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1. Preliminaries: the second period maximization problem.

We see that the full problem (7) contains several times the same subproblem: we first have to
maximize with respect to a variable e ≥ 0 an expression of the form Aeγ −Be+C, with A,B > 0,
and γ < 1.

The derivative γAeγ−1 − B has exactly one positive zero:

e =

[

γA

B

]1/[1−γ]

, (A.1)

which leads to Be = γAeγ , so that the maximum is

[1 − γ]Aeγ + C = γ′A1/[1−γ]B−γ/[1−γ] + C, where γ′ = [1 − γ]γγ/[1−γ]. (A.2)

We apply now this to Π2.

λ2

fig A.1
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αpk

λ1

fig. A.2
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β[pe+τ2]
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In Π2(λ1, τ2), for a given τ2, A and B depend on λ2: A = λβ
2 , B = pe+τ2+pkλ2,

and so

Π2(λ1, τ2) = max
λ2≥λ1

F (λ2; τ2) + C,

where F (λ2; τ2) := max
e2>0

eγ
2λ2 − [pe + τ2 + pkλ2]e2

= γ′λ
β/[1−γ]
2 [pe + τ2 + pkλ2]

−γ/[1−γ], (A.3)

F (λ2; τ2) increases between λ2 = 0 and λ2 = β[pe + τ2]/[αpk], and decreases
afterwards (see fig. A.1). Therefore, when λ1 6 β[pe + τ2]/[αpk], the maximum
over λ2 > λ1 of F (λ2; τ2) is the maximal value of F , i.e.,

F

(

β[pe + τ2]

αpk
; τ2

)

= γ′′[pe + τ2]
−α/[1−γ]p

−β/[1−γ]
k , (A.4)

where γ′′ = γ′ββ/[1−γ]αα/[1−γ]/γγ/[1−γ] = [1 − γ]ββ/[1−γ]αα/[1−γ];
whereas, when λ1 > β[pe + τ2]/[αpk], the maximum over λ2 > λ1 of F (λ2; τ2) is merely F (λ1; τ2).
Thus:

Π2(λ1, τ2) = γ′λ
β/[1−γ]
1 [pe + τ2 + pkλ1]

−γ/[1−γ] + C, if λ1 ≥ β[pe + τ2]/[αpk],

= γ′′[pe + τ2]
−α/[1−γ]p

−β/[1−γ]
k + C if λ1 ≤ β[pe + τ2]/[αpk],

(A.5)

Remark that Π2(λ1, τ2) is a non increasing function of λ1 (see figure A.2).
This also holds for the integral term of (7), as this term is a positive linear combination of

functions Π2(λ1, τ2) for an interval of values of τ2.
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2. The absolute baseline case.

2.a. Proof of proposition 2.a (existence, unicity and characterization of λa1).

2.a.1. The equation for λa1: the maximum condition.

We now come to the full problem (4), with an absolute baseline:

max
e1≥0,λ1≥0







eγ
1λβ

1 − [pe + pkλ1]e1 + τ1[e1 − e1]

+ρ

∫ τmax

τmin

f(τ2) max
e2≥0

λ2≥λ1

{

eγ
2λβ

2 − [pe + pkλ2]e2 + τ2[ẽ2 − δ[e1 − e1] − e2]
}

dτ2







.

Emphasizing the dependence in e1, using (2):

max
λ1≥0

{

max
e1≥0

{

eγ
1λβ

1 − [pe + pkλ1 + τ1 − ρδτ̃2]e1

}

+ρ

∫ τmax

τmin

f(τ2) max
λ2≥λ1

{

max
e2≥0

{

eγ
2λβ

2 − [pe + pkλ2 + τ2]e2

}

}

dτ2

}

+ τ1e1 + τ̃2ρ[ẽ2 − δe1]

which is first solved with respect to e1:

max
λ1≥0

{

Πa1(λ1, τ1) := F (λ1; τ1 − ρδτ̃2) + ρ

∫ τmax

τmin

f(τ2)[ max
λ2>λ1

F (λ2; τ2)]dτ2

}

+ τ1e1 + τ̃2ρ[ẽ2 − δe1],

(A.6)
using the definition of F in (A.3).

