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Introduction

In mathematics, the term ”factorizability” rings first of all like ”accessibil-
ity”. Take for example a differential or a difference operator H(z) of a given
order. It is a known fact that the irreducible factorization of such an object
is equivalent to the determination in quadratures of the corresponding ker-
nels. The concept of the ” factorization technique” to be met here consists in
indirect exploitation of the phenomenon of ”factorizability”. Take the well
known in linear algebra technique of similarity transformation of a n x n
matrix A:

A=SAS™. (1)
This transformation is equivalent to first factorize
A=RS (2)
with non-singular S and then permute
A=SR. (3)

The essential of merits of such a transformation is known to lie in its isospec-
trality. The operation should be repeated as long as necessary. In LR or
QR-algorithm for example, the operation is repeated indefinitely.

Thus, the ” factorization technique” to be met here can be seen as the tech-
nique ” factorize-permute”. Clearly, such a technique acquires most of non-
triviality as much as the objects to deal with admit the non-commutativity
property. As in the theory of matrices, this property is characteristic in
the theory of differential or difference operators. In differential (difference)
operators theory, the technique consists in sending

H(z) = L{z)R(z) + (4)
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into
H(z) = R(@)L(z) + p (5)

where H is a differential (difference) operator, u a spectral parameter and I,
R the result of the primordial factorization of H — p. Performing repeatedly
the operation NV times leads to the factorization chain

Hi(z) —p; = Lj(z)R;(2)
Hjpi(z) —p; = Rj(z)Li(z), j=1,...N. (6)

As far as we know, this technique was discovered and first used in [32].
There, the idea consisted in that if H and G are obtained by ”transfer-
ence” (4)-(5) respectively from H and G, so the pair (H,G) belongs to the
same spectral curve (if any) as (H, ). The historical non-reference to [32]
is probably linked to the fact that that work remained in oblivion for near
a half-century, namely until the appearance in the seventies of a series of
works [70, 71, 72, 73] rediscovering and extending a main result of [32, 33]
(solution of commutation equations of differential (difference) operators).
It is clear that the operator R (L) transforms any eigenfunction of H (H)
into an eigenfunction (if not zero) of H (H). In the event where H is the
Schrédinger operator, such a transformation was already applied by Darboux
[38] and is currently credited to him. Let us remark that for this choice of
H, there is equivalence between the factorization technique of Burchnall-
Chaundy and the Darboux transformation. Moreover, a repeated applica-
tion of the factorization technique N times on the Schrédinger operator is
equivalent to a Darboux transformation of the same operator using an op-
erator RY) of order N.

The Darboux transformations for discrete Schrodinger operators were first
studied in [84, 85], even if the factorization techniques for difference operators
were already applied in [87]. Along the time, the factorization techniques, as
well for differential as for difference operators, encountered many generaliza-
tions and applications in different areas of mathematics and mathematical
physics: Quantum mechanics [105, 56, 39, 90, 17, 18, 37, 21, 93], special
functions and orthogonal polynomials [29, 50, 118, 56, 57, 87, 116, 34, 35,
88, 89, 69, 60, 31, 17, 18, 107, 64, 104, 43, 44, 93, 115, 109, 110, 111, 112, 113,
114, 122], numerical calculus (as LR and QR algorithms) [119], bispectral
problems [69, 42, 114], Lie algebras [86, 87, 88, 17, 18, 107, 93], commutation
equations [32, 106, 109, 113], integrable systems [1, 92, 51, 84, 85].
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Besides the orthogonal polynomials theory, the factorization techniques
encountered much enthusiasm in quantum mechanics. It was used already
in [105] solving the harmonic oscillator problem. Nowadays, most of known
exactly solvable potentials can be obtained by this technique [105, 56, 39, 90,
17, 18, 37, 21, 93] which, on the other side, seems to offer still potentialities
in the area [90, 98, 99, 100, 120].

The first major concern of this thesis consists in the applications of dis-
crete factorization techniques in discrete polynomial eigenfunction problems.
There is mainly questions of ”generating”, ”solving” or ”modifying” differ-
ence operators admitting complete sequences of polynomial eigenfunctions.
More precisely, we are concerned in solving;:

Problem 1. Find, for a given operator H(s), a complete set of polynomial
eigenfunctions.

Problem 2. Generate from a factorization chain an operator H(s) having
a complete set of polynomial eigenfunctions.

Problem 3. Generate from a given operator H (s) having a complete set of
polynomial eigenfunctions, another operator f{(s), having also a complete
set of polynomial eigenfunctions but not belonging to the same family as the
original one.

For solving such problems, by the help of the factorization chain (6), we
resort to three kinds of methods. The first one consists in imposing to the
factorization chain a ”quasi-periodicity” behaviour. The second technique
consists in imposing to the factorization chains a special ” shape-invariant”
behaviour (or symmetry). The third technique in the opposite consists in
" modifying” polynomials: start from a known exactly solvable (in polynomi-
als) difference operator and then generate a new exactly solvable (in polyno-
mials) one. As it is easily seen, the third technique is convenient for solving
type 3 problems, while the second and first methods can be applied on both
type first or second problems.

In the discrete cases, those methods are applied inside two different types of
factorization techniques. Writing a linear difference eigenvalue equation of
order 2d in the form

d
H(s)v(s) = Z Ai(s)Ei v(s) = Av(s), (7)
t=—d
where EX[A(s)] = h(s+1),d € ZT, i € Z and A;(s) are some scalar functions
in s, so the first type of factorization techniques consists in factorizing exactly
the operator H(s) + ¢, while the second type of factorization consists in
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factorizing exactly the operator E?
s © [H(s) + ¢], for some constant (in s)

c. For historical reasons, we will refer, in this thesis, to the first type of
factorization as the Spiridonov- Vinet-Zhedanov type of factorization, and to
the second type as the Infeld-Hull-Miller type of factorization.

Divided difference equation of hypergeometric type (or simply difference
hypergeometric equation) reads [94]
A . \%
&ly(s)] Au(F- 3) y(s)  Vy(s)

where Af(s) = f(s + 1) = f(s), Vf(s) = [(s) = (s — 1), &(y) and 7(y)

polynomials of at most second and first degree respectively and the lattice

ey + 5 O 1| v(s) = Ao(s), (8)

y(s) =1+ +es=c1(¢° +q¢7°7") +¢3 (9)

or particularly

y(s) = é18* + é5 + &, (10)

or
y(s) = c1q” + e, (11)

or
y(s) = é2s + &3, (12)

for some constant (in s) u, q, ¢;(q), é, A. The equation (8) approximates,
up to the second order of accuracy, the differential hypergeometric type
equation

a(z)v" + 7(z)v" = Av. (13)

The polynomial solutions of Eq. (8) are called discrete (difference) polynomi-
als of hypergeometric type or simply hypergeometric polynomials on lattices.
In the event where the lattice is given by Eqgs. (9), (10), (11), or (12), one
says about hypergeometric polynomials on g-nonlinear, nonlinear, q-linear,
or linear lattice respectively. We will refer also to the operator in the left
hand side of Eq. (8) as the difference hypergeometric operator or equally
hypergeometric operator on lattice (q-nonlinear ...). Solutions v(s) of Eq.
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(8) admits a fundamental property similar to the property of the differential
equation (13): The difference derivative

_ Auv(s)
vi(s) = Ay)

(14)

satisfies an equation that is analog to (8) with y(s) replaced by yi(s) =
y(s+ %) [94]. For this reason, orthogonal polynomial solutions of Eq. (8) are
generally called ” classical orthogonal polynomials on lattices”, while those
for Eq. (13) are referred to as the ”very classical” ones. The most im-
portant classical orthogonal polynomials on lattices are: The Askey-Wilson,
g-Racah and g-dual Hahn for the g-nonlinear lattices, Racah and dual Hahn
for the nonlinear lattices, g-Hahn, g-Meixner, g-Kravchuk and ¢-Charlier for
the g-linear lattices, Hahn, Meixner, Kravchuk and Charlier polynomials for
the linear lattices.

Our first group of results consists mainly of solutions of the so-called prob-
lems 1,2, 3 relatively to the difference hypergeometric operator in Eq. (8),
using the factorization techniques. For convenience, if a problem say z is
solved for an operator admitting a sequence y of polynomial eigenfunctions,
we will let us say that ”the problem z is solved for the sequence y of poly-
nomial eigenfunctions”.

The factorization technique was applied to the problem 1 for the ”very clas-
sical” orthogonal polynomials in [29]. The Hermite polynomials appeared
by this technique in quantum mechanics already in [105]. The problem 2
was solved by this technique for the Charlier, Meixner, Kravchuk and (not
as in the previous cases) the Hahn polynomials in [87]. The problem 3 was
solved for the Hermite polynomials in [104]. The problem 2 was solved in
[109] for the g-Charlier, the ¢-Meixner and ¢-Kravchuk polynomials. Also,
the factorization technique helped implicitly to solve the equation (8) by its
authors (see subsection 1.1.1, the factorization technique being applied here
more explicitly than in the original works).

In this thesis:

Result 1. The (shape-invariant) Infeld-Hull-Miller factorization type is
studied in general for the second-order and fourth-order eigenfunction equa-
tions (see the second parts in sections 2.2.1 and 2.2.2).

Result 2. For the Charlier , Meixner and Kravchuk polynomials, the prob-
lems 1 and 2 are solved (section 3.1), using the ”quasi-periodicity” method.
Result 3. For the hypergeometric orthogonal polynomials on linear lattices
and polynomials dual to them, the problem 1 is solved (section 3.2) as well as
the problem 2 (section 3.2) (see also section 6.2 (including ¢-linear lattices)),
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using the ”shape-invariance” method .

Result 4. For the hypergeometric orthogonal polynomials on g-nonlinear
lattices and polynomials dual to them, the problem 1 is solved (section 3.3)
as well as the problem 2 (section 3.3) (see also section 6.2), using the "shape-
invariance” method.

Result 5. Difference hypergeometric functions generalizing the Askey-
Wilson polynomials are given (subsection 3.3.2).

Result 6. For the hypergeometric polynomials on linear lattices, the prob-
lem 3 is discussed (chapter 4) and explicitly solved for the special My(LQ’C)(:C +
1) Meixner polynomials (chapter 4), using the "modification” method.

