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Abstract

We give an algorithmic derivation of the Laguerre-Freud equations for the recurrence coefficients
Br and v, of the Laguerre-Hahn orthogonal polynomials on special nonuniform lattices. This algo-
rithm is the most general one since it is valid for the Laguerre-Hahn orthogonal polynomials of any
class k, on the special nonuniform lattices including the continuous (limiting cases), linear, g-linear
and the g-nonlinear ones. Moreover, the algorithm allows to deduce an upper bound for the order of
the equations in 8, and -y, which is respectively 2k + 2 and 2k + 3 when k is even, or 2k + 3 and
2k + 2 when k is odd. Finally, as applications, we discuss explicitly these equations for £ = 1 in the
continuous and linear cases, and k£ = 2 in the continuous symetric one.
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1 Introduction

In [19], A. P. Magnus introduced a class of polynomialsorthogonal with respect to a positive measure
u(x), consisting of those for which the corresponding Stieltjes function S
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satisfies a general Ricatti equation
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Here Ag, By, Co and Dy are polynomials of degree maximum k¥ + 2,k + 2, k+ 1 and &k (k € Z,),
respectively, and z(s) is a complex-valued discrete variable function satisfying the relation

F(m(s),w(s—%)) :F(m(s),m(s—{—%)) —0, s €y, 3)

where F' is a two variables quadratic polynomial
F(z,y) =az®>+2bxy+cy? +2dz +2ey+ f 4)
with a, b, ¢, d, e, f € C.
From (3) and (4) it follows that

o (s+3) = Pal) + VAR, 2 (s - ) = Pla(s) - VOGE, )

where P and () are polynomials of degree at most 1 and 2 respectively.
From (5) one derives the following most important canonical forms for z(s) by order of increasing
complexity:
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respectively.
This class of orthogonal polynomials is called Laguerre-Hahn (LH) orthogonal polynomials (OP) of
class k on special nonuniform lattices [19] (to mean here the discrete set of points (z(s),z (s — 3)) , (z(s),z (s +3)), s €
Z ., lying on the conic F(z,y) = 0).
According to that the form of z(s) is given by (6)-(9), one distinguishes the continuous LH polynomials
and the LH polynomials on linear (uniform), g-linear and g-nonlinear lattices respectively. Clearly, in

the continuous case, corresponding to (6), the Riccati equation (2) reads [18] (see also [6])
d
Ao(z) %So(a:) = By(z) S§(z) + Co(z) So(z) + Do(x). (11)

The class of LH polynomials contains as particular case the important subclass of the semi-classical
orthogonal polynomials when By = 0 [19, 21, 22, 23].

The Laguerre-Hahn orthogonal polynomials on the special nonuniform lattices appear to be a natural
generalization of the “classical” orthogonal polynomials (from the “very classical” orthogonal polynomials
-Hermitte, Laguerre and Jacobi - up to the Askey-Wilson polynomials[1]). More precisely, when By = 0
and k = 0, the LH polynomials are essentially the polynomials introduced by R. Askey and J. Wilson
[1] and their particular limiting cases in the Nikiforov-Suslov-Uvarov tableau [27]: Classical orthogonal
polynomials of continuous, discrete and ¢-discrete variables.

Nowadays most of known orthogonal polynomials are classified in the LH group. Let us note that
despite the undeniable importance of this class of orthogonal polynomials, no much analytic properties
are known for them.

Among known properties, we can firstly state the invariance of the class in rapport with the r-
association operation as was proved by A.P. Magnus [19]. Difference-recurrence relations for the LH
polynomials were also derived in [19].



The fourth-order difference equation (FODE) satisfied by the polynomials of the LH class and the
polynomials r-associated to them can be found in [2] (see also [9, 10] for the particular cases z(s) = s
and z(s) = ¢°). Also, the factorization and the solution of the fourth-order differential, difference and
g-difference equations satisfied by the LH orthogonal polynomials obtained by the association operation
or the finite modification of the recurrence coefficients of classical orthogonal polynomials were recently
obtained [11, 13, 14].

The so-called Laguerre-Freud (LF) equations for the recurrence coefficients (that is two nonlinear
difference equations for those coefficients), were given for the semi-classical orthogonal polynomials of
class one in [5, 7, 8] for continuous, discrete and g-discrete variables respectively. Also, these equations
for the LH orthogonal polynomials were given in [24] for £k = 0 and for continuous variable, and more
recently in [2] for k =1, z(s) = s.

As far as we know, all contributions in deriving the LF equations for the LH polynomials, existing in
the litterature, are limited to the cases k = 1 and z(s) = z(0), z(s) = s or z(s) = ¢°.

In this work, we derive the LF equations for the LH orthogonal polynomials in the most general cases
that is for k general and x(s) general. More precisely, we give an algorithm which allows to derive the
equations for any nonnegative integer k and any function z(s) satisfying (3) and (5) (section 2) and then
we deduce an upper bound for the order of these equations and give illustrative applications (section 3).

The Laguerre-Freud equations provide a systematic way to compute recursively the recurrence co-
efficients and can be used to analyze the asymptotic behaviour of these coefficients [15, 29]. From the
asymptotic behaviour of these coefficients, one can deduce the asymptotic zero distribution of the cor-
responding orthogonal polynomials using for example results from [17] and can also obtain information
about the largest zero of these polynomials.

2 The Laguerre-Freud equations

Let {P,(z)} be a family of orthogonal polynomials. They satisfy a three-term recurrence relation
z Pp(2) = any1 Ppr1(x) + by Po(x) + ap Pr—1(x), n > 1, P_1(z) =0, Py(z) =1, (12)

where b, and a,, are complex numbers with a, #0,n > 1.
For the corresponding monic orthogonal polynomials (ie. P,(z) = 2™ +...), the recurrence relation is

Z'Pn(x) = Pn-i-l(m) + Bn ﬁn(x) +Tn 15”_1(1'), n>1, ]3_1(1') =0, PO('T) =1, (13)
where 8, = bn, v, = a2 and P,(z) = aj ay ... a, Pa(z).