Recall that the first term is an increasing function of λ1 as long as λ1 6 λref, where

λref :=
β[pe + τ1 − ρδτ̃2]

αpk
, (A.7)

and that the second term contains only non-increasing functions of λ1.
Moreover, if λ1 is small enough, so that the condition seen above λ1 6 β[pe + τ2]/[αpk] holds for
all the τ2’s in the integral, i.e., if λ1 6 β[pe + τ2 min]/[αpk], all the Π2’s are constant functions of
λ1, and the net result is a function Πa1 behaving like the first term F plus a constant.

λ1

fig. A.3
case (1)
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λref

β[pe+τ2 min]
αpk

fig. A.4

case (2)

λ1
β[pe+τ2 min]

αpk

λref

Πa1

F+const.

λa1

When λ1 > β[pe + τ2 min]/[αpk], the sum is F plus an actually
decreasing function of λ1, and is smaller than the continuation of
the rule F plus a constant (shown by a dashed line in the figures A.3
and A.4 nearby, whereas the actual Πa1 [solid line] is even smaller).
Therefore,

(1) If τ1 ≤ τ2min + ρδτ̃2, Πa1 reaches its maximum value at λ1 = λref =
β[pe + τ1 − ρδτ̃2]/[αpk], as this latter value is smaller than β[pe +
τ2 min]/[αpk], which is the place where a more complicated behaviour
occurs, but we don’t have to care, as the maximum has already been
encountered.

(2) If τ1 > τ2 min + ρδτ̃2, the actual maximum of Πa1 occurs between
β[pe+τ2 min]/[αpk] and λref = β[pe+τ1−ρδτ̃2]/[αpk], as the λ1−derivative
is still positive at the first bound (F is still increasing, and the in-
tegral term still contains constant values with respect to λ1), and
is negative at the second bound (the integral now contains actually
decreasing functions of λ1).
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We have therefore established parts (i) and (iii) of Proposition 2.a, i.e., that the maximum is

reached at λa1 = λref in case (1); that
β[pe + τ2min]

αpk
< λa1 < λref in case (2).

2.a.2. Existence of λa1: the first order condition.

In order to establish more properties of λa1 when τ1 > τ2min + ρδτ̃2 (case (2) above) we get a
closer look at the equation for λa1 from the λ1−derivative

∂Πa1(λ1, τ1)

∂λ1
=

∂

∂λ1

{

F (λ1; τ1 − ρδτ̃2) + ρ

∫ τ2 max

τ2 min

f(τ2)[ max
λ2>λ1

F (λ2; τ2)]dτ2

}

= 0,

or
∂F (λ1; τ1 − ρδτ̃2)

∂λ1
+ ρ

∫ αpkλ1/β−pe

τ2min

f(τ2)
∂F (λ1; τ2)

∂λ1
dτ2 = 0,

as we saw in (A.5) that Π2(λ1, τ2) is a constant function with respect to λ1 while λ1 6 β[pe +
τ2]/[αpk], and leaves therefore no trace in the integral of the λ1−derivative, so that we only have to
consider the derivative when λ1 > β[pe + τ2]/[αpk], or τ2 < αpkλ1/β − pe in the integral. Remark
that the upper bound in the integral is actually larger than the lower bound, i.e., αpkλ1/β −pe >
τ2min, as λ1 > β[pe + τ2 min]/[αpk] (case (2) above).

