"

by

M. Germain, A. Magnus, and V. van Steenberghe.

December 2004.

We give here the mathematical derivation of some propositions and statements of the paper.

Contents

1. Preliminaries: the second period maximization problem	2
2. The absolute baseline case.	
2.a. Proof of proposition 2.a (existence, unicity and characterization of λ_{a1})	3
2.a.1. The equation for λ_{a1} : the maximum condition.	3
2.a.2. Existence of λ_{a1} : the first order condition.	4
2.a.3. Unicity of the solution of the first order condition	5
2.b. Proof of Proposition 2.b (behaviour of e, k , and y with respect to τ_1)	6
3. The relative baseline case	7
3.a. Proof of proposition 3.a (existence, unicity and characterization of λ_{r1})	7
3.b. Discussion of Result 3.b (behaviour of e, k , and y with respect to τ_1)	8
3.c. Proof of Proposition 3.c (comparison of y and k under both baselines)	8
3.d. Proof of Proposition 3.d (comparison of Π_1 under both baselines)	8

1. Preliminaries: the second period maximization problem.

We see that the full problem (7) contains several times the same subproblem: we first have to maximize with respect to a variable $e \ge 0$ an expression of the form $Ae^{\gamma} - Be + C$, with A, B > 0, and $\gamma < 1$.

The derivative $\gamma A e^{\gamma - 1} - B$ has exactly one positive zero:

$$e = \left[\frac{\gamma A}{B}\right]^{1/[1-\gamma]},\tag{A.1}$$

which leads to $Be = \gamma A e^{\gamma}$, so that the maximum is

$$[1-\gamma]Ae^{\gamma} + C = \gamma' A^{1/[1-\gamma]}B^{-\gamma/[1-\gamma]} + C, \text{ where } \gamma' = [1-\gamma]\gamma^{\gamma/[1-\gamma]}. \tag{A.2}$$

We apply now this to Π_2 .

In $\Pi_2(\lambda_1, \tau_2)$, for a given τ_2 , A and B depend on λ_2 : $A = \lambda_2^{\beta}$, $B = p_e + \tau_2 + p_k \lambda_2$, and so

$$\Pi_2(\lambda_1, \tau_2) = \max_{\lambda_2 \ge \lambda_1} F(\lambda_2; \tau_2) + C_2$$

 $\frac{\beta[p_e+\tau_2]}{\alpha p_k} \lambda_2$ fig. A.2

 $\frac{\beta[p_e + \tau_2]}{\alpha p_k}$

 λ_1

fig A.1

where
$$F(\lambda_2; \tau_2) := \max_{e_2 > 0} e_2^{\gamma} \lambda_2 - [p_e + \tau_2 + p_k \lambda_2] e_2$$

= $\gamma' \lambda_2^{\beta/[1-\gamma]} [p_e + \tau_2 + p_k \lambda_2]^{-\gamma/[1-\gamma]}$, (A.3)

 $F(\lambda_2; \tau_2)$ increases between $\lambda_2 = 0$ and $\lambda_2 = \beta [p_e + \tau_2]/[\alpha p_k]$, and decreases afterwards (see fig. A.1). Therefore, when $\lambda_1 \leq \beta [p_e + \tau_2]/[\alpha p_k]$, the maximum over $\lambda_2 \geq \lambda_1$ of $F(\lambda_2; \tau_2)$ is the maximal value of F, i.e.,

$$F\left(\frac{\beta[p_e + \tau_2]}{\alpha p_k}; \tau_2\right) = \gamma''[p_e + \tau_2]^{-\alpha/[1-\gamma]} p_k^{-\beta/[1-\gamma]},$$
(A.4)

where $\gamma'' = \gamma' \beta^{\beta/[1-\gamma]} \alpha^{\alpha/[1-\gamma]} / \gamma^{\gamma/[1-\gamma]} = [1-\gamma] \beta^{\beta/[1-\gamma]} \alpha^{\alpha/[1-\gamma]};$ whereas, when $\lambda_1 \ge \beta [p_e + \tau_2] / [\alpha p_k]$, the maximum over $\lambda_2 \ge \lambda_1$ of $F(\lambda_2; \tau_2)$ is merely $F(\lambda_1; \tau_2)$. Thus:

$$\Pi_{2}(\lambda_{1},\tau_{2}) = \gamma' \lambda_{1}^{\beta/[1-\gamma]} [p_{e} + \tau_{2} + p_{k}\lambda_{1}]^{-\gamma/[1-\gamma]} + C, \quad \text{if } \lambda_{1} \ge \beta [p_{e} + \tau_{2}]/[\alpha p_{k}],$$

$$= \gamma'' [p_{e} + \tau_{2}]^{-\alpha/[1-\gamma]} p_{k}^{-\beta/[1-\gamma]} + C \qquad \text{if } \lambda_{1} \le \beta [p_{e} + \tau_{2}]/[\alpha p_{k}],$$
(A.5)

Remark that $\Pi_2(\lambda_1, \tau_2)$ is a **non increasing** function of λ_1 (see figure A.2).

This also holds for the integral term of (7), as this term is a positive linear combination of functions $\Pi_2(\lambda_1, \tau_2)$ for an interval of values of τ_2 .

2. The absolute baseline case.

2.a. Proof of proposition 2.a (existence, unicity and characterization of λ_{a1}).

2.a.1. The equation for λ_{a1} : the maximum condition.