We assume that {P,(z)} belongs to the LH class, that is, its formal Stieltjes function S(z) given in

(1) satisfies (2). The family of polynomials r-associated to {P,(z)} is the family denoted by {PT(LT) ()}
and satisfying

2 PV (@) = anyrys PYY (@) + bppr PO (@) + angr Py (2), n> 1, PR (2) =0, BV (2) =1, (14)

The polynomials {PT(LT) (z)}, according to the Favard’s Theorem are orthogonal. Let S,.(z) be it’s corre-

sponding Stieltjes function. One verifies easily that {PT(LT) (x)} is of LH class if {P,(z)} is. In fact, let’s
first recall that {P,(x)} which is the O-sssociated of {P,(z)} is a LH polynomials family. Next we assume

that for given nonnegative integer r, {P,Sf)(w)} is a LH polynomials family; therefore, S, (z) satisfies

a2l ) =S el ma)) g, (+(s+3)) s (= (s-3)) @
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where A,., B,, C, and D, are polynomials in z of degree maximum k+ 2, k+ 2, k+ 1 and k respectively,
for a fixed nonnegative integer k.
Use of the relation

+ Cr(z(s))

+ Dr((s)),

1
& —br — a7,y Sri1(z)’

S,-(.’L') =

r >0, (16)



as well as (5) transforms the Riccati difference equation (15) for S,.(z) into a Riccati difference equation
for Spy1(z)

Arpa(a(e Tl b2 =Sl 20)) _ p )50 («(s+3)) sn(e(s-3)) v

z(s+3)-2(s—3) 2
+ Cr-{—l (.’L‘(S)) ST+1 (1‘. (S + %)) ;.ST-i-l (iE (8 - %)) + Dr—i—l(-T(s)),
with
Aryi(z) = Ar(z) —2Q(z) Dy(2); (18)
Briile) = ay Duo) (19)
Cr1(z) = —Ci(z) —2(P(z) — Br) Dy (2); (20)
a1 Dra(z) = An(z) + (P(2) = Br) Cr(2) + a7 Droa(z) + (P(2) = Br)? = Q(2)) Dr(2), r > 1.(21)

Notice that the previous equation for r = 0 reads
ai Dy(z) = Ao(z) + (P(x) — fo) Co(x) + Bo(z) + ((P(x) — fo)* — Q()) Do (). (22)

From (18)-(21), it follows that, as A,, B, C, and D, the functions A,41, Byy1, Cry1 and D,y are
polynomials in x of degree at most k + 2, k + 2, k + 1 and k respectively, which proves that the {Pr(f)}
are polynomials of the Laguerre-Hahn type.

The equations (18)-(21) (obtained at first in [19]) which constitute an iteration relation for the asso-
ciation operation, play a central role in the LH theory. Starting from them, one derives the difference-
recurrence relations for the LH polynomials [19] and then the fourth-order difference equation that they
satisfy [2]. Interesting interconnection between the LH polynomials and the factorization method are
also deduced from (18)-(21) [3].

In the following, we analyse the previous equations in order to derive the two nonlinear difference
equations for 8, and v, (the Laguere-Freud equations).

From now on, we will use the following notations:

Br = by, v = af. (23)

Moreover, for clarity, we writte n instead of r since they both take the same values: 1, 2, 3, .... This
allows to encounter the usual indice representation for the recurrence coefficients.

2.1 Difference equations for the coefficients of A,,, C, and D,

First writte

k+2 k+1 k
Ap(z) = Zaz‘(") ', Cu(x) = Zci(”) ', Dp(z) = Zdi(n) a', P(z) = prz+po, Q(x) = g2 2°+q1 T+go,
=0 =0 i=0

(24)
in equations (18), (20) and (21) respectively. Then we collect the coefficients of the monomials z* in
each equation and get respectively three families of difference equations (A¥)o<i<k+2, (CF)o<i<k+1 and
(DF)o<i<k+2

Af : ai(n—}— ].) — a,(n) + 2q di_z(n) +2q¢ di_l(n) + 2qo d,(n) =0,0<:< k+ 2; (25)
C: ciln+1) +c¢i(n) +2pidii(n) +2(po — Bn) di(n) =0, 0<i <k+1; (26)

Dj : ai(n) +prci1(n) + (po — Bn) ¢i(n) = Yap1 di(n + 1) + yn di(n — 1) + (7 — ¢2) di 2(n)
+(2p1po —2p1 Bn — 1) di—1(n) + ((po — Bn)> — @) di(n) =0, 0<i < k+2. (27



Here, it is understood that
ciin)=0fori<Oori>k+1; andd;(n) =0 fori <Oori > k. (28)

The equations (25)-(27) form a system of 3k + 8 equations in 3k + 8 unknowns which are the 3k + 6
coefficients of A,(z), Cp(z) and D,(x) and the recurrence coefficients 8, and ~,. The leading idea
consists to eliminate successively the first 3 k£ + 6 unknowns (coefficients of 4,,(z), Cy(z) and D,(z)) so
that the remaining two equations, containing only the 3, and 7,, will provide the desired Laguerre-Freud
equations. But beside the algebraic character of the equations, we need to consider also the difference
one (in n and 7). The clue of the solution carries in a permanent combination of techniques of the both
kinds.

2.2 Elimination of the ¢; and ¢;

In the first step, we take the difference derivative of (27) (to mean here: substract (27) from the equation
obtained from it by replacing n by n+1) and use (25) to eliminate a; and next (26) to eliminate ¢;(n+1)
and ¢;_1(n +1)

—(=2po + Bny1 + Br) ci(n) + 2p1 ¢i1(n)

Ynt1+ 0 + 310> — 40 B + B’ — 2 Bnt1Po + 2 Bt Bn) di(n) + Y di(n — 1)

P0” +2Bnt1P0 = Brg1” + @0 — Yns1) di(n + 1) + Vg2 di(n + 2) (29)
6p1po —4p1 B+ q1 — 2p1 Bni1) di—1(n) + (=2p1po + 2p1 But1 + @) di—1(n + 1)

+ (31 + @) di2(n) + (=p1” + g2) di 2(n+1) =0.

+ (
+
+(

In the second step, we solve the previous equation in term of ¢;(n) and replace the expression of ¢;(n)
obtained in (26) for n and n + 1. We then get an equation without ¢;(n) but containing c¢;_1(n) and
¢i—1(n + 1). Next, we eliminate the term ¢;_1(n + 1) in this equation by using (26) for i — 1, and get an
equation which can be written as

(Brnt2 — Bn) ci—1(n) = e;(n), (30)

where e;(n) is function of the By, v, and the d;.
Finally, using the previous equation for 7 and ¢ + 1 in (29), we get the following equations without
the ¢; (after some computations with Maple 8 [26]),