We now perform the λ1−derivative of F (λ; τ ) = const. λ
β/[1−γ]
2 [pe + τ + pkλ2]

−γ/[1−γ]:

βλ
β/[1−γ]−1
1 [pe + τ1 + pkλ1 − ρδτ̃2]

−γ/[1−γ] − γpkλ
β/[1−γ]
1 [pe + τ1 + pkλ1 − ρδτ̃2]

−γ/[1−γ]−1

+ρ

∫ αpkλ1/β−pe

τ2 min

f(τ2){βλ
β/[1−γ]−1
1 [pe+τ2+pkλ1]

−γ/[1−γ]−γpkλ
β/[1−γ]
1 [pe+τ2+pkλ1]

−γ/[1−γ]−1}dτ2 = 0,

The condition on λ1 amounts to

[β[pe + τ1 − ρδτ̃2] − αpkλ1][pe + τ1 + pkλ1 − ρδτ̃2]
−1/[1−γ]

+ ρ

∫ αpkλ1/β−pe

τ2 min

f(τ2)[β[pe + τ2] − αpkλ1][pe + τ2 + pkλ1]
−1/[1−γ]dτ2 = 0.

λ1

fig. A.5

G

β[pe+τ2 min]
αpk

λref

1

Remark that the first term is positive, while the second term is negative
when β[pe + τ2min]/[αpk] < λ1 < λref = β[pe + τ1 − ρδτ̃2]/[αpk].

Managing to keep only positive terms:

G(λ1, τ1) = 1,

where

G(λ1, τ1) = ρ

∫ αpkλ1/β−pe

τ2 min

f(τ2)
αpkλ1 − β[pe + τ2]

β[pe + τ1 − ρδτ̃2] − αpkλ1

[pe + τ1 + pkλ1 − ρδτ̃2]
1/[1−γ]

[pe + τ2 + pkλ1]
1/[1−γ]

dτ2.

(A.8)
G(λ1, τ1) = 0 when λ1 = β[pe + τ2 min]/[αpk], and G(λ1, τ1) → +∞ when λ1 → β[pe + τ1 −

ρδτ̃2]/[αpk], so there must be at least one intermediate value of λ1 where G = 1 (see fig. A.5).
This is another way to ensure parts (i) and (iii) of Proposition 2.a, i.e., the existence of a solution
β[pe + τ2 min]/[αpk] < λ1 < λref = β[pe + τ1 − ρδτ̃2]/[αpk].
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2.a.3. Unicity of the solution of the first order condition.

fig. A.6

λ1

Πa1 ?

When λ1 maximizes (7), the equation G = 1 is certainly solved. The
converse is not clear, as solutions of G = 1, i.e., of ∂Πa1/∂λ1 = 0, may be
any kind of stationary point for (7) (see fig. A.6). The situation is non
ambiguous when G is a monotonous function of λ1, as G = 1 can then have
at most one root. We will look for a condition ensuring that G(λ1, τ1) is
an increasing function of λ1. Thus, we have to consider

∂G(λ1, τ1)

∂λ1
= ρ

∫ αpkλ1/β−pe

τ2 min

f(τ2)[τ1 − ρδτ̃2 − τ2]
pk

1 − γ

[

αβ[1 − γ]

[αpkλ1 − β[pe + τ2]][β[pe + τ1 − ρδτ̃2] − αpkλ1]
− 1

[pe + τ1 + pkλ1 − ρδτ̃2][pe + τ2 + pkλ1]

]

αpkλ1 − β[pe + τ2]

β[pe + τ1 − ρδτ̃2] − αpkλ1

[pe + τ1 + pkλ1 − ρδτ̃2]
1/[1−γ]

[pe + τ2 + pkλ1]
1/[1−γ]

dτ2

τ1 − ρδτ̃2 − τ2 is positive in the whole integration interval, as τ2 < αpkλ1/β − pe, so λ1 >
β[pe + τ2]/[αpk], and we saw that λ1 < β[pe + τ1 − ρδτ̃2]/[αpk].

We also see that the ratio
αpkλ1 − β[pe + τ2]

β[pe + τ1 − ρδτ̃2] − αpkλ1
is positive for τ2 in the (open) integration

interval.
To be sure that G is increasing, it remains to show that the big intermediate factor is positive

too, or that

αβ[1 − γ] >
αpkλ1 − β[pe + τ2]

pe + τ2 + pkλ1

β[pe + τ1 − ρδτ̃2] − αpkλ1

pe + τ1 + pkλ1 − ρδτ̃2

on the whole τ2−interval, i.e., at τ2 = τ2min, as the right-hand side is a decreasing function of τ2.
And as we do not know more about λ1 that β[pe + τ2min]/[αpk] < λ1 < β[pe + τ1 − ρδτ̃2]/[αpk],
we take the first fraction of the right hand side at its largest possible value, which is reached at
λ1 = β[pe+τ1−ρδτ̃2]/[αpk], and so for the second fraction, but this one at λ1 = β[pe+τ2 min]/[αpk].

