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Abstract. We firstly establish the fourth order difference equation satisfied by the Laguerre-Hahn polynomials
orthogonal on special non-uniform lattices in general case, secondly give it explicitly for the cases of polynomials
r-associated to the classical polynomials orthogonal on linear, g-linear and g-nonlinear (Askey-Wilson) lattices,
and thirdly give it “semi-explicitly” for the class one Laguerre-Hahn polynomials orthogonal on linear lattice.
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1. Introduction

Laguerre-Hahn orthogonal polynomials are generally presented as orthogonal polynomials
for which the corresponding Stieltes function satisfies some Riccati equation. The polyno-
mials r-associated to classical classes are then perceived as their simplest non-trivial (to
mean here, non-semi-classical) realizations. Laguerre-Hahn orthogonal polynomials are on
the other side generally expected to satisfy a fourth order differential (difference) equation.

Continuous Laguerre-Hahn orthogonal polynomials were introduced in [7]. The cor-
responding fourth order differential equation has been established in [11]. The approach
adopted there has been extended as well to the discrete and g-Laguerre-Hahn orthogonal
polynomials in [4, 5] respectively. In [11] as in [4, 5], the equations were written explicitly
for the cases of polynomials r-associated to the corresponding classical situations, that
is Jacobi polynomials and specializations in [11], Hahn, big g-Jacobi polynomials and
specializations in [4, 5] respectively.

Laguerre-Hahn orthogonal on special non-uniform lattices (snul) polynomials were in-
troduced in [8]. Essential difference-recurrence relations were also established in [8]. In
this work, starting at those difference-recurrence relations, we establish the corresponding
fourth order difference equation. This will be done in the third section. In the last section,
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we firstly give explicitly that equation for the cases of polynomials r-associated to all clas-
sical classes that is, classical polynomials orthogonal on linear lattices (result equivalent
for example to that from [4]), classical polynomials orthogonal on g-linear lattices (result
equivalent for example to that from [5]) and Askey-Wilson class, and secondly give it
“semi-explicitly” (i.e. up to an explicit system of non-linear difference equations satisfied
by the coefficients in the three-term recurrence relations) for the class one Laguerre-Hahn
polynomials orthogonal on linear lattice. In the following section, we recall the concepts
needed here.

2. The Laguerre-Hahn orthogonal on snul polynomials

Searching for two functions 7, (x) and n;(x) such that the difference operator

(Df)(x) = Fm(x)) = f(mnx)) 0
n2(x) — n1(x)

leaves a polynomial of degree n — 1 when applied to a polynomial of degree n, one finds
that 7, (x) and n; (x) must be two roots y of some quadratic equation [8, 10]:

F(x,y):= coy2 + 2c1xy + cox? + 2¢3y 4+ 2c4x + ¢5 = 0.

Searching next for a parametrization x (s), y(s) such that n,(x(s)) = y(s + 1), n1(x(s)) =
y(s), one is led to [8, 10]:

x(s) = C1q" + C2q + Cs,

y(s) = 54x<s — %) + Cs, (2

the so-called special non-uniform lattice (snul).
Let P,(y(s)) be a sequence of orthogonal on snul lattice polynomials with the orthogo-

nality measure de, and
de(7)
S(y) = / ,
S

upp.€ y—T

the corresponding Stieltjes function. The polynomials P, (y(s)) are called (class ) Laguerre-
Hahn orthogonal on snul polynomials (LHP) iff the Stieltjes function S(y(s)) satisfies the
Riccati equation [8]:

Sy(s+ 1) = SH(s)

Yo+ 1) = 3(s)
S 1 S
= BG(s)SO(s + D)Sk(s) + Cx(s) S 2E );+ OS) LDy 3

A(x(s))

where A, B, C and D are polynomials of degrees <1 + 2,1 + 2,1 + 1 and 1, respectively.
Nowadays, most of the known orthogonal polynomials belong to this class. The subclass of
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semi-classical orthogonal polynomials [8, 10], corresponds to the case B = 0. The classical
polynomials appear then as the semi-classical of class 7 = 0.
Next, let P,ff’z,l(y(s)), m € Z* be the m-associated polynomials of P,(y(s)), i.e.

a1 POy + (by — () P, 4+ a, P, =0,
an+an+l + (bn - y(s))PVl + An P”*l =0 (4)