The polynomials P,(z) are called ( class k) continuous Laguerre-Hahn
orthogonal polynomials iff the corresponding Stieltjes function S(z) satisfies
the Riccati equation [78]

A(z)S'(z) = B(z)S*(z) + C(2)S(z) + D(z), (15)

where A, B,C and D are polynomials of degrees k + 2, kK + 2, K + 1 and &,
respectively. Most of nowadays known continuous orthogonal polynomials
belong to this class. The subclass of continuous semi-classical orthogonal
polynomials corresponds to the case B = 0. The ”very classical” polynomials
appear then as the semi-classical of class Kk = 0.
On the other side, the polynomials P,(y(s)) are called (class ) Laguerre-
Hahn orthogonal polynomials on special nonuniform lattice iff the Stieltjes
function S(y(s)) satisfies the Riccati equation [79]:
Ala(s)) 2SN = B(a(5))S (y(s +1)S (y(s))
() HHHELEAL 4 D (5)) (16)

where A, B, C and D are polynomials of degrees < k +2, K + 2, K+ 1 and
K, respectively and

x(s) = ¢é1¢°+ é2q7° + 3,
. 1 .
y(s) = cax(s— 5) + ¢s, (17)

the so-called special non-uniform lattice (snul) [79]. Most of nowadays known
orthogonal polynomials belong to this class ( in particular the continuous
Laguerre-Hahn polynomials are included here by the limit ¢ — 1). The
subclass of semi-classical orthogonal polynomials [79, 80], corresponds to the
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case B =0. The "classical” orthogonal polynomials (i.e. orthogonal polyno-
mial solutions of (8)) appear then as the semi-classical of class x = 0.

A curiosity question naturally arises: Does there exists a firm intercon-
nection between the factorization techniques and the Laguerre-Hahn ap-
proach to orthogonal polynomials? The answer is yes and our ”transition”
result reads:

Result 7. We show the interconnection between the (shape-invariant)
Infeld-Hull-Miller factorization technique and the Laguerre-Hahn approach
to orthogonal polynomials. In passing, explicit examples of pure (i.e. non-
semiclassical) Laguerre-Hahn polynomials are given. Among them, an exam-
ple of pure Laguerre-Hahn polynomials ”generable” from Infeld-Hull-Miller
factorization chains (section 5.2).

This interconnection seems to be a positive indication for the possibilities
of extensions of the Infeld-Hull-Miller factorization technique applied in this
thesis to the second-order difference eigenvalue problem. Indeed, the Infeld-
Hull-Miller factorization technique, once extended for example to the fourth
order eigenvalue problem, is expected to be equivalent to a certain approach
to orthogonal polynomials, extending the nowadays Laguerre-Hahn approach

to orthogonal polynomials (see more precise comments after the systems
(2.222)-(2.224)).

One of the fundamental questions in orthogonal polynomial theory is
that of characterization of polynomials. Besides the ”inevitable” recurrence
relations, the polynomials are expected to satisfy difference-recurrence rela-
tions, linear difference equations (of eigenvalue type or not, of finite order
or not), duality properties ... As, we will see, the classical (up to Askey-
Wilson polynomials) for example are fully characterized by the difference
hypergeometric eigenvalue equation (8). Also, a well known Leonard result
[75], characterizes the g-Racah polynomials and their specializations as the
unique orthogonal polynomials having orthogonal polynomials as dual se-
quences. A good survey on various characterization theorems for classical
polynomials can be found in [75].

In the continuous case, a characterization theorem exists as well for the
general semi-classical polynomials [83, 55]. Namely, a system of orthogonal
polynomials are (continuous) semi-classical iff they satisfy a linear second-
order differential equation with polynomial coefficients which degrees are
bounded relatively to the degree of the polynomials. Such a characteriza-
tion theorem does not exist for the semi-classical polynomials on lattices,
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and considering the example in (5.45), there is no reason to expect it. In-
deed, even if the corresponding moment functional is quasi-definite but not
positive definite, there is an example of special non-semiclassical Laguerre-
Hahn polynomials satisfying a linear second-order difference equation.

The largest characterization result for the semi-classical orthogonal polyno-
mials on lattices can be found in [79, 80] and it reads: They satisfy a linear
second-order difference equation with special coefficients and in the converse
sense, any system of orthogonal polynomials satisfying a special difference-
recurrence relation are necessarily semi-classical.

The ”necessity” of some characterization theorems tells about the existence
of difference (differential) equation that satisfies the given class of polyno-
mials. But beyond that, there remains at least two unresolved questions:
The one consists in establishing that equation formally, the other consists
in establishing it explicitly . So practically, the approach to the "necessity”
question divides in three tasks:

Problem 4. Prove the existence of a linear difference equation (not neces-
sarily of eigenvalue type) of fixed order satisfied by the polynomials from a
given family.

Problem 5. Establish the equation formally.

Problem 6. Establish it explicitly.

Clearly, a solution of the 6th problem leads to solutions of the 5th and 4th
problems, while a solution of the 5th problem leads to that of the 4th.

The second major concern of this thesis consists in a contribution in this
area for the so-called Laguerre-Hahn orthogonal polynomials on special non-
uniform lattices (results 8, 9, 10 below).

The fourth order differential equation for the continuous Laguerre-Hahn
polynomials has been established in [102]. The approach adopted there has
been extended as well to the Laguerre-Hahn orthogonal polynomials on linear
and g-linear lattices in [47] and [48] respectively. In [102] (see also [28, 101])
as in [47] (see also [103, 46]) and [48], the equations were written explicitly
for the cases of polynomials r-associated to the corresponding classical sit-
uations, that is Jacobi polynomials and specializations in [102], Hahn, big
g-Jacobi polynomials and specializations in [47] and [48] respectively.

The final group of results of this thesis:
Result 8. Starting at the difference-recurrence relations from [79], we es-
tablish (for the Laguerre-Hahn polynomials on special non-uniform lattices)
the corresponding fourth order difference equation (in [79], an algorithm
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(different than ours) for establishing such equation was given, but practical
computations were not done )(section 6.1). This solves the ”problem 5” for
the polynomials.

Result 9. We give explicitly that equation for the cases of polynomials
r-associated to all classical classes that is, classical orthogonal polynomials
on linear lattices (result equivalent for example to that from [47]), classical
orthogonal polynomials on g-linear lattices (result equivalent for example to
that from [48]) and Askey-Wilson class (section 6.2). This solves the ”prob-
lem 6” for the polynomials.

Result 10. Finally, we give it "semi-explicitly” (i.e. up to an explicit
system of non-linear difference equations satisfied by the coefficients in the
three-term recurrence relations) for the class one Laguerre-Hahn orthogonal
polynomials on linear lattice (section 6.3). This solves (partially) the ”prob-
lem 6” for the polynomials.

For avoiding any confusion, we will assume that the meaning assigned to
a given symbolization is confined on the current chapter.

Except the section 5.1, the material of the chapters 3, 4, 5, 6 and the
second part of the subsection 2.2.1 comes from our articles [22, 23, 24, 25, 26].
The results of the subsection 2.2.2 appear at first in this thesis.
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Chapter 1

Hypergeometric polynomials
on lattices

This chapter is essentially for recalling relevant concepts. For the reader not
familiar with the subject matter, this recalling is however crucial in view of
the fact that its content constitutes the basic tool of the whole chapters 3 and
4. The exposition encompasses the hypergeometric polynomials on linear,
g-linear , nonlinear and g-nonlinear lattices as particular solutions of Eq. (8).
More on the content as well as on the philosophy of the treated here matter
can be found in a series of works essentially by Nikiforov-Suslov-Uvarov-
Atakishiyev, in the early nineties. The monograph [94] and the articles
[95, 19] are all together in general complete and self-contained. Globally,
the material of this chapter will be implicitly referred to those works unless
the contrary is specified.

1.1 The general case.
Consider the divided difference hypergeometric equation

A [ \Y
Ay(s— %) Vy(s)

where Af(s) = f(s + 1) = [(s), V(s) = f(s) = f(s = 1), (y) and 7(y)

polynomials of at most second and first degree respectively and

Olg + )| 1

5ly(s)] 1457 = Mo(s), (1)

y(s) =’ + g +ez=c(¢®+q¢7") +c3 (1.2)

11
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for some constant (in s) u, q, ¢;(q), A. The equation (1.1) approximates, up
to the second order of accuracy, the differential hypergeometric type equation

F(z)v" + 7(z)v" = Av. (1.3)

We show that the equation admits polynomial solutions, give the Rodrigues
type formula, the orthogonality relation and the hypergeometric representa-
tion.

1.1.1 The polynomial solutions.
For particular values of A, say A,, the equation (1.1) admits polynomial

solutions P, (y(s)) of degree n. To see this, write first Eq. (1.1) in the more
compact form:

lU(S) Ay(sA— iy Vyv(s) + T(S)AyA(s)] v(s) = Av(s), (1.4)
where
. 1. 1 N
o(s) = ly(s))] = 57ly(s)]Ay(s = 5); 7(s) = Tly(s)]- (1.5)

Next, write Eq. (1.4) in a factorized form, translating the difference deriva-
tive operator in front

\Y% A
[[U(S)W_%) + T(S)]m] v(s) = Av(s), (1.6)

and then permute the factorizing operators. We obtain that the function

Av(s)
1= 50
satisfies an equation that is analog to Eq. (1.4) with y(s) replaced by y1(s) =
y(s+3):

(1.7)

A A\ A
[“%yl EE TR m] w(s) = moi(s),  (19)

where 7 (s) is a certain polynomial of first degree in y;(s), p1 = A— %ﬂ

This is an extension of the related property of Eq. (1.3). Performing repeat-
edly the operation k times, one obtains that the function

k-1
1:[ Y ]() v(s), (k=1,2,..)) (1.9)
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yi(s) = y(s+ %), is a solution of

A \Y% re(s) A
(s
Ayi(s = 3) Vye(s)

o(s) vE(s) = prvk(s), (1.10)

where

o(s+k)—o(s)+7(s+k)Ay(s+k— —)
Ay[s+E51]

Ti(s) = TUE = A — Z] - 25(3. (1.11)

Conversely, if vi(s) is a solution of Eq. (1.10), then for non vanishing pg =
A, [l ey ptk—1, the function

ﬁ v
o1 i Ay] 1(s—3)

+ 7-1(8) | vi(s) (1.12)

is a solution of Eq. (1.4). It can be shown that if @,(y(s)) is an arbitrary
polynomial of degree n in y(s), then

AQ, (y(s))
Ay(s)

where r,_1(y1) is a polynomial of degree n— 1 in y;. Hence, for an arbitrary
polynomial of degree n in y(s) say v(s), the function vy (s) given by Eq. (1.9)
is a polynomial of degree n — k in yi(s). Conversely, using Eq. (1.13) and
the fact that for an arbitrary polynomial Q,(y(s),

= rn-1[y1(s)], (1.13)

Qulu(eA 1]+l — 4 [y (5)] (1.14)

where £, (y1) is a polynomial of degree n in y;(s), one shows that if vi(s),
solution of Eq. (1.10), is a polynomial of degree n — k in yi(s), then vo(s),
the solution of Eq. (1.4), given by Eq. (1.12), is a polynomial in y(s) of
degree n. Remarking that for k = n,

A= An — Zn 1 7_/

= L0y(n) [(¢"F + 07T ) 7 + (0 - 1)5"] (1.15)

the equation (1.10) admits a constant solution say v,, we conclude from
the preceding that the equation (1.4) admits as expected, a sequence of
polynomial solutions P, (y(s)), of degree n, n € Z¥,

=15

\Y
[ m + Tj_l(s)] Ups (1.16)
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corresponding to A = A, provided A, # A, n # m. As already noted, for
convenience, we will call those polynomials Hypergeometric polynomials on
lattices.

