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Abstract 

Askey and Wilson (1985) found a family of orthogonal polynomials in the variable 

s(k) = ½(k + 1/k) 

that satisfy a q-difference equation of the form 

a(k)(p,(s(qk)) -- p,(s(k))) + b(k)(p,(s(k/q)) - p,(s(k))) = O,p,(s(k)), n = O, 1 . . . . .  

We show here that this property characterizes the Askey-Wilson polynomials. The proof is based on an "operator 
identity" of independent interest. This identity can be adapted to prove other characterization results. Indeed it was used 
in (Griinbaum and Haine, 1996) to give a new derivation of the result of Bochner alluded to in the title of this paper. We 
give the appropriate identity for the case of difference equations (leading to the Wilson polynomials), but pursue the 
consequences only in the case of q-difference equations leading to the Askey-Wilson and big q-Jacobi polynomials. This 
approach also works in the discrete case and should yield the results in (Leonard, 1982). 

Keywords: Askey-Wilson polynomials; Bispectral property 

A M S  classification: primary 33D45; secondary 39A10 

1. Introduction 

Bochner [3] proved that the only families of orthogonal polynomials pn(k )  satisfying 

L ( p o , P l , P 2 ,  . . .  )t = k ( p o , P x , P 2 ,  . . .  )t (1) 
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and 

A ( k , d  ) p.(k ) = O.p.(k ), (2) 

with L a tridiagonal semi-infinite matrix and A a second-order differential operator,  are the Jacobi, 
Hermite, Laguerre and Bessel polynomials. The purpose of this paper is to consider the same 
question when A is replaced by a second-order q-difference operator  

(Af)(k)  = a (k ) ( f (qk )  - f ( k ) )  + b ( k ) ( f ( q - ~ k )  - f ( k ) ) .  

The case considered by Bochner is included here by passing to the limit q = 1. An independent 
derivation of Bochner's result is given in [5] using a (very simplified) version of the "operator  
identity" to be derived below. 

In the case q -- 1, the choice of the spectral parameter  k is immaterial. If k is replaced by s(k) in 
(1), the p,'s are polynomials in s(k) and, using the chain rule, would still produce an operator 
A(s, d/ds) satisfying (2). In the case q # 1, the change of spectral parameter  would change the form 
of the operator A, and thus we are led to pose our problem in the following form. 

Determine all instances of polynomials p, in s(k) normalized by p_ 1 = 0, Po = 1, satisfying 

p.(s(k)) = (s(k) - b . )pn-l(s(k))  - a._~p._2(s(k)) ,  n/> 1, (1') 

and 

a(k)(p.(s(qk)) - p.(s(k))) + b(k ) (p . ( s (q- ' k ) )  - p.(s(k))) = O.p.(s(k)), n >~ O. (2') 

The existence of nontrivial solutions to (1') and (2') imposes a set of conditions on s(k). A full 
discussion of these conditions is beyond the scope of this paper; we just remark that related issues 
have been considered in [13, 14]. For  our purposes it suffices to observe that the two cases 

(1) s(k) = cjk ~ + c_ jk  -J, 
(2) s(k) = cj(ln k) j + Czj(ln k) zj 

for arbitrary f ixed  integer j and arbitrary constants c~, c_j, c2j, satisfy our conditions. 

Note 1. The second case can be written in the form cjk j + c2jk 2j if the operator in (2') is rewritten 
in the more standard "additive form" where s(qk) becomes s(k + A ) and s(q-  ik) becomes s(k - A) 
with A = lnq. 

In this paper we focus on case (1) but indicate in Notes 1, 2 and 5 the changes that are needed to 
deal with case (2). By renaming k j and q J, respectively, as k and q, we can then reduce s(k) in case (1) 
to the form 

s ( k ) = c  k +  , (3) 

with arbitrary constants c and e. By further rescaling, it is enough to consider the cases e = 0 and 
1 

c = 1 or e = 1 and c = 2. This brings us in line with the standard choices 

s ( k ) = k  or  s(k)=-~ k +  . 
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Note 2. It is clear that the same type of reduction will give, in the "additive case", the standard form 

s(k) = ek 2 q- dk. 

We can now state our main result: 

Theorem 3. The only solutions of(l ')  and (2') are given by the big q-Jacobi polynomials when s(k ) = k 
and by the Askey Wilson polynomials when s(k) = ½(k + 1/k). 

In the case of s(k) = k this result was obtained "in essence" by Hahn [8]. For  a nice survey on 
these matters see [10]. 