(n,m = 0,1,2,...) and let S,,(y(s)) be the corresponding Stieltjes functions. It can be
proved that (see [8]) S, (y(s)) also satisfies a Riccati equation similar to (3):

Sm(y(s + 1)) - Sm(y(s)) _
ot D —ye) B (x(5))Sm (y(s + 1) S (¥(s))

1
O, (e(s)) Y+ );JFS’"(y(S))H)m(x(s)), m=0,1,2,... (5

Ay (x(5))

where A,,, B,,, C,, and D,,,(Ag = A, By =B, Cy =C, Dy = D) are as well polynomials
of degree < 1 + 2,1 + 2,1 + | and 1, respectively. In other words, the class of LHP is
invariant under the operation of passage to associated polynomials (see another approach
in [12]).

Let us write (5) in the homographic form:

(5555 + “52) S () + D (x(5))

Su(y(s + 1)) = 2420 . ©)
e AL GBI B, (x(5) S ((5))
The coefficients of this transformation iterate as follows [8]:

Ami1(x(s)) n Cinr1(x(5))

yis+1) —y(s) 2
L AG(s)  Cax(s) ~ _
STCESIp—r > (5 + 1) = bp) Dy (x(9));
Ani1(x(8))  Cuyr(x(s))

Y+ 1) —y(s) 2
A (x(s) Cin(x(5)) )
=36+ —y0) + 2 + (¥($) = b)) D (x(5));

< A () C,iH(X(S))) B < AZ (x(s)) B C,i(x(S)))
(s + 1) = y(s))? 4 (s + 1) = y(s))? 4
= a,iDmDmfl - a,ZnJr]Derle (7)

with

B (x(s)) := aiDm_l(x(s)), m:=0,1,2,.... (8)
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Consider next the following notations (letting from now on m = n):

An(x(s)) Cn(X(S))>

’

an(x(s)) = _(

EDE) 2
O AGG) | Gk _ B,x(s))
Pl = S S y ) = T
84(x(5)) = oDy (x(s5)), ©)

W, being the moments of de.
Using the relations (7), (8) and (4), it has been established in [8] that the LHP satisfy the
following difference-recurrence relations:

B (x(5)) Pu(y(5)) + anDy (x(5)) Pr—1(y(s))

= Bo(x(N Pu(y(s + D) + () P (y(s + 1)), (10)
o, (x(s) P (y(s + 1)) + a, Dy (x(s)) P—1 (y(s + 1))

= (X () P, (Y(9) + 0 () P (3(5)), (11)
Bt XN P, (v(s + 1) + w1 Dy (x() PV (y(s + 1))

= Bo(x () P2 (y(5)) + 80(x () P (¥ (5)). (12)
W1 (XN P () + dus1 Do (x () PO (3 ()

= ap(x () P, (s + 1)) + 8o (x() Pu(y(s + 1)). (13)

Remark 2.1. Considering the relations in (7) and (8) form :=r,r + 1, ..., one finds that

the difference-recurrence relations for the polynomials P,,(r_),, r-associated to P,, are found
from the preceding ones by shifting the initial value for n, from n := 0 to n := r. One then

obtains in place of (10)—(13):
Bu(x () P (9(5)) + an Dy (x () P, (9(5))

=B x()PD (s + 1) + 7 ()P (s + 1), (14)
o ()P, (y(s + 1) +a, Dy (x() P, (y(s + 1)

=0, (x()) P, () + 1 (2 () P, (3(5)). (15)
Buit ()P (s + 1) + apiy Du(x () L (s + 1)

= BN P (v(5) + 8, (x () P, (y(s)), (16)
1 (X () Py (9(5)) + 1 D (x()) Py (v(5))

= o, (x() P (y(s + D) + 8, (x () P (v(s + D). (17)

Remark 2.2. In the semi-classical situation, yy(x) = 0 and it was proven in [10] that the
class of semi-classical on snul lattices polynomials is fully characterized by Egs. (10) and
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(11). A similar question remains open for the LHP. Morever, in the semi-classical case, the
second order difference equation is obtained directly by a combination of Egs. (10) and
(11). The result reads [8]:

Dy(x(s — 1) Bo(x(s)) Pu(y(s + 1))
— [Da(x(s — 1) Bu(x(5)) — Dy (x(8))etn (x (s — 1)1 Pu(y(s))
= Dyp(x(s)ao(x(s — D) Pr(y(s — 1)) = 0. (18)