1.1.2 The Rodrigues type formula.

The formula (1.16) allows to calculate the polynomial solutions of Eq. (1.4).
We below give an equivalent but more commonly applied formula. For that,
remark first that for p(s) and pg(s) satisfying

A A
m[U(S)P(S)] =7(s)p(s); An- 1)

[o(s)pr(s)] = Ti(s)pr(s) (1.17)

respectively, the equations (1.4) and (1.10) can be written in the formal
symmetric forms

A Vou(z), So(s
Syl T ) gy = Ao (119
and
A Vop(z),
m[a(s)f’k(s) Vyk(s)] = prpr(s)vr(s) (1.19)
respectively. Using the relation
pe(s) = o(s+ Dpra(s+ 105 pols) = n(), (1.20)
one easily deduces from Eq. (1.19) that
1 \%
s (6101 (5) = e ()] (1.21)

As a consequence, the polynomial solutions P,(y(s)) of Eq. (1.4) read

Palu(s) = 2250 0]

B, V \% \Y

T p(8) V() Vno1() Vg (s) [n(s)] (1.22)

where B, is a normalizing constant, known as the difference analog of the
Rodrigues type formula. 1t is preferable to work with Eq. (1.22) rather than
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Eq. (1.16) for example when searching the ”hypergeometric representation”
for the solutions (see below).

1.1.3 The orthogonality.

Multiplying the equation (1.18) for P,(s) by P,(s) and that of P, (s) by
P,(s), subtracting members by members and summing over the values s;,
a<s <b-1,s.41 =s;+ 1 one obtains

(A = Am) X0, Pa(y(s:) P (y(si)) p(si) Ay(si — 5)

VPaly(s VPm(y(s)]?
= o (s)p(s) [P (y(s) TR — P, (y(s) Tpel] | (1.28)
Using Eq. (1.13) and Eq. (1.14), one easily shows that the expression in
square brackets in Eq. (1.23) is a polynomial in y(s — %) Consequently,
under the additional boundary and positivity conditions

=0, (1=0,1,...), (1.24)

and
1
p(si)Ay(s; — 5) >0,(a<s; <b-1) (1.25)

respectively, we obtain the orthogonality relation on [a,b — 1] with weight
p(s)Ay(s — 1) for the polynomial solutions of Eq. (1.4):
S, Pa(y(50)) P (y(5) () Ay (5i — 3) = S (1.26)

It is easily seen that for ¢ and b finite, p(s;) # 0, a < s; < b — 1, the
boundary conditions (1.24) can be reduced to

o) =0;  o(s)+7(s)Ay(s - 1)

= 0. (1.27)
1.1.4 The hypergeometric representation.

The (generalized) hypergeometric series are defined by
ap, A2, ..., Qp

T’FS z

( ﬁh ﬁ27 tey ﬁs )

k

o (on)(an)kn(ar)s -
= 2R=0 (3), (Ba)e (o) FT (1.28)
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where (a1, ...,ap)k = (1) ... (ap)k, (@)o =1, (a)r = a(a+1)...(a+k—-1) =

F%Q(Z)k) Their g-versions, the basic hypergeometric series read

ap, Q2, ..., O
ﬁh ﬁ27 teey ﬁs

1+s—r
o159)k(023a) k---(ria) p ke=1) -
= 2izo /3117qk(/3;q) (ﬁs;q): [(_1) q 2 - (1.29)

where (a1,...,a,;¢0) 5 = (€1; Q% - (¢p; Ory (@59)0=1, (¢;¢)r = (1 —a)(1 —
aq)(1 —aq?)...(1—ag*™), k=1,2...

As well for the generalized hypergeometric series as for the basic ones , the
radius of convergence is given by

oo, r<s+1
pe=14 1, r=s+1 (1.30)
0, r>s+1.

a

Since limg,_; Ei_’gg’lj = (a)g, the formulas in Eq. (1.28) and Eq. (1.29) are
linked by

(o] qozg qar 1+
H . ? ? R s—r
Rl W o |Bla=1)Te
ap, @2y, ..., Qp
=,F 2. 1.31
e ( ﬁh ﬁ27 teey ﬁs ) ( )

One needs to remark the simplification of formulas (1.29) and (1.31), in the
case r = s+ 1. The starting point for the search of the hypergeometric
representation of polynomial solutions of Eq. (1.1) is the Rodrigues type
formula in (1.22). By the general formula

Vf(s)] = Dy(n+ 1) f(s=nth) (1.32)

n
2 =0 T =D V(o T B

where
%s+1 ba(5); Vgls) = %(qii_q—éi) (/@:q% —q_%) (1.33)

for an arbitrary function f(s), the formula in Eq. (1.22) is represented by a
sum

—1)"- Ly q(n+1) Vyl[s+k— u]
Pn(y( )) B Zk 0 F (k+1) (n k-l-l) Hlnzo Vy[s+k2_é+1]

<= a(s - 1) 12 Ho(s+ D) +r(s+DAy(s+1-1)]  (1.34)



Chapter 1 Hypergeometric polynomials on lattices 17

from which one searches to obtain type (1.29) form. After a set of computa-
tions, involving in particular the Watson and Sears transformations for the
basic hypergeometric series, one attains the following final formula

Po(s) = Pa(y(s)) = (i)n Bnq_§[351+52+53+s4+w]

c1gHrS

% (q51 +S2+AA; q)n (qsl +53+M; q)n (q51+54+ﬂ; q)n

4
—n > iop Si2p4n—=1 _s1—s _sidstp
q , q 1 7q1 7q1 q7q] (135)

X4¥3 qsl-}-52+ﬁt7 qsl-}-53+M7 q81+54+#

This is the hypergeometric representation of the general polynomial solu-
tions of Eq. (1.1) on the general lattice (1.2). Specializing parameters in
Eq. (1.35), which is equivalent to the specializations of parameters in y(s),
7(s) and &(s), one obtains of course hypergeometric representations for the
corresponding polynomials.

1.2 The classification.

Consider again the divided difference hypergeometric equation (1.1) (or
(1.4)) on the lattice (1.2). The equation can also be written as

. Auv(s) Vu(s) . 1 ols
) 3 — () g = Adu(s = 3)u) (1.36)
where o(s) is given in Eq. (1.5) and
5(s) = 6Ty + 57y Ay(s — ) = o(s) + 7(s)Ay(s — 5). (137

This means that the classification that we are searching for will depend on
the lattice y(s) in Eq. (1.2) and on the roots and the leading coefficients of
o(s) and 6(s). Hence a little close analysis of the objects is necessary. The
lattice y(s) can be rewritten:

y(s) =ci(q) (¢ +47°7") + es(q) (1.38)
= Cl(q)q‘gfi?qs+%ﬂ;$&)‘2 +2¢1(q)q™ 2 + ea(q). (1.39)
Hence, for
cl(q)q_gf-@Q =¢ =B
2e1(g)q™ % + ealq) = —Elﬁ”“‘iﬁ + &, (1.40)
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and ¢ — 1, using the relation

t —t
e —2
e T =r 14y

we have
ys)=a(s+5)° —a(§) +a=as’+as+é
=G5 (142) +0, (2=p) (1.42)

O 0

|x
=

Clearly, for g — +o00, Eqs. (1.38) and (1.42) read respectively

y(s) = c14” + c3 (1.43)
y(s) = ézs + é3. (1.44)

Thus, a first global classification of the hypergeometric polynomials on lat-
tices is obtained: Hypergeometric polynomials on ¢-nonlinear (Eq. (1.38)),
nonlinear (Eq. (1.42)), ¢-linear (Eq. (1.43)) and linear (Eq. (1.44)) lattices.
Those are the main classes of the polynomials. Each class needs next to
be divided in subclasses obtained by specializing the ”coefficients” in o(s)
and &(s). In the cases of g-nonlinear and nonlinear lattices, we remark that
y(s) = y(—s — u), from which one easily deduces that

G(s)=o0(—s—p). (1.45)

On the other side, according to the Rodrigues formula (1.22), P (y(s)) =
Bq7(s). That is why, when specializing the coefficients in o(s), one needs to
keep in mind that the ratio

_ o6(s)—o(s) _ o(—s—u)—o(s

rls) = S = 1S (1.46)
must be a polynomial of first degree (but not a constant). The equation
(1.45) tells us also that in the evoked cases, the knowledge of ”coefficients”
of o(s) is sufficient for the knowledge of those of &(s). This fact is also useful
for the sequel. In the following paragraphs, only the cases of the most useful
hypergeometric polynomials on lattices (Racah, dual Hahn, Hahn, Meixner,
Kravchuk, Charlier and their g-versions) will be treated in details. Their
main data (the pair (a,b) giving the interval of orthogonality [a, b — 1], the
functions p(s), o(s), 6(s), and B,,) will be displayed in tables. However,
their positions in a global hierarchy of all hypergeometric polynomials on
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lattices will be given in an enclosed at the end of the chapter scheme: The
Nikiforov-Suslov-Uvarov Scheme.

1.2.1 The case of g-nonlinear lattices y(s) = c; (¢° + ¢ *7*) + ¢s.

In the general situation of g-nonlinear lattices, we have

o(s) = ¢ 2pa(¢*) = Cqa > [Tim1 (¢ — ¢%) = ATLizy Yo(s — si),
s S; e . _ —4 —1/22:{1 Si. _
[0° — ¢* = kg™ Py(s — 8;);C = Ax™"¢ i=1%: A = const]. (1.47)

The general situation corresponds to the so-called ”¢-Racah polynomials”
(for ¢ — 1, they converge to the ”Racah polynomials” (see Table 1.2))
and the ” Askey-Wilson polynomials”. One parameter in less corresponds
to the so-called ”¢-dual Hahn polynomials” (for ¢ — 1, they converge to
the ”dual Hahn polynomials” (see Table 1.2)). Basic data for ¢-Racah on
y(s) = ii(s) = ¢7° + v3¢°*! (see [16, 62]) and ¢g-dual Hahn polynomials on
y(s) = %(qs + ¢~*) are displayed in Table 1.1.