EF°: —(2p0 = Bat1 — Bn) Ynts dig1 (n +3)
+(=2po + Bnt2 + Bnt1) Yndiy1(n — 1) + (2942 Po
— Ynt2 Brt1 — Ynt2 B + €0 Bn + Brt2 Bnt1” + 2%¥nt1P0 — Ynt1 Brtz — Ynt1 Bt1 — 4o Po
+ 40 Btz + 20 Bnt1 + 3D0” Btz + 6P0” Brt1 + 3P0 Brn — 2 Bnt1” Do + Brt1” Bn
— 4 Bny1P0 Btz + 2 Bnt1 B Btz — 410> — 2P0 B Bnt2 — 40 Br Bnt1)dir1(n + 1) +
(2P0 — Po® Brt1 — Po” Brn — 410” Brtz + 2 Brt1 Po Bnt2 + 2P0 B Batz + 2 Bnta’ Po
— Brt2” Brst — Brr2’ Brn — 200 Po + G0 Brs1 + Q0 B — V2 Bn + Y42 Bry2)dipr (n + 2) +
(—Vn+1 Bnt2 — 240P0 + 40 Bnt2 + 4o Bnt1 — Po> But2 — Po” Brt1 — 40’ Br + 2 Bn’ Po
— Bn® Bnt2 — B’ Brt1 + Va1 B + 2P0 + 20 B Brtz + 2P0 Br Brt1)dit1 (n)
= 2p1 Yntsdi(n +3) + (6p1po” — 8P1Po Brn — 2P1 Bt Po — 2P1 Po Btz — 2¢1 Po
+ @1 Batt +2P1 Bn Brrz — 2p1 G0 + 21 B’ + ¢1 Bt + 21 Butt Br)di(n)
— 29, prdi(n — 1) + (=121 po® + 6 p1 Po Bn+2 + 121 Bnt1 Po + 61 1o B — 41 Do (31)
+2q1 Bnt1 — 2p1 Bn Bur2 — 41 Buy1 Bn + @1 Brnt2 — 4P1 Bat1 Bnya + 2P1 Yny2 — 4P1 Qo
—=2p1 Brg1” + 2P1 Yng1 + @1 Br)di(n + 1) + (6 p1 po® — 21 Bntt Po — 21 o Brn — 8P1 Do Bt
—2q1 po + q1 Brs1 + 21 Bn Brt2 + 21 Brt1 Brrz — 2P1 Qo + 21 Bry2” + q1 Br)di(n + 2)
+(6p1°Po —2¢2P0 — P12 Bt —4P1° Btz + @2 B + @2 Bat1 — 2p1 @1 — p1° Br) dic1(n + 2)
+(6p1>Po—2q2P0 — 2P1 @1 — P1° Brtr — P1° Brg2 + @2 Byt — 4917 B + @2 Br2) dim1(n)



+(—4q2p0 —12p1° po + 6 p1” Bry1 + 262 Brg1 + @2 Bn + 3917 B — 4p1 @1 + 3 P17 Bry2
+ @ Bni2)dici(n+ 1) —2(—pi® + @) prdi—2(n + 2) = 2(—p1® + @) p1 di—2(n)
—4(p1® + @) p1 di—2(n + 1).

The previous equation, which we call Ez’C 0 js valid for 0 < i < k + 2 and contains only the terms

IBTU /8n+17 /Bn+2: Yn> Yn+1; Yn+2; Yn+3, di—2(n)7 d’i—Q(n + ]‘)5 di—2(n + 2)’
d,-,l(n), di_1 (n + 1), di,l(n + 2), d,(n — 1), dz(n), dz(n + 1), d,(n + 2), dl(n + 3),
dit1(n —1), dig1(n), dipr(n + 1), dipr(n + 2), dipa(n + 3).

When i takes the values 0, 1,..., k+ 2 in Ez’C ’0, we get k + 3 equations for k 4+ 3 unknowns which are
Bn, ¥n and the d;(n), 0 < j < k.

2.3 Derivation of the Laguerre-Freud equations for £ =1

We write and analyse the equations Ez1 ¥ for 0 < i < 3. Taking k¥ = 1 in (31) and taking into account
(28), equations E;*° for 0 < i < 3 read

E;’O (PP @) di(n+2) = 2(p® + @) di(n+1) + (p1® — ¢2) di(n); (32)

Ey%: (6p1%po —2q2p0 — p1° Brs1 — 4p1” Btz + @ Bt — P17 B + @2 B — 21 q1) di(n + 2)
+(6p1>po — 2¢2P0 — P1” Bnt1 + @2 Brg1 — P1° Btz + @ Bnyz — 4p1” Bn — 2p1 qu)d1 (n)
+(—4g2po —12p1° po — 4p1 1 + 31> Brs2 + @ Btz + 3017 B (33)
+2¢2 Brt1 + @2 Bn + 6p1” Bug1)di(n + 1) — 2(—p1® + ¢2) prdo(n + 2)

—2(=p1® + @) p1 do(n) — 4 (91 + g2) p1 do(n + 1);

E®: —2p1Yaysdi(n+3) + (6p1p0% — 2p1 Po Btz — 8100 B — 201 Po — 21 Brs1 Po
+2p1 B’ + 21 Br Brtz + ¢1 Brt2 + €1 Brt1 — 2P1 @o + 2P1 Bt Br)di(n)
—2p1Yndi(n—1) + (=12 p1 po® + 6 p1 Po B2 + 61 Po Bn — 441 Po
+12p1 Brt1Po — 291 Brt1” — 2P1 Br Bnt2 + @1 Br — 41 Brt1 Bt
+2p1 Ynt1 + @1 B2 + 21 Bry1 + 2P1 Yotz — 4P1 o — 41 But1 Bn)di(n + 1) (34)
+ (61 po® — 8P1 Do Btz — 2q1 Po — 2P1 Bnt1Po — 2P1Po B
+ @1 Brs1 + @1 B — 2P1 G0 + 21 Bt Btz + 2P1 B Btz + 2P1 By’ )di(n + 2)
+(6p1°po — 2q2P0 — P1” B+t — 4p1” Burz + @2 Bnt1 — P1” B + @2 Bn — 2p1 q1)do(n + 2)
+ (61> Po —2q2P0 — P1° Brt1 + @2 Brt1 — P1” Btz + @2 Btz — 4p1” Bn — 21 q1)do(n)
+(—4g2p0 — 12p1° po — 4p1 @1 + 3p1” Bryz + @2 Bryz + 3p1” Bn
+2¢2 Bnt1 + @ B + 6012 But1)do(n + 1);

Ey®: —vnt3 (2P0 — Batt — Bn) di(n + 3) + ¥n (2P0 + Bni2 + Bnt1) di(n — 1)
+(_2p0 Bn Brt2 + 2 Bnt1 Bn Bnt2 + ﬂn-ﬁ-lz Bn—2 IBn-i-l2 Po — 4 Bnt1Po Bnt2
—4p0° + 29n41P0 — Ynt1 Brtz — Yn+1 Bnt1 — 40 Po + 90 Btz + 2 Qo Bt
+ 3P0 Brz + 6P0° Brs1 + 3P0” B — 4P0 B Brt1 — Ynt2 Br1 + Qo B
+ Btz Brt1” = Ynt2 Bn + 2¥nt2 po)di(n + 1) + (2po® = po” Brs1 — Po” Bn (35)
—4p0° Bnt2 + 2 Brt1Po Btz + 2P0 B Btz + 2 Bry2” Do — By’ Bnta
— Brt2” Bn — 200 Po + Qo Brt1 + Q0 Br — Vn+2 Br + Ynt2 Bu2)di (n + 2)



