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Abstract
For the general linear second-order q-difference equation, we show the
interconnection between the factorization method and the Laguerre–Hahn
polynomials on the general q-lattice. Applications are then given in the cases
of the hypergeometric and Askey–Wilson second-order q-difference equations.

PACS numbers: 02.10.Dr, 02.30.Gp, 02.30.Ks

1. Introduction

Various aspects of factorization techniques had already been considered around the end of the
nineteenth century in the works of Darboux [15], Burchnall and Chaundy [12, 13], Schrödinger
[29] and other authors. Later, various generalizations and applications of the techniques were
developed by many authors some of whom we will refer to throughout this work. In this
paper we are concerned with the following considerations. Given a difference or differential
operator H(x), one can search for a second operator H̃ (x, α) depending on a parameter α
such that H̃ (x, α̂) = H(x) for a certain fixed value α̂ of α, and then consider the factorization
chain (if it exists):

H̃ (x, α)− µ(α) = H +(x, α)H−(x, α)
(1)

H̃ (x, α + 1)− µ(α) = H−(x, α)H +(x, α) x ∈ R.

If such a factorization exists, one can say that the operatorH(x) is factorizable. This property,
once it exists for a given operator, is very fundamental for its characterization especially for its
solvability. In particular, for differential or difference operators having polynomial solutions,
it is well known that their solvability is closely related to their factorizability [1–4, 6–9, 11,
14, 20, 22–24, 29–32].
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In this paper, we want to discuss another, slightly surprising, side of the factorization
method, especially its interconnection with the so-called Laguerre–Hahn polynomials.

Recall that Laguerre–Hahn orthogonal polynomials on the general q-lattice h(x) =
k1x + k2x

−1 + k3, x = qs, s ∈ Z, are defined as those for which the Stieltjes function S0(h(x))

satisfies

A0(x)
S0(h(qx))− S0(h(x))

h(qx)− h(x)

= B0(x)S0(h(qx))S0(h(x)) + C0(x)(S0(h(qx)) + S0(h(x)))/2 +D0(x) (2)

where A0(x), B0(x), C0(x) and D0(x) are Laurent polynomials of degree �2(k + 2),
2(k + 2), 2(k + 1) and 2k, respectively. The semi-classical subclass is characterized by
B0(x) = 0, while the classical one (up to the Askey–Wilson class) is obtained from the
semi-classical by taking k = 0.

In this work, we will discuss the interconnection between the Laguerre–Hahn polynomials
on the q-lattice h(x) and the factorization method for a general linear second-orderq-difference
equation [

u(x)Eq + v(x) +w(x)E−1
q

]
y(x) = λy(x) (3)

where Eiqf (x) = f (qix), i ∈ Z, y(x) = S(h(x)) for a certain function S, and then apply the
results to the case of the hypergeometric second-order q-difference equation (here h(x) = x)
[25]

[σ(x)DqDq + τ (x)Dq]y(x) = λy(x) (4)

where σ(x) = σ0x
2 + σ1x + σ2, τ (x) = τ0x + τ1, τ0 �= 0,Dqf (x) = (Eq − 1)f (x)/(qx− x),

Dqf (x) = (
1 − E−1

q

)
f (x)/(x − x/q), and the Askey–Wilson second-order q-difference

equation [[
(q − 1)2

4q

x2 − 1

xω(x)
Dq

x2 − 1

x
υ
(
q− 1

2 x
)
ω

(
q− 1

2 x
)]Dq

]
y(x) = λy(x) (5)

where
ω(qx)

ω(x)
= υ(x)

υ((qx)−1)
υ(x) = (1 − ax)(1 − bx)(1 − cx)(1 − dx)

(1 − x2)(1 − qx2)
(6)

and

DqP (h(x)) = P
(
h
(
q

1
2 x

)) − P
(
h
(
q− 1

2 x
))

h
(
q

1
2 x

) − h
(
q− 1

2 x
) h(x) = x + x−1

2
. (7)

We refer to equation (5) as the Askey–Wilson equation, due to the fact that the Askey–Wilson
polynomials [5] constitute its complete sequence of polynomial solutions and the operator in
(7) is the Askey–Wilson first-order divided difference operator [5].

