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Abstract. A systematic discussion of the Mielnik-Ovcharov-Samsonov factorization method is
given for the general linear second order q-difference equation. A special way for the factorization
of some type of such equations is also shown. As an application, the set of the Little q-Jacobi
pn
�
qx;c � q � q � or equivalently Big q-Jacobi Pn

�
q3x;q � c � 0;q � polynomials is transformed into a non-

classical one.
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1. INTRODUCTION.

Consider the factorization chain

H j � x ��� µ j 	 H 
j � x � H �j � x �
H j 
 1 � x ��� µ j 	 H �j � x � H 
j � x �
� x � R � j � Z(1)

where H is a differential or a difference operator. Including H in such a factorization chain may help
either to solve it and to derive important properties for its solutions, or to produce from it other solvable
operators not belonging to the same family as H itself. In the first case one may impose to the chain
some self-similarity, demanding for example that the dressing variable j acts not just as an index but as
a full independent variable. In the second case, one needs to have at his disposal a set (at least one) of
transformation eigenfunctions for the transformable operator H, not belonging to the set of transformable
eigenfunctions. In other words, a certain ”bispectrality” is required for the operator H.
The first method here referred to as the Infeld-Hull-Miller (IHM) factorization method (FM) (see [5, 11,
12]), was already applied by Schrödinger in 1940 for solving the harmonic oscillator[19]. Nowadays,
most of known exactly solvable second-order differential or difference operators can be solved by that
technique. The second method, here referred to as the Mielnik-Samsonov-Ovcharov (MSO) factorization
methods (FM) (see [13, 18]) appeared as a further to the first method by allowing to generate new exactly
solvable Hamiltonians from already known (namely exactly solved by the first method) ones.
In this work, we will study the MSO factorization method for a general linear second-order q-difference
equation �

u � x � Eq � v � x � � w � x � E � 1
q � y � x � 	 λy � x �
�(2)

where c � x � 	 � � a � x � � b � x ��� ,E i
q f � x � 	 f � qix � , i � Z (here and in all that follows, y � x � 	 S � h � x ��� , for some

function S, and h � x � a certain first degree Laurent polynomial in x: h � x � 	 k1x � k2x � 1 � k3), and then
apply the results to a special case of the hypergeometric q-difference equation [15] (h(x)=x):�

σ � x � DqDq � τ � x � Dq � y � x � 	 λy � x �
�(3)

where Dq f � x � 	�� Eq � 1 � f � x ��� � qx � x � , Dq f � x � 	�� 1 � E � 1
q � f � x ��� � x � x � q � , with σ � x � 	 σ0x2 � σ1x � σ2,

τ � x � 	 τ0x � τ1, corresponding to a special of the Little q-Jacobi pn � qx;c � q � q � or equivalently Big q-
Jacobi Pn � q3x;q � c � 0;q � polynomials [9]. Non-hypergeometric type functions (associated to polynomial
sequences) resulting from the transformation of the latter are particularly given.
Other works having common points with this one are mainly [1, 6, 16, 17]. The MSO FM is obviously
also useful in the questions of quasi-exactly solvability [2, 3, 8, 7, 10].
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2. MSO FM FOR THE SECOND ORDER q-DIFFERENCE EQUATION.

2.1. The general case. Consider the general second-order q-difference operator

H � x � 	 u � x � Eq � v � x � � w � x � E � 1
q �(4)

Suppose next that it is ”bispectral” (not in the sense of [4]), in the sense that it admits two sequences of
different systems of eigenelements say � λn � yn � and � γn � zn � :

Hyn � x � 	 λnyn � x �
Hzn � x � 	 γnzn � x �
� n 	 0 � 1 ���������(5)

In that case, one can use one of the two eigenelements , say for example � γn � zn � , to transform H into
another solvable operator H̃ in the following manner. Factorize H and define H̃ as follows,

H � γm 	 LmRm

H̃ � γm 	 RmLm � m 	 0 � 1 ���������(6)

where

Rm 	 1 � f � x � m � E � 1
q Lm 	 u � x � Eq � g � x � m �

f � x � m � 	 � zm � x �
zm � x � q � g � x � m � 	 � w � x � zm � x � q �

zm � x � �(7)