In the classical case, D, (x(s)) is a constant (in x) and (18) becomes:
Bo(x () Pr(y(s + 1)) — [Bu(x () — atu(x(s — INIP, (¥ (s))
—ap(x(s — 1) P, (y(s — 1)) =0. (19)
3. The fourth order difference equation

Let us then combine together Egs. (10) and (11) on the one side and Eqgs. (12) and (13), on
the other side. As a result, we obtain:

on (X () Pu(y(s +2)) + £a(x()) Py (y(s + 1)) + va(x(s)) Pu(y(5))

+1,x ()P (s 4+ 2) + 2, (x () P (v(s)) = 0, (20)
xS Py (s +2)) + 80 (x(5)) Py (y(5)) + oy (x () P, (v (s +2))
+0,x ()P (s + D)+ w, (x () P (v(s)) =0, 1)
where
Bo(x(s + 1)  apx(s) Yo(x(s 4 1))
0 (x(8)) = ey ) = — S () = e
k) B+ 1) _ 8o(x(s))
Zp(x(s)) 1= D,,(x(s))’f”(x(s)) = D GG 1) +1)),gn(x(5)) = Do)
s+ 1) Bo(x(s))
In©) == Gy Y =D G
D (s + D)ay (x(5)) — Dy (x () Ba(x(s + 1))
La(x(s)) = 5
L (x(s + 1)D, (x(s))
oy (s 1 DrEED 1 (5 + 1) =Dy (s + D)Bra (x(6)). )

Dy (x(s + 1))Du(x(s))

Solving Egs. (20) and (21) relatively to P\”, (y(s +2)), P, (y(s + 1)) and P”, (y(s)),
as linear combinations of P,(y(s + 3)), P (y(s 4+ 2)), P.(y(s + 1)) and P,(y(s))), with
coefficients depending on x(s) and n and taking into account the fact that for example
P (1)1 (y(s + 1)) is a shift of P( ~,(y(s)), we obtain the expected fourth order difference
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equation:

[ Ap(x(s + D)Np(x(s + 1))
Gp(x(s + DN (x(s + 1)) — Fy(x(s + )R, (x(s + 1))
+[ Ap(x(s)) R, (x(5))
Gr(x ()N, (x(s)) — Fp(x(s)) R, (x(s))
B,(x(s + )N, (x(s + 1)) — F(x(s + D) K, (x(s + 1))
G,(x(s + DN, (x(s + 1)) — F(x(s + DR, (x(s + 1))
[Rn(X(S))Bn(X(S)) — K, (x(5))G,(x(s))
Gp(x($))N, (x(5)) — Fr(x(s)) Ry (x(s))
Cox(s +1D)N(x(s + 1)) — Fy(x(s + 1)L, (x(s + 1))
G,(x(s + DN, (x(s + 1)) — F(x(s + D)R,(x(s + 1))
[Cn(x(s))Rn(x(S)) — L,(x(s))G,(x(s5))
Gr(x($))Nu(x(s)) — Fu(x(s)) R, (x(s))
E,(x(s + DN, (x(s + 1)) — F,(x(s + 1)M,(x(s + 1))
G,(x(s + 1N, (x(s + 1)) — Fp(x(s + 1)) R, (x(s + 1))
[Rn(X(S))En (x(s)) — M, (x(5))G,(x(s))
Gr(x($)N,(x(s)) — Fp(x(s)) R, (x(s))

} Py(y(s +2))

} Py(y(s + 1)

} Py (y(s))

i| Pn(y(s - 1))

] Py(y(x(s =2)) =0, (23)

where (having in mind (22) and (9)):

L (x(s — 2)) (M (x (s — 1))op(x(s — 1)) — fr(x(s — 1))t (x(s — 1))
Up (x(s — D)ty (x(s — 1)) '
t(x(s — 2))h, (x(s — 1))Eu(x(s — 1))
U (x(s — It (x(s — 1)) '

An(x(s)) =

B, (x(s)) := 0, (x(s — 2)) +

Cu(x(s)) 1= Lulx(s — 2))
n tn(x(s —2))(hy(x(s — D)y (x(s — 1)) = 1,(x(s — 1)) gn(x(s — 1))
Un(x(s — It (x(s — 1)) ’
Ep(x(s)) = v (x(s — 2)); Gu(x(s)) = za(x(s —2));
~ fax (s = 21 (x (s — 2)) — hy(x(s — 2))oy (x(s —2)) |