+ (2P0 Br Btz + Ynt1 Br — B’ Brt1 + 2P0 — Vnt1 Bntz — 2do Po + qo B2
+ G0 Bnt1 — Po° Brrz — Po® Bntr — 4p0” Bn + 2 Bn’ Po — Bn’ Buta

+ 2P0 Br Brt1)di (n) — 2p1 Yngs do(n + 3) + (6p1 po® — 21 Po Bry2

—8P1D0 B — 21 Po — 291 BP0 + 291 Bn” + 201 B Btz + @1 Brto

+ a1 Bt — 2P1 o + 21 Brtt Br)do(n) — 2p1 Y do(n — 1) + (=12 py po®
+6p1P0 Btz + 691 P Bn — 4q1 o + 121 Bri1 Po — 2P1 Bt

—2p1 Bn Btz + @1 Bn — 41 Brt1 B2 + 2P1 Va1 + @1 Brt2 + 2¢1 By

+ 21 Ynt2 — 4P1qo — 41 Brs1 Bn)do(n + 1) + (6p1 po” — 8p1 Po B2
—2q1po —2p1 Bnt+1Po — 2p1Po Brn + @1 Br1 + @1 B — 21 Qo

+2p1 Brt1 Btz + 291 B Brgz + 21 Bnta’)do(n + 2).

2.3.1 Elimination of d;(n)

From the expressions of polynomials P and @ (see (10)), one remarks that (32) determines uniquely the
coefficient dj(n) in terms of the two initial values d; (0) and d;(1). The term d;(1) is obtained by taking
i=1,n=0in (27) and using (22) and (23)
mdi(1) = ai(0) +b1(0) + p1 co(0) + (Bo — Bo) €1 (0) + ((po — Bo)* — o) d1(0) (36)
+(2p1po — 2p1 Bo — q1) do(0).
Remark 1 In the following, we use the notation

Fz'k,s (n, {dr(n +j)}j=u1,v1;r:i—2,i+1> {/8n+j}j=uz,v2> {'7n+j}j=us,vs)7 0<s<20<i<k+2

to mean that Fik’s is a function of n and the variables d,(n+j), u1 < j <y, 1—=2<r <i+1; Bpyj, uz <
J <2, Yntj, us < § < vz, where uy, us, us, vi, v2 and vz are well specified integers. Also, the Fik’s 18
supposed linear in the variables d.(n+7), u1 <j<wv,i—2<r<i+ 1.

2.3.2 Elimination of dy(n — 1) and dy(n + 3)

Equation (35) contains the terms do(n — 1) and do(n + 3) which we would like to eliminate in order to
keep only n, n + 1 and n + 2 as arguments of dy. To do so, we process as follows. Equation (33) can be
written as (assuming that d; (n) is known)

T(do(n)) = F,"° (n, {Bu+5}i=0,2) (37)
where T is the second-order difference operator acting on a function f(n) as
T(f(n)) = (i — ¢2) f(n +2) =2 (P + @) f(n + 1) + (P} — @2) f(n). (38)

From (37), we express do(n — 1) and do(n + 3) in terms of the §,, and do(n + j), j = 0,1,2 (by replacing
n by n — 1 and n + 1 respectively in (37))

do(n—1) = Fy" (n,{do(n +j)}j=0,1, {Bnti}ti=—11); (39)

do(n+3) = Fy*(n,{do(n+5)}j=1,2, {Brts}i=1.3) - (40)
Equation (34) can be written as

Fy (n, {do(n + 5)}j=0,2, {Bntj}ti=0.2> {¥nti}i=o0) = 0, (41)
and (35) as

Fy (n, {do(n + j)}j=—1,3, {Bntiti=o2s {nti}tizo) = 0. (42)

The previous equation contains do(n — 1) and do(n + 3), terms which we eliminate by puting (39) and
(40) in (42) and obtain

Ey® (n, {do(n + 5)}j=0.2> {Bnti}ti=18> {Tnts}i=0,3) = 0. (43)



2.3.3 Elimination of dy(n), do(n + 1) and dy(n + 2)

In the final step, to eliminate the variables dg(n), do(n+1) and dy(n+2) and obtain the desired Laguerre-
Freud, we process as follows. We writte equations (37), (41) and (43) respectively in the forms

f3(n)do(n+2) + ff(n) do(n + 1) + f5(n) do(n) = ga(n), (44)
f2(n)do(n+2) + fi (n) do(n + 1) + fo(n) do(n) = g1(n), (45)
f2(n) do(n +2) + f7(n) do(n + 1) + fg (n) do(n) = go(n), (46)
where f#(n) and g;(n) are functions of the variables {851 ;}j=—-1,3, {Vn+j}i=03-
Next, we solve the last three equations with respect to the unknowns do(n +14), j =0, 1, 2
do(n+2) = G2(n, {Bntj}i=—1.3 {Mn+s}i=03); (47)
do(n+1) = Gi(n {Bntjli=—1,3 {Ints}i=03); (48)
do(n) = Go(n, {Bntj}i=—1.3, {Imtiti=03). (49)
Finally comparison of (47) with (48), and (48) with (49) leads to the Laguerre-Freud equations for class

k=1:
Gir(n+ 1, {Bnyjti=04s {Vnysti=14) = Go(n, {Bnyjti=—13 {Vntiti=03); (50)
Go (n + 1, {Bn+tjti=04, {¥n+iti=14) = G1 (0, {Bn+jti=—1,3, {n+i}i=0,3)- (51)

Remark 2 From the two last equations and the above procedure, one remarks that the order of the
difference equations (50) and (51) are at most 5 and 4 for the variables B, and ~y, respectively.

2.4 Derivation of the Laguerre-Freud equations for generic &
2.4.1 Formalization of the difference equations Ef’o, 0<i<k+2

Taking into account (28), one remarks that equation (31) takes one of the five following forms:
Form1: i=k+2
k,

Bl s T(dk(n)) =0, (52)
where T is given by (38). Equation (52) is identical to (32); therefore, similarly to what was mentioned
in subsection 2.3.1, di(n) is uniquely determined in terms of the 1n1t1a1 values di(0) and di(1). The last
term being obtained by taking ¢ = k, n = 0 in (27) and using (22) and (23)

Y1 de(1) = ag(0) + bk(0) + p1 ck—1(0) + (po — Bo) e (0) + ((Po — Bo)* — qo) dk (0) (53)
+(2p1po — 2p1 Bo — q1) dk—1(0) + (PF — g2) dk—2(0).