In Table 1.1, T, (s) is given in Eq. (1.33) and
Iy (s + 1) = ¢ (s)T4 (),

by(s) = Lty (1.48)
The Askey-Wilson polynomials correspond to the choice of the lattice
y(s) = 5(¢° + q7°) = cosh, ¢* = €, (1.49)
and
' =a;q” =b;¢* = ;¢ =d, (1.50)

in Eq. (1.47). They were originally defined by a basic hypergeometric func-
tion (see [16]):
pn(cosb; a, b, c,d)

_ (ab,ac,ad;q)n ¢ q_n7 abcdq”_l, aqs, aq—
a™ 473 ab, ac, ad

S

q;q) : (1.51)

They admit a continuous orthogonality on [—1,+41] with weight

o1 aay=t1/2 e (=226 ~1)¢" +4%*)
Q(y) - (1 Y ) y:a:jdH:io(l_%qu+v2q2k)

maz(|al, [b], |e|, |d]) <1, -1 <q < 1. (1.52)
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The Askey-Wilson p,(cosf;a,b,c,d) and the ¢-Racah qR,(p(z); e, 3,6,7)

polynomials are related as follows: Setting

a? = 70¢;b* = oy 7167 g5 ¢ = B2y og,
d? = 57 1q; €2 = y5gr 1, (1.53)

in the Askey-Wilson polynomials p,,(cos#;a,b, c,d), one finds

g%, 077287297 3y 162q7, 4287 2q7)

N

pa(v(2); 778

— (09,884:79;0)na B (A(2);e,,7,6) (1.54)
(v8q)2 ’
1 1
v(z) = 57%5%q%+z + 57—%5—%'?—%—17‘ (1.55)
On the other side setting
a=abg ;B =cdg iy =adg ;6 =ad™t; ¢ =a e, (1.56)

in the ¢-Racah polynomials ¢R, (ii(z); a, 3, 8,7), one finds

a”p,(cosb; a,b, c,d)

qR,(2acosf;abq™ ", cdg™", adg™" ad™") = (1.57)

Other particular cases of polynomials defined on g-nonlinear lattices y(s) =
c1(¢° 4+ ¢ °*) 4 ¢3, of less interest (corresponding to two, one or zero roots
for o(s)) will appear in the enclosed at the end of the chapter global hierar-
chic scheme. We will note before closing this subsection that the polynomials
dual to ¢g-Racah are nothing else than the g-Racah with parameters exchang-
ing places.

1.2.2 The case of nonlinear lattices y(s) = ézs (1 + ﬁ) + ¢5.

In the general case of nonlinear lattices, o(s) reads

4
o(s) = AH(S —5;), A= const. (1.58)
=1
It is clear that Eq. (1.58) can be obtained from Eq. (1.47) by sending ¢ to

1. The most general case of (1.58) leads to the Racah polynomials, while
one root of ¢ in less leads to the dual Hahn polynomials. Basic data for the
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Racah on y(s) = n(s) = s(s+~v+ 5+ 1) (see [64, 62] and references therein)
and dual Hahn on y(s) = s(s+ 1) polynomials are displayed in Table 1.2.
As for the ¢-Racah polynomials, the polynomials dual to Racah polynomials
are nothing else than the Racah polynomials with parameters exchanging
places.

The cases when o(s) has less than three roots are not of interest, since
in such cases, as it is easily verified from Eq. (1.46), 7(s) becomes a constant.

1.2.3 The case of g-linear lattices y(s) = c1¢° + cs.

We will remark first that, in this case, the formula (1.45) is no more valid.
Hence, in contrary to the preceding situations, the knowledge of the unique
”coefficients” of o(s) is no more sufficient for the definition of the polynomi-
als. Besides o(s), the knowledge of &(s) is required. In the present situation,
they read

o(s) = ATTE (g° - q"), (1.59)
6(s) = AT, (¢° — ¢°), A= const. (1.60)

It is clear that Eqs. (1.59)-(1.60) can be obtained from the corresponding
equations in the case of g-nonlinear lattices,

6(s) = a(—s—p) = A[II_ ¥,(s + 5, + 1), A= const. (1.61)

o(s), being given in Eq. (1.47), by sending ¢~* to 0. For that it suffices to
set,

s1(p) = s1,82(p) = S2,83(p) = —81 — 1, s4(p) = =82 — p,
A(p) = kg r-brtstatn)/2 (1.62)

The most general situation of Eqgs.(1.59)-(1.60) corresponds to the so-called
”g-Hahn polynomials”, while one root of o(s) and &(s) in less (the degrees
remaining unchanged) leads to the ”¢-Meixner” and ”¢-Kravchuk polyno-
mials”, and one root of o(s) in less (the degree remaining unchanged) and
two roots and one degree of ¢(s) in less leads to the ”¢-Charlier polynomi-
als” (see Table 1.3) (for ¢ — 1, those ¢-polynomials converge to the Hahn,
Meixner, Kravchuk and Charlier polynomials, respectively (see Table 1.4)).
Basic data for g-Hahn, g-Meixner, g-Kravchuk and ¢-Charlier polynomials
on y(s) = ¢° are displayed in Table 1.3.
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Besides the evoked g-versions of the Hahn, Meixner, Kravchuk and Char-
lier polynomials, there exists a lot of other polynomials of less interest on
g-linear lattices, corresponding to various specializations of Egs. (1.59)-
(1.60) (see the enclosed scheme at the end of the chapter). We will note
also that there exists a possibility of constructing ” g-versions” of the evoked

polynomials (Hahn,...), on the lattice y(s) = %(qs —-q°).

1.2.4 The case of linear lattices y(s) = ¢35+ ¢é3.

Here also, the formula (1.45) is no more valid. Hence, together with o(s),
we consider &(s):

o(s) = A(s —51)(s — s2); 6(s) = A(s — 5)(s5 — 53) (A = const). (1.63)

It is useful to emphasize the simple form that takes the equation (1.4) in
this situation of linear lattices:

[0(s)AV + ¢a7(s)A]v(s) = é2Av(s). (1.64)

It is clear that Eq. (1.63) can be obtained from Eqgs. (1.59)-(1.60) by send-
ing ¢ to 1, ¢1(q) and c3(q) being adequately chosen . Less naturally, one
can obtain the formulas (1.63) as a limit for p — oo of the corresponding
equations on nonlinear lattices

4 4 4

o(s) = AH(S —s;); 6(s) = AH =o(—s—p) = AH(S—I—SZ' + 1) (1.65)

=1 =1 =1

if one puts

s1(p) = s1,82(p) = s2,83(p) = =51 — p, sa(p) = =82 — p, A = —. (1.66)

tm| :B(

The most general polynomials on linear lattices are the Hahn polynomials
H:La’ﬁ)(s), while one degree in less for o(s) and &(s) leads to the Meixner
My(f’c)(s) and Kravchuk K,gp)(s; N) polynomials, two degrees in less for 6(s)
and one degree in less for o(s), leads to the Charlier CZ(JL)(S) polynomials.
Basic data for the Hahn, Meixner, Kravchuk and Charlier polynomials (on
y(s) = s) are displayed in Table 1.4. One remarks clearly that the Kravchuk
K7(Lp)(s; N) can be obtained from the Meixner M}f’c)(s) by the elementary
change § = —N; c= -L

p—1°
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Remark 1.1 Concerning the general hierarchic scheme at the end of the chap-
ter: One will note first that the variants of Racah and ¢-Racah polynomials
retained in that scheme differ with the ones retained in Tables 1.2 and 1.1.
The variants of Racah and ¢-Racah polynomials retained in Tables 1.2 and
1.1 are the more commonly considered and are those from [64, 62, 16]), but
we decided not to modify that original scheme. The two versions of canonical
forms of general hypergeometric polynomials on g-nonlinear and nonlinear
lattices are clearly linked by simple transformations. We will signal next that
the lattice in the general scheme is denoted by z(s). It is also perhaps worth
noting that when speaking about ”hypergeometric polynomials on lattices”
or equally the polynomials from that general scheme, we have not in mind
that those polynomials are orthogonal or not. Clearly, the conditions of or-
thogonality (1.24)-(1.25) are not necessary satisfied for all the given there
classes of polynomials. We will note finally that the general classification
scheme needs to be read following the orientation of the arrows (but not in
the converse or any other sense). There is the philosophy of the matter.

Remark 1.2 The reader interested in concrete formulas for the difference and
recurrence relations (not treated in this chapter) for hypergeometric polyno-
mials on lattices can refer to the evoked references. We will note also that for
the most useful of them (Charlier, Meixner, Kravchuk, Hahn, Askey-Wilson
(¢-Racah) and polynomials dual to them), those formulas will be obtained
simpler using the factorization technique in the third chapter.

Remark 1.3 Before giving the next remark on ”completeness” of orthogonal
polynomials on lattices, for avoiding any confusion, let us distinguish the
notion of completeness and that of closure for a given system in an inner
product space, seen that their meanings sometimes permute depending on
authors. A system of elements in an inner product space is said complete
in that space if any element of that space can be approximated arbitrarily
closely by a finite linear combinations of its elements. It is said closed in a
given inner product space if there is no a non-vanishing element in the space
that can be simultaneously orthogonal to all the elements of the system.

Remark 1.4 Suppose a system S of polynomials on lattices orthogonal on
[c,d] with a discrete (of course positive) weight say o(s) and consider the
Hilbert space ¢%(c,d; o) of sequences say (...v(s)...) for which converges



24 1.2 The classification

the series

d

> lo(9)* a(s). (1.67)

S=c

Then, according to the theorem 5.3.3 in [20], the system S is complete in
(?(c,d;0). Thus, any system of hypergeometric polynomials on lattices,
orthogonal with a discrete weight o(s) on [c,d], is complete in the corre-
sponding Hilbert space ¢?(c,d; 0). Concerning the system of Askey-Wilson
polynomials admitting a continuous orthogonality, its completion in the cor-
responding Hilbert space follows from usual considerations seen that the
interval of orthogonality is finite. The completion of the polynomials on
linear lattices was also proved directly in [58] (theorem 4.4.1).
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Table 1.1: Basic data for the ¢-Racah on ji(s) = ¢=% + vd¢**! and ¢-dual
Hahn on y(s) = %(qs + ¢~°) polynomials

P, (s)

) qRn(a(s)) qH(y(s))
(a,b) (0, N) (a,b)
p(s) _l(aq,ﬁéc_zylwqwéc{;q)s _ _ Tg(sta)llg(sta)lg(stet1/2) »
(0,07 1v8¢,67 1 vq,89;9) s (aBq) Tg(s —a+Dlly(s —a+1)Te(s +b)
xTy(s —c+1/2)T4(b—s)
-N -N
aa=a vgr:ﬁgﬂgq (@>0,]c| <a+1/2,b=a+N)
o | - o T CEa
' X(B = vq°)(a — 7éq*) Xthq(s — c = 1/2)¢q(s — a)
s | OO sy Gals T Balb—s 1)
T x(1 =gt (1 - vég*t) Xtq(s +c 4 1/2)d4(s + a)
Bn Bn T x (g — D

Table 1.2: Basic data for the Racah on 7(s)

Hahn on y(s) = s(s + 1) polynomials.