It follows from (6) that the functions ỹn � x � m � , m � n 	 0 � 1 ������� defined by�
u � x � Eq � g � x � m � � ỹ0 � x � m � 	 0 �

ỹn � x � m � 	
�
1 � f � x � m � E � 1

q � yn � 1 � x �
� m 	 0 � 1 ��������� n 	 1 � 2 �������(8)

are eigenfunctions of H̃ � x � m � corresponding to the eigenvalues γm, λn, for m 	 0 � 1 ������� ,n 	 0 � 1 ������� respec-
tively. We will refer here to H and yn as the transformable operator and functions respectively, zn as the
transformation functions and finally H̃ and ỹn as the transformed operator and functions respectively. The
point here is that if

yn � x �
yn � x � q ���	 zn � x �

zn � x � q �(9)

so, for a fixed m, the transformed functions ỹn � x � m � , n 	 0 � 1 ������� are non-trivial solutions of the trans-
formed operator H̃ (in polynomial theory, when transforming polynomials into polynomials, one requires
more conditions than (9) demanding for example that the zn be the usual product of polynomials and an
exponential type function while the yn are polynomials). More ever under some additional conditions, the
transformed functions ỹn admit most of the mathematical properties of the transformable yn, such as dif-
ference eigenvalue equations, closure and orthogonality, difference and recurrence relations, duality, IHM
and MSO factorization, �����
2.1.1. Difference equations. Clearly, the functions ỹn � x � m � satisfy the eigenvalue equation

H̃ � x � m � ỹ0 � x � m � 	 γmỹ0 � x � m �
H̃ � x � m � ỹn � x � m � 	 λn � 1ỹn � x � m �
� n 	 1 � 2 �������(10)

for

H̃ � x � m � 	 u � x � Eq � ṽ � x � m � � w̃ � x � m � E � 1
q(11)

where

ṽ � x � m � 	 g � x � m � � f � x � m � u � x � q � � γm	 v � x � � f � x � m � u � x � q ��� u � x � f � qx � m �
w̃ � x � m � 	 f � x � m � g � x � q � m � 	 w � x � g � x � q  m �

g � x  m � �(12)
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2.1.2. Orthogonality, closure. Consider the functions ρ � x � and ρ̃ � x � defined by

ρ2 � qx �
ρ2 � x � 	 u � x �

f � qx  m � g � qx  m � h � xq ! 1
2 � � h � xq

1
2 �

h � xq
1
2 � � h � xq

3
2 � 	 u � x �

w � qx � h � xq ! 1
2 � � h � xq

1
2 �

h � xq
1
2 � � h � xq

3
2 � ;

ρ̃2 � qx  m �
ρ̃2 � x  m � 	 u � x �

f � qx  m � g � x  m � h � xq ! 1
2 � � h � xq

1
2 �

h � xq
1
2 � � h � xq

3
2 � 	 u � x � g � qx  m �

w � qx � g � x  m � h � xq ! 1
2 � � h � xq

1
2 �

h � xq
1
2 � � h � xq

3
2 � ;(13)

where h is a first order Laurent polynomial in x.
Interesting relations exist between ρ � x � , ρ̃ � x � m � and ỹ0 � x � m � . One has

ρ̃2 � x � m � 	 ρ2 � x � g � x � m � ;
ỹ0 � x � m � 	 1

ρ2 � x � g � x  m � zm � x � � h � xq ! 1
2 � � h � xq

1
2 �"�

	 1

ρ̃2 � x  m � zm � x � � h � xq ! 1
2 � � h � xq

1
2 �#�(14)

Next, as it is easily seen, the similarity reductions ρHρ � 1 and ρ̃H̃ρ̃ � 1 send H and H̃ respectively, in their
formal symmetric form , that is like

c � qx � h � xq
1
2 � � h � xq

3
2 �

h � xq ! 1
2 � � h � xq

1
2 � Eq � b � x � � c � x � E � 1

q(15)

or

a � x � Eq � b � x � � a � x � q � h � xq ! 3
2 � � h � xq ! 1

2 �
h � xq ! 1

2 � � h � xq
1
2 � E � 1

q �(16)