We now come to the full problem (4), with an absolute baseline:

$$\max_{e_1 \ge 0, \lambda_1 \ge 0} \left\{ e_1^{\gamma} \lambda_1^{\beta} - [p_e + p_k \lambda_1] e_1 + \tau_1[\overline{e}_1 - e_1] \right. \\ \left. + \rho \int_{\tau_{\min}}^{\tau_{\max}} f(\tau_2) \max_{\substack{e_2 \ge 0\\\lambda_2 \ge \lambda_1}} \left\{ e_2^{\gamma} \lambda_2^{\beta} - [p_e + p_k \lambda_2] e_2 + \tau_2[\tilde{e}_2 - \delta[\overline{e}_1 - e_1] - e_2] \right\} d\tau_2 \right\}.$$

Emphasizing the dependence in e_1 , using (2):

$$\begin{aligned} \max_{\lambda_1 \ge 0} \left\{ \max_{e_1 \ge 0} \left\{ e_1^{\gamma} \lambda_1^{\beta} - [p_e + p_k \lambda_1 + \tau_1 - \rho \delta \tilde{\tau}_2] e_1 \right\} \\ + \rho \int_{\tau_{\min}}^{\tau_{\max}} f(\tau_2) \max_{\lambda_2 \ge \lambda_1} \left\{ \max_{e_2 \ge 0} \left\{ e_2^{\gamma} \lambda_2^{\beta} - [p_e + p_k \lambda_2 + \tau_2] e_2 \right\} \right\} d\tau_2 \right\} + \tau_1 \overline{e}_1 + \tilde{\tau}_2 \rho [\tilde{e}_2 - \delta \overline{e}_1] \end{aligned}$$

which is first solved with respect to e_1 :

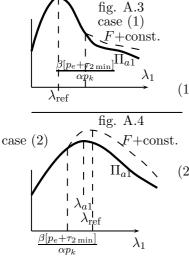
$$\max_{\lambda_1 \ge 0} \left\{ \Pi_{a1}(\lambda_1, \tau_1) := F(\lambda_1; \tau_1 - \rho \delta \tilde{\tau}_2) + \rho \int_{\tau_{\min}}^{\tau_{\max}} f(\tau_2) [\max_{\lambda_2 \ge \lambda_1} F(\lambda_2; \tau_2)] d\tau_2 \right\} + \tau_1 \overline{e}_1 + \tilde{\tau}_2 \rho [\tilde{e}_2 - \delta \overline{e}_1],$$
(A.6)

using the definition of F in (A.3).

Recall that the first term is an increasing function of λ_1 as long as $\lambda_1 \leq \lambda_{ref}$, where

$$\lambda_{\rm ref} := \frac{\beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2]}{\alpha p_k},\tag{A.7}$$

and that the second term contains only non-increasing functions of λ_1 . Moreover, if λ_1 is small enough, so that the condition seen above $\lambda_1 \leq \beta [p_e + \tau_2]/[\alpha p_k]$ holds for all the τ_2 's in the integral, i.e., if $\lambda_1 \leq \beta [p_e + \tau_2 \min]/[\alpha p_k]$, all the Π_2 's are constant functions of λ_1 , and the net result is a function Π_{a1} behaving like the first term F plus a constant.



When $\lambda_1 > \beta[p_e + \tau_{2 \min}]/[\alpha p_k]$, the sum is F plus an actually decreasing function of λ_1 , and is smaller than the continuation of the rule F plus a constant (shown by a dashed line in the figures A.3 and A.4 nearby, whereas the actual Π_{a1} [solid line] is even smaller). Therefore,

- (1) If $\tau_1 \leq \tau_{2\min} + \rho \delta \tilde{\tau}_2$, Π_{a1} reaches its maximum value at $\lambda_1 = \lambda_{\text{ref}} = \beta [p_e + \tau_1 \rho \delta \tilde{\tau}_2] / [\alpha p_k]$, as this latter value is smaller than $\beta [p_e + \tau_{2\min}] / [\alpha p_k]$, which is the place where a more complicated behaviour occurs, but we don't have to care, as the maximum has already been encountered.
- (2) If $\tau_1 > \tau_{2\min} + \rho \delta \tilde{\tau}_2$, the actual maximum of Π_{a1} occurs between $\beta [p_e + \tau_{2\min}]/[\alpha p_k]$ and $\lambda_{ref} = \beta [p_e + \tau_1 \rho \delta \tilde{\tau}_2]/[\alpha p_k]$, as the λ_1 -derivative is still positive at the first bound (*F* is still increasing, and the integral term still contains constant values with respect to λ_1), and is negative at the second bound (the integral now contains actually decreasing functions of λ_1).

We have therefore established parts (i) and (iii) of Proposition 2.a, i.e., that the maximum is reached at $\lambda_{a1} = \lambda_{\text{ref}}$ in case (1); that $\frac{\beta[p_e + \tau_{2\min}]}{\alpha p_k} < \lambda_{a1} < \lambda_{\text{ref}}$ in case (2).

2.a.2. Existence of λ_{a1} : the first order condition.