2. The factorization method (FM) for the general second-order q-difference equation

2.1. The general case

Consider the general second-order q-difference eigenvalue equation[
A(x)Eq + B(x) + C(x)E−1

q

]
Yn(x) = �nYn(x). (8)

It is not difficult to write it in the equivalent form[
ã(x)Eq + b̃(x) + c̃(x)E−1

q

]
yn(x) = λnyn(x) (9)
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where b̃(x) = −(ã(x) + c̃(x)). Hence we will consider (9) as the starting equation. More
generally, we write (9) in the form

Lyn(x) = [
a(x)Eq + b(x) + c(x)E−1

q

]
yn(x) = λ(n)θ(x)yn(x) (10)

where

a(x) = θ(x)ã(x) b(x) = θ(x)b̃(x) c(x) = θ(x)c̃(x) (11)

for some θ(x) �= 0. Consider next the operator

H(x, n) = Eq[ρ(L− λθ)ρ−1] = E2
q + (b(qx)− λ(n)θ(qx))Eq + d(qx) (12)

where

ρ(qx)/ρ(x) = a(x) d(x) = a(x/q)c(x). (13)

So the eigenvalue equation (10) is ‘equivalent’ to

H(x, n)yn(x) = 0 (14)

in the sense that if yn(x) is a solution of (10), then ρ(x)yn(x) is a solution of (14) and
conversely if yn(x) is a solution of (14), then ρ−1(x)yn(x) is a solution of (10).

Consider now for H, the following type of factorization

H(x, n)− µ(n) = (Eq + g(x, n))(Eq + f (x, n))
(15)

H(x, n + 1)− µ(n) = (Eq + f (x, n))(Eq + g(x, n))

for some functions f (x, n), g(x, n) and constants (in x) λ(n), µ(n). Consider next the
eigenvalue equation

L̃yn(x) = [
g(x,−1)Eq − b(x) + f (x/q,−1)E−1

q

]
yn(x) = −λ(n)θ(x)yn(x) (16)

and the operator

H̃ (x, n) = Eq[ρ̃(L̃− λθ)ρ̃−1] = E2
q + (b(qx)− λ(n)θ(qx))Eq + d̃(qx) (17)

where

ρ̃(qx)/ρ̃(x) = −g(x,−1) d̃(x) = g(x/q,−1)f (x/q,−1). (18)

It is easily seen in this case also that the eigenvalue equation (16) is ‘equivalent’ to

H̃ (x, n)yn(x) = 0. (19)

We can now give the main statement of this paper.

Proposition 2.1. Suppose that there exist functions f (x, n), g(x, n), constants (in x) λ(n),
µ(n), for which H admits the factorization (15) with f and g such that

f (x, n)− g(x, n− 1) = c1(n)h(x) + c2(n) (20)

c1(n) �= 0,∞.
In that case, the following situations hold:

(i) If µ(−1) = 0, then the solutions of the eigenvalue equation (16) are of classical
polynomial type and satisfy the difference relations

yn+1(x) = (−g(x,−1)Eq + f (x, n))yn(x)− µ(n− 1)yn−1(x) = (−g(x,−1)Eq
+ g(x, n− 1))yn(x) n = 0, 1, 2 . . . (21)

and the three-term recurrence relations (TTRR)

yn+1(x) + µ(n− 1)yn−1(x) = (c1(n)h(x) + c2(n))yn(x) (22)

y0 = 1 y1 = c1(0)h(x) + c2(0). (23)
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(ii) Ifµ(−1) �= 0, then the polynomials satisfying the TTRR (22) (but no longer the difference
relations (21)), are no longer of classical type but purely (i.e. not semi-classical) of
Laguerre–Hahn type.

(iii) If µ(−1) �= 0 but µ(−r − 1) = 0 for some non-vanishing number r (not necessarily an
integer), then the polynomials satisfying the TTRR (22) are Laguerre–Hahn polynomials
r-associated with classical polynomials.

(iv) If µ(−r − 1) �= 0 for any number r, then the polynomials satisfying the TTRR (22) are
Laguerre–Hahn polynomials not r-associated with polynomials of classical type.

Proof.

(i) Note first that from the relations in (15) follow, in particular, the equations

f (x, n)g(x, n) = d(qx)− µ(n) (24)

f (qx, n) + g(x, n) = b(qx)− θ(qx)λ(n) (25)

with

f (qx, n + 1) + g(x, n + 1) = f (x, n) + g(qx, n) (26)

f (x, n + 1)g(x, n + 1) = f (x, n)g(x, n) + µ(n)− µ(n + 1) (27)

or equivalently the equations (24) and (25) together with the q-difference equation


q(f (x, n)− g(x, n)) = (λ(n + 1)− λ(n))θ(x) 
q = Eq − 1. (28)

Next, substituting n with −1 in (24), one directly finds that µ(−1) = 0 ⇒ H = H̃ (and
conversely H = H̃ ⇒ µ(−1) = 0). Hence the operator H̃ admits, as H, a type (15)
factorization. As a consequence, we have that if ψ0 is such that