The sufficient condition of unicity is then

αβ[1 − γ] >
α2β2[τ1 − ρδτ̃2 − τ2 min]

2

[α[pe + τ2min] + β[pe + τ1 − ρδτ̃2]][β[pe + τ2min] + α[pe + τ1 − ρδτ̃2]]

which depends only on known values. The condition can be reworked as

1 − γ >
αβx2

[γ + βx][γ + αx]
,

where x = τ1 − ρδτ̃2 − τ2 min
pe + τ2 min

, or γ <
1

1 +
αβ

γ2

x2

1 + x

, or, as αβ is always smaller than γ2/4, a

stronger sufficient condition

γ <
1 + x

1 + x + x2/4
. (A.9)

For a given x (or, equivalently, τ1), returns to scale must be sufficiently decreasing (γ sufficiently
low), and conversely. So that part (ii) of Proposition 2.a is established.
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2.b. Proof of Proposition 2.b (behaviour of e, k, and y with respect to τ1).

We now discuss e, k, and y, which are positive powers of λ1 divided by powers of pkλ1 + pe +
τ1 − ρδτ̃2: constant λa

1/[pkλ1 + pe + τ1 − ρδτ̃2]
b, where the coefficients a and b are

a b
e1−γ β 1
k1−γ 1 − α 1
y1−γ β γ

Remark that a < b.
Things are simple when τ1 ≤ τ2 min + ρδτ̃2, as exact formulas are available:
λ1 = β[pe + τ1 − ρδτ̃2]/[αpk], so that

λa
1

[pkλ1 + pe + τ1 − ρδτ̃2]
b

= constant [pe + τ1 − ρδτ̃2]
a−b

is obviously a decreasing function of τ1.

When τ1 > τ2min + ρδτ̃2, things are less explicit.
We discuss first variations of λ1 with respect to τ1. As G must keep a fixed value G = 1,

dG = [∂G/∂λ1]dλ1 + [∂G/∂τ1]dτ1 = 0, so, dλ1/dτ1 = −[∂G/∂τ1]/[∂G/∂λ1]. As seen above, G
being an increasing function of λ1, ∂G/∂λ1 > 0 (see fig. A.5).

For a fixed λ1, G(λ1, τ1) will increase or decrease according to the sign of ∂G/∂τ1 which, from
(A.8), is the sign of

∂

∂τ1

[pe + τ1 + pkλ1 − ρδτ̃2]
1/[1−γ]

β[pe + τ1 − ρδτ̃2] − αpkλ1
= γ[β[pe+τ1−ρδτ̃2]−[1−β]pkλ1]

[pe + τ1 + pkλ1 − ρδτ̃2]
γ/[1−γ]

[β[pe + τ1 − ρδτ̃2] − αpkλ1]
2

.

So, we see that G decreases when τ1 increases for a fixed λ1, as long as λ1 ≥ β[pe+τ1−ρδτ̃2]/[pk[1−
β]].

Therefore, λ1 will increase with τ1 as long as λ1 ≥ β[pe + τ1 − ρδτ̃2]/[pk[1 − β]], and decreases
if λ1 is lower than this bound.

Let us derivate λa/[pkλ + pe + τ1 − ρδτ̃2]
b with respect to τ1. The sign of the derivative is the

sign of

[[a − b]pkλ1 + a[pe + τ1 − ρδτ̃2]]
dλ1

dτ1
− bλ1.

For e, a = β and b = 1, the sign of dλ1/dτ1 is exactly the sign of [1−β]pkλ1 −β[pe + τ1 −ρδτ̃2],
as seen above. So, e is a decreasing function of τ1, and this settles the first part of Proposition
2.b.