Knlxo:= (s = 2))

h, —2)¢&n -2
Ly(x(s) 1=~ IO, (19 = 005 - 2
M Ce(ey) e PO = 2080 = 2) = (5 = D) (a5 = 2)

Iy (X(S - 2))
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1 (x(s = 2wy (x(s — 2)) — 2, (x(s — 2))h,(x(s —2))
th(x(s —2)) '

t(x(s —2))(hy(x(s — 1)z, (x(s — 1) — wp(x(s — 1))t (x(s — 1))
v (x(s — Dt (x(s — 1)) '

R, (x(s)) :=

Fu(x(s)) :=
(24)

Remark 3.1. Considering Remark 2.1, we clearly note that the fourth order difference
equation for P,,(r,), is obtained from the preceding one satisfied by P,, by shifting the initial
value for n, from n := 0 to n := r. More precisely, one needs to replace in (22) g, Bo, Vo
and § respectively by «,, B;, v, and §,.

Remark 3.2.  'We have already in this section used the solutions of the system of equations
(20) and (21), solved relatively to the P,l(i)l , as functions of the P,. Adding a solution of that

system now relatively to the P, as functions of the nyl)l, we obtain the following inverse
difference relations:

PP ((5)) 1= @, (x ()P, (y())]; (25)
P.(y() = W, (x (D[P ()]s (26)
where
D, (x ()6, (y(s)]

. [ Ap(x(s +2))N,(x(s +2))
T LE(x(s +2)Ry(x(s +2)) — Gu(x(s 4+ 2)) N, (x(s +2))

]Gn(y(s +3))

[ Bu(x(s +2)Na (x(s +2)) = Ky(@(s +2) Fux(s + 2))}
. Ou(y(s +2))
| Fu G+ 2)R, (x5 +2)) — Gu(x(s + )N, (x5 +2))

[ Calx(s +2)N, (s +2)) = Fu(x(s +2)) Lo (x(s + 2))}
v 0,(y(s + 1))
| Fu((s + 2)Ry (x5 +2)) = Gy (x(s + 2)) N,y (x5 +2))

n _in(x(s +2)Na(x(s +2)) — Fo(x(s +2)) M, (x(s + 2))}%(})@)’ 27
| Fa(x(s +2) Ry (x (s +2)) — Gu(x(s +2))Nu(x(s +2))

and

W, (x () [0 (y(5))]
_ [ A (s + 2)) N, (x(s +2))

Fo(x(s 4 2)Ry(x(s +2)) — G (x(s + 2)) N,y (x(s +2))

[ B, (x(s +2))N, (x(s +2)) — K, (x(s +2) Fp(x (s 4 2))

| F(x(s +2)Ry(x(s +2)) — Gp(x(s +2) N, (x (s +2))

[ Gnrs + DIN (s +2) = Fa (G5 + D) L (s +2)) } 0,005+ 1)
LF,(x(s +2)R,(x(s +2)) — G, (x(s +2))N,,(x(s + 2))

[ E,(x(s 4 2))N, (x(s +2)) — E,(x(s 4+ 2)) M, (x(s +2))
LBy (x(s + 2D Ry (x(s 4 2)) — G (x(s + 2) N,y (x (s +2))

]Gn(y(s +3))

. }en(y(s +2))

}BII(y(S)), (28)
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where the hat has the meaning that X is obtained from X by replacing o, &n,s Vs tus Zus fus
8ns Ny Uny Wy BY By, Vs Way [y 8ns tns Zus Ons $ns Vi Fespectively (thanks to the symmetric
form of the system (20)—(21)).

Shifting in ®, and W, the initial value for n from n := 0 to n := r, it becomes
clear that the obtained operators play the role of “raising” and “lowering” operators within
the sequence of (normalized) polynomials satisfying the following three-term recurrence
relation:

PO (y(s) = (v(s) — b PV (v(9)) — a2, PUEY (v(s)). (29)

4. Explicit examples

4.1. The fourth order difference equation for the polynomials r-associated
to the classical polynomials

We now go further and calculate explicitly the coefficients in the fourth order difference
equation satisfied by the polynomials P,fr_), r-associated to the classical orthogonal polyno-
mials (up to the Askey-Wilson polynomials). Let us remark first that the problem consists
essentially in solving the system (7) (in the classical case i.e. 1 = 0, By = 0). The coeffi-
cients in the fourth order difference equation are then obtained directly using (22) and (24)
and considering Remark 3.1.