In order to establish more properties of λ_{a1} when $\tau_1 > \tau_{2\min} + \rho \delta \tilde{\tau}_2$ (case (2) above) we get a closer look at the equation for λ_{a1} from the λ_1 -derivative

$$\frac{\partial \Pi_{a1}(\lambda_1,\tau_1)}{\partial \lambda_1} = \frac{\partial}{\partial \lambda_1} \left\{ F(\lambda_1;\tau_1 - \rho \delta \tilde{\tau}_2) + \rho \int_{\tau_2 \min}^{\tau_2 \max} f(\tau_2) [\max_{\lambda_2 \geqslant \lambda_1} F(\lambda_2;\tau_2)] d\tau_2 \right\} = 0,$$
$$\frac{\partial F(\lambda_1;\tau_1 - \rho \delta \tilde{\tau}_2)}{\partial \lambda_1} + \rho \int_{\tau_2 \min}^{\alpha p_k \lambda_1 / \beta - p_e} f(\tau_2) \frac{\partial F(\lambda_1;\tau_2)}{\partial \lambda_1} d\tau_2 = 0,$$

or

 $1 \left| \begin{array}{c} G \\ - - f \\ - f \\$

as we saw in (A.5) that $\Pi_2(\lambda_1, \tau_2)$ is a constant function with respect to λ_1 while $\lambda_1 \leq \beta [p_e + \tau_2]/[\alpha p_k]$, and leaves therefore no trace in the integral of the λ_1 -derivative, so that we only have to consider the derivative when $\lambda_1 > \beta [p_e + \tau_2]/[\alpha p_k]$, or $\tau_2 < \alpha p_k \lambda_1/\beta - p_e$ in the integral. Remark that the upper bound in the integral is actually larger than the lower bound, i.e., $\alpha p_k \lambda_1/\beta - p_e > \tau_{2\min}$, as $\lambda_1 > \beta [p_e + \tau_{2\min}]/[\alpha p_k]$ (case (2) above).

We now perform the
$$\lambda_1$$
-derivative of $F(\lambda; \tau) = \text{const.} \ \lambda_2^{\beta/[1-\gamma]} [p_e + \tau + p_k \lambda_2]^{-\gamma/[1-\gamma]}$:

$$\beta \lambda_1^{\gamma/1^{-\gamma/1}} [p_e + \tau_1 + p_k \lambda_1 - \rho \delta \tilde{\tau}_2]^{-\gamma/(1-\gamma)} - \gamma p_k \lambda_1^{\beta/(1-\gamma)} [p_e + \tau_1 + p_k \lambda_1 - \rho \delta \tilde{\tau}_2]^{-\gamma/(1-\gamma)} + \rho \int_{\tau_2 \min}^{\alpha p_k \lambda_1/\beta - p_e} f(\tau_2) \{\beta \lambda_1^{\beta/[1-\gamma]} [p_e + \tau_2 + p_k \lambda_1]^{-\gamma/[1-\gamma]} - \gamma p_k \lambda_1^{\beta/[1-\gamma]} [p_e + \tau_2 + p_k \lambda_1]^{-\gamma/[1-\gamma]} \} d\tau_2 = 0$$
The second little and be consistent to

The condition on λ_1 amounts to

$$\begin{aligned} [\beta[p_e + \tau_1 - \rho\delta\tilde{\tau}_2] - \alpha p_k\lambda_1][p_e + \tau_1 + p_k\lambda_1 - \rho\delta\tilde{\tau}_2]^{-1/[1-\gamma]} \\ + \rho \int_{\tau_2\min}^{\alpha p_k\lambda_1/\beta - p_e} f(\tau_2)[\beta[p_e + \tau_2] - \alpha p_k\lambda_1][p_e + \tau_2 + p_k\lambda_1]^{-1/[1-\gamma]}d\tau_2 = 0. \end{aligned}$$

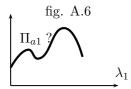
Remark that the first term is positive, while the second term is negative when $\beta[p_e + \tau_{2\min}]/[\alpha p_k] < \lambda_1 < \lambda_{\text{ref}} = \beta[p_e + \tau_1 - \rho \delta \tilde{\tau}_2]/[\alpha p_k]$. Managing to keep only positive terms:

$$G(\lambda_1, \tau_1) = 1,$$

$$\frac{\beta[p_e+\tau_{2\min}]}{\alpha p_k} \frac{\lambda_{\text{ref}}}{G(\lambda_1,\tau_1)} = \rho \int_{\tau_{2\min}}^{\alpha p_k \lambda_1/\beta - p_e} f(\tau_2) \frac{\alpha p_k \lambda_1 - \beta[p_e+\tau_2]}{\beta[p_e+\tau_1 - \rho\delta\tilde{\tau}_2] - \alpha p_k \lambda_1} \frac{[p_e+\tau_1 + p_k \lambda_1 - \rho\delta\tilde{\tau}_2]^{1/[1-\gamma]}}{[p_e+\tau_2 + p_k \lambda_1]^{1/[1-\gamma]}} d\tau_2.$$
(A.8)

 $G(\lambda_1, \tau_1) = 0$ when $\lambda_1 = \beta [p_e + \tau_{2\min}]/[\alpha p_k]$, and $G(\lambda_1, \tau_1) \to +\infty$ when $\lambda_1 \to \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2]/[\alpha p_k]$, so there must be at least one intermediate value of λ_1 where G = 1 (see fig. A.5). This is another way to ensure parts (i) and (iii) of Proposition 2.a, i.e., the existence of a solution $\beta [p_e + \tau_{2\min}]/[\alpha p_k] < \lambda_1 < \lambda_{\text{ref}} = \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2]/[\alpha p_k].$

2.a.3. Unicity of the solution of the first order condition.