Denote by $ 2 � qβ � qα;ρ2 � the linear space of q-discrete functions

ψ � x �
� x 	 qβ � qβ � 1 �������%� qα; α � β � Z &(')� ∞ � ∞ *(17)

in which is defined a discrete-weighted inner product

� ψ � φ � ρ2 	,+ qα

qβ ψ � x � φ � x � ρ2 � x � dhx 	
∑β

α ψ � qi 
 1
2 � φ � qi 
 1

2 � ρ2 � qi 
 1
2 � � h � qi ��� h � qi 
 1 ���(18)

The similar space for ρ̃2 will be denoted by ˜$ 2 � qβ̃ � qα̃; ρ̃2 � . Now let $ 2
1 and ˜$ 2

1 be the respective subspaces
of $ 2 and ˜$ 2 containing those elements for which

u � xq � 1
2 � ρ � xq � 1

2 � � h � x � q �-� h � x ���
�
ψ � xq

1
2 � φ � xq � 1

2 ��� ψ � xq � 1
2 � φ � xq

1
2 � �/. qβ 0 1

qα

	 0(19)

for ρ2 equals ρ2 and ρ̃2 respectively (if one of the boundary point α or β is equal to ∞, so the vanishing
of the expression in (19) is required only on the other extremal). Using summation by parts, one easily
verifies that in $ 2

1 and ˜$ 2
1 respectively, the operators H and H̃ are symmetric, that is

� Hψ � φ � ρ2 	1� ψ � Hφ � ρ2 ; � H̃ψ � φ � ρ̃2 	2� ψ � H̃φ � ρ̃2 �(20)

Let next $ 2
2 be the preimage of image of $ 2 in ˜$ 2 by Rm and ˜$ 2

2 be the preimage of image of ˜$ 2 in $ 2 by Lm

both constrained to the conditions that

u � xq � 1
2 � ρ � xq � 1

2 � � h � x � q �-� h � x ��� φ � xq
1
2 � ψ � xq � 1

2 � . qβ 0 1

qα

	 0(21)

for ψ �3$ 2 and φ � ˜$ 2 (here also, if one of the boundary point α or β is equal to ∞, so the vanishing of the
expression in (21) is required only on the other extremal). Also, using summation by parts, one proves that
, defined in $ 2

2 and ˜$ 2
2 respectively, the operators Rm and Lm are � ρ2 � ρ̃2 � -mutually adjoint in the sense that

� φ � Rmψ � ρ̃2 	4� Lmφ � ψ � ρ2 �(22)
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Let us note directly that $ 2
2 5 $ 2

1 5 $ 2 while ˜$ 2
2 5 ˜$ 2

1 5 ˜$ 2 (taking into account in particular, the first eq. in
(14) ). We are led to the following

Proposition 2.1. Suppose that
(c1) yn � x �6�3$ 2

2 � qβ � qα;ρ2 �
� n 	 0 � 1 � 2 �������
(c2) For m fixed, ỹn � x � m �7� ˜$ 2

2 � qβ̃ � qα̃; ρ̃2 �
� n 	 0 � 1 � 2 ������� ,
without the constraints of quadratic integrability for them.
(c3) The system yn � x � is orthogonal and closed in $ 2 � qβ � qα;ρ2 � .
Then, for m fixed, the system ỹn � x � m � , n 	 0 � 1 ������� or ỹn � x � m � , n 	 1 � 2 ������� is orthogonal and closed in
˜$ 2
2 � qβ̃ � qα̃; ρ̃2 �
�

Proof The proof of the orthogonality of the new system is straightforward, considering the above con-
siderations: It can be deduced from (20) or (22) under the condition (19) or (21), respectively. To prove
its closure (i.e. no non-vanishing element in the space, that may be orthogonal to the system in its totality)
, one uses (22) and the closure of the system yn � x � in $ 2 � qβ � qα;ρ2 � , to derive that ỹ0 � x � m � is the unique
non-vanishing element orthogonal to the system ỹn � x � m � 	 Rmyn � x � . This means that the system ỹn � x � m � ,
n 	 0 � 1 � 2 ������� (or ỹn � x � m � , n 	 1 � 2 ������� if ỹ0 � x � m � is not quadratically integrable) is closed in the space.