These two families of orthogonal polynomials include by appropriate specializations and 
limiting procedures many other families• In particular, the q-Laguerre polynomials that feature in 
Section 5 of this paper can be obtained this way [9]. 

In [6] we have worked out an extension of Bochner's original problem (1) and (2) (in the case 
q = 1), by allowing L in (1) to be a tridiagonal doubly infinite matrix• In this case the solutions are 
no longer necessarily polynomials, and in fact the generic case involves any solution of the 
hypergeometric equation• It is also seen in [6] that the solutions of this extended Bochner's problem 
are intimately related to the Virasoro algebra• It is possible to work out a similar extension in the 
context of q-special functions and the q-Virasoro algebra• This will be reported elsewhere [7]. 

The paper is organized as follows• In Section 2 we state and prove a basic lemma, which we use 
in Section 3 to pin down the sequences a,, b, and 0, in (1') and (2') above. In Section 4 we prove the 
theorem above• Finally, in Section 5, we present some examples of orthogonal polynomials 
satisfying higher order q-difference equations, which reduce to those investigated by Krall [11], 
when q = 1. In the spirit of [5], we see that these examples can be obtained from some of the 
classical orthogonal polynomials in the sense of [1], by an application of the Darboux transforma- 
tion. 

2. An operator identity 

Lp = s(k)p, 

Ap = Op, 

with 

bx 
al 

L =  

Rewrite (1') and (2') as 

P = (Po = 1,pl(s(k)),p2(s(k)), ... )', (4) 

(5) 

1 ) 
b2 1 
a2 b3 1 ' (6) 

• . , " . " • 

s(k) as in (3) and the diagonal matrix O = diag(0o, 01, 02, ... ). The next lemma provides the 
q-version of a lemma used in [5] in the case q = 1, following a basic observation in [4]. 
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Lemma 4. Any  solution of  (4) and (5) satisfies the matrix identity 

(L30  -- {gL 3) q- x ( L 2 0 L  - -  L O L  2) + y(L6) - tgL) = O, 

with 

(7) 

1 + q + q 2  ( q _ l ) 2 ( q + 1 ) 2  
X : , y : ~ C  2 q q2 

Proof.  From (4) and (5) one obtains immediately that 

(L3@ - tgLa)p + x (LEOL - L6)LE)p + y(L6)  - 6)L)p 

= (A(s3p) - s3Ap) + x(sA(s2p) - s2A(sp)) + y(A(sp)  - sAp) 

= a(k)(s(qk) - s(k))[s2(k) + s2(qk) + (1 + x)s(k)s(qk)  + y lp(s (qk) )  

+ b ( k ) ( s ( q - l k )  - s(k))[s2(k) + s 2 ( q - l k )  + (1 + x ) s ( k ) s ( q - l k )  + y l p ( s ( q - l k ) ) .  

Notice that the choice of s(k) given in (3) cancels the two terms in the square brackets. As k varies, 
the p(s(k)) are linearly independent vectors, so that the f inite band operator  ( L 3 ~ 9 -  O L  3) + 
x(L26)L - LO)L 2) + y(L6) - @L) has infinite-dimensional kernel; hence it must vanish identi- 
cally, proving our lemma. [] 

Note  5. If s(k) = c(ln k) 2 + din  k, putting A = In q, the operator identity becomes 

(L30  -- 3L26)L + 3L6)L 2 - -  O L  3) -- 2 c A 2 ( L 2 0  - O L  2) q- A 2 ( c 2 A  2 - -  d2)(L~9 -- ~gL) = 0. 

3. Solving for L and 0 

We are now ready to exploit the lemma above to derive necessary conditions that L and 
69 should satisfy if(4) and (5) are to hold. We restrict ourselves to the case where all a,'s are nonzero. 
The same requirement is needed to derive the classical result of Bochner. 