In the following, the cases of linear, g-linear and Askey-Wilson lattices are treated in
detail separately. For simplicity, canonical forms of lattices are choosen.

4.1.1. The linear case: y(s) := s, x(s) = s. Considering (9), one notes that ¢, (x(s))
and B,(x(s)) need to be searched under the forms (recall that we are searching classical
solutions, so 1 = 0 in (3)):

o, (x(s)) = —(ag +als + aﬁsz),

(30)
Bn(x(s)) := ,3,? + ﬁ,:s + aisz.

Those expressions satisfy the system (7) iff (here and in all that follows, x;, y;, i :=0, 1, ...,
are arbitrary constants):

ap(x(s)) := {[fon + x0y1 — )cle]s2 + [—2x22n2 4+ (—x2y1 + 3x2x)n

+ y1x; — xlz]s + [x§n3 + (x2y1 — 2xzx1)n2

+ (x2x0 — y1x1 4+ X7 4 X2y0)n — xox1 + xoy1 ]} /{=2x2n — yi +x1}; - 3D
Ba(X(s)) := {[2x§n + x0y1 — )cle]s2 + [2x%n2 + (—x2x1 + 3x0y1)n

+ 31 — yixi]s + [x37° + (—x2x1 + 2x01)n”

+ (x2x0 + X230 — yix1 + ¥1)n + yoyi — yox1]}/{2xon + 31 —x1}; (32
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Dn(x(s)) :=—2xn — X3 — y1 + x13 (33)
by = {(2x§ — XpX| — xgyl)nz + (2x22 4+ xoy1 — 3x0x1 + x]2 — ylz)n
+ (%21 — X231 4 X0y1 — Xox1 4+ X7 — Yoy1 + yox1 — yix1)}/{4x3n?
+(4x§ + 4xry; — 4x2x1)n + 2xy1 — 2x0x1 + yl2 — 2y1x; + x12}; (34)
al:= (—x§n6 + (3x§x1 — 3x3y1)n5 + (—3x§y12 —2x3x0 — 2X3 Y0
+ 7x§y1x1 — 3x22x12)n4 + (—5xzx12y1 + 5x2y12x1 + 4x§yox1 — )czyl3
— 4x§x0y1 + 4x§xox1 + x2x13 — 4x§y0y1)n3 + (—x%yé — x%xg
+ X3 y1 4+ 2x3yoxo — 3x2x0Y7 + ¥ x1 — 2x20¥7 + SxX2y0y1X1
+ Sxox0y1%1 — 2x2x0x12 — 3x2y0x12 — 2)(12y12)n2 + (—2x2y0x0x]
— 27130 + 2Y1X1X0 + YIX1Y0 — X[ Y1X0 + X2XX1 — X2 Vg Y1
+x2y§x1 — xzxgyl + x13y0 ~+ 2x2y0X0y1 — yfxo)n}/{ 16)(5‘114
+ (32x§y1 - 32x§x1)n3 + (—48x§y1x1 + 24x3x? — 4x5 + 24x§ylz)n2
+ (—24x2y12x1 + 24x2x12y1 — 8xzx13 — 4x§y1 + 4x§x1 + 8xzy13)n
+ (—x3y7 + ¥ — dyix + 6x7y] + 25y — dxiyr — xx7 +x7) ) (35)

4.1.2. The g-linear case: y(s) := ¢°,x(s) := ¢°*. Now, «, (x(s)) and B, (x(s)) need to be
searched under the forms:

an (x(s)) 1= — (g™ + o) + a2q’),

Bu(x(s)) := a2q™ + B} + B2q°.

(36)

Those expressions satisfy the system (7) iff :

an(x(s)) := {[v29%20”" — x3]¢° + [(y1x29 + qy2x1)g™" + (—y1X2q
—x2x1)q"] + [x0qq™" y2 — x0x2q"1q "} [lax2q" — > 20} (37)
Ba(x(s) == {[¥34°q™" — y20%20"]a* + [(31y24" + gy2x1)¢™" + (—y1x%29
—gy2xD)q"] + [x0y2q09™" — x0x21q " } /{a*y24™" — qx2}; (38)
Dy(x(8)) := x2q g " — 24" (39)
by := {—(@’y2x1 + y20 v + (@ y2x1 + @7 y2x1 + ¢ yix2