For k and y, it will be shown here that these functions of τ1 are smaller than their values at
λref = β[pe + τ1 − ρδτ̃2]/[αpk], i.e., that

[λa1]
a

[pkλa1 + pe + τ1 − ρδτ̃2]
b

<
λa

ref

[pkλref + pe + τ1 − ρδτ̃2]
b
,

knowing that λa1 < λref. Indeed, λa/[pkλ1 + pe + τ1 − ρδτ̃2]
b is an increasing function of λ1 up to

λ1 = β[pe + τ1 − ρδτ̃2]/[αpk] if

a[pkλ1 + pe + τ1 − ρδτ̃2] − bpkλ1 = [[a − b]β/α + a][pe + τ1 − ρδτ̃2] ≥ 0,

or aγ ≥ bβ, which holds for k and y. Now, the upper bound λa
ref/[pkλref +pe +τ1−ρδτ̃2]

b = const.

[pe + τ1 − ρδτ̃2]
a−b is a decreasing function of τ1, so that the remaining part of Proposition 2.b is

established.
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3. The relative baseline case.

We rewrite (4) with a relative baseline:

max
e1≥0,λ1≥0







eγ
1λβ

1 − [pe + pkλ1]e1 + τ1

[

e1

y1

− e1

y1

]

+ρ

∫ τmax

τmin

f(τ2) max
e2≥0

λ2≥λ1

{

eγ
2λβ

2 − [pe + pkλ2]e2 + τ2[ẽ2 − δ[e1 − e1] − e2]
}

dτ2







.

Emphasizing the dependence in e1, using (1) and (2):

max
λ1≥0

{

max
e1≥0

{[

1 + τ1
e1

y1

]

eγ
1λβ

1 − [pe + pkλ1 + τ1 − ρδτ̃2]e1

}

+ρ

∫ τmax

τmin

f(τ2) max
λ2≥λ1

{

max
e2≥0

{

eγ
2λβ

2 − [pe + pkλ2 + τ2]e2

}

}

dτ2

}

+ τ̃2ρ[ẽ2 − δe1]

which is first solved with respect to e1:

max
λ1≥0

{

Πr1(λ1, τ1) :=

[

1 + τ1
e1

y1

]1/[1−γ]

F (λ1, τ1 − ρδτ̃2)

+ρ

∫ τmax

τmin

f(τ2) max
λ2≥λ1

F (λ2, τ2) dτ2

}

+ τ̃2[ẽ2 − δe1] (A.10)

where, as before, F is given by (A.3).
Optimal emissions of period 1 with respect to λ1 and τ1 are given by

er1 =

[

λβ
1

[1 + τ1e1/y1]γ

pe + τ1 + pkλ1 − ρδτ̃2

]1/[1−γ]

Note that e1 and y1 are the solutions of the elementary problem when τ1 = 0: λ = β[pe −
ρδτ̃2]/[αpk], e1−γ = γλβ/[pe + pkλ − ρδτ̃2] = βλβ−1/pk, or

e1 = α[1−β]/[1−γ]ββ/[1−γ][pe − ρδτ̃2]
[β−1]/[1−γ]p

−β/[1−γ]
k , (A.11)

e/y = e1−γλ−β = β/[pkλ], or
e1

y1

=
α

pe − ρδτ̃2
. (A.12)

3.a. Proof of proposition 3.a (existence, unicity and characterization of λr1).

As seen before, the integral does not depend on λ1 if τ1 ≤ τ2min + ρδτ̃2, and the maximum is
reached at λ1 = λref = β[pe + τ1 − ρδτ̃2]/[αpk], as in the absolute case.