H̃ (x, 0)ψ0 = 0 (29)

it follows from (15) that the sequence of functions ψn given by

ψn+1(x) = (Eq + f (x, n))ψn(x)

−µ(n− 1)ψn−1(x) = (Eq + g(x, n− 1))ψn(x) n = 0, 1, . . .
(30)

are solutions of (19). But from (25) (n = 0) and (26) (n = −1), it follows that y0 = 1 is a
solution of (16) with n = 0. Hence in (29), one can take ψ0 = ρ̃(x) (see (18)). This allows
one to obtain (21) from (30). Finally, using (20) and (21), one obtains (22)–(23). To conclude,
remark that the functions in (22) and (23) are of polynomial type. Moreover, since they are
bispectral (they also satisfy (16)), they are necessarily of classical type (see [16, 17]).

(ii) To prove this, we need first of all to understand what representsµ(n) in the Laguerre–
Hahn approach to orthogonal polynomials [21]. For this, consider the relations in (26) and
(27), together with the relation in (20). Using (20) and translating n in (27), one finds that (20)
and (26), (27) are equivalent to

f (x, n) = g(x, n− 1) + c1(n)h(x) + c2(n)

g(x, n) = f (x, n− 1)− (c1(n)h(qx) + c2(n)) (31)

f (x, n)g(x, n) = f (x, n− 1)g(x, n− 1) + µ(n− 1)− µ(n).

Now, suppose that some polynomials yn = yn(h(x)) satisfy the TTRR in (22). So, their
normalized form Pn = yn(h(x))/�(n) where

�(n + 1)/�(n) = c1(n) (32)
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satisfies

Pn+1 + a2
nPn−1 = (h(x)− bn)Pn (33)

where

a2
n = µ(n− 1)

c1(n)c1(n− 1)
bn = −c2(n)/c1(n). (34)

Hence (31) may be written as

f (x, n) = g(x, n− 1) + (h(x)− bn)c1(n)

g(x, n) = f (x, n− 1)− (h(qx)− bn)c1(n)) (35)

f (x, n)g(x, n) = f (x, n− 1)g(x, n− 1) + a2
nc1(n− 1)c1(n)− a2

n+1c1(n)c1(n + 1).

These are exactly the recurrence relations for the coefficients in the Ricatti equation for
the Stieltjes function Sn of the polynomials n-associated with the polynomials in (33)
(see [21]):

An(x)
Sn(h(qx))− Sn(h(x))

h(qx)− h(x)
= Bn(x)Sn(h(qx))Sn(h(x))

+Cn(x)(Sn(h(qx)) + Sn(h(x)))/2 + c1(n) (36)

with

f (x, n) = An+1(x)

h(qx)− h(x)
− Cn+1(x)

2

g(x, n) = An+1(x)

h(qx)− h(x)
+
Cn+1(x)

2
(37)

Bn(x) = a2
nc1(n− 1).

Hence the Stieltjes function S0 for the polynomials in (33) satisfies

A0(x)
S0(h(qx))− S0(h(x))

h(qx)− h(x)
= B0(x)S0(h(qx))S0(h(x))

+C0(x)(S0(h(qx)) + S0(h(x)))/2 + c1(0) (38)

where

B0(x) = µ(−1)

c1(0)
. (39)

Since by supposition c1(0) �= ∞, so the vanishing of B0(x) is exclusively linked to that of
µ(−1). But the polynomials for which B0(x) does not vanish are of purely Laguerre–Hahn
class (see [21]), which proves the non-classicality of the polynomials.

(iii) Suppose now that for some number r, µ(−r−1) = 0. In this case, we can substitute n
with n−r in (15) and since µ̃(−1) = 0, for µ̃(n) = µ(n−r), we are led to the same conclusion
of classical polynomial solutions satisfying (16), and (22) and (23) but with n replaced by
n− r (and 0 by −r) in the corresponding coefficients. Hence the polynomials satisfying (22)
will be r-associated with classical polynomials.

(iv) This is a consequence of (ii) and (iii).

Remark 1. As can be verified (similarly to (ii)), equation (10) admits, under the conditions
of the proposition, sequences of functional solutions satisfying difference relations as
(30) and TTRR as (22). However, except in some special cases, for example when
a(x) = −g(x,−1), c(x) = −f (x/q,−1) (in this case L̃ = −L), these functional solutions
are no longer of polynomial type. A question is that of knowing if there exists an
interconnection between the functional solutions of (10) satisfying (30) and (22), and the
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orthogonal polynomials satisfying (22) (but not (21)). The answer is yes and it was shown
in [21] that the polynomials satisfying (22) can be expressed as a combination of products
of functions from two different sequences of solutions of (10) (considering (13) and (24)
with n = −1) satisfying (22). We will note that polynomials r-associated with classical
polynomials, such as any system of polynomials of Laguerre–Hahn type, satisfy not a second-
but a fourth-degree difference equation (see [10]).