Form 2: 1=k +1
E;’ffli T(dr—1(n)) = F:Jrol( s (Bni)i=0.2) 5 (54)

where T is given by (38). It should be nocited that we don’t mention dg(n) because it is supposed known.
Form 3: 2 <i <k

E°: T(di—2(n)) = (55)
FFO(n, {di 1(n + 5)Yj=02, {di(n+ ) }im 1.3, {dira(n+ ) }j= 1,3, Brtj)i=0,2, {Vnti}i=0.3) -
Form4: i=1
EY?: F0(n, {do(n +j)}j=o2, {di(n+ 5)}j=—1.3, {d2(n + 5)}j=—1,3, {Bnts}i=0.2, {¥nti}i=0.3)-

(56)
Form 5: i =0

Ey®: Fy®(n, {do(n +5)}je—1,3, {di(n+5)}ji=—1.3, {Bnts}izo,2s {Vnti}im03)- (57)



Remark 3 Equations (54), (55) for 2 <i <k, (56) and (57) constitute a system of k + 2 equations
for k + 2 unknowns which are d;(n), 0 <i <k —1 and B, and 7v,. Also, equations (55)-(57 contain the
terms d;(n + j) and diy1(n+j) for j = =1 or j =3, 0<i <k — 1. The next subsection is devoted at
eliminating these terms.

For illustration, below we give explicitly equations (54), and (55) for 7 = k.

EZP : (—6p1%po+2ap0 +2p1a1 + P12 Bat1 — @2 Bt + 112 Brga — @2 Briz + 4pi? Bn) di(n)
+(12p1®po +4q2p0 — 6 1% Brs1 — @2 Bry2 — @2 B — 22 By
+4p1 g1 —3p12 Bura — 3p12 Bn)dr(n + 1) (58)
+(—=6p1°po+2q2po +2p1 @1 + p1? Bn +401% Bryz — @2 Br1 + D17 Brgr — @2 Bn) di(n + 2)
—2(p® —g2)prdi—1(n) +4 (g2 + p1*) prdie—1(n+1) = 2(p1* — @) prdi—1(n + 2);

Ey®: (—=6p1po® +8p1po B +2p1 Brti Po + 2P1Po Brs2 + 201 Po — 21 Brr1 B + 2P1 do — €1 Bas
—2p1 B’ = @1 Brt1 — 291 B Brt2)d(n) + 27n prdr(n — 1) + (12 p1 po® — 6 p1 po Bry2
—12p1 But1Po +4q1Po — 61 P0 B — q1 B + 21 Brr1® — 241 Brr1 + 41 0
=21 Ynt1 + 21 B Bt + 41 Brvt Butz + 41 Brva Bn — @1 Braz — 2P1 Ynt2) (59)
dr(n+ 1) + (=6 p1po” + 8P1Po Bt + 21 Bnt1Po + 2P1 9o Bn + 261 Po — 21 B Bnta
— 1 B +2p1 a0 — 2P1 Brt2” — @ Brt1 — 291 Bt Bnt2)de(n + 2) + 2p1 Vg3 di(n + 3)
+(=6p1°po+2g2p0 +2p1 @1 + P1° Brat1 — @ Bt + 1 Brt2 — @2 Btz + 4017 By)

di—1(n) + (12p1* po +4g2p0 —6p1° Bt — @2 Bnva — @2 B — 2q2 Buyr + 41 @1

—3p1? Btz — 3p1° Bu)di—1(n+ 1) +

+(—6p1°po + 22 p0 +2p1 @1 + P17 B+ 4917 Bryz — @2 Br1 + D17 Brgr — @2 Bn)dr—1(n + 2)
—2(p)® — @) prdi—2(n) +4 (g2 + p1*) prde—2(n + 1)

—2(p1® — @2) prdp—2(n +2).

2.4.2 Elimination of d;(n — 1) and d;(n+3) for 0<i<k-—1

Step 1: Elimination of d;_;(n — 1) and di_1(n + 3)
Starting from (54), we express di—1 (n — 1) and dj—1 (n+ 3) in terms of the 8, and dx—_1(n+j), j =0,1,2
(by replacing n by n — 1 and n + 1 respectively in (54) )

dp—1(n—1) = F&Y (n,{dk—1(n + ) }jmo,15 {Brriti=—11); (60)
dp-1(n+3) = F;ffl (ny {dk+1(n + j) }i=1,2, {Bn+iti=13) -

Step 2: Elimination of dj_2(n — 1) and d_2(n + 3)
Equation (55) for i = k

T(dk—2(n)) = F° (n, {dk-1(n + §)}j=0,2, (Bns)i=0,2: {Yn+s}i=0,3) , (61)

contains no term d; with the arguments n — 1 or n + 3. Use of this equation with n replaced by n — 1
and n + 1 gives respectively

di a(n—1) = 62)
FPY (n, {dk—2(n + 5)}j=o,1, {dk—1(n + 5)}j=—1,1, {Bnts bim—1.1, {Vntitim—1.2);
dr—2(n+3) =

FY? (n, {dk—2(n + §)}j=1,2, {dk—1(n + §) }i=1,3, {Bnts}im1,35 {Vnts}im1,a) -



We eliminate the terms dy_;(n — 1) and di_1 (n + 3) in the previous equations using (60) and get

di—2(n—1)= (63)
EPY (n, {dp—2(n + 5)}j=o,1, {dk—1(n + 5) o1, {Bnsitim—1,15 {Vntstim—1,2) 3
dk (TL+ )

(n,{dk o(n + J) =12, {dr—1(n + 7) }i=1,3, {Bnri}i=1,3 {ntj}i=1,4) -

Step 3: Elimination of d;_3(n — 1) and dj_3(n + 3)
Equation (55) fori =k —1
T(dr-3(n)) = Fg (n, {dk-2(n + j)}jmo2, {dk-1(n + ) }j=-1,8, Buts)imo2 {¥ntiti=o8),  (64)

contains the terms dy_1(n — 1) and dx_1(n + 3) and is transformed using (60) into

T(dx—3(n)) = B (0, {di—a(n+ 5)}j=0,2, {dk—1(n + §)}j=0.2, (Brss)i=—1,3 {¥nss}j=03)-  (65)
In a similar way as in the step 2, we derive from the previous equation using (60) and (63)

dr—3(n—1) = (66)
FF M (ny {dk—s(n + ) Yj=o,1, {dk—2(n + j) }imo,t, {dk—1(n + ) }j=o,1, {Bntstim—2.2, {¥ntstiz=—12);
dr—3(n +3) =

FP% (n, {dk—3(n + §)}j=1,2, {dk—2(n + §)}jm1,2, {di—1(n + §)}i=1,2, {Bnti}i=04, {Vntitim1,4a) -

Step 4: Elimination of dj,_4(n — 1) and dj_4(n + 3)
Similar approach transforms equation (55) for ¢ = k — 2 into the equations

T(dk-a(n)) = EF°% (n, {de—s(n+j)}jzo2, {dr—2(n+j)}jzo2, {dk—1(n+ j)}j=0,2,
{Brtiti=—1,3 {In+iti=—1,4) 5 (67)

which used together with (60), (63) and (66) gives

di—a(n—1) = FF" (n,{dk—a(n + j)}j=0,1, {dr—3(n + j)}i=0,1, {dk—2(n + j)}j=0,1, {dk-1(n + j)}j=0,1,
{Butiti=—22,{Vnti}i=—23); (68)
di-s(n+3) = FP? (n,{de—a(n+j)}j=12, {dk-3(n + j)}j=12, {dr—2(n + j)}j=1,2, {di—1(n + j)}j=1,2,