In the sequel we shall denote by 

[:tl - q~ -- 1 
q - - l '  

the q-analogue of ~. 
In order to solve for L and 0 ,  we proceed along the lines of [51. Equating the diagonals of (7) to 

zero, starting with the upper one, we obtain at the (n, n + 3)th entry the equations 

[3] [31 
O n  + 2 - -  - -  On + 1 ~ On -- On- 1 = 0, n = 1, 2 . . . .  , (8) 

q q 

whose general solution is given by 

0. = q 1 - .  [n] ( In1 u + v) + w, (9) 
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with u, v, w as free parameters. Since we can shift the 0,'s by an arbitrary constant, we may always 
assume that w = 0. For  our purposes it is clear that only the ratio u/v  (or v/u) plays an important  
role in (7). Equating the (n, n + 2)th and (n, n + 1)th entries to zero, we obtain, for n ~> 1, 

(0,+1 - 0.+2)b,+2 + (0,+~ - On-1)bn+l  -k- ( 0 , - 2 -  O , - l ) b ,  = O, (10) 

and 

(On -- On+z)an+l + (On+x + On -- On-a -- On-z)an + (On-3 -- On-1)an-1  + (On -- On-x)  

x ( b . + , q -  b . ) (b .+  , - b . q )  + ec 2 (q - 1)2(q + 1) 2 
q q2 (0. - O._a) = O, (11) 

where by convention ao := 0 and the On's, n e ~, are given by (9). 
Using (9) we see that the general solution of (10) depends on two free parameters bx and 

r = b2 - b~, explicitly: 

bn = bl  + [n - 1]Zn-X ( rqn_Z([3 jU + V) + b l ( q  n-2  - 1)((1 - q)v  + (1 - qn)u)), (12) 
Z2n- 3Z2n- 1 

with 

zn = v + [n]u. 

Going now into Eq. (11) one sees, after some labor, that the general solution for a, depends on one 
free parameter  ai and is given by 

q n - X [ n  - 1 ] [ n ] z . - x z ,  Sn~n q ' - X [ n ] ( v  + [2]u)zn-1 
-k- a x 

a n = (q + l )2z2n-2Z2n- lZZn  Z2n-2Zzn 

+ ec 2 (q -- 1) 2 In - 1] [n] z , -  1Zn 
, (13)  

Z 2n - 2 Z 2n 

with 

5n = --  r(v + [3]u) + b l v ( q  - 1) + b l u ( q  "+1 + qn _ q2 _ 1), 

~, = --  q n - l r ( v  + [3]U) + bxv (q  n --  q , - I  _ q2 + 1) + b l u ( 1  + q - q " -~  - q,+~). 

In summary,  0 is given by (9) and L is determined by (12) and (13). 

4.  P r o o f  o f  t h e  m a i n  t h e o r e m  

In this section we identify the solutions of our problem with polynomials obtained from some of 
the basic hypergeometric series. We follow the notations in [9]. The general solution given by (9), 
(12) and (13) depends on four free parameters: the ratio v/u or (u/v), b l ,  r = b2 - bl  and al .  There 
will be two basic cases depending on whether e = 0 or e = 1. 

The basic  h y p e r g e o m e t r i c  series (or q-hypergeometric series) r~bs is defined by 

a l ,  . . .  ,a t  "] 
,¢s \bl, bs q;k,/= ~ (ax, ...,a,;q)j k j (-~1: : ~  ( - 1 ) ` l * s - r , j q ` ' + s - r , j ` j - l , / 2  ) '  

, j = o  . . .  (q;q s 
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w h e r e  (a; q)j d e n o t e  t he  q -sh i f ted  f a c t o r i a l s  

(a ;q)0 = 1, (a ;q ) j  = (1 - a)(1 - aq)(1 - aq 2) ... (1 - aqi-1) ,  

a n d  

j = 1 , 2 , 3 , . . .  , 

(al  . . . .  , at ;  q)j = (a1; q)j(a2; q)j .." (at; q)j.  

T h e  A s k e y - W i l s o n  polynomials [2]  a r e  de f ined  in [9 ]  b y  

ab, ac, ad q; q ' s ( k )=-~  k +  . 

T h e y  sat is fy  the  r e c u r r e n c e  r e l a t i o n  

= + + 2 a  
_ __ (A n -3v Cn) lpn (S  ) "~ CnPn_l(S),  

wi th  

(1 --  abq")(1 - acq")(1 - adq")(1 - abcdq"-1)  
A n 

2a(1 - -  abcdq 2"- 1)(1 - abcdq 2~) 

Cn 
a(1 - -  q")(1 - bcq"-1)(1 - bdq"-1)(1 - -  cdq"-1)  

2(1 --  abcdq 2"- 2 ) ( 1  - -  abcdq 2"- 1 ) 