+y120209)g™" — (11229 + 2x19)¢" } /1% yig™

+(=y2qx2 — X23207)g™" + 13 }; (40)
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aZ = {—y3q*x0q™ + (vaq*x0 + y3¢*yix1 + ¢’ y3x0x2)g®"

- (y§q4y1x1 + x2q3y1y2x1 + q3y§x12 - q3y§xoxz + q4y12szz)q

3.2.2 2.2 232
Yo X| — X2g o X1 — X247 Yy

5n

—(=q*yiyaxa — 2027 y1y2x1 — q
+2¢°y3x0x2 + 292%0x3%)g"" — (—y2x0x397 + X207 y1y2x1
+ X347y + X207 yox] + yix1x3¢%)g™"

+ (gx0x3 + y2xox3q” + yix1x3%) g™ — qxox3q"} /{a*y3q*"

—(y3x20” +2¥3%20° + y3x20Y) g™ + (23 ¥397 + 2x3y34°
+2x33q)q™ — (x3v20” + X3 y2 + 2x3329) g™ + %3 }; (41)

4.1.3. The Askey-Wilson case: y(s) := %, x(s) := qq° + q~°. In that case, one can
also verify from (9) that «, (x (s)) and B, (x(s)) need to be searched under the forms:

alqg™ +ong ™ + B+ abrq’ +q*Blg>

ap(x(s)) == " / |
q " —4qq )
Bn(x(s)) := ’BSCI_ZS + ﬁzlq_s + ﬂf + qarllqs + q2a3q2s ‘
qq9° —q—*°

Those expressions satisfy the system (7) iff (here as above, we exclude, of course, trivial
solutions):

an(x(s) == {[¢*yox0q™ — ¢*¥5]a> + [(ox1g + y1x09)g™ + (—yoqy1 — Yox19)q"1q"*

+ [—gxga™ + (qx§ + y2x0 + qxoy0) g™

+ (=¥ — gx0y0 — Y0y2)q" + ¥3q] + [(yixo + x1x0)g™"

4n .2

+ (=yox1 — y1x0)g”"1q~* + [¢*"x5 — ¢*"x0y0]a '}/

{[—gx0q™ + gy04"1q"° + [x0g™" — yoq"1q~*}; (43)

Bax(s)) := {[a*q""x§ — a*yox0q™"|q* + [(y1%0q + x1g%0)q™"

+ (—yox1q — y1x09)q”"1g* + [—axgq™ + (gx5 + y2x0 + gx0¥0)q™"
+ (—gy5 — axo¥0 — Yoy2)a" + ¥3q1 + [(yox1 + yi1xo)g™"

+ (=0 = yox)glg T + [qznxoyo - yé]q_zs}/

{[ax0g™ = ayoq"]a* + [ — x0q™ + y0q"]a ™} (44)
Dy(x(s)) 1= 2y0q™ " — 2x0qq"; (45)
by = {(—=y1X0g — X19%0)q™" + (y1X0 + YoX1 + Y1Xoq + Yox19)g™"

+ (=y1y0 — yox0q"} /{24 x5a™ + 2(=yoxo — ¢*x0y0)g™" + 2y5};  (46)
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aZ = {gx3q™ + (—=x3y0q — x3¥2 — gx3)q™" + (y2x3y0 + X3 ¥2 + Xgy1x1)q

6n
+ (= yox1y1%0 — Y{Xg — YoX{Xo + x5 ¥g — Xgy1X1 + Y2x3yo + X3 ¥04)q”"
+ (—2gx3y3 + 8337 — 2y2x3y0 + ¥iyoxo + ¥Yixg + yoxixg — 23 yaxo
+2y0x1y1X0)g"™" + (—YoX1y1X0 — Y3XT — &X1y1 + gX0¥]

+ Y3 yaxo + qx3ye — vivoxo)g™ + (y2y3 + y3vaxo + vexivi)g™

+ (—y228 — yoa — axov3)a" + [ave ]}/ {axsa™
+ (=x050 — 2x3309 — x3304°)q™" + (24555 + 2x5354°
+2x338)a™ + (—g*x0y3 — xovg — 2qx0¥3)a™" + [avs]}- (47)

Let us remark that if £(z, n) is the Askey-Wilson second order g-difference operator (in
its canonical form) [6]:

£(z,n) = v@E; — (@) + vz ) + v HE; —An) (48)

where

_ (I—az)(1 = bz)(1 —c2)(1 —dz)
B (1 -z —¢qz?
Eﬁ,(Pn(X(Z))) =Pu(x(q'2), i€Z,

v(z)