2.1.3. Difference and recurrence relations. Suppose that the transformable functions satisfy the difference
relations

αnyn 
 1 	 H �n yn

βnyn 	 H 
n yn 
 1 � n 	 0 � 1 �������(23)

On the other side, from (6), one has

ỹn 
 1 	 Rmyn� λn � γm � yn 	 Lm ỹn 
 1 � n 	 0 � 1 �������(24)

A combination of (23) and (24) leads to the following three-term difference relations for ỹn � n 	 1 � 2 �������
αn � λn � γm � ỹn 
 2 	 RmH �n Lmỹn 
 1

βn � λn 
 1 � γm � ỹn 
 1 	 RmH 
n Lmỹn 
 2 �(25)

Using the difference eigenvalue equation satisfied by the ỹn (see (10)) and the preceding relations, one can
naturally reach first order difference relations connecting ỹn, n 	 1 � 2 ������� (in this connection, the conclud-
ing remark in [13] needs a clarification).
Suppose now that the transformable functions yn satisfy a three-term recurrence relation

yn 
 1 � � bn � h � x ��� yn � a2
nyn � 1 	 0 �(26)

so, using the first relation in (24), one shows that the transformed ỹn, n 	 1 � 2 ������� , satisfy the following
five-term recurrence relation

ỹn 
 4 �
�
bn 
 2 � bn 
 1 � h � x ��� h � x � q � � ỹn 
 3�

�
� bn 
 1 � h � x ��� � bn 
 1 � h � x � q ��� � a2

n 
 1 � a2
n 
 2 � ỹn 
 2

� a2
n 
 1

�
bn 
 1 � bn � h � x ��� h � x � q � � ỹn 
 1 � a2

n 
 1a2
nỹn 	 0 �(27)

We remark however that the preceding relations do not include ỹ0. If for a2
n in (26), one has a2

0 	 0, or if
one suppose that y � 1 	 0, so using the second relation in (24), one establishes the following difference-
recurrence relations for the system of transformed functions ỹn, n 	 0 � 1 � 2 �������

� λn � 1 � γm � � λn � γm � Lmỹn 
 2� � λn � 1 � γm � � λn 
 1 � γm � � bn � h � x ��� Lmỹn 
 1� � λn 
 1 � γm � � λn � γm � Lmỹn 	 0 �(28)
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2.1.4. Duality. Suppose that the transformable functions yn � x � 	 yn � qs � are also explicit functions of n. In
that case, one can consider the functions θs � n � 	 ỹn � qs � m � dual to the transformed ỹn � x � m � , n 	 0 � 1 �������
defining

θs � 0 � 	 ỹ0 � qs � m � ;
θs � n � 	 Rmyn � qs � 	 yn � qs � � f � qs � m � yn � qs � 1 �
� n 	 1 � 2 �������(29)

From (6), one finds that the functions θs � n � satisfy the three-term recurrence relation

θs 
 1 � n � � � ṽ � qs ��� δn � θs � n � � w̃ � qs � u � qs � 1 � θs � 1 � n � 	 0 �
δ0 	 γm � δn 	 λn � 1 � n 8 1 �(30)

If w̃ � 1 � u � q � 1 � 	 0, then the functions in (30) are up to a multiplication by θ0 � n � , polynomials in δn of
degree s. If ṽ � qs � is real for s 8 0 and w̃ � qs � u � qs � 1 �79 0, s 9 0, so the polynomials are naturally orthogonal
with positive discrete weight (Favard theorem).

2.1.5. IHM factorization. Considering the formulas (25), and the second difference eigenvalue equation
in (10)), one finds that for a fixed m, the operator

H̃n � x � m � 	 H̃ � x � m ��� λn � 1 � n 	 1 � 2 �������(31)

admits the following factorization of IHM type:

r � x � n � H̃n � µn 	 BnAn

t � x � n � H̃n 
 1 � µn 	 AnBn �(32)

for some first order difference operators An and Bn and some functions r and t, while µn 	 � αn � 1βn � 1 � λn � 1 �
γm � � λn � γm � . We will not evaluate the unknown expressions as we are only interested in principle here.