{Bnriti=04, {ntiti=o5) -

Step 5: Elimination of d;(n — 1) and d;(n+ 3) for 0 <i <k —2
Repeating the process, we get from (31) two different generalizations:

First case:
For given integer [ satisying 1< [ < [%], where [z] means the integer part of z, we have

T(di—2:(n)) = Ff%, 0, {dr—ais1(n+ )} jm02, {di—2ir2(n+5)}jco2, {dr—2143(n+ §)}j=0,2,
{Brtiti=1—1140 {ntsti=1—1241) 5 (69)
and
d_2i(n—1) = F&y o (n, {dr—2i(n + ) }imoa {dr—2001(n + §)}imo.1, {dr-20r2(n + §)}i=o,1,
{dk—2143(n +j)}j=0,17 {/Bn-i-j}j:fl,la {'Yn-i-j}j:fl,l-i—l); (70)
di2i(n+3) = FP% 0 0, {deai(n+ ) Y=o {dieaira(n+ §) b2, {deoaira(n +§)}i=12,

{dk—2113(n + ) }i=1,2, {Bn+jti=2—t,24+1, {Vntiti=2-1,3+1) -
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Second case:
For given integer [ satisying 1 < I < [%51], we have

T(dx21-1(n) = Fpy g (0, {dkai(n+ §)}j=o2, {di2041(n + 5)}jm0.2, {dk2112(n+ §)}j=o,2,
{Brtiti=—t.241 {Vn+iti=1-1,241) 5 (71)
and
diaia(n—=1) = FPY 0 (n, {dk—aioa(n+ ) Y=o {de—21(n + ) }imo,1, {dk—2141(n + 5)}io,1,
{dk—2142(n + §) }i=o,1, {Bntiti=—1- 1141 {ntiti=—11+1); (72)
di2imi(n+3) = FY% 0 (0, {dee2ica(n+ §) b2 {dke2i(n + §) bimr2, {dk—2041(n+ ) }im1 2,

{dr—2142(n + j) }i=1,2, {Bn+i}i=1-1,3+1, {Vntiti=2-1,3+1) -

Step 6: Transformation of the equations Ef’o and Eg’o
Elimination of do(n + j), di(n + j) and da(n + j) for j = —1 or 5 = 3 in (56) and (57) using (70) and
(72) yields respectively (depending on the parity of k)

B (n, {do(n + j)}i=0.2, {di(n + j)}i=o0.2, {d2(n + J)}i=0.2, {Brritj= & ov s> {Vnritjza 2+2) =0;
(73)
RO (n, {do(n + j)}i=0,2, {di(n+5)}j=0,2, {Brts}tjm—x 2> {Intstj——x, 3+§) =0, (74)

for k even, and,

B (n {do(n +j)}i=02, {dr(n + J)}i=0,2, {da(n + ) }i=0,2, {Bnwi}jm_rsr oy o1, {’Yn+J}J—_k2;1,3+%) =0;
(75)

E§° (n, {do(n + ) }imoz2, {di(n+ i) }imo2s {Butibim 1 szt gpact, {ntshie szt gpama ) =0, (76)
for k odd.

Remark 4 After eliminating all d;(n — 1) and d;(n + 3), we obtain a system of k + 2 equations, namely
(54), (69) for 1 <1 < [E], (71) for 1 <1 < [k%] (78) and (74) for k even (or (75) and (76)
for k odd); for k + 2 unknowns which are d;(n),0 < i < k—1, 8, and ~y,. This system is linear in
din+7),0<j<20<i<k—1 (see Remark 1). Moreover, its order in B3, and vy, is ot most k + 2
and k + 3 respectively for k even, and k + 3 and k + 2 for k odd.

2.4.3 Elimination of d;(n+7),0<j<2,0<i<k-—1

In the first step, we rewrite equations (54), (69) for 1 <1 < [£], (71) for 1 < I < [£52], (73) and (74)
for k even (or (75) and (76) for k odd) respectively as

2

z€§+1 ) dr—1(n +J) = trt1(n);

Jj=
2

Zef )dk—1(n+ j) +Zf] ) dp—2(n + j) = tx(n);

Jj= 7=0

2 2

Z%ﬂ '(n) dp—1(n + j) +ka ") di—a(n+3)+ Y g5 () dr—s(n + ) = ti_1(n);
J= 7=0 j=0

2

2
Zeé di1(n+34) + Y fi(n) di(n +j) +Zg, dio1(n+ j) +
=0

S gim) dica(n+ ) = ti(n); 2<i<k-2 (77)

=0

11



2 2

Ze} Yda(n+7)+ Y fi(n)di(n+ )+ gj(n)do(n + j) = t(n);
j=0

J= J=0
2
Zeg’ Ydi(n+j) + ijo(n) do(n + j) = to(n),
=0

where el(z), fi(z), g}(x), h(z) and t;(z) for 0 <1 < k+1, 0 < j < 2 are functions of the variables

k k k k
n'a__<'<2 o n‘;——S'S a0
Bn+j 2_.7_ +2 Yn+j 2 J 3+2
for k even; and
k-1 . k—1 k-1 | k-1
Bty —l = "5 G S8+, gy ——5— S G <3+,

for k odd. Notice that the two previous equations can be summarized as
Bntj, =k —ka <j <2+ ki + k2, Ynyj, k1 <J<3+k,
with

k k-1
ki = 3 ko =0, if kis evenand k; = 5 ke =1, if k is odd. (78)
In the second step, since our objective is to eliminate all the d;(n + j) in the previous equation, we will
from now consider all d;(n+j5),0<i<k—1,0<j <2 as unknowns. In this case, we have a system of
k 4+ 2 equations with 3 £ unknowns.