’

(49)

2 b
An) = —(1 — g™ (1 — abedq"™");

and H(z,n) the second order difference operator given in left hand side of (19), with
o, (x(s)) and B, (x(s)) given in Section 4.1.3 and with ¢° replaced by z, then one can verify
that,

H(z,n) = (z—2 )L n) (50)
where the following correspondence needs to be performed:

yoi:=—lLiyi:=a+b+c+d;y, ;= —(ab+ ac+ ad + bc + bd + cd); st
(5D

x1 := (abc + abd + bed + acd)g™"; xo := —abedg ™

4.2.  The fourth order difference equation for the class one LHP

We saw above that in the classical situation (¢ = 0, By = 0), one is able to solve the
system (7) in terms of elementary functions. We can not expect to do this in non-classical
situations, as we know that in the continuous case, the coefficients in the three-term recur-
rence relations are related to Painlevé trancendents (see [9] in semi-classical differential
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situation). Below we give solutions of (7) for the case of class ¢ = 1 (By not necessary zero)
and for simplicity in the case of linear lattice y(s) = x(s) = s, up to explicit non-linear
difference equations satisfied by the coefficients in the three-term recurrence relations. This
furnishes naturally “semi-explicit” fourth order difference equations for the corresponding
polynomials by the formula (23) and naturally for the polynomials r-associated to them
according to Remark 3.1.

We have (1t = 1, y(s) = x(s) = s): (c1, ¢2, c3, ¢4, arbitrary parameters; x,, y, of course
others than in 4.1)

oy (x(s)) :
Bn(x(s)) :

0 1 2.2 3
—(Oln +oa,s + s+ c38 ),

0 1 2.2 3 (52)
B, + B,s + B,s° + 357,

with

ag = [4x,,y,1c§ —4cyezey + 8crcicz — 4yn+1x,,+1c§ + 4c§czn + 80§C3n
—2¢5can — 3yui1yp — Ypyy — (desn + 8cx + 263 — 2¢4) Yn Y1
— (—2c3n —4cy + C4)yrzl — (—2c3¢4n + 4crc3 + C% + 26%712 + Zan — 2c3¢4
—4dcq00 + 8c3con + 403 +4cic3)ypae1 — (203C4n + 4dcqcy — 8cpczn — 26§n2
— 4¢3 + ¢} 4 2c3¢4 — 4eic3 — 2c§n)yn - (—803 + 8cin — 32¢3¢,
— 16c2c3¢4 — 4C§C4 + 32czc§n)xn —(—2c3 —4cr + ¢4 — 20311)y,f+1
— (—326‘26‘%” — 32czc§ — San + 16c3c3¢4 + 4C§C4 — SCg)an
— (4C3C4 — 8c§ — San)y,,an — (80%}1 + 12c_,2, — 4C3C4)y,,+2xn+1
+ 4czc§n2 + y,? + 3>yny5+l — 4cyczeqn — C§C4 + 26‘%]12 + 4clc§ — 4C§C4
— (40304 — San + SCg)x,,ynH — (8c§n — 126% — 4C3C4)xnyn_1]/(8c§);

. 1 1, 1 2 1 1
ahi=c — 5(63 +can + SN T e O = Gt 56 50— e

,30 = [4C§x,,yn —4cyeszeq + 8cicacs — 4c§x,,+1yn+1 + 4czc§n — 8C§C3n

+ (—4C3C4 + 80%n — SCg)yonn + (—8c§n + 4c3cq — 12c§)yn+2xn+1

+ (—40304 + 8c§ + San)ynan + (—80§n + 12c§ + 4C3C4)yn,1xn

+ 2c§C4n — 3y,,+1y,% — ysﬂ + 4czc§n2 + y,? + 3)’ny5+1 —4cyezeqn + (4ep
+c4 — 26‘3”))’3 + (32c§cz + 3ZC§C2n — 8c§n — 16c2¢3¢4 — 8cg’ +4C§C4)xn+1
+ (—4C§C4 — 80% — 326%0211 + 16c3c3¢4 + 32c§cz + San)xn + (—2c3n
—2c3+ ¢4 + 4C2)y,%+1 + (40402 + 4c§ — 2c3¢4 — c% — 8czcon — 2c3cqn