2.1.6. MSO factorization. Here also, the operator H̃ admits a factorization of MSO type. To be convinced
in that, we need only to ensure that for fixed m, the operator H̃ � x � m � is also ”bispectral”. Indeed, we have

H̃ � x � m � ỹn � x � m � 	 λ̃nỹn � x � m �:� n 	 0 � 1 �������
λ̃0 	 γm; λ̃n 	 λn � 1 � n 	 1 � 2 �������(33)

and

H̃ � x � m � z̃k � x � m � 	 γkz̃k � x � m �
� k 	 0 � 1 �������;� k �	 m(34)

where z̃k � x � m � 	 Rmzk � x � . Here, one can generalize (6) to obtain a chain like (1):

H j � x � m0 �������%� m j � 1 ��� γm j 	 Lm j Rm j

H j 
 1 � x � m0 �������<� m j �-� γm j 	 Rm jLm j �(35)

with

H0 � x � m0 � 	 H � x �
z0

n � x � m0 � 	 zn � x �
y0

n � x � m0 � 	 yn � x �
Rm j 	 1 � z̃ j

m j � x  m0  = = => m j ! 1 �
z̃ j

m j � x � q  m0  = = => m j ! 1 � E � 1
q

Lm j ỹ
j 
 1
0 � x � m0 ��������� m j � 	 0

ỹ j 
 1
n � x � m0 ��������� m j � 	 Rm j ỹ

j
n � x � m0 �������%� m j � 1 �
� n 	 1 � 2 �������

z̃ j 
 1
n � x � m0 ��������� m j � 	 Rm j z̃

j
n � x � m0 ��������� m j � 1 �
� n 	 0 � 1 ������� � n �	 m j �
�(36)

2.2. A special way.
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2.2.1. The way. Consider again the eigenvalue equation�
U � x � Eq � V � x � � W � x � E � 1

q � Qn � x � 	 ϒnQn � x �
�(37)

As already noted, it is not difficult to rewrite (37) under the form�
A � x � Eq � B � x � � C � x � E � 1

q � Yn � x � 	 ΛnYn � x �:�(38)

where B � x � 	 � � A � x � � C � x ��� . Hence we will here consider (38) as a general starting equation.
Consider the situation when C � x � doesn’t depend explicitly on q and A � x � 	 cC � x � , c, a constant (a similar
reasoning should be developed considering that A � x � do not depend explicitly on q and C(x)=c A(x) ). In
that case (38) reads �

cC � x � Eq � � cC � x � � C � x ��� � C � x � E � 1
q � Yn � x � q � 	 Λn � q � Yn � x � q �:�(39)

Substituting q by 1 � q in (39), and performing a similarity reduction on the obtained operator in the left
hand side, one gets �

cC � x � Eq � � cC � x � � C � x ��� � C � x � E � 1
q � π � x � Yn � x � 1 � q �

	 Λn � 1 � q � π � x � Yn � x � q �
�(40)

where

π � qx ��� π � x � 	 1 � c �(41)

This means that the operator in the left hand side of (39) and (40) is ”bispectral” with two distinguished
systems of eigenelements � λn � q �
� Yn � x � q ��� and � Λn � 1 � q �
� Zn � x � q ��� where Zn � x � q � 	 π � x � Yn � x � 1 � q � . Hence
it can be transformed according to the scheme studied in the first subsection. But as one can see, if A � x �
is for example a polynomial, the functions Yn � x � q � are not in general orthogonal. That is why we rewrite
(39) and (40) in a more convenient form for the transformation. For that, supposing that λn � q � �	 0, for
n 8 1 (this is generally the case for polynomial type of solutions), we define the functions yn � x � q � by

yn � x � q � 	 1
Λn 0 1 � q �

�
cEq � � c � 1 � � E � 1

q � Yn 
 1 � x � q �
n 	 0 � 1 �������(42)

As one can verify, the functions yn � x � q � are given by

yn � x � q � 	 Yn 0 1 � x  q �
C � x � � n 	 0 � 1 �����(43)

and satisfy the eigenvalue equation�
u � x � Eq � v � x � � w � x � E � 1

q � yn � x � q � 	 λn � q � yn � x � q �
�(44)

where

u � x � 	 cC � qx � ;v � x � 	 � � c � 1 � C � x ��� Λ1 � q � ;
w � x � 	 C � x � q � ;λn � q � 	 Λn 
 1 � q �-� Λ1 � q �
�(45)