When λ_1 maximizes (7), the equation G = 1 is certainly solved. The converse is not clear, as solutions of G = 1, i.e., of $\partial \Pi_{a1} / \partial \lambda_1 = 0$, may be any kind of stationary point for (7) (see fig. A.6). The situation is non ambiguous when G is a monotonous function of λ_1 , as G = 1 can then have at most one root. We will look for a condition ensuring that $G(\lambda_1, \tau_1)$ is an increasing function of λ_1 . Thus, we have to consider

$$\frac{\partial G(\lambda_1, \tau_1)}{\partial \lambda_1} = \rho \int_{\tau_2 \min}^{\alpha p_k \lambda_1 / \beta - p_e} f(\tau_2) [\tau_1 - \rho \delta \tilde{\tau}_2 - \tau_2] \frac{p_k}{1 - \gamma}$$

$$\frac{\alpha \beta [1 - \gamma]}{[\alpha p_k \lambda_1 - \beta [p_e + \tau_2]] [\beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] - \alpha p_k \lambda_1]} - \frac{1}{[p_e + \tau_1 + p_k \lambda_1 - \rho \delta \tilde{\tau}_2] [p_e + \tau_2 + p_k \lambda_1]} \Big]$$

$$\frac{\alpha p_k \lambda_1 - \beta [p_e + \tau_2]}{\beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] - \alpha p_k \lambda_1} \frac{[p_e + \tau_1 + p_k \lambda_1 - \rho \delta \tilde{\tau}_2]^{1/[1 - \gamma]}}{[p_e + \tau_2 + p_k \lambda_1]^{1/[1 - \gamma]}} d\tau_2$$

 $\tau_1 - \rho \delta \tilde{\tau}_2 - \tau_2$ is positive in the whole integration interval, as $\tau_2 < \alpha p_k \lambda_1 / \beta - p_e$, so $\lambda_1 > 0$

 $\beta[p_e + \tau_2]/[\alpha p_k], \text{ and we saw that } \lambda_1 < \beta[p_e + \tau_1 - \rho \delta \tilde{\tau}_2]/[\alpha p_k].$ We also see that the ratio $\frac{\alpha p_k \lambda_1 - \beta[p_e + \tau_2]}{\beta[p_e + \tau_1 - \rho \delta \tilde{\tau}_2] - \alpha p_k \lambda_1}$ is positive for τ_2 in the (open) integration interval.

To be sure that G is increasing, it remains to show that the big intermediate factor is positive too, or that

$$\alpha\beta[1-\gamma] > \frac{\alpha p_k \lambda_1 - \beta[p_e + \tau_2]}{p_e + \tau_2 + p_k \lambda_1} \frac{\beta[p_e + \tau_1 - \rho\delta\tilde{\tau}_2] - \alpha p_k \lambda_1}{p_e + \tau_1 + p_k \lambda_1 - \rho\delta\tilde{\tau}_2}$$

on the whole τ_2 -interval, i.e., at $\tau_2 = \tau_{2\min}$, as the right-hand side is a decreasing function of τ_2 . And as we do not know more about λ_1 that $\beta [p_e + \tau_{2\min}]/[\alpha p_k] < \lambda_1 < \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2]/[\alpha p_k]$, we take the first fraction of the right hand side at its largest possible value, which is reached at $\lambda_1 = \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] / [\alpha p_k], \text{ and so for the second fraction, but this one at } \lambda_1 = \beta [p_e + \tau_2 \min] / [\alpha p_k].$

The sufficient condition of unicity is then

$$\alpha\beta[1-\gamma] > \frac{\alpha^2\beta^2[\tau_1 - \rho\delta\tilde{\tau}_2 - \tau_{2\min}]^2}{[\alpha[p_e + \tau_{2\min}] + \beta[p_e + \tau_1 - \rho\delta\tilde{\tau}_2]][\beta[p_e + \tau_{2\min}] + \alpha[p_e + \tau_1 - \rho\delta\tilde{\tau}_2]]}$$

0.2

which depends only on known values. The condition can be reworked as

$$1 - \gamma > \frac{\alpha\beta x^2}{[\gamma + \beta x][\gamma + \alpha x]},$$

where $x = \frac{\tau_1 - \rho\delta\tilde{\tau}_2 - \tau_2\min}{p_e + \tau_2\min}$, or $\gamma < \frac{1}{1 + \frac{\alpha\beta}{\gamma^2}\frac{x^2}{1 + x}}$, or, as $\alpha\beta$ is always smaller than $\gamma^2/4$, a

stronger sufficient condition

$$\gamma < \frac{1+x}{1+x+x^2/4}.$$
(A.9)

For a given x (or, equivalently, τ_1), returns to scale must be sufficiently decreasing (γ sufficiently low), and conversely. So that part (ii) of Proposition 2.a is established.

2.b. Proof of Proposition 2.b (behaviour of e, k, and y with respect to τ_1).

We now discuss e, k, and y, which are positive powers of λ_1 divided by powers of $p_k \lambda_1 + p_e + \tau_1 - \rho \delta \tilde{\tau}_2$: constant $\lambda_1^a / [p_k \lambda_1 + p_e + \tau_1 - \rho \delta \tilde{\tau}_2]^b$, where the coefficients a and b are

$$\begin{array}{cccc} & a & k \\ e^{1-\gamma} & \beta & 1 \\ k^{1-\gamma} & 1-\alpha & 1 \\ y^{1-\gamma} & \beta & \gamma \end{array}$$

Remark that a < b.