s(s+v+4+d+1) and dual

Pn(s) R (n(s)) H3(y(s))
(a,b) (0,N) (a,b)
(s) (D), (FFFD): 0 F D). (v FIF1)s TGFat )T GFeFl)
P (—aty+3+1) s (—F+y+1)s (0+1)ss! T(s—a+t O)I(s—c+1)
xT(s+b4+ 1I'(b—s)
a+l=-Norfp+dé+1=-N —1/2<a<b,le|]<1+a,
ory+1=—-N b=a+ N
s(s—a+y+4
a(s) x(i _ A+ 7;(5 _1_)5) (s—a)(s+b)(s—¢c)
&(s) (s+a+1)(s+8+d+1) (s+a+1)(s+c+1)
X(s+v+1D(s+v+5+1) x(b—s—1)
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Table 1.3: y(s)
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= ¢°. Basic data for ¢-Hahn, ¢-Meixner, ¢-Kravchuk and
g-Charlier polynomials

Pn(y) aH™? (y) aM (y) akh(y) 9CE (y))
(a,b) (0, N) (0, +00) (0, N+1) (0, +o0)
Nqs(a+ﬁ)/2 q—£N+1)s/2ps
Po(s+8+1) s(G-n/z xTg(N +1) g et/
. f‘q(N—s—Foz) Xcsf‘q(s—l—é) (1— YV s xe s
p(s) Fq(s+1)Tg(N—3) (s 1) (3) Fo(s+ )T g (N—s+1) Fq(st1)
0<g<1,
>0, < —1
a>-1,8>-1 0<g<1, 0<p<1 (1—q)q?
0<ec<1 or
q>1,p0>0
; qS/qu(s) ) )
G'(S) ><q(s—I\/'—a)/2 q (S)q s—1 qs/2wq(s)qs—l qs/2¢q(s)q -1
XPq(N + a —s)
q(5+f3+1)/2
R Xthg(s+8+1 cqlst9)/2 L_gls=N)/2 o s
J(S.) q((s—N+1)/2 ) e \ 8 ! fp 7 \ .8 Hq
xq Xtq(s +6)g Xtq(N — s)q
XtPqe(N —1—s)
B 1—q)" (ﬂ)” (0=g"(-p" (ﬂ)"
n n! c n! it

Table 1.4: y(s) = s. Basic data for the Hahn, Meixner, Kravchuk and
Charlier polynomials
Po(s) HE P (s) MY (s) KPP (s) i (s)
(a,b) ©,N) (0, +o0) ON+1) |0 to0)
\ T(N4a—s)T(6+1+s) ST (s44) Nip®(1—p)N—° e H s
p(s) T(s+)T(N—s) T(s+1)T(8) T(s+)T(N+1—s) T(s+1)
(a>-1,8>-1) (6>0,0<c<1) 0<p<1l) | (u>0)
o(s) s(N+a-—s) s s s
o(s)+7(s) | (s+B+1(N—-1-—053) c(6+s) %(N —3) 7]
B =" 1 =N 0-p” 1
n n! cn n! g
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Chapter 2

Discrete factorization
techniques

The first concern of this chapter consists in recalling the general practical
realizations of the technique of factorization, some of its essential restrictions
and potentialities (section 2.1). A special emphasis is put on three funda-
mental methods (”shape-invariance”, ”quasi-periodicity”, ”modification”).
Secondly, our concern consists in formulating and explaining some special
structures necessary for the study of the second and fourth order difference
eigenelement problems (section 2.2). Most of emphasis is put to the case of
second-order difference eigenelement question as the whole chapters 3 and 4
are devoted to problems related to that.

Of course, more specific explanations are to be found in each chapter in rap-
port with the specific techniques to be applied there.

2.1 Definitions, basic ideas and potentialities.

Let H; be a linear difference (this part is also valid for the differential sit-
uation) operator. One says that H; is factorizable iff the following product
can be performed

Hj(z) —p; = Lj(z)R;(z)
Hiyi(z) —p; = Ri(x)Lj(z). (2.1)

The operators L; and R; are called lowering and raising respectively. The
difference-recurrence relations connecting the coefficients of L; and R; will

29
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be called the factorization chains or systems. The term ”factorization chain”
can also be used to call the operatorial relations in Eq. (2.1) or the related
sequence ...H;_y, H;, Hji1,...itself. The variable j will be referred to as
the variable of factorization. In some cases, this ”variable of factorization”
is an actual independent variable belonging to R. However, in most of the
cases, jJ € Z and is considered all simply as an index.

Basic useful formulas deduced from Eq. (2.1) are:

HjnR; = R;jH;
H;L; = L;Hjy. (2.2)

More generally,
H]'+NR]'+N_1 .. .R]’ = R]'+N_1 .. .R]'Hj
HjL]'...L]'+N_1 :Lj...Lj+N_1H]‘+N, N € N. (2.3)

Those intertwining relations allow clearly to interconnect the spectral data
of the H-operators.

2.1.1 Three fundamental methods.

The shape-invariance method.

Some eigenvalue problems can be reduced to the search of the solution of
the equation

H(z;5)¢(z;5) =0, (2.4)

where j is a variable on which depends the spectral parameter. This moti-
vates us to consider the situation when effectively in Eq. (2.1), j acts as a
full independent variable. In that case, Eq. (2.1) needs to be written as

H(z;5) —p(i) = L(z;5)R(237)
H(z;5+1) —pi) = R(z;7)L(2;75). (2.5)

Thus LR+ i and RL + p have the same shape and differ essentially only in
parameters which appear in them. In other words there is shape-invariance
during the permutation. The term ”shape-invariance” used here is borrowed
from Quantum Mechanics where two Hamiltonians say

d2

Hy=-D*+V. D= —
+ + Vi (z), pet

(2.6)
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related by supersymmetry i.e. Vi(z) = W?(z) & W'(z), are said shape-
invariant iff

Vi(z;a0) = V_(z;501) = S(ao); a1 = Q(ao) (2.7)

where () and S are some functions.
The equation (2.4) can then be solved using the ”shape-invariant” factoriza-
tion (2.5) as follows. We first remark that if ) (z; jo) is such that

H (z; jo) ¥ (x5 30) = 0, (2.8)

then, unless it vanishes, the function
n—1
Y(2ijo,n) = [ R(xijo+n—1—5)¥(x;jo0), (n>1) (2.9)
i=0
is a nontrivial solution of the equation

H(z;jo+ n)y(z;n) = 0. (2.10)

Identically, unless it vanishes, the function
Y(ws jo,n) = [ L(wsjo — n— 1+ )¢ (x; jo), (n>1) (2.11)
7=1

is a nontrivial solution of the equation
H(x;jo — n)y(w;n) = 0. (2.12)

It is clearly expected that the functions in (2.9) and (2.11) do not vanish
simultaneously. In that case, for solving Eq. (2.4), the remaining task
consists essentially in finding the ”starting” function ¥(z;jo). For that,
there is not a general way, but some hints are notable. Remark first that if
for some jg one has p(jo) = 0, then the starting function can be found solving
all simply a linear first order difference equation. Indeed, if u(jo) = 0, it
follows from Eq. (2.5) that either

R(z; jo)¥(z;Jo) = 0 (2.13)

L(z; jo)p(a5jo+ 1) = 0. (2.14)
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In the event L(z;j) and R(z;j) are mutually adjoint (for this hint, we are
supposed to work in a convenient inner product space) and p(j) monotonous
(increasing or decreasing function of j), "solvable” situations can be reached
in the following way:

If p(7) is an increasing function, consider the following ladder

Plz;i+1) = R(w;7)¢(z;])
—u(NY(x;5) = L(x;5)¢(a;i+1). (2.15)

L(z;7) and R(z;j) being mutually adjoint, one easily finds that
(Vo5 41,05+ 1)) = =) ($(2:9), (235)) (2.16)

where (., ) means the scalar product. But as u(j) is increasing, there exists
necessarily some J for which —py; < 0, (—p(j) > 0,7 < J), which implies
that necessarily for some jo, ¥(2; jo+ 1) = 0 or identically R(z; jo)v(x; jo) =
0 and the starting function ¥ (z; jo) for the "ladder” (2.11) is found.

If in the opposite u(j) is decreasing, we similarly write

V(z;j) = Liz;g)d(e;i+1)
(@) Y(z;i+1) = R(z;5)v(x;9), (2.17)

and
(¥(w3), 6(w34)) = =n() (¥ 35+ 1), %35+ 1) (2.18)

such that for some jo, L(z; jo)¥(z; jo+ 1) = 0, leading to a starting function
¥ (z;jo+ 1) for the "ladder” (2.9).

It is important to note that in eigenvalue problems, the task of guessing
the structure of the equation (2.4), corresponding to the original eigenvalue
equation, so that the operator H (z;7) may be factorized as in Eq. (2.5), is
very crucial for the success of the application of the method. It appeared
also from the preceding reasonings that ”generate” a ”solvable” operator is
almost equivalent to ”generate” a ”shape-invariantly factorizable” operator.
In the following example, we ”generate” a simple ”shape-invariantly factor-
izable” operator. Its solutions appear be the Meixner Méfy’“) (z) polynomials.

Frample 2.1.[87]
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Consider the operator

X(z;n) = E2 + A(z;n)E, + B(z;n) (2.19)

where E;(h(z)) = h(z 4+ 1), and A(z;n), B(z;n) are some functions in z
and n. Next, search for y,(z) such that

X(z;n)y,(z) =0. (2.20)

For that, set the factorization

]
h
+
®
2
3
®
2

X (z;7) - p(n)
X(z;n—1) — p(n) = L™ (2;0) LT (z;n) (2.21)

where
Lt (z;n) := E; + q(z;n); L= (z;n):=E, +Q(z;n). (2.22)
We obtain the system

q(zin—1)+Q+ Lin—1)=Q(z;n) + ¢(z + 15 n)
q(z;n—1)Q(z;n — 1) = Q(z;n)q(w;n) + p(n) — p(n — 1), (2.23)

Setting
Q(z;n) = (az + b) + n(cz + d); q(z;n) = (ex + f) + n(ve + w)(2.24)
one easily finds

Lt (z;n) = E, —wz + [+ nw; L= (z;n) :=E;, +de+b+nd
p(n) == —n[dwn + df + bw). (2.25)

From Egs. (2.20) and (2.21), we obtain

c1yn-1(2) = L™ (2 n)yn(2)
cayn(z) = LT (251)yn_1(2) (2.26)

where

c1c2 = —p(n). (2.27)
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Considering the first equation in (2.21) and the last one in (2.25), one finds
that a starting function yo(z) is given by

L™ (z;0)yo(z) =0 (2.28)
and leads, by the second equation in (2.26), to a solution of Eq. (2.20). For
d = —1, this function is easily seen to be

yo(z) =1(z - b) (2.29)

leading to the Meixner polynomials. More precisely for w = —f;b = —v; f =
—i, the operator X (z;n) reads

1 n o1 1 +1
X(zin) =E2+[(-1— =)o —1—n+ = — = —4]B, + [—2> + L —a 4+ ]
iz Beoop Iz Iz Iz

and a solution of Eq. (2.20) is given by

yo(z) =T(z+7)
un(@) = 1120 5= [Be + 2~z + 1 — 1= §)lyo(z), (n > 1) (2.30)

and precisely

Yn(z) =T(x +7) oF7(—n, —2;7;1 - i), (2.31)

the functions (), 2F1 (—n, —z;7;1 —i) , with (7)), =v(y+1)...(y+n—-1),
being exactly the Meixner My(ﬂ’“)(.r) polynomials [94].