In particular, if y0 � x � q �@? const, then v � x � 	 � � u � x � � w � x ��� . Similarly, the functions

zn � x � q � 	 π � x � yn � x � 1 � q �(46)

satisfy the equation �
u � x � Eq � v � x � � w � x � E � 1

q � zn � x � q � 	 γn � q � zn � x � q �:�(47)

where γn � q � 	 Λn 
 1 � 1 � q �-� Λ1 � q � . Thus, the operator in the left hand side of (44) and (47) is ”bispectral”
and under additional boundary constraints, the functions yn � x � q � are orthogonal with the weight

ρ � x � 	 w � qx �
xπ � x � �(48)

Hence the considerations from the first subsection can be reported here.

2.2.2. Example.
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The transformable and transformation functions. Applying the preceding considerations to the q-hypergeometric
case (see(3)), �

A � x � Eq � B � x � � C � x � E � 1
q � Yn � x � 	 ΛnYn � x �:�(49)

with

A � x � 	
�
� σ0 � � 1 � 1 � q � τ0 � x2 � � σ1 � � 1 � 1 � q � τ1 � x � σ2 � � x2;

C � x � 	
�
q � σ0x2 � σ1x � σ2 � � � x2;B � x � 	 � � A � x � � C � x ���
�(50)

one is led to the following simple ”bispectral” situation�
u � x � Eq � v � x � � w � x � E � 1

q � yn � x � q � 	 λn � q � yn � x � q ��
u � x � Eq � v � x � � w � x � E � 1

q � zn � x � q � 	 γn � q � zn � x � q �:�(51)

where

u � x � 	 � c � q3x � 1 ��� x;w � x � 	 � � xq � 1 ��� x;v � x � 	 � � u � x � � w � x ���(52)

λn 	 q1 � n � 1 � qn � � cq2 
 n � 1 � ;γn 	 q1 � n � q2 
 n � 1 � � c � qn �(53)

and the functions yn � x � q � are a special case of the Little q-Jacobi pn � qx;c � q � q � or equivalently Big q-Jacobi
Pn � q3x;q � c � 0;q � polynomials [9]. The transformation functions zn � x � q � being on the other side defined as
in (41) and (46). For their use in the formulas (25) and (27), we give here for the polynomials yn � x � q � the
difference relations (in literature, they are not given in this form) and recurrence ones. We have

c1 � n � yn 
 1 � x � q � 	
�
r � x � Eq � fn � x � � yn � x � q �� a2

n 
 1c1 � n � 1 � c1 � n � yn � x � q � 	
�
r � x � Eq � gn � x � � yn 
 1 � x � q �
�(54)

yn 
 1 � x � q � � � bn � x � yn � x � q � � a2
nyn � 1 � x � q � 	 0(55)

where � Q 	 qn �
c1 � n � 	 � cQ2q3 
 cQ2q2 
 Q6c3q7 � c2Q4q6 � c2Q4q4 � q � q5c2Q4 
 q4Q2c

Q � cQ2q3 � 1 � � cQ2q � 1 �(56)

bn 	 � Q2c2q2 � Qcq2 
 cQ2q2 � 2Qcq 
 c � Qc 
 1 � Q� cQ2q � 1 � � cQ2q3 � 1 � q(57)

a2
n 	 Q2 � Qc � 1 � � Qcq � 1 � � � 1 
 Q � � � 1 
 qQ � c� � 1 
 cQ2 � � cQ2q � 1 � 2 � � 1 
 cQ2q2 � q3 ; r � x � 	 � c � q3x � 1 �(58)

fn � x � 	 qx
Q � � 1 � c 
 Qcq2 
 Qcq

cQ2q3 � 1 ; gn � x � 	 xcq4Q � cqQ Qq2 
 Qcq2 � q � 1
cQ2q3 � 1 �(59)