T h e y  a re  k n o w n  to  sa t i s fy  the  f o l l o w i n g  s e c o n d - o r d e r  q -d i f fe rence  e q u a t i o n :  

a(k)(~.(s(qk)) - ~.(s(k))) + a ( k -  1)(~.(s(q- lk)) - fi.(s(k))) = O.fi.(s(k)), 

wi th  

(14) 

a(k) (1 - ak)(1  - bk)(1  - ck)(1 - dk) 
= (1 - k2)(1 - qk 2) , O, = (q-"  - 1)(1 - abcdq " - 1 )  

T h e  big q-Jacobi polynomials were  i n t r o d u c e d  in [1] .  H e r e  we  a d o p t  the  n o r m a l i z a t i o n  g i v e n  in 
[10]  (see a l so  [9, p. 58]):  

~, (k ;a ,b ,c ,d[q)  = adP2 ( q - " ' q " + l a b ' q a k / c  ) 
qa, - qad/c q; q " 

T h e i r  m o n i c  v e r s i o n  p.(k; a, b, c, d] q) (in s h o r t  p.(k)) sat isf ies  t he  r e c u r r e n c e  r e l a t i o n  

p.(k)  = ( k -  b . ) p . - l ( k ) -  a . - x p . - 2 ( k ) ,  n >>. 1, 

a n 

wi th  

q " - l ( 1  - q")(1 - q"a)(1 - q"b)(1 - q"ab)(d + q"bc)(c + qnad) 
( 1  - -  q 2 . - l a b ) (  1 _ q2nab)2(1 _ qZ.+ lab ) 

qZ~n- 1)(1 + q)(ab(d -- c) + ad - bc) + q " - a ( 1  + abq2"- l ) (c  - d + bc - ad) 
(15) 

b.  = (1 - abq2")(1 - abq 2"~ 2) 
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and the following second-order q-difference equation 

a ( k ) ( p . ( q k )  - p d k ) )  + b ( k ) ( p . ( q - l k  - p . ( k ) )  = O.p . (k ) ,  

with 

(akq  - c ) (bkq  + d) (k - c) (k  + d) 
a ( k )  = k2 q , b ( k )  = k2 , 

0, = (q-" -- 1)(1 -- abq"+t ) .  

With these preliminaries, we can now prove Theorem 3 stated in the Introduction. 

P r o o f  of Theorem 3. We consider the two cases: 
Case  a: e = 0 and c = 1. Substituting 

u = x t ( q  - 1) 2, v (q - 1)(xxq - 1) 
9 

q 

bt  x2 + x 3 q  
- 1 - qZx 1' 

(q - -  1 ) ( X t X 3 q  4 -Jr- 2 X l X z q  3 q- ( X I X  2 -~- x 3 ) q  2 + 2 x 3 q  + X2) 
r ~  

( X l q  2 - -  1)(xtq 4 - 1) 

(1 - q ) ( x 2 x 4 q  4 - -  X 1 X z x 3 q  3 - ( x l ( x  2 -F 2 x 4 )  + x 2 ) q  2 - x 2 x 3 q  q- x 4 )  
a I 

(1 - -  x t q 2 ) 2 ( l  - x t q  3) 

with xx = ab, x2 = c - d, x3 = ad - be, x4  = cd, into (12) and (13) leads to the recursion relation 
(15) satisfied by the monic big q-Jacobi polynomials. The above formulas show that the set of 
parameters v /u  (or u/v),  b t ,  r and a t  is equ iva len t  to the  set  o f  p a r a m e t e r s  x t ,  x2 ,  x3 and x4 .  Since the 
big q-Jacobi polynomials depend only on Xl, x2, x3 and x4, this case corresponds exactly to the big 
q-Jacobi polynomials. 

1 
C a s e  b: e = l and c = 5 .  Let x ~ = a + b + c + d ,  x 2 = a b + a c + a d + b c + b d + c d ,  x3 = 

abe  + abd + accl + bed and x4 = abed  be the symmetric functions of a, b, c, d. Then, substituting 

(q - 1)2x4 (1 - q)(q  - x4) 
U - -  q2  ' V = q2  ' 

b l  _ x 3  - -  x t  

2 ( X 4  - -  1 ) '  

(1 - q) 