In [87], the Meixner polynomials were thus shown to be ”generable” from
type (2.21) factorization chain. In the same work, for generating the Hahn
polynomials, another kind of factorization, not taking in particular the de-
gree of the polynomials n as the variable of factorization, was used. Later
in this thesis, we will show practically that the kind of factorization used
here (shape-invariant Infeld-Hull-Miller factorization) for the Meixner poly-
nomials can be extended not only to all the hypergeometric polynomials
on linear lattices (Hahn polynomials, their various specializations, and the
polynomials dual to all that), but also to all the hypergeometric polynomials
on [g]-nonlinear lattices (Askey-Wilson polynomials, their various specializa-
tions, and the polynomials dual to them).
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The modification method.

We now fix j := p and consider the unique pair of operators H, and H,4q
(linked by Eq. (2.1)), to study the interconnection of their spectral data.
More precisely, we need to show how to generate the eigenelements of H,4
from the ones for H,. In other words, we need to ”"modify” H, into Hpy;.
Let

(PE A5, k=0,1,2,... (2.32)
be a sequence of eigenelements of H, with

k l
AN k£
AF £ iy, k=0,1,... (2.33)

From Eq. (2.1), the corresponding eigenelements for H,q are
(@5, Ap), (2.34)
where
P = Ryut, k=0,1,... (2.35)

Let us remark directly that Rpw;f # 0, Vk according to the second condition
in (2.33).
On the other side, according to Eq. (2.1), we have that the function, say qbg
given by

Ly¢y =0 (2.36)

is an eigenfunction of H,4; corresponding to the eigenvalue p,.

In the event L, and R, are mutually adjoint (in a convenient inner product
space in which we are for the occasion supposed to work), so the functions L/);f
are mutually orthogonal as they correspond to mutually different eigenvalues
for a symmetric operator H, = L,RR, + ji,. Adding the second condition in
Eq. (2.33), we obtain that the set qbé, [ =0,1,2...1s also orthogonal as
corresponding to mutually different eigenvalues for a symmetric operator
Hpy1 = R,L, + jip. More precisely, we prove

(o5 ob1) = (Rl Byvl) = (= ) (05, 0h) =0 (2.37)
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and
0 k+1\ _ (0 p k) _ 0 kY _ _
(4, 6541) = (60, Ryk) = (Lol 0F) =0, ki1=0,1,...  (2.38)
In summary, to a set of eigenelements (u');f, /\];), k=0,1,...0of H, correspond

for H,41 a set of eigenelements (qbgﬂ, /\I;), k=0,1,...obtained by the for-
mula (2.35) plus an extra cigenelement (¢9, 11,) obtained by Eq. (2.36). In
the sequel, we will not only let us say that H, is "modified” into H,4; but
also that the eigenelements of H, are "modified” into the corresponding
eigenelements of H, ;.

Fzample 2.2.[104]

Consider the Hamiltonian
X(z) = —-D?* +2? (2.39)

where D%h(z) = %h(m). We suppose that it is known that

X (@)ya(z) = (2n + 1)ya(2) (2.40)

22
where y, (z) = e~ 2 #H,(z), H,(z) being the Hermite polynomials of degree
n € Zt H(z) = (1) Loeme”,

On the other side, replacing in Eq. (2.40), = by zi, (i* = —1), it is not
difficult to verify that

X (2)yn(zi) = —(2n + Dyn(z1). (2.41)
Hence, fixing m € Z*, one easily factorizes

X(@)+2m+1=(D+ fn(2) (=D + fm(2))

K@) 4 2m 4 1= (—D+ fu(2))(D+ fin(2)) (2.42)
where
i)
fm(z) = s (21) (2.43)
and

X0 (z) = X (2) - 2/ (z). (2.44)
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As a consequence, the new Hamiltonian X (™) admits as eigenelements

(o =2m—1);  (fms1i2n4+1),n=10,1,2... (2.45)
where
Tt () = [=D + fru(@)]ym(z),n=0,1,2... (2.46)
and
m0(2) = [ym(i2)] ™5 [D+ fu(@)]Gmo(2) = 0. (2.47)

In order that the new eigenfunctions be square integrable on the whole axis
(—00, 400), only the cases of even m need to be considered (the cases of odd
m correspond to square integrable on [0, 400) functions).

The case m = 0 does not lead to new polynomials.

For m = 2, the new eigenfunctions read

22

jao(z) = Qy'(z)e” =

12
Grns1(@) = QF'(2) [Q2(0)Husr (@) + Qb (@) Ha(@)] 5 (245)
where
Qa(z) = 1+ 222 (2.49)
The corresponding polynomials
~ $2
Hop = Yon(2)Q2(z)e2 ,n=0,1,2... (2.50)

are orthogonal on (—oco, +00) with non-classical weight Q5 2(z)e™*". Those
polynomials were obtained differently (solving operator relations) in [40].
In the subsection ”quasi-periodicity method” (just after this one), they will
serve as a welcome illustrative example (see in ” example 2.3.”, equations
(2.86)-(2.87)), considering that it surprisingly allows to intersect the two ap-
proaches.

For m = 4, the new eigenfunctions read

2

ao(r) = Q7'(z)e” %
Uant1(z) = Qzl(ﬂf) [Q4($)Hn+1(93) + Qﬁl(x)%n(x)] e

i
2

(2.51)
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where
Qa(z) = 42* + 122% + 3. (2.52)

The corresponding polynomials

22

Han = yan(2)Qa(z)eT,n=0,1,2... (2.53)
are orthogonal on (—oco,400) with non-classical weight Q3*(z)e~*". The
first six examples are:

Hap(z) = 15 Haa(z) = 20(42® + 2027 + 15);  Hap(z) = 162° +
72z + 362% — 6; Has(r) = 4x(82° + 282t — 142% — 21); Haa(z) =
4(162% 4 322°% — 1202* — 7222 +9); Has(z) = 82(162® — 2162* + 81).

The absence in the sequence of polynomials of degree 2,3 and 4 needs to be
underlined. More details on those polynomials can be found in [104].

We will refer to this kind of transformation of classical polynomials as
the ” modification” of the polynomials. It is clear that the present "modifica-
tion” of polynomials has any equivalence with the ones from [7, 8, 12, 15, 27].
On the other side, this example of modified Hermite polynomials is, in our
best knowledge, the unique in literature, case of non-classical polynomials
obtained using the above scheme. In chapter 4, we will follow the above
scheme (”"modification method”) for obtaining modifications of the special

Meixner M7(L2’C) (z + 1) polynomials.
The quasi-periodicity method.

Above, it appeared that every time we aimed to obtain concrete applications
of the factorization chain (2.1), we were assigned to demand it to satisfy some
additional constraints: In the example 2.1, the operator X (z;n) needs to be
factorizable in the ”"shape-invariant” form. In the example 2.2, the operator
X (z) needs to be of different family than X (z) from which we generate it,
and so on.

Here, as in the first case, we are searching again for a certain ”symmetry”,
reason for which we need to impose to the factorization (2.54) additional
self-similarity constraints.

To explain conveniently the situation, write the factorization in Eq. (2.1) as
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follows
ﬁj = L;R;
Hj-H = R]'L]‘ + oy (2.54)
where
Hj = Hj - py,
aj = flj = fip1- (2.55)

In this form, the intertwining relations in Eqs. (2.2), (2.3) read
Hin Ry = Ri(H;+ ay)
(Hj +aj)L; = LjHjpn (2.56)
and
IA{]‘+NR]‘+N_1 .. .R]‘ = R]'+N_1 .. .R]'(Hj +o;+...+ Oz]'+N_1)
(H]‘ +aoa;+...+ Ozj+N_1)L]‘ .. .Lj_|_N_1 = L]' .. .LJ‘+N_1H]'+N. (2.57)

Next, impose to the factorization chain (2.54), the following so-called ”quasi-
periodicity” closure conditions [109]

Hipn = Hj(z-9)
ajrN = @ (2.58)
and for simplicity setj := 0. So the relations (2.57) read

Ho(z — )R = R(Hy + a)
(Ho + o)L = LHy(z — §) (2.59)

where

& = flo — UN
R:RN_l...RO
L=Ly...Ly_y (2.60)

For the particular case § = 0, the relations took the form
[ﬁo, R} = ol
(o, L] = —aL (2.61)
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where [A, B] = AB — BA.

For a = 0, the equations in (2.61) reduce in commutation ones:
[ﬁo, R} =0
(o, L] = 0. (2.62)

The equations (2.61),(2.62) lead exceptionally to elementary functions. The
solutions of Eq. (2.61) are generally expected to belong to Painlevé transcen-
dents [106, 109], while the commutation equations (2.62) lead to hyperelliptic
functions [32, 33, 70, 71, 72, 73, 91, 106, 109]. But as we are dealing with
polynomials, we are clearly interested in those rare situations where the so-
lutions are elementary.

Letting Ho be an operator obtained from the general equation (2.59), we
explain further the method by showing how to generate its eigenelements.
Let ¢o(z) be a "starting” eigenfunction obtained for example by solving the
equation Ly_1¢g(z — ) = 0, and let Ag be the corresponding eigenvalue.
We have

Hogo(z) = Aodo(z). (2.63)
Hence, from (2.59)
Hodr(z) = (Ao + po — )1 (2), (2.64)
where
¢1(z — 08) = Roo(). (2.65)
More generally,
Ho(z)¢n(z) = Andhn(2) (2.66)

where

Pnt1(z — 0) = Ron ()
Cnén(z) = Loppyr(z — 6), (2.67)

for some constant (in z) ¢, and

An = (po — pN )1+ Ao. (2.68)



Chapter 2 Discrete factorization techniques 41

It is not difficult to remark that the role of the ”starting function” can be
played by any eigenfunction of any one of the operators H;i=0,N—1.
Thus imposing the quasi-periodicity condition (2.58) to the chain (2.54),
leads to an operatorial equation (see (2.59)), from which one can generate
an automatically solvable (in principle) operator. Here below, will be given
various examples (inside the "example 2.3”) where Eq. (2.59) is solved by a
Schrédinger operator, potential of which is either a Painlevé transcendent,
an elliptic function or an elementary one (leading to a sequence of polyno-
mial eigenfunctions).