Note finally that the polynomials yn � x � are orthogonal on the interval

�
0 � q � 5

2 � with respect to the weight
ρ � x � given by (48) where w � x � is given by (52) and π � x � by (41). As the interval of orthogonality is finite,
they are also closed in the corresponding inner product space.
The transformed functions. For a given m, the properties of the transformed functions ỹn � x � m � , n 	 0 � 1 �������
are those derived in the first subsection (”The general case”) of the current section: They satisfy type (10)
difference equations, type (25), (27) and (28) difference and recurrence relations. And since the condi-
tions of orthogonality of the proposition (2.1) are satisfied, they are orthogonal in the inner product space
˜$ 2
2 � 0 � q � 5

2 ; ρ̃2 � where ρ̃2 is given by the formula in (14). For the closure, we have that the system ỹn � x � m � ,
n 	 0 � 1 ������� is closed in the space since the unique element ỹ0 � x � m � orthogonal to it in its totality is not
quadratically integrable. On the other side, the transformed operator H̃ � x � m � admits IHM and MSO fac-
torizations according to the scheme given in the first subsection. There is no however interesting duality
relations.

How seem the transformed objects? Let us note that, using simple procedures in Maple V (see for ex
[14]), allows to evaluate explicitly any one of them at least for no very higher m and n (as long as the
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software and the computer capacities allow).
The case m 	 1 illustrates the first non-classical situation for the transformed objects. As only in this case,
the required volume to display the main data is admissible, we consider only this case here. The main data
are (m 	 1, n 	 0 � 1 � 2):

f � x � 1 � 	 � � cq � q4 � x � c 
 q�"� c � q3 � x � c 
 q � c; g � x � 1 � 	 � xq � 1 � c � xc � q3x � c 
 q �� xcq � c � xq4 
 q � x(60)

ṽ � x � 1 � 	
�
� c3q4 � 2q7c2 � c2q2 � cq10 � 2cq5 � q8 � x3 � � � c3q4 � c3q3

� qc3 � q7c2 � q6c2 � 2q5c2 � c2q4 � 2qc2 � 2cq8 � cq5 � 2cq4 � q3c

� cq2 � q8 � q6 � q5 � x2 � � c3q3 � qc3 � c3 � 3c2q4 � c2q3 � qc2 � cq5

� q3c � 3cq2 � q6 � q3 � q5 � x � c3 � qc2 � cq2 � q3 � ��
��� cq � q4 � x � c � q � ��� c � q3 � x � c � q � x �(61)

w̃ � x � 1 � 	 � � xcq � c � xq4 
 q � � x � 1 � � xc � q3x � cq 
 q2 �� xc � q3x � c 
 q � 2x(62)

ρ̃2 � x � 1 � 	 c1ρ2 � x � g � x � 1 � 	 c2
q2x � 1
x3π � x � � xq � 1 � � xc � q3x � c 
 q �� xcq � c � xq4 
 q �(63)

ỹ0 � x � 1 � 	 c3

ρ̃2 � x  1 � π � x � y1 � x  1 � q � � h � xq ! 1
2 � � h � xq

1
2 �"�

	 c4
� xq � 1 � � xc � q3x � c 
 q �� q2x � 1 � � xcq � c � xq4 
 q � 2(64)

where ci � i 	 1 ��������� 4 are some constants of integration,

ỹ1 � x � 1 � 	 � � q 
 c � � xc � c � q3x 
 1 �� xc � q3x � c 
 q � c(65)

ỹ2 � x � 1 � 	
�
q � c2q2x � c � c2q2 � c2x2q � q � xc2q4 � xc3q

� q3c2x � cq7x2 � c2q4x2 � c2q5x � c3q4x2 � c2q7x2 � xc3q4

� x2cq � q5cx � xcq � q3cx � xcq4 � cq2 � qc3 � qc2 � c2x � xq4

� q4x2 � xq � xc2q � cq4x2 � c2 � cq � cq2x � xc � � ��
� q3c � 1 � � xc � q3x � c � q � c �(66)

We will remark that if w � x �BA xα while x C ∞, so ỹ0 � x � m �DA 1
xm 0 α and ỹn � x � m �DA xm 
 n � 1, n 	 1 � 2 ������� (in

our particular case, α 	 0 and m 	 1).
Let us note finally that similar transformation formulas for the special Meixner polynomials M � 2  c �

n � x � can
be found in [1].
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