Things are simple when $\tau_1 \leq \tau_{2\min} + \rho \delta \tilde{\tau}_2$, as exact formulas are available: $\lambda_1 = \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] / [\alpha p_k]$, so that

$$\frac{\lambda_1^a}{\left[p_k\lambda_1 + p_e + \tau_1 - \rho\delta\tilde{\tau}_2\right]^b} = \text{ constant } \left[p_e + \tau_1 - \rho\delta\tilde{\tau}_2\right]^{a-b}$$

is obviously a decreasing function of τ_1 .

When $\tau_1 > \tau_{2\min} + \rho \delta \tilde{\tau}_2$, things are less explicit.

We discuss first variations of λ_1 with respect to τ_1 . As G must keep a fixed value G = 1, $dG = [\partial G/\partial \lambda_1] d\lambda_1 + [\partial G/\partial \tau_1] d\tau_1 = 0$, so, $d\lambda_1/d\tau_1 = -[\partial G/\partial \tau_1]/[\partial G/\partial \lambda_1]$. As seen above, G being an increasing function of λ_1 , $\partial G/\partial \lambda_1 > 0$ (see fig. A.5).

For a fixed λ_1 , $G(\lambda_1, \tau_1)$ will increase or decrease according to the sign of $\partial G/\partial \tau_1$ which, from (A.8), is the sign of

$$\frac{\partial}{\partial \tau_1} \frac{[p_e + \tau_1 + p_k \lambda_1 - \rho \delta \tilde{\tau}_2]^{1/[1-\gamma]}}{\beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] - \alpha p_k \lambda_1} = \gamma [\beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] - [1-\beta] p_k \lambda_1] \frac{[p_e + \tau_1 + p_k \lambda_1 - \rho \delta \tilde{\tau}_2]^{\gamma/[1-\gamma]}}{[\beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] - \alpha p_k \lambda_1]^2} = \gamma [\beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] - [1-\beta] p_k \lambda_1] \frac{[p_e + \tau_1 + p_k \lambda_1 - \rho \delta \tilde{\tau}_2]^{\gamma/[1-\gamma]}}{[\beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] - \alpha p_k \lambda_1]^2}$$

So, we see that G decreases when τ_1 increases for a fixed λ_1 , as long as $\lambda_1 \ge \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] / [p_k [1 - \beta]]$.

Therefore, λ_1 will increase with τ_1 as long as $\lambda_1 \ge \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] / [p_k [1 - \beta]]$, and decreases if λ_1 is lower than this bound.

Let us derivate $\lambda^a / [p_k \lambda + p_e + \tau_1 - \rho \delta \tilde{\tau}_2]^b$ with respect to τ_1 . The sign of the derivative is the sign of

$$[[a-b]p_k\lambda_1 + a[p_e + \tau_1 - \rho\delta\tilde{\tau}_2]]\frac{d\lambda_1}{d\tau_1} - b\lambda_1.$$

For $e, a = \beta$ and b = 1, the sign of $d\lambda_1/d\tau_1$ is exactly the sign of $[1 - \beta]p_k\lambda_1 - \beta[p_e + \tau_1 - \rho\delta\tilde{\tau}_2]$, as seen above. So, e is a decreasing function of τ_1 , and this settles the first part of Proposition 2.b.

For k and y, it will be shown here that these functions of τ_1 are smaller than their values at $\lambda_{\text{ref}} = \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] / [\alpha p_k]$, i.e., that

$$\frac{[\lambda_{a1}]^a}{[p_k\lambda_{a1} + p_e + \tau_1 - \rho\delta\tilde{\tau}_2]^b} < \frac{\lambda_{\text{ref}}^a}{[p_k\lambda_{\text{ref}} + p_e + \tau_1 - \rho\delta\tilde{\tau}_2]^b},$$

knowing that $\lambda_{a1} < \lambda_{\text{ref}}$. Indeed, $\lambda^a / [p_k \lambda_1 + p_e + \tau_1 - \rho \delta \tilde{\tau}_2]^b$ is an increasing function of λ_1 up to $\lambda_1 = \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] / [\alpha p_k]$ if

$$a[p_k\lambda_1 + p_e + \tau_1 - \rho\delta\tilde{\tau}_2] - bp_k\lambda_1 = [[a-b]\beta/\alpha + a][p_e + \tau_1 - \rho\delta\tilde{\tau}_2] \ge 0,$$

or $a\gamma \ge b\beta$, which holds for k and y. Now, the upper bound $\lambda_{\text{ref}}^a/[p_k\lambda_{\text{ref}}+p_e+\tau_1-\rho\delta\tilde{\tau}_2]^b = \text{const.}$ $[p_e+\tau_1-\rho\delta\tilde{\tau}_2]^{a-b}$ is a decreasing function of τ_1 , so that the remaining part of Proposition 2.b is established.