Fig. A.7

λ1

G

λref
λa1

λr1

1

[

1 + τ1
e1

y1

]1/[1−γ]

When τ1 > τ2 min + ρδτ̃2, we consider the λ1−derivative which is

[

1 + τ1
e1

y1

]1/[1−γ]

[β[pe + τ1 − ρδτ̃2] − αpkλ1][pe + τ1 + pkλ1 − ρδτ̃2]
−1/[1−γ]

+ ρ

∫ αpkλ1/β−pe

τ2 min

f(τ2)[β[pe + τ2] − αpkλ1][pe + τ2 + pkλ1]
−1/[1−γ]dτ2 = 0,
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or

G(λ1, τ1) =

[

1 + τ1
e1

y1

]1/[1−γ]

,

with the same G as above, in (A.8). As before, G(λ1, τ1) = 0 when λ1 = β[pe + τ2 min]/[αpk], and
G(λ1, τ1) → +∞ when λ1 → β[pe + τ1 − ρδτ̃2]/[αpk], so there must be at least one intermediate
value of λ1 where the equation for λ1 is satisfied: β[pe+τ2 min]/[αpk] < λ1 < β[pe+τ1−ρδτ̃2]/[αpk]
(see fig. A.7).

As the right-hand side is larger than 1, and if G is an increasing function of λ1 (remember
the sufficient condition (A.9) γ ≤ [1 + x]/[1/x + x2/4], which is still valid here), we have β[pe +
τ2min]/[αpk] < λa1 < λr1 < β[pe + τ1 − ρδτ̃2]/[αpk], and the whole Proposition 3.a is established.

3.b. Discussion of Result 3.b (behaviour of e, k, and y with respect to τ1).

e1, k1 = λ1e1, and y1 = eγ
1λβ

1 now contain a power of 1 + τ1
e1
y1

too, so e1, k1, and y1 write like

constant λa
1[pkλ1 + pe + τ1 − ρδτ̃2]

−b
[

1 + τ1
e1
y1

]c
, where the coeficients a, b, c are

a b c
e1−γ β 1 1
k1−γ 1 − α 1 1
y1−γ β γ γ

We look at the variation with respect to τ1 assuming λ1 = β[pe + τ1 − ρδτ̃2]/[αpk], which is
exact when τ1 ≤ τ2min + ρδτ̃2, and found numerically to be very close for larger τ1’s.

Then, the above expresion for e1, k1, y1 becomes: constant [pe + τ1 − ρδτ̃2]
a−b[1 + τ1e1/y1]

c,
= constant [pe + τ1 − ρδτ̃2]

a−b[pe + ατ1 − ρδτ̃2]
c.

The τ1−derivative at τ1 = 0 has the sign of a− b+αc = γ−1, 0, and α[γ −1] for e1, k1, and y1.

Whereas for large τ1, the behaviour is τa−b+c
1 always increasing in the long run (β, 1−α, and β),

which are indications of a U−shape behaviour of e1, k1, and y1 with respect to τ1. This U−shape
behaviour is indeed confirmed numerically.

Finally, e1 and y1, computed assuming λr1 = λref, are minimal when [a − b + αc][pe − ρδτ̃2] +
α[a − b + c]τ1 = 0, so argmin y1 = α argmin e1.

This closes the discussion of result 3.b.

3.c. Proof of Proposition 3.c (comparison of y and k under both baselines).

We already saw that k1 and y1 are increasing functions of λ1, so kr1 ≥ ka1 and yr1 ≥ ya1 hold,
as λa1 ≤ λr1 ≤ λref = β[pe + τ1 − ρδτ̃2]/[αpk], and as there is a further factor 1 + τ1e1/y1 > 1 in
the relative case.
Note that for e1, the expected result is not established, but the factor 1 + τ1e1/y1 present in
the formula for e1r makes the inequality er1 ≥ ea1 valid in most cases. Indeed, the inequality is
verified numerically.

3.d. Proof of Proposition 3.d (comparison of Π1 under both baselines).