+4c3cr + 20%}12 + Zan)yn + (86‘2C3}’l — 2c§n2 — 46‘% + 2c3c4n 4 2304
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+4cycz — c% —dcycy — 4eic3 — 2c%n)y,,+1 + (—2c4 +2c53 — 8¢y

+4¢30) Y Ynt1 + c3cq — 203n% —dejcs + 4CZC4]/(SC§);

1 1 1 1 1
5;11 = 3 +c — 5(63 +can + 563’12; ﬁﬁ =0 - 56T 5 + c3n;
D, (x(s)) := (ca — 2c3n)s + [(2c3n — ¢4 — c3)yu + (¢4 — ¢3 — 2¢31) Yt

+4czeon — 2c4021/(2¢3);
where x, and y, given by

2._
a; = X

(53)
by = (Yut1 — Yu — 2¢2 +¢3)/(2c3);

are required to satisfy the following non-linear difference system

— 8C2 Yt 1 V042 — 4C3Vni2Xni2 — Ynyo + 8502 +4c2yn s — BVni2Yns
+3Y i1V — Vo 2021+ 83 Vnt1 Xt — 8cacsca — 4T yux, + 16¢3can
+8crVnYnt1 + 3yn+1y3 — 3yny,21+1 — 4czy5 + (32C2€3C4 — 326§C2 — 64c§czn)xn+|
+ (—8c§n — 20c§ + 46364)xn+2y,,+3 + (80304 — 4c§ — 16c§n)x,,+1y,,
(40304 — 8c;n + 8c3)x,,y,,+1 + (86311 — 1203 — 4C3C4)xny,, 1
( desey + 16c3 + 8cgn)xn+2yn+1 + ( 8cicy + 16c3n + 12c3)xn+1yn+2
( 20311 — c3 4c2 + 2c3c4n—4cic3 + 203n)y,1
( gn — 4¢3 4 2c3¢4n — 4ejes + desey — 6c3n — 5c3)yn+2
+ (64c3cz +32c3cm — 16cz0304)x,,+2 + (4c3n +2¢3 — dezeq + 8¢5 — dezeqn
+8cic3 + 4c§n)y,,+1 + (—166‘26‘364 - 320§cz + 32c§ch) x, =0, (54)
—2c3 — 8c1c3 — 8cy¢3 — 4ein + Acjean + 4cjcy — dan® — 2c3yn .,
— 8c§xn+1 + (¢4 — 2c3n — 463)y5+2 + (8czepn — deyes — 4eqcr)yn + (12¢5¢3
—4cqcy 4 8czcon) o + (—160% — 8c§n + 4C§C4)xn+2 + (8cscr — 8cacs
— 16c300n) Y1 + (—2¢3 + 2c3n — C4)y3 + (—8c§ + San — 4C§C4)x,,
4+ (6¢c3 — 2c4 +4c3n)Ypq1Yny2 + (—desn + 2c4 + 2¢3) yuYu+1 = 0. (55)

Equations (54) and (55) are the most general (i.e. without loss of degree of freedom in
parameters) connecting the coefficients in the three-term recurrence relations for the class
one LHP orthogonal on linear lattice. They contain for example the ones obtained in [3]. Let
us remark that Eqs. (54) and (55) can be written in explicit form in rapport with the highest
differences (i.e. x,+4 and y,14). It can be seen also that loosing one degree of freedom (in
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parameters c;) allows one to write (54)—(55) explicitly not only in function of a,% but also
in function of b,. Let us remark finally that in principle, in spite of the fact that the present
system is related to Painlevé transcendents (see [9] for the continuous semi-classical case),
some of its particular cases have particular rational solutions as predicted in [2] (see also
[1]). A deep analysis of that system requires however a specific consecration.

Summary

While the formula (23) established in Section 3 gives the fourth order difference equation
for the general LHP, the expressions for «,, B, a,zl and D, calculated in Sections 4.1.1,
4.1.2 and 4.1.3 lead directly to (considering Remark 3.1) explicit expressions of the fourth
order difference equations for the polynomials Pn(r_), (y(s)), r-associated to P,(y(s)), the
classical polynomials orthogonal on linear, g-linear and g-nonlinear (Askey-Wilson) lat-
tices and finally, the expressions for «,, 8, and D, calculated in Section 4.2 lead directly
to “semi-eplicit” expressions of the fourth order difference equations for the class one
LHP orthogonal on linear lattice and naturally for the polynomials r-associated to them
(considering Remark 3.1 as well).
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