Solving (77) in terms of the unknowns di—1(n+2), dg—1(n+1), dp—1(n) and d;(n+2), 0 <i < k-2
we get

dip-1(n +2) = Hy (n, {di(n + j) }o<i<k—2,0<j<1; {Bntjti=—ki—ko,24ki+ka> 1Vntjbim—k1,3+k1); (79)
di—1(n +1) = Hy (n, {di(n + j) }o<i<k—2,0<i<1, {Bntitiz=—ki—ko24hitka> {Vnitim—k1,3+k:) 5 (80)
dr—1(n) = Ho (n, {di(n + j) bo<i<k—2,0<j<1s {Bntiti=—ki—ko,24ki+has {Vntsti=—ki348:) 5 (81)
di(n +2) = J; (n, {di(n + j) Yo<i<k—2,0<j<15 {Bntjti=—ki—ka,24ki ks> {Vntstim=—ki3+k1) 5 (82)
0<i<k-2

where the integers k; and k» are given by (78).
In the third step, we compare equations (79) with (80), and (80) with (81) and obtain a new system
of equations without dj_1(n + j), 0 < j < 2, namely:

Hy(n+ 1, {di(n + J) Yo<i<k—2,1<i<25 {Bntitimt—ki—ka3+kitha> 1Vntj}i=t—kiatks) = (83)
Hy (n, {di(n + j) Yo<i<k—2,0<i<1> {Bnti}im—ki—ka24kitkas {Vntiti=—k1,34k1) 3
Hy (n+1, {di(n + j) Yo<i<k—2,1<i<2> {Bntitizt—ki—ko,3+kitkos {Vnti}i=1— ki dbks) = (84)

Hi (n, {di(n + j)Yo<i<k—2,0<j<1; {Bntj bim—hi—ka 24 k1t has {Vntj}i=—hi,3+k1) 3
di(n +2) = Ji (n, {di(n + j) }o<i<k—2,0<i<1s {Bn+i}i=—ki—ko24kitkar 1Vntiti=—k134k1)>  (85)
0<i<k-2

The previous system contains k + 1 equations with 3(k — 1) unknowns which are d;(n + 5), 0 < i <
k—2,0<j <2 and can be rewritten as

Yo > wuim)ditn+j) =wn), 0<1<E, (86)

0<5<2 0<i<k—2

where ufij (n) are functions of the variables {Bny;}j=—ki—ko,34k1+kss {Vntj}j=—k1,4+k, - Lhis system is
similar to the one in (77) but with k replaced by ¥ — 1. Hence we are doing with a recursive algorithm.
Repeating this operation k — 1 times one obtains a system of three equations with three unknowns which
are do(n +j), 0 < j < 2. Following the procedure presented in the Subsection 2.3.3, one deduces the two
nonlinear difference equations for the 3, and 7, which are the expected Laguerre-Freud equations for
the recurrence coefficients of the Laguerre-Hahn polynomials of generic class k.
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Remark 5 Since each iteration increases the order of the equations by one, one deduces from Remark /
that the order of the Laguerre-Freud equations obtained above is at most 2k + 2 and 2k + 3 respectively
for k even, and 2k + 3 and 2k + 2 for k odd.

3 Applications

3.1 Discrete semi-classical orthogonal polynomials of class 1

Here we suppose that z(s) = s (ie. P(z) =z, Q(z) = ). Also, for this illustration, we will restrict to
the cases when k& = 1 and the polynomial Ao(z) is of degree at most 2.
From equations (25)-(27), we get
az(n+1) — az(n) = 0;
2a1(n+1) —2a;1(n) +di(n) =
2a0(n+ 1) = 2ap(n) + do(n) =

ca(n+1) + ca(n) +2di(n) = 0; (87)
cl(n+1)+cl(n)—25"d1(n)+ ( ) = 0;
co(n+1) +co(n) —2Bndo(n) =

c2(n) +di(n) = 0;
az(n) — Bnca(n) + c1(n) — 2B di(n) + do(n) = 0;

dy(n — 1)y, + a1(n) — By c1(n) + co(n) — %dl () + dy (n) B2 — 2 By do(n) — dy (n + 1) sy = 0(88)
—Bnco(n) +do(n —1) v, — —do( ) +do(n) Bn® — do(n + 1) Ynt1 + ag(n) = 0. (89)

To obtain the Laguerre-Freud equations, we will have to eliminate all coefficients a;, ¢; and d;. This
elimination is always possible from the algorithm described in section 2. However, for simples cases, it
may be more suitable not to process to the elimination of all the unknowns a;, ¢; and d; but just to solve
for part of them. By doing so, one avoids to increase the order of the final Laguerre-Freud equations, in

Br and yp.
First, we use equations (87) and get

az(n) = a2(0);

a(m) = a(0)- 5 d0);

c2(n) = —di(0);

caa(n) = c1(0)+2nasx(0);

di(n) = di(0);

do(n) = Bndi(0)—c1(0) — (2n + 1) ax(0).

Next, we eliminate ag(n) and co(n) in (88) and (89) using (87) and get respectively after taking into
account the previous equations
d1(0) Br1” = (¢1(0) +2a2(0) n + 4a2(0)) Bry1 — di(0) B” + (¢1(0) + 2a2(0)n) B (90)
+d1(0)'yn+2—dl(O)'yn—2a1(0)+d1(0)n+d1( ) 0;

2d1(0) Ynt2 Btz — 2a2(0) Bnia” (91)
+(2d1(0) Va2 — 4d1(0) Yns1 + di(0) n +2d1 (0) — 2a1(0)) nt1 +2a2(0) B,

+ (=4d1(0) Ynt1 +2a1(0) = di(0)n +2d1(0) v4) Bn + 2d1(0) Yn Bn—1

+ (—2¢1(0) — 4a2(0) n — 10 a2(0)) Ynt2 + (4¢1(0) + 8a2(0) n + 8a2(0)) Ynt1

+ (=2¢1(0) —4a2(0)n + 2a2(0)) v, — €1(0) — 2a2(0) n — 2a(0) =0,
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where Ag(z) = a2(0) 2% + a1 (0) z + ag(0), Co(z) = c2(0) 22 +¢1(0) £+ ¢0(0) and Dy(z) = d;(0) = + do (0).

The Laguerre-Freud equations (90) and (91) contain those of the recurrence coefficients of polynomials
orthogonal with respect to the discrete weight p(x) satisfying the discrete Pearson equation A(o p) = 7 p,
where ¢ and 7 are polynomials of degree at most 2 and A the forward difference operator Af(n) =
f(n+1)— f(n). The generalized Charlier polynomials introduced in [16], and which are the nonclassical
extension of Charlier polynomials, contain a particular example of this type of polynomials. In fact, the
generalized Charlier polynomials are discrete orthogonal polynomials with the weight

ua:
p(w):W, 33:0,1,2,, (92)
where N > 1 and ¢ > 0. For N = 1, one deals with the ordinary Charlier polynomials. When N = 2,
the generalized Charlier weight satisfies the discrete Pearson equation
Ao p) =T7p, (93)

with o(z) = 2% and 7(z) = p — 22. The previous discrete Pearson equation corresponds to the Riccati
difference equation [12] (Theorem 3)

o(z +1) ASo(z) = (7(x) — Ac()) So(x) + 2 + 1+ fo, (94)