3. The relative baseline case.

We rewrite (4) with a relative baseline:

$$\begin{split} \max_{e_1 \ge 0, \lambda_1 \ge 0} \left\{ e_1^{\gamma} \lambda_1^{\beta} - [p_e + p_k \lambda_1] e_1 + \tau_1 \left[\frac{\overline{e}_1}{\overline{y}_1} - \frac{e_1}{y_1} \right] \right. \\ \left. + \rho \int_{\tau_{\min}}^{\tau_{\max}} f(\tau_2) \max_{\substack{e_2 \ge 0\\\lambda_2 \ge \lambda_1}} \left\{ e_2^{\gamma} \lambda_2^{\beta} - [p_e + p_k \lambda_2] e_2 + \tau_2 [\tilde{e}_2 - \delta[\overline{e}_1 - e_1] - e_2] \right\} d\tau_2 \right\}. \end{split}$$

Emphasizing the dependence in e_1 , using (1) and (2):

$$\max_{\lambda_1 \ge 0} \left\{ \max_{e_1 \ge 0} \left\{ \left[1 + \tau_1 \frac{\overline{e}_1}{\overline{y}_1} \right] e_1^{\gamma} \lambda_1^{\beta} - [p_e + p_k \lambda_1 + \tau_1 - \rho \delta \tilde{\tau}_2] e_1 \right\} \right. \\ \left. + \rho \int_{\tau_{\min}}^{\tau_{\max}} f(\tau_2) \max_{\lambda_2 \ge \lambda_1} \left\{ \max_{e_2 \ge 0} \left\{ e_2^{\gamma} \lambda_2^{\beta} - [p_e + p_k \lambda_2 + \tau_2] e_2 \right\} \right\} d\tau_2 \right\} + \tilde{\tau}_2 \rho [\tilde{e}_2 - \delta \overline{e}_1]$$

which is first solved with respect to e_1 :

$$\max_{\lambda_1 \ge 0} \left\{ \Pi_{r1}(\lambda_1, \tau_1) := \left[1 + \tau_1 \frac{\overline{e}_1}{\overline{y}_1} \right]^{1/[1-\gamma]} F(\lambda_1, \tau_1 - \rho \delta \tilde{\tau}_2) \\
+ \rho \int_{\tau_{\min}}^{\tau_{\max}} f(\tau_2) \max_{\lambda_2 \ge \lambda_1} F(\lambda_2, \tau_2) \, d\tau_2 \right\} + \tilde{\tau}_2 [\tilde{e}_2 - \delta \overline{e}_1] \quad (A.10)$$

where, as before, F is given by (A.3).

Optimal emissions of period 1 with respect to λ_1 and τ_1 are given by

$$e_{r1} = \left[\lambda_1^{\beta} \frac{[1 + \tau_1 \overline{e}_1 / \overline{y}_1]\gamma}{p_e + \tau_1 + p_k \lambda_1 - \rho \delta \tilde{\tau}_2}\right]^{1/[1-\gamma]}$$

Note that \overline{e}_1 and \overline{y}_1 are the solutions of the elementary problem when $\tau_1 = 0$: $\lambda = \beta [p_e - \rho \delta \tilde{\tau}_2]/[\alpha p_k]$, $e^{1-\gamma} = \gamma \lambda^{\beta}/[p_e + p_k \lambda - \rho \delta \tilde{\tau}_2] = \beta \lambda^{\beta-1}/p_k$, or

$$\overline{e}_1 = \alpha^{[1-\beta]/[1-\gamma]} \beta^{\beta/[1-\gamma]} [p_e - \rho \delta \tilde{\tau}_2]^{[\beta-1]/[1-\gamma]} p_k^{-\beta/[1-\gamma]},$$
(A.11)

$$e/y = e^{1-\gamma}\lambda^{-\beta} = \beta/[p_k\lambda], \text{ or}$$

 $\frac{\overline{e}_1}{\overline{y}_1} = \frac{\alpha}{p_e - \rho\delta\tilde{\tau}_2}.$ (A.12)

3.a. Proof of proposition 3.a (existence, unicity and characterization of λ_{r1}).

As seen before, the integral does not depend on λ_1 if $\tau_1 \leq \tau_{2\min} + \rho \delta \tilde{\tau}_2$, and the maximum is reached at $\lambda_1 = \lambda_{\text{ref}} = \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] / [\alpha p_k]$, as in the absolute case.

or

$$G(\lambda_1, \tau_1) = \left[1 + \tau_1 \frac{\overline{e}_1}{\overline{y}_1}\right]^{1/[1-\gamma]}$$

with the same G as above, in (A.8). As before, $G(\lambda_1, \tau_1) = 0$ when $\lambda_1 = \beta [p_e + \tau_{2\min}]/[\alpha p_k]$, and $G(\lambda_1, \tau_1) \to +\infty$ when $\lambda_1 \to \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2]/[\alpha p_k]$, so there must be at least one intermediate value of λ_1 where the equation for λ_1 is satisfied: $\beta [p_e + \tau_{2\min}]/[\alpha p_k] < \lambda_1 < \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2]/[\alpha p_k]$ (see fig. A.7).

As the right-hand side is larger than 1, and if G is an increasing function of λ_1 (remember the sufficient condition (A.9) $\gamma \leq [1+x]/[1/x+x^2/4]$, which is still valid here), we have $\beta[p_e + \tau_{2\min}]/[\alpha p_k] < \lambda_{a1} < \lambda_{r1} < \beta[p_e + \tau_1 - \rho \delta \tilde{\tau}_2]/[\alpha p_k]$, and the whole Proposition 3.a is established.