Remark 2. In [1], in particular the equivalence between the FM and the existence of raising
and lowering operators for the hypergeometric difference equation on non-uniform lattices
and some of its special forms was proved (see also [20] for the differential and discrete cases).
However, in this paper we focus on the special form of the intertwining relations in (15),
because of its interconnection with Laguerre–Hahn polynomials (as shown in proposition
2.1). On the other hand, we know that generic Laguerre–Hahn polynomials do not satisfy the
usual three-term difference relations (i.e. no raising and lowering operators as for example in
(21)) [21].

2.2. The hypergeometric q-difference equation case

The hypergeometric q-difference equation in (4) may be written as[
a(x)Eq + b(x) + c(x)E−1

q

]
yn(x) = θ(x)λ(n)yn(x) (40)

with

a(x) = (σ0 + (1 − 1/q)τ0)x + σ1 + (1 − 1/q)τ1 + σ2/x c(x) = q(σ0x + σ1 + σ2/x)

b(x) = −(a(x) + c(x)) θ(x) = (1 − 1/q)x. (41)

The results for the factorization of the type (15), for the operator

H(x, n) = E2
q + (b(qx)− λ(n)θ(qx))Eq + d(qx) (42)

d(x) = a(x/q)c(x), read as follows

f (x, n) = −σ2/x − 1/2(−τ1 − qc0(n) + τ1q + qσ1 + q2σ1)/q

− (−τ0 + q2σ0 + qσ0 + τ0q + λ(n)q − λ(n + 1))x/(1 + q)

g(x, n) = −σ2/x − 1/2(−τ1 − qc0(n) + τ1q + qσ1 + q2σ1)/q − c0(n)

+ (−(−τ0 + q2σ0 + qσ0 + τ0q + λ(n)q − λ(n + 1))/(1 + q)

− λ(n + 1) + λ(n))x (43)

µ(n) = 1/4
(−q6σ 2

1 + 2τ 2
1 q

2 − 8q4σ2σ0 + 4q3σ2τ0 + c2
0(n)q

4 − q2σ 2
1

+ c2
0(n)q

2 + 2τ1qσ1 − 4τ1q
3σ1 − τ 2

1 − τ 2
1 q

4 + 2q4σ 2
1 + 2c2

0(n)q
3

+ 4q2σ2λ(n) + 4q2σ2τ0 − 4qτ0σ2 + 4q2σ0σ2 + 4q2λ(n + 1)σ2 − 4q4σ2τ0

− 4q4σ2λ(n + 1)− 4q4λ(n)σ2 + 2τ1q
5σ1 + 4q6σ2σ0

)/
(q2(1 + q)2) (44)

where

c0(n) = (−2τ1q
4σ0 + q3σ1λ(n) + q3σ1λ(n + 1) + 2τ1q

3σ0 + q2λ(n)τ1

+ 2τ1q
2σ0 + τ1q

2λ(n + 1) + 2τ1q
2τ0 − qλ(n + 1)σ1 − 2qλ(n + 1)τ1

− 2τ1qλ(n)− qσ1λ(n)− 4τ1qτ0 − 2τ1qσ0 + λ(n + 1)τ1

+ τ1λ(n) + 2τ1τ0)/(q(1 + q)(λ(n + 1)− λ(n))) (45)

and

λ(n) = ((1 − q)q−n + q2σ0/k)(q
nqσ0 + qnτ0q − kq − qnτ0 + k)(q − 1)−2 (46)
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where k is a new free parameter. Equation (46) can equivalently be written as

λ(n) = −[1 − tq−n]
[
q2σ0

q − 1
−

(
qσ0

q − 1
+ τ0

)
t−1qn

]
(47)

where t = q−1
q2σ0

k. We will note that all the functions of the variable n (f, g, µ) are explicit
functions in λ(n) and λ(n + 1) but implicit in n.
As can be verified, for t = 1, we have µ(−1) = λ(0) = 0 (and f (x/q,−1) = −c(x),
g(x,−1) = −a(x)), and consequently the corresponding polynomials are of classical type.

If we let t = q−r , the corresponding polynomials are Laguerre–Hahn polynomials r-
associated with polynomials of classical type. It is clear that the representation of any real
number t in the form t = q−r is not always possible unless we allow r to be complex. That
is to say that if we allow r to be only real or integer number, the considered polynomials are
Laguerre–Hahn polynomials not necessarily r-associated with polynomials of classical type.