with fo = £S5

Comparison of (94) and (2) for z(s) = s allows to deduce
2 oz 2pu—1

A()(JI) = 7 + 5 + 4 3
1
Co(z) = —$2—$+M—Z§ (95)
1
Do(x) = x+ 5 +Bo.
Replacing (95) into (90) and (91) produce the Laguerre-Freud equations for generalized Charlier for
N =2.
/Bn+12 - (n + 1) ﬁn-}-l - /8n2 - (1 - TL) ﬁn + TYn+2 — Tn +n= 0; (96)
2942 Btz — ,Bn+12 + 242 =4 Vg1 +n+ 1) Brgpr + ,8n2 + (=4 Vg1 +1=n+27,) 6y
+ 27,81+ (—3 - 2n)’yn+2 +4n7n+1 + (3 — 2”) Yo —n = 0. (97)
Addition of (96) to (97) gives equation
(Brt2 + Brtr = n = 1) Vg2 — 2 (Bnt1 + Bn — 1) Ynt1 + (Bn + Bn—1 —n + 1) v, = 0, (98)

which can easily be brought to

Bn+ Brn-1—n+ 1)y, =np. (99)
Notice that equations (96) and (99) were obtained in [29] after some calculations in order to simplify the
initial Laguerre-Freud equations given in [16]

n(n —1 s
Ynt1+ M = —%—Bi"‘"ﬂ'*‘Z/Bj"‘m
=0
n n n
n+1)nn-—-1
(ﬁn+1+/8n)'7n+1 = _nZﬂj+(n+1)7n+1+( )6( )+Zﬂ]2'+227j'
=0 Jj=0 Jj=1

Also, these equations were used in [29] to show that the coefficients §,, and +,, are related to certain discrete
Painlevé equation and to analyze their asymptotic behaviour already suggested in [8] (Conjecture 8.1, p.
112) and in [16]

lim (fp —n) =0, lim v, =p.

n—oo
Similar work [15] as the one done in [29] is under investigation using equations (90) and (91) for the
generalized Meixner polynomials introduced in [28], in order to prove the asymtotic behaviour of 3,, and
~Yn suggested in [7].
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3.2 Continuous semi-classical orthogonal polynomials of class 1

Here we suppose that z(s) = z(0) (ie. P(z) = z, Q(z) = 0), k = 1 and the polynomial Aq(z) is of
degree at most 2. Following the way described in the Subsection 3.1, we obtain the two Laguerre-Freud
equations

,Bn+12 d1 (0) - (Cl (0) + 2 as (0) n+4 CLQ(O)) ,Bn—i-l — ﬂn2 d1 (0) + (Cl (0) +2 as (0) n) Bn
—2a1(0) — dy(0) v + d1(0) Yppo = 0;

d1(0) Ynt2 Bnt2 — a2(0) Buy1” + (—2d1(0) Yns1 — a1(0) + d1(0) Yny2) Bnt1 + a2(0) By
+(d1(0) vn + a1(0) = 2d1(0) Ynt1) Bn + di(0) Yn Bn—1 + (—c1(0) — 2a2(0) n — 5a2(0)) Yni2
+(2¢1(0) + 4a2(0) n + 4a2(0)) Vo1 + (—e1(0) — 2a2(0) n + a2(0)) v, =0,

where Ag(z) = a2(0) 22 + a1 (0) z + ag(0), Co(z) = c2(0) 22 + ¢1(0) z + co(0) and Do(x) = dy(0) x + do(0).

3.3 Continuous symetric orthogonal polynomials

Here we assume that P(z) = z, Q(x) = 0 (continuous case) and that the polynomials are semi-classical
(i.e. By(z) = Zfig b;(0) 27 = 0) and orthogonal with respect to a symetric weight function p(z), defined
on a symetric interval [—a, a] and satisfying p(—z) = p(z). Therefore, 8, = 0, n > 0, and the equation
(31) reduces to

di—2(n+2) —2d;—2(n+1)+di—2(n) — (Y43 di(n+3) = Mnt2 di(n+ 1)) + Va1 di(n+ 1) =y di(n—1) = 0.
(100)
The previous equation can easily be transformed into

di—o(n+1)—di—2(n) — (Ynt2 di(n+2) =41 di(n) +¥nt1 di(n+1)—yn di(n—1)) = oy, 0<i < k+2, (101)

where «; is a constant with respect to n.

3.3.1 Freud weight p(z) = e "
For illustration, we consider that the polynomials are orthogonal with respect to the Freud weight p(z) =
e~®". This weight is semi-classical and satisfies the Pearson equation

2 (o) pl@)) = 7(2) pla),

with o(z) = 1 and 7(z) = —423. The previous Pearson equation corresponds to the Riccati equation
[23]
d
Ao(x) 7-S0(z) = Bo(2) 5§ (z) + Co() So(x) + Do(a),
with
Ao(z) =1, Bo(z) =0, Co(z) = —42°, Do(z) = —4(z” + A1), (102)

where A\; = FQ;—\i’)//;‘). Therefore, one remarks that the polynomials orthogonal with respect to the Freud
weight p(z) = e correspond to special case of Laguerre-Hahn orthogonal polynomials of class k = 2.
In order to obtain the Laguerre-Freud equation (only one in this case), we consider (101) for 0 < ¢ < 4
and get, taking into account (28),
da(n+1) —da2(n) = ag;
di(n+1) —di(n) = as;
do(n + 1) — do(n) — (Y42 d2(n + 2) — Ynt1 da(n) + Ynp1 da(n + 1) — Yada(n — 1)) = az; (103)
Yotz di(n +2) = Vg1 di(n) + Vg1 di(n+1) —yndi(n — 1) = ag;
Ynt2do(n +2) — Vg1 do(n) + Yaq1do(n +1) — Y do(n — 1) = ao.
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First, we use equation (27) for n = 0 and ¢ = 0, 1, 2 taking into account (28) and (102) (keeping in mind
that 8, =0, d;(—1) = b;(0) = 0) to get

d(1) = dy(0) = —4, di(1) = 3 (0) = 0, do(1) = —Wi, do(0) = 4. (104)

Next, we use the three-term recurrence relation
Poy1 =2 Py =y Poo1, n 21, Ro(z) =1, Pi(z) ==z,

and the orthogonality of {P,} with respect to the weight p(z) = e to get

T2(3/4) 1 1242 — 1
- Yo =——m, 3= ——2 105
NPT T T -4 (105)
Use of equations (104) and (105) transform (103) into equations
dy(n) = —4, di(n) = 0, n > 0; (106)
Ynt2do(n + 2) = Ynt1do(n) + Y1 do(n + 1) = yndo(n — 1) =0, n > 0, (108)

from which we derive using (104) and (105)

do(n) +4(vn +Ynt1) =0, n > 1;
Yrn+1 do(n-l- 1) - Yn do(n — 1) =-1,n>1.

Combination of the previous two equations lead to the equation

4 (73+1 - 72) +4 (Yn42 Vg1 — Yn Yn—1) = =1, n > 1,
which using (105) is easily transformed into the Freud equation which is a special case of the discrete
Painlevé equation d — Py [20].

4y, ('Ynfl + v+ '7n+1) =n.
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