3.b. Discussion of Result 3.b (behaviour of e, k, and y with respect to τ_1).

 $e_1, k_1 = \lambda_1 e_1$, and $y_1 = e_1^{\gamma} \lambda_1^{\beta}$ now contain a power of $1 + \tau_1 \frac{\overline{e_1}}{\overline{y_1}}$ too, so e_1, k_1 , and y_1 write like constant $\lambda_1^a [p_k \lambda_1 + p_e + \tau_1 - \rho \delta \tilde{\tau}_2]^{-b} \left[1 + \tau_1 \frac{\overline{e_1}}{\overline{y_1}} \right]^c$, where the coefficients a, b, c are

$$egin{array}{cccccc} & a & b & c \ e^{1-\gamma} & eta & 1 & 1 \ k^{1-\gamma} & 1-lpha & 1 & 1 \ y^{1-\gamma} & eta & \gamma & \gamma \end{array}$$

We look at the variation with respect to τ_1 assuming $\lambda_1 = \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] / [\alpha p_k]$, which is exact when $\tau_1 \leq \tau_{2\min} + \rho \delta \tilde{\tau}_2$, and found numerically to be very close for larger τ_1 's.

Then, the above expression for e_1 , k_1 , y_1 becomes: constant $[p_e + \tau_1 - \rho \delta \tilde{\tau}_2]^{a-b} [1 + \tau_1 \overline{e}_1 / \overline{y}_1]^c$, = constant $[p_e + \tau_1 - \rho \delta \tilde{\tau}_2]^{a-b} [p_e + \alpha \tau_1 - \rho \delta \tilde{\tau}_2]^c$.

The τ_1 -derivative at $\tau_1 = 0$ has the sign of $a - b + \alpha c = \gamma - 1, 0$, and $\alpha[\gamma - 1]$ for e_1, k_1 , and y_1 . Whereas for large τ_1 , the behaviour is τ_1^{a-b+c} always increasing in the long run $(\beta, 1 - \alpha, \text{ and } \beta)$, which are indications of a U-shape behaviour of e_1, k_1 , and y_1 with respect to τ_1 . This U-shape behaviour is indeed confirmed numerically.

Finally, e_1 and y_1 , computed assuming $\lambda_{r1} = \lambda_{ref}$, are minimal when $[a - b + \alpha c][p_e - \rho \delta \tilde{\tau}_2] + \alpha [a - b + c]\tau_1 = 0$, so argmin $y_1 = \alpha$ argmin e_1 .

This closes the discussion of result 3.b.

3.c. Proof of Proposition 3.c (comparison of y and k under both baselines).

We already saw that k_1 and y_1 are increasing functions of λ_1 , so $k_{r1} \ge k_{a1}$ and $y_{r1} \ge y_{a1}$ hold, as $\lambda_{a1} \le \lambda_{r1} \le \lambda_{ref} = \beta [p_e + \tau_1 - \rho \delta \tilde{\tau}_2] / [\alpha p_k]$, and as there is a further factor $1 + \tau_1 \overline{e}_1 / \overline{y}_1 > 1$ in the relative case.

Note that for e_1 , the expected result is not established, but the factor $1 + \tau_1 \overline{e}_1 / \overline{y}_1$ present in the formula for e_{1r} makes the inequality $e_{r1} \ge e_{a1}$ valid in most cases. Indeed, the inequality is verified numerically.

3.d. Proof of Proposition 3.d (comparison of Π_1 under both baselines).

 Π_{r1}^* versus Π_{a1}^* : We show that $\Pi_{r1}^* \leq \Pi_{a1}^*$ while $\frac{\tau_1}{p_e - \rho \delta \tilde{\tau}_2}$ is smaller than the smallest positive root of

$$X - \frac{1 - \gamma}{\alpha} \left[[1 + \alpha X]^{1/[1 - \gamma]} - 1 \right] [1 + X]^{-\alpha/[1 - \gamma]} = 0.$$
 (A.13)

From (A.6), (A.10), and (A.3), we may write for a given τ_1 : $\Pi_{a1}(\lambda_1) = H_a(\lambda_1) + K(\lambda_1)$, where $H_a(\lambda_1) = F(\lambda_1; \tau_1 - \rho \delta \tilde{\tau}_2) + \tau_1 \overline{e}_1$;

and $\Pi_{r1}(\lambda_1) = H_r(\lambda_1) + K(\lambda_1)$, where $H_r(\lambda_1) = \left[1 + \tau_1 \frac{\overline{e_1}}{\overline{y_1}}\right]^{1/[1-\gamma]} F(\lambda_1; \tau_1 - \rho \delta \tilde{\tau}_2)$; and where $K(\lambda_1)$ is the integral term $K(\lambda_1) = \rho \int_{\tau_{\min}}^{\tau_{\max}} f(\tau_2) \max_{\lambda_2 \ge \lambda_1} F(\lambda_2, \tau_2) d\tau_2 + \tilde{\tau}_2 \rho [\tilde{e}_2 - \tau_2]$ $\delta \overline{e}_1$]. Then,