Example 1 The q-Hahn case. In the q-Hahn case (see for example [19]), we have

a(x) = α(x − 1)(xβq − q−N)/(x)
(48)

b(x) = (x2 − xq−N − xαq + q−N+1α)/x

and the formulae for f (x, n), g(x, n), µ(n), λ(n) for the factorization are obtained from those
above by substituting

σ0 = 1/q σ1 = −(q−N + qα)/q σ2 = q−Nα τ0 = (αβq2 − 1)/(q − 1)

τ1 = −(αβq2 + q−N+1α − q−N − qα)/(q − 1). (49)

Example 2 The q-Big Jacobi case. In the q-Big Jacobi case (see for example [19]), we have

a(x) = aq(x − 1)(bx − c)/x b(x) = (x − aq)(x − cq)/x (50)

and the formulae for f (x, n), g(x, n), µ(n), λ(n) for the factorization are obtained from those
above by substituting

σ0 = 1/q σ1 = −(a + c) σ2 = aqc

τ0 = (aq2b − 1)/(q − 1) (51)

τ1 = (q(a + c)− aq2(b + c))/(q − 1).

The data above for the q-Hahn and q-Big Jacobi cases are clearly identical up to the
correspondence: a = α, b = β, c = q−1−N .

2.3. The Askey–Wilson second-order q-difference equation case

Consider now the Askey–Wilson second-order q-difference equation in (5)–(7). The equation
can also be written as

Lyn(x) = [
a(x)Eq − [a(x) + b(x)] + b(x)E−1

q

]
yn(x) = λ(n)θ(x)yn(x) (52)

where

a(x) = a−2x
−2 + a−1x

−1 + a0 + a1x + a2x
2

qx − x−1
b(x) = a2x

−2 + a1x
−1 + a0 + a−1x + a−2x

2

x − qx−1

a−2 = 1 a−1 = −(a + b + c + d) a0 = ab + ac + ad + bc + bd + cd
a1 = −(abc + abd + bcd + acd) a2 = abcd θ(x) = x − x−1.

(53)
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The operator

H(x, n) = E2
q + (b(qx)− λ(n)θ(qx))Eq + d(qx) (54)

d(x) = a(x/q)c(x), admits a factorization as the one in (15), with

f (x; n) = f−2x
−2 + f−1x

−1 + f0 + f1x + f2x
2

qx − x−1

(55)

g(x; n) = (f−2 − β−1)x
−2 + (f−1 − β0)x

−1 + f0 + (f1 + β0q)x + (f2 + β1q)x
2

qx − x−1

where

f−2(n) = λ(n)− qλ(n + 1)

q2 − 1
− q + a2

q2 + q
f2(n) = λ(n)q − λ(n + 1)

1 − q2
q2 − q2 + qa2

q + 1

β0(n) = 1 − q

(λ(n)− λ(n + 1))q3

{(
2
λ(n)q − λ(n + 1)

1 − q2
q2 +

λ(n + 1)− λ(n)

1 − q
q2

− 2
q2 + qa2

1 + q

)
(a1 + qa−1) + (2a1q

2 + 2a2a−1q)

}
(56)

β−1 = λ(n + 1)− λ(n)

1 − q
β1 = qβ−1

f−1(n) = β0(n)

2
− a1 + qA−1

2q
f1(n) = −qβ0(n)

2
− a1 + qa−1

2

f0(n) = 1

q + q2
{q2 − q3 − a0(q + q2) + a2(q − 1) + q2(λ(n) + λ(n + 1))}

while

µ(n) = a0 + a1a−1q
−1 + a0a2q

−2 + f0(n)β−1(n) + f−1(n)β0(n)

− 2f−2(n)f0(n)− f 2
−1(n) (57)

and

λ(n) = −(1 − tq−n)(1 − abcdt−1qn−1). (58)

Here also, as one can verify, for t = 1, we have µ(−1) = λ(0) = 0 (and f (x/q,−1) =
−c(x), g(x,−1) = −a(x)), and the corresponding polynomials in (22) and (23) are of
classical type. Taking t = q−r , we obtain Laguerre–Hahn polynomials r-associated with
classical polynomials. Otherwise (if such an exponential expression is not allowed for t),
the corresponding polynomials are Laguerre–Hahn ones, not necessarily r-associated with
classical polynomials.

An interesting outlook on which we are working is the extension of the FM to the fourth-
order difference equation. It is in particular a natural expectation that the FM for such equations
may allow one to derive what one can call Krall–Laguerre–Hahn polynomials.
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