2 ( X 4 -  1 ) ( x 4 q  2 - -  1) 
[x3(2 + (1 + x4)q) - xt(1 + x4(2q + 1))], 

(1 - q) (x  3 - x a x  2 + ( x l x 3  - x 4 ) x 4  - (x  2 - 2 x 2 ) x 4  - x4  - x 2 + X t X 3  - -  X2  q- 1) 

ax = 4(1 - -  X 4 ) 2 ( 1  - -  x 4 q  ) ' 

into (12) and (13) leads to the recursion relations of the monic Askey-Wilson polynomials, 
that is a. = A , - 1 C ,  and b. = ½a + (1/2a) - (A._I + C , - t ) ,  with A . , C ,  given by (14). Since the 
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Askey-Wilson polynomials just depend on the symmetric functions of a, b, c, d and one can solve the 
above relations uniquely for xl ,  x2, x3 and x4 in terms of v/u (or u/v), bl ,  r and a~, the proof of the 
theorem is complete. [] 

5. Some examples of order 4 

The results above show that as long as one considers orthogonal polynomials satisfying 
second-order q-difference equations, one cannot get away from the big q-Jacobi and the 
Askey-Wilson polynomials, i.e., the "classical orthogonal polynomials" in the sense of [1]. 
In the case q = 1, Krall [11] found orthogonal polynomials satisfying fourth-order differential 
equations. In [5] we have shown that his examples can be obtained by application of the 
"Darboux process" to some (carefully chosen) classical orthogonal polynomials. Here we exhibit 
some examples of orthogonal polynomials satisfying fourth-order q-difference equations produced 
by an application of the same method and which reduce as q ~ 1 to some of the examples found 
by Krall. 

First we recall a convenient formulation of the Darboux process in the context of semi-infinite 
tridiagonal matrices. 

Consider the tridiagonal matrix L defined in (6), and attempt to factorize it as a product of an 
upper and lower tridiagonal matrix 

L = A . B ,  (16) 

where the first factor is 

A = 

~1 1 

0 ~2 
0 

1 

(X 3 l 

0 ~4 1 
• . . " . . " ° •  

and the second one is 

B = 

1 0 

/31  1 0 
1 0 

f13 1 0 
" . •  " . .  

Other ways of "normalizing" the matrices L, A and B are possible of course. The convention 
adopted here leads to monic orthogonal polynomials• 

Eq. (16) amounts to 

b , = ~ , + / 3 , ,  a ,=~Z,+lfl , ,  n = 1 , 2  . . . .  , 
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f rom which we see that  one can solve recursively for/71, a2,/?2,  a3,/?3,  " " ,  in terms of  cq and  the 
entries of  L: 

a l  
fll = bl  - -  a l ,  a2 - -  b l  - -  al '  

a l  a 2  
= , a3 = , etc. /72 b2 bl - al  al  

b2 
b I - -  a I 

The crucial  obse rva t ion  here is tha t  al  is a free parameter. Suppose  n o w  we form the p roduc t  in the 
reversed order,  

L = B . A ,  

then /2  is a new t r id iagonal  matr ix  of  the form (6). We  shall call/7, the Darboux transform of L. Wi th  
the conven t ion  tha t /?o  = 0, its entries ~'n, 8, are given by: 

~ , = / ? , - l + a , = b , + / ? n - 1 - / ? , ,  n = 1,2, . . . ,  

n 

81 = al /?x ,  an = /?nan  = a n - 1  / ?n - l '  n = 2 ,3 ,  . . . ,  

W e  are now ready  to tackle two  examples  to il lustrate the method.  

(17) 

5.1. The q-Krall Laguerre polynomials 

The q-Laguerre polynomials are defined in [-9] by  

1 ) 
- - -  q; . Lp)(x;q) (q;q),  24)1 '0 x q,+~+x 

They  satisfy the recurrence relat ion 

- q2"+~+lxLp)(x;q) = (1 - q,+ 1~.(~),~, + 1 (x;q) -- [(1 _ q ,+ l )  + q(1 - q"+~)]Lp)(x;q) 

+ q(1 -- qn+')L~)_l(x;q), 

and  the q-difference equa t ion  

1 
q'(1 + x)(L~)(qx;  q) _ L~)(x; q)) + _ (L~)(x/q; q) _ L(~)(x; q)) = q,(q,  _ 1)L~,)(x; q). 

x X 

Put t ing  x = (1 - q)k, we obta in  that  the monic  q-Laguerre  po lynomia l s  p~')(k) satisfy 

kp~ ~') = ..(~) V n + l  + bn+ lP (~) + anP~)- l, 

with 

[n] [n + a] [n] + q [n - 1 + a]  
a n  - -  q4n+2a-1 ' bn - - - -  q 2 n + e - 1  
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Consider now the case ~ = 1 and pick 

[R] 
~1 [1 + R] 

We obtain for the factorization of L (see (16)): 