Fzample 2.3.[40, 106]

To illustrate our situation, consider the Schrodinger operators
H; = —D? +v;(z),i=0,1,... (2.69)

and suppose that the potentials v;(z) are such that there exists well-behaved
fi such that v;(z) = f/(z) + f?(z). In that case, one easily verifies that
the operators H; are positive and symmetric (over the convenient space).
Suppose next that one can make the intertwining relations

H;, = HIH
Hiyy = HIHI + (2.70)
where

HY =D+ fi(2); H = -D+ fi(z). (2.71)
In terms of potentials and superpotentials, they are respectively equivalent

to
vit1(z) = vi(z) — 2f](z) + o (2.72)

or
fl@) = ffa)==fl(z) = fA (@) + o, i=0,1,2.. .. (2.73)

Imposing the periodicity condition Hy = Hg or fy = fo; ap = apn, to this
chain leads to (see Eq. (2.61))

[Ho, R] =akR
[Ho, L] = —al (2.74)
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WhereR:H&_l...HO_;L:HJ'...H]‘{}_I;a:a0+...+aN_1.

For N = 1, the solution of the equations is easily seen to be the harmonic
oscillator

Hy = —D?* 4 22 (2.75)

However, for illustrating our saying, it appears convenient to solve the corre-
sponding eigenelement problem directly, following the first initiators (Schro-
dinger [105] and Dirac [41]) of the method in the quantum mechanics area.
For this goal, we will write the harmonic oscillator operator as follows

D? 22 1
H= ——4+—+ —. 2.
5 + 5 + 5 (2.76)
It factorizes in
H = HYH™
H = H HT +1, (2.77)
where
+ — D+=zx. - _ —D+=
HT = 75 H ==/ (2.78)
Hence
HH™=H (H+1)
HHY = HT(H - 1). (2.79)

There is clearly a particular solution of Eq. (2.61) for N = 1. Also, according
to Eq. (2.77), H admits a unit eigenvalue corresponding to the eigenstate
2

Wy = e~ 7 obtained from the equation HtWy = 0. Considering Eq. (2.79)
and the positivity of the operator H — %, it becomes clear that Wy is the
groundstate of H. The ”higher” eigenstates ¥,,, n = 1,2...are obtained ap-
$2
plying iteratively to it the "raising” operator H~ i.e. W, (z) = [H]|"e™ 7,
n = 1,2.... By (2.68), the corresponding eigenvalues are A\, = 1 + n,
2

n=20,1,2.... Clearly, ¥, = ann(m)e_%, n=20,1,2... where H,(z) =
(—1)"e”” Cﬁg—nne_ﬁ are the Hermite polynomials.

The preceding was probably the first example of pure application of the fac-
torization method in quantum mechanics [105].
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For N = 2, no much hopes of obtaining interesting solutions seen that any
normalized differential operator of even order can be written as a combi-
nation of an operator of lower order and an even power of the Schrédinger
operator .

For N = 3, (a # 0), the chain (2.73) can be reduced to the fourth order
Painlevé equation [106]:

1 3 b
y// — @(y/)Q + §y3 +4$y2 + 2(1,2 _ a)y+ §7 Yy = —fO — . (280)

The corresponding potential vg(z) can be written as

1
vo(z) = —22'(z) + ZQQ:UZ (2.81)

(z")2 - oz2(z - mz’)2 +4P(Z') = 0; Pt)=tt+a1)(t — az). (2.82)

For N =3, a = 0 (see also [106]), vo(z) is the elliptic Weierstrass function
p(2), (¢')* = 4(p =) (p = r2)(p = r3)-

Let us remark that the operators L and R in Eq. (2.74) are of order
exactly equal to N.
In [40] a type

[H,R] = aR (2.83)

operator equation (see equation (2.10) in [40]) was considered with H a
general Schrédinger H = —D? 4 v(z) and R a differential operator of N
order. For N = 3, it was shown that the corresponding equations in the
coefficients can be reduced into a unique equation for the potential, itself
solved (not uniquely) explicitly by (see equation (4.6) in [40])

L 4 8
4 T+22 (14 22)2

2
—. 2.84
+ (2.84)

Remembering the theorem 5 from [106], according to which any type (2.83)
operator equation can be obtained imposing the periodicity condition to a
factorization chain (i.e. in the same way as we obtained the first equation
in (2.74)), one can conclude that the function in Eq. (2.84) is a particular
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solution of the Painlevé IV in Eq. (2.80) (i.e. a particular case of vo(z) in
Eq. (2.81)).

Another interesting interconnection is also in order: In [40], after obtain-
ing the potential in Eq. (2.84), a classical method (separation of equations)
was used to solve the corresponding eigenelement problem. As a result, the
eigenfunctions can be written as

Fo(z) _22
U, (z) = a2t (2.85)
where
Fo(z) =1, (2.86)
B 99 22 d [Hep_1(z) _o2
Fn(.r)——(l—l—.r ) €2 % Wc’ 2, (287)
and He,_1(z) are the Hermite polynomials
I N
ni(2) = (~1)"e T [e 2 ] (2.88)

Remarking that the present polynomials are essentially the ones in Eq. (2.50)
(remark also given in [104]), the situation testifies to the possibility for the
” quasi-periodicity” and the ”modification” methods to lead to the same re-
sult when applied to the eigenelement problem for the Schrédinger operator.

2.1.2 Discrete spectrum, algebraic interpretation.

Discrete spectrum.

We now show how to obtain, using the techniques of factorization, a discrete
point spectrum for a given Hamiltonian, under additional suppositions (pos-
itivity, symmetry).

For that consider again the intertwining relations (2.57). Those relations
allow of course to interconnect the eigenelements of ﬁj to those of ﬁj+N.
Let QLJ‘ be the eigenfunction of ﬁj corresponding to A = 0 and such that
Lj'z;'vj # 0. It becomes clear from the second equation in (2.57) that for any
N, the function

L. . . Lian_10an (2.89)
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is an eigenfunction of Hj corresponding to the eigenvalue —(a; + ... +
a;4yN—1). In other words, the set

0, —aj, —(aj+ajq1), —(aj +ajp1+aj42), ... (2.90)

is included in the point spectrum of ﬁj.

Supposing that the operators Hj are all positive and symmetric (in a conve-
nient inner product space in which we are for the occasion supposed to work)
and «; all negative (i.e.u; increasing), then one easily shows that this part
of point spectrum is purely discrete: The function 'g/;j is clearly the ground
state for Hj as the latter is positive. Then, supposing that & is an eigen-
value of ﬁj such that 0 < & < —a;, so according to Eq. (2.56), the number
&= &+ a; < 0 will be an eigenvalue of ﬁj+1 which contradicts the fact that
ﬁj+1 is positive. In the same manner, one shows that there is no eigenvalue
of ﬁj in the interval (—(o;+aj41 4. ..+ oj4), —(j+ajp1+. . .+ ¥jrigr))
and so the set in Eq. (2.90) is a purely discrete part of the point spectrum
of H;. It is clear that in the event the set is unbounded (set —a; > ¢ > 0
for example), then the point spectrum of Hj is purely discrete and coincides
with the set in Eq. (2.90).

Similarly, letting '&j be the eigenfunction of ﬁj corresponding to A = 0,
and such that Rﬂﬁj # 0, then the function

Riyn_1...R;; (2.91)

is an eigenfunction of ﬁj+N corresponding to the eigenvalue a; + ... +
aj+N—1, and so, similarly, for H; positive, a; > € > 0, the set

0, Qe N_1, OjpN-1+ OjEN_2,. .., (2.92)

is a purely discrete point spectrum of Hy.

In the case when the chain ﬁj satisfies the additional quasi-periodicity con-
ditions (2.58), then more interesting situations appear:

For a; negative, it follows from Eqgs. (2.57) and (2.58) that the point spec-
trum of Hy is purely discrete and is composed by N arithmetic progressions
with starting points

07 — g, —(040—}—041), 7—(0(0+041—|—...+04N_2). (293)

and step —a.
Similarly for a; positive, the point spectrum of Hy is purely discrete and is
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composed of N arithmetic progressions with starting points
O7 aAN_1y, N1 —|—O(N_2,...,OZN_1+ ...—|—O€1 (294)

and step a.
More discussions and applications to the Schrédinger operator —D? + v(z)
can be found in [106].

Algebraic interpretation.

Remarkable is also the algebraic interpretation of the formulas (2.54)-(2.61),
in the case of ”periodicity” (i.e. § = 0). To see this, remark first that

LR = P(H,)
RIL = Q(Hy) (2.95)
where
P(ﬁo) = Ho(ﬁo + po — H1)(Ho + 1o — pt2) - - -(I:Io + 110 — pN=1)
Q(Ho) = P(Ho+ pn — po) (2.96)

In other words, [L, R] is a polynomial of degree N — 1 in Hy with constant
coefficients. Combining this with the relations in Eq. (2.61), one obtains
that the operators Hy, L and R generate a so-called ”polynomial algebra”
(see for example [109]).

For N = 2, we particularly obtain

Ho,R| = (o= )R

(Ao, L] = (o — )L (2.97)
and

[L,R] = 2a*Hy—bI (2.98)

where a® = g — p2, b = (o — p2) (g1 — p2) and I is the unit operator.
Setting a*> = 1 and b = 0, this algebra becomes isomorphic to s/(2). On the
other side, setting a? = 1, the four-dimensional algebra generated by ﬁo, L,
R and I is isomorphic to G(1,0). The equivalence between the factorization
types discussed in [56, 87] and irreducible representations of G(a,b) and Fg
was already explained in [86, 87].
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2.2 Discrete factorization types.

The main ideas of the factorization techniques having been given and illus-
trated in the preceding section, as well for the difference operators as for the
differential ones, the objective of the present section consists in giving a de-
tailed discussion on the factorization technique as well for the second order
difference operator as for the fourth order one. We classify the factorization
techniques in types, in rapport with their intrinsic structure. We aim of
course such factorization types potentially allowing to solve one of the first
three problems raised in the introduction. We prefer to collect them into
the two categories that follow: The Spiridonov-Vinet-Zhedanov factorization
types, and (a special case of) the Infeld-Hull-Miller factorization types (see
introduction).

2.2.1 Discrete factorization types for the second-order dif-
ference operator.

The second-order difference operators in which we are concerned are ex-
pected to admit complete set of polynomial eigenfunctions, among which
the constant one. So, we can imagine their general form to be:

H(s) = u(s)Es — v(s) + w(s)E; . (2.99)
where
v(s) = u(s) + w(s), (2.100)
u and w being polynomial or rational functions in s. It is then expected that
H(s) Pr(y(s)) = MO Pa(y(s)), (2.101)
for a sequence of polynomials (in y(s)), Pi(y(s)), of degrees, t =0,1,2,...
We, in the first step, analyze possible factorizations of 7(s), while in the
second, we study those for E;.[H (s) — A(%)].

Spiridonov-Vinet-Zhedanov factorization types.

Applying first, the isospectral deformation

H(s) = p(s)H(s)p™(s) (2.102)
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where

Pt 1) uls)

P2s)  w(s 1)

we obtain a formal symmetric one

H(s) = \/u(s)w(s + DE,; — v(s) + y/u(s — Dw(s)E;".