$$\begin{split} \Pi_{a1}(\lambda_{a1}) &- \Pi_{r1}(\lambda_{r1}) - \left[\Pi_{a1}(\lambda_{ref}) - \Pi_{r1}(\lambda_{ref})\right] \\ &= -\int_{\lambda_{a1}}^{\lambda_{ref}} \Pi_{a1}'(\lambda_{1}) d\lambda_{1} + \int_{\lambda_{r1}}^{\lambda_{ref}} \Pi_{r1}'(\lambda_{1}) d\lambda_{1} \\ &= -\int_{\lambda_{a1}}^{\lambda_{r1}} \Pi_{a1}'(\lambda_{1}) d\lambda_{1} - \int_{\lambda_{r1}}^{\lambda_{ref}} \Pi_{a1}'(\lambda_{1}) d\lambda_{1} + \int_{\lambda_{r1}}^{\lambda_{ref}} \Pi_{r1}'(\lambda_{1}) d\lambda_{1} \\ &\geq -\int_{\lambda_{r1}}^{\lambda_{ref}} [H_{a}'(\lambda_{1}) + K'(\lambda_{1})] d\lambda_{1} + \int_{\lambda_{r1}}^{\lambda_{ref}} [H_{r}'(\lambda_{1}) + K'(\lambda_{1})] d\lambda_{1} = \int_{\lambda_{r1}}^{\lambda_{ref}} [H_{r}'(\lambda_{1}) - H_{a}'(\lambda_{1})] d\lambda_{1} \\ &\geq 0, \end{split}$$

as Π'_{a1} is negative between λ_{a1} and λ_{r1} , $\Pi_{a1} = H_a + K$ being a decreasing function of λ_1 when $\lambda_1 > \lambda_{a1}$ (see fig. A.4), so that $\int_{\lambda_{a1}}^{\lambda_{r1}} \Pi'_{a1}(\lambda_1) d\lambda_1 \leq 0.$

Finally, H'_r and H'_a are positive as H_r and H_a , both of the form const. F + const. (see section 1), reach their maximum at $\lambda_1 = \lambda_{\text{ref}}$, and $H'_r = [1 + \tau_1 \overline{e}_1 / \overline{y}_1]^{1/[1-\gamma]} H'_a > H'_a$. So.

$$\Pi_{a1}(\lambda_{a1}) - \Pi_{r1}(\lambda_{r1}) \ge \Pi_{a1}(\lambda_{ref}) - \Pi_{r1}(\lambda_{ref}).$$

We even have an equality while $\tau_1 \leq \tau_{2\min} + \rho \delta \tilde{\tau}_2$, as $\lambda_{a1} = \lambda_{r1} = \lambda_{ref}$ in this case.

We compute now the right-hand side in order to estimate the τ_1 -interval where this lower bound is positive. It is

$$\begin{aligned} \Pi_{a1}(\lambda_{\rm ref}) - \Pi_{r1}(\lambda_{\rm ref}) &= \tau_1 \overline{e}_1 - \left[\left[1 + \tau_1 \frac{\overline{e}_1}{\overline{y}_1} \right]^{1/[1-\gamma]} - 1 \right] \gamma' \lambda_1^{\beta/[1-\gamma]} [p_e + \tau_1 + p_k \lambda_1 - \rho \delta \tilde{\tau}_2]^{-\gamma/[1-\gamma]} \\ &= \tau_1 \alpha^{[1-\beta]/[1-\gamma]} \beta^{\beta/[1-\gamma]} [p_e - \rho \delta \tilde{\tau}_2]^{[\beta-1]/[1-\gamma]} p_k^{-\beta/[1-\gamma]} \\ &- \left[\left[1 + \frac{\alpha \tau_1}{p_e - \rho \delta \tilde{\tau}_2} \right]^{1/[1-\gamma]} - 1 \right] \gamma' \lambda_{\rm ref}^{\beta/[1-\gamma]} [p_e + \tau_1 + p_k \lambda_{\rm ref} - \rho \delta \tilde{\tau}_2]^{-\gamma/[1-\gamma]} \\ &= {\rm const.} \left\{ \frac{\tau_1}{p_e - \rho \delta \tilde{\tau}_2} - \frac{1-\gamma}{\alpha} \left[\left[1 + \frac{\alpha \tau_1}{p_e - \rho \delta \tilde{\tau}_2} \right]^{1/[1-\gamma]} - 1 \right] \left[1 + \frac{\tau_1}{p_e - \rho \delta \tilde{\tau}_2} \right]^{-\alpha/[1-\gamma]} \right\} \\ &= {\rm const.} \left\{ X - \frac{1-\gamma}{\alpha} \left[[1 + \alpha X]^{1/[1-\gamma]} - 1 \right] [1 + X]^{-\alpha/[1-\gamma]} \right\}, \qquad (A.14) \end{aligned}$$

from (A.11), (A.12), and $\overline{\lambda} = \frac{\beta [p_e - \rho \delta \tau_2]}{\alpha p_k}$, and where $X = \frac{\tau_1}{p_e - \rho \delta \tilde{\tau}_2}$. The lower bound $\Pi_{a1}(\lambda_{\text{ref}}) - \Pi_{r1}(\lambda_{\text{ref}})$ is positive for small positive τ_1 , as the Taylor expansion of

(A.14) with respect to X about X = 0 starts with const. $\frac{\alpha[2-\gamma]}{2[1-\gamma]}X^2 > 0$, but the bound behaves like $-X^{[1-\alpha]/[1-\gamma]} < 0$ for large X, so there is a finite lowest positive root, however comfortably large if γ is not too close to 1. An empirical formula for a valid interval is $0 < X < 6\sqrt{1-\gamma}$.