[n] ( [R + 13 + q[n  - 2]) 
an q2n- l ( [R + 1] + q[n  - 1])' 

En]([R + 12 + qEn]) 
fl" q2"([R + 1] + q [ n  - 1]) 

Now permuting the factors in (16) gives/~ = B . A ,  with entries 5, and ~, computed according to 
(17). When q ~ 1, these can be seen to be precisely the coefficients of the recursion relations for the 
monic Kral l -Laguerre  polynomials (see [5, 11]). One can see that the (monic) polynomials defined 
from the/S alluded to above satisfy the following fourth-order q-difference equation: 

+2  

A j ( k ) ( p . ( q J k )  - p . ( k ) )  = O.p.(k) ,  (18) 
j = - 2  

with 

A 2 ( k )  ( k q - k - 1 ) ( k q ( q - 1 ) -  l)  
k2(q + 1)(q -- 1) 4 ' 

(kq - k - 1)(kqB(q R - 1) - kq(q  R+x - 1) + q2 + 1) 
A ,  (k) = k2q(  q _ 1) 4 , 

kq2(q R - 1) - k(q  R+I - 1) + q2 + 1 
A _ , ( k )  = - kZ(q _ 1) 4 , 

q2 

A-2(k)  = k 2 ( q _  1)4( q + 1)' 

O, = [n-] ( I n + I ]  ) q +--~f- + q [ R ]  . 

An appropriate limit of (18) gives the equation found by Krall [11]. 

5.2. The q-Kral l  Jacob i  po l ynomia l s  

The monic little q -Jacobi  po lynomia l s  p,(k;  a, b fq) can be defined in terms of the monic big 
q-Jacobi polynomials p,(k;  a, b, c, d I q) by the formula (see [10]) 

p,(k;  a, b I q) = p,(k;  b, a, 1, 01 q). 

They satisfy the recursion relation given by 

a, = A , _  1 Cn, b.  = A . _  1 + Cn-  1, 
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with 

A. = q" 
(1 -- aq"+l)(1 -- abq "+1) 

(1 - abq2"+ l )(1 - -  a b q Z n +  2)  ' 

(1 - -  q " ) ( 1  - bq") 
C. = aq" (1 - abq2")(1 - abq2"+ l)" 

Consider  now the special case 

a = q, b = qA ,  

and define 

[ R ]  

~1 = [A + 2] [R + A + 1]" 

We obtain for the factorization of L: 

q"[n][n  + A]'c(n -- 1) 

~" = [2n + A ] [ 2 n  + A - 1]z(n)' 

q " - X [ n ] [ n  + A ] v ( n  + 1) 
f t , =  [2n + A] [2n + A + 1] z(n)' 

with 

z(n) = qR[n - 1][n + A] + q" -X[n  + A + R] ,  

which defines the Darboux  transform E of L via (17). When q ~ 1, the resulting formula for 
E reduces to the coefficients of the recursion relations of the Kral l -Jacobi  polynomials  (see [5, 11]). 
One can see that  the (monic) polynomials  defined from E satisfy the fourth-order  q-difference 
equat ion of the type (18) with 

(kq A+I - 1 ) ( k q  A + 2  - 1) 
A2(k) = q2a+ 3 k 2  ' 

(q + 1)(kqA+~ _ 1)[k(qR+a+z + qR+l + q2 _ q) _ qR(1 + q2)] 
Aa(k)  = - -  q R +  Z a + 4 k  2 , 

A_~(k )  = - (q + 1)(k - 1)[k(q R+A+' + qR + q _ 1) -- qR(l + q2)] 
qR+2A+3k2 

(k - 1)(k - q) 
A - 2 ( k ) =  q2(A+l)k 2 , 

On = q-(2n+2A+R+3)(qn __ 1)(qn+A+l __ 1) 

X (qR+2n+A+2 __ qR+n+A+l __ qR+n .~_ qR+l  __ qn+2 "F qn). 

An appropr ia te  limit of this equat ion gives back the equat ion found by Krall [11]. 



114 F.A. Griinbaum, L. Haine/Journal of Computational and Applied Mathematics 68 (1996) 103-114 

Remark. We thank Mourad Ismail for pointing out that our two examples of orthogonal 
polynomials satisfying fourth-order q-difference equations are built by starting from special, or 
limiting, instances of the little q-Jacobi polynomials. It is a challenge to find examples built from the 
big q-Jacobi polynomials or from the Askey-Wilson polynomials. 
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