Π∗
r1 versus Π∗

a1:

We show that Π∗
r1 ≤ Π∗

a1 while
τ1

pe − ρδτ̃2
is smaller than the smallest positive root of

X − 1 − γ

α

[

[1 + αX ]1/[1−γ] − 1
]

[1 + X ]−α/[1−γ] = 0. (A.13)

From (A.6), (A.10), and (A.3), we may write for a given τ1:
Πa1(λ1) = Ha(λ1) + K(λ1), where Ha(λ1) = F (λ1; τ1 − ρδτ̃2) + τ1e1;
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and Πr1(λ1) = Hr(λ1) + K(λ1), where Hr(λ1) =
[

1 + τ1
e1
y1

]1/[1−γ]
F (λ1; τ1 − ρδτ̃2) ;

and where K(λ1) is the integral term K(λ1) = ρ
∫ τmax

τmin
f(τ2) maxλ2≥λ1

F (λ2, τ2)dτ2 + τ̃2ρ[ẽ2 −
δe1].

Then,

Πa1(λa1) − Πr1(λr1) − [Πa1(λref) − Πr1(λref)]

= −
∫ λref

λa1

Π′
a1(λ1)dλ1 +

∫ λref

λr1

Π′
r1(λ1)dλ1

= −
∫ λr1

λa1

Π′
a1(λ1)dλ1 −

∫ λref

λr1

Π′
a1(λ1)dλ1 +

∫ λref

λr1

Π′
r1(λ1)dλ1

> −
∫ λref

λr1

[H ′
a(λ1) + K ′(λ1)]dλ1 +

∫ λref

λr1

[H ′
r(λ1) + K ′(λ1)]dλ1 =

∫ λref

λr1

[H ′
r(λ1) − H ′

a(λ1)]dλ1

> 0,

as Π′
a1 is negative between λa1 and λr1, Πa1 = Ha + K being a decreasing function of λ1 when

λ1 > λa1 (see fig. A.4), so that

∫ λr1

λa1

Π′
a1(λ1)dλ1 6 0.

Finally, H ′
r and H ′

a are positive as Hr and Ha, both of the form const. F+ const. (see section

1), reach their maximum at λ1 = λref, and H ′
r = [1 + τ1e1/y1]

1/[1−γ]H ′
a > H ′

a.
So,

Πa1(λa1) − Πr1(λr1) ≥ Πa1(λref) − Πr1(λref).

We even have an equality while τ1 6 τ2min + ρδτ̃2, as λa1 = λr1 = λref in this case.
We compute now the right-hand side in order to estimate the τ1−interval where this lower

bound is positive. It is

Πa1(λref) − Πr1(λref) = τ1e1 −
[

[

1 + τ1
e1

y1

]1/[1−γ]

− 1

]

γ′λ
β/[1−γ]
1 [pe + τ1 + pkλ1 − ρδτ̃2]

−γ/[1−γ]

= τ1α
[1−β]/[1−γ]ββ/[1−γ][pe − ρδτ̃2]

[β−1]/[1−γ]p
−β/[1−γ]
k

−
[

[

1 +
ατ1

pe − ρδτ̃2

]1/[1−γ]

− 1

]

γ′λ
β/[1−γ]
ref [pe + τ1 + pkλref − ρδτ̃2]

−γ/[1−γ]

= const.

{

τ1

pe − ρδτ̃2
− 1 − γ

α

[

[

1 +
ατ1

pe − ρδτ̃2

]1/[1−γ]

− 1

]

[

1 +
τ1

pe − ρδτ̃2

]−α/[1−γ]
}

= const.

{

X − 1 − γ

α

[

[1 + αX ]1/[1−γ] − 1
]

[1 + X ]−α/[1−γ]

}

, (A.14)

from (A.11), (A.12), and λ =
β[pe − ρδτ̃2]

αpk
, and where X =

τ1

pe − ρδτ̃2
.

The lower bound Πa1(λref)−Πr1(λref) is positive for small positive τ1, as the Taylor expansion of

(A.14) with respect to X about X = 0 starts with const.
α[2 − γ]

2[1 − γ]
X2 > 0, but the bound behaves

like −X [1−α]/[1−γ] < 0 for large X , so there is a finite lowest positive root, however comfortably
large if γ is not too close to 1. An empirical formula for a valid interval is 0 < X < 6

√
1 − γ.
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