If
H(s)Yn(s) = Anthu(s)
then
H(s)(p(5)¥n(s)) = An(p(5)¥n(s))

The corresponding factorization chain then reads (Ho := H):

Hj(s) — pj = (fi(s + )Es 4+ g;(s))(g;(5) + f;(s)E; )
Hiy1(s) — pj = (gi(s) + f;(9)E; ) (fi(s + DEs + g5(5))

where

fHs+1)+g2(s) —v;(s) =
fi(s)gi(s) = Juj(s — Dw;(s)

and

Sra(s+ 1) +g20(s) = f7(s) + g3 (s) + 15 — piga
fi+1(8)gi+1(s) = fi(s)gi(s = 1).

Taking for example

H(s) = A(s)E; — (A(s) + B(s)) + B(s)E;"

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

the usual canonical form of the second order-difference operators in orthog-
onal polynomials theory, then a transformation as in Eqs. (2.102)-(2.103)

gives

H(s) = \/A(s)B(s + 1)E; — (A(s) + B(s)) + \/A(s — 1) B(s)EZ" (2.111)
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having a direct algebraic factorization

1) = (A - VBEE!) (VBE+DE - /a). @21

When one is dealing with the difference hypergeometric operator, the com-
mutation of the first-order operators in Eq. (2.112) is equivalent to the
application (see [107])

P (y(s)) — P, (y(s)), (2.113)

lowering the degree of the polynomials by the difference derivative.

Let now see how to avoid the square roots in Eq. (2.104). By squaring
the last equations in (2.108), (2.109), one easily finds that the factorization
(2.107) is equivalent to (H := Hy):

Hy = iy = (By + 4;()) (14 f;(s)B7")
Hii = iy = (14 F(9ES") (By + 45(5) (2.114)

with H given by
H(s) = p(s)H(s)p~ " (s) = Es — v(s) + w(s)u(s — 1)E;" (2.115)

where

plet)
S =) (2.116)

Egs. (2.108), (2.109) now read (f; = 20i=93):

fils+ 1) +3;(s) = —vj(s) — py
[i(8)d;(s) = wj(s)uj(s — 1) (2.117)
and
firr(s+ 1)+ giga(s) = fi(s) + ;(5) + 1 — frjmn
fi1(8)di41(5) = f3(s)g;(s = 1). (2.118)

There are remarkable interconnections between the factorization chain (2.114)-
(2.118) and discrete-time integrable systems. To see this (we proceed as in
[111]) write first

Hi(z) = E, —v;(z) + hj(2)E;"! (2.119)
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and consider then the system (2.117)-(2.118) in term of the coefficients of
H;(z).
We quickly find

hisn () = by — 1) fj{; (f)l) (2.120)
Eliminating fj, we obtain
(hjp1(z) = hj(2)) (hj(2) = hjpa(z + 1)) =
(vj41(2) = vj(z = 1)) (vj(2) — vj1a(2)) hj(2); (2.121)
(hjrr(z+1) = hj(z+ 1)) (hj(z) = hjpr (2 +1)) =
(vigr(z +1) = vj(2)) (vj(2) = vj41(2)) hjpa (z + 1), (2.122)

a system which constitutes a discrete-time version of the Toda lattice [111].
Indeed, setting

hi(a) = h(t + jei o)
vi(z) =v(t+je ) (2.123)

and letting ¢ — 0, we obtain (the dot means the derivative in time ¢):
h(z)(h(z) = h(z + 1)) = h(z)(v(z = 1) = v(z))i(z)
h(z+1)(h(z) — h(z +1)) = h(z + Dz +1) —v(z))o(z). (2.124)

(
Division in Eqs. (2.124) members by members leads to

h(z) = ki(t)h(2)(v(z — 1) = v(z)). (2.125)

On the other side, shifting in z the second equation in (2.124) and then
dividing the resulting equations members by members, we obtain:

o(z) = ka(t) (h(z — 1) — h(z)). (2.126)

Dividing Eq. (2.125) by Eq. (2.126) and considering the second equation
in (2.124) one easily finds that k() = ko(f) after which the equations
(2.125),(2.126) give the continuous-time Toda lattice [117].

To go further in the same direction, let us consider the operator ﬁj with
v; = 0 and chose ﬁj+1 to satisfy

Hipr (1+ A;EZ?) = (14 A;EZ?) Hj. (2.127)
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This is a double application of the factorization technique as one can take
(14 A4;E7%) = (1- /) (1+ /B (2.128)

Eq. (2.127) gives

(2.129)

Eliminating AJ-, we obtain

B (2 +1) (bj(2) = hya (2)) (i (2 +2) — hj(2)) =
hi(@) (a4 1) = hpga (e + 1) (hga (2 + 1) —hjla — 1) (2.130)

a system that constitutes a discrete-time Kac-van Moerbeke lattice [111]. In
the continuous limit as above, one obtains

Wz + () (h(x) - bz +2))

=h(z)h(z+1) (h(z = 1) = h(z + 1)) (2.131)
or equally
h(,r) =k(t)h(z) (h(z+1) — h(z - 1)) (2.132)

which is the continuous-time Kac-van Moerbeke system [59].
If we set

hj() = hj(x) (v; + k(e = 1)), (2.133)

then, the discrete-time Kac-van Moerbeke system (2.130) is transformed into
[111]:

hj(@) (v + hj(z = 1)) = hjsr (2) (Vi1 + hyjp (2 + 1)) (2.134)

which is linked with the discrete-time Toda lattice (2.121)-(2.122) by

fi(z) = h;(2z)h;(2z+ 1)
gi(z) (vj + hj (22 + 1)) (v; + h;(22 + 2))

fij = const—v:. (2.135)
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For this reason, the transformation in Eq. (2.135) can be considered as a dis-
crete version of the type Miura maps connecting the continuous-time Toda
and Kac-van Moerbeke lattices [51].

Let us note finally that since the system (2.118) is known to converge in
the continuous z to the corresponding differential version [106] itself known
namely as a delay-Painlevé T [52], it can be considered as a discrete delay-
Painlevé 1. The system (2.118) is also known to admit symmetries [108]

Remark finally that the operator
H(s) = u(s)Es — v(s) + w(s)E; ', (2.136)

itself should be reasonably factorized without any preliminary transforma-
tion (such as (2.115) (or (2.102))). Indeed, one could set

H; — iy = (u(s)Eq + 35(5)) (14 f;(5)E™)
Hivr — iy = (1+ f5(5)BT") (u(s)Bs + 5(5)) (2.137)
so that the factorization chain (2.118) and the relations (2.120) become re-
spectively

Fipa(s +1) +35(s) = F(s) + 4i(s) + ity — A
Fip1(s)gi41(s) = Fy(s)gi(s — 1). (2.138)

and

vi+1(2) = vj(2) + Fj(z +1) = Fj(2)
Fi(z)
where Fj(s) = u(s — 1) f;(s). Tt is precisely this kind of factorization that

we will adopt in chapter 4 for the modification of the special MéQ’“)(m +1)
Meixner polynomials.

Let us return for a moment to the system (2.118). For such a system,
the quasi-periodicity condition (2.58) (the first equation) is equivalent to

fisn(@ =48) = fi(x)
gi+n(z —0) = g;(x) (2.140)
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In the section 3.1, we will show that the case N = 1,§ = 0 leads to the
Charlier polynomials while N = 2,4 = 1 leads to the Meixner and Kravchuk
polynomials. This will appear as a consequence of relations (2.59) and Eqs.
(2.63)-(2.68).

However, already from Eq. (2.68), the limits of the ”quasi-periodicity”
method appear: The eigenvalues of the constructed operators are necessarily
linear functions of their variable (here n). In other words, we can not by
that approach obtain solution for example of types problem 1 and 2 for the
Hahn polynomials or any other ”higher” class of orthogonal polynomials.
In [40], as already noted in example 2.3, the authors aimed to solve the
operator equation

(o, R = aR (2.141)
under the constraints that if for example
HoW, (z) = 7,V (z) (2.142)
then, up to a multiplication by a constant,
U, 11(z) = RV, (2); U, _i(z) = R'¥,(2) (2.143)

where R* is the operator adjoint to R. In the example 2.3, we have given
the essential of the corresponding solution given in [40] (modified Hermite
polynomials). However, as quickly remarked in [40], a consequence of Eqs.
(2.141) - (2.143) is that the eigenvalue 7, satisfies

Yrtl — Yn = @ (2.144)

i.e. is necessarily linear (a one dimensional equidistant discrete point spec-
trum of step a). To get over this barrier, the authors of [40] suggested to
set, instead of Eq.(2.141), the more wider operator equation

[[Ho,R],R] = 2aR% (2.145)

Under the additional constraints in Eq. (2.143), this leads to the following
equation for the corresponding eigenvalue 7,

Ynt2 — 2941 + Vo = 20 (2.146)

leading clearly to a quadratic in n function 7,. More generally, they sug-
gested to consider the operator equation

[[[Ho, R],R],...R] = NaRN (2.147)
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(R appears in the L.Lh.s. N times), leading to v,, as a polynomial of degree
N in n.

In our case of quasi-periodicity, one can adapt the extension of the formula
(2.59) in the following way. First set the functions of operators

Fy (HO; R) - H
I3 (HO; R) - R (ﬁo(m —5); R) R - RF, (Ho; R)
Fy (Ho; R) _ .F‘];_l (Holz - 8); B) R — REN_y (Ho; R) (2.148)

and then generalize for § # 0 the operator, equation in (2.147) as
Fxy=NaRN, N=1,2,.... (2.149)

Apparently, the preceding formula constitutes a possible generalization of
the ”quasi-periodicity method” to some situations of non-linear eigenvalues.
However, below we adopt a more natural generalization of that method to
the cases of non-linear eigenvalues. It consists in adapting the approach used
in example 2.1 (the shape-invariant Infeld-Hull-Miller method) in the gen-
eral situation of difference ” polynomial eigenelement equation”. In sum, the
method works for all the hypergeometric polynomials on lattices and some
special Laguerre-Hahn polynomials on lattices.

Infeld-Hull-Miller factorization types.
Consider again the eigenvalue problem
(AE, — (A + B) + BE;!) Wi(s) = A1) (). (2.150)

Instead of applying the factorization technique to the operator in the left
hand side of Eq.(2.150), we will apply it to the operator

E2 — (A(s+ 1)+ B(s+ 1) + A1) E; + B(s + 1) A(s). (2.151)
We will search for the factorization

H(s;t) = p(t) = (Bs+G(s5t)) (Bs + F(s5t))
H(s;t+1)—p(t) = (Es+F(s;1)) (Es +G(s31))  (2.152)
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where we noted
H(s;t) =
EZ - (A(s+ 1)+ B(s+ 1) + A#))Es; + B(s + 1)A(s).  (2.153)
The factorization (2.152) leads to the chain
F(s+1L;t+ 1)+ G(s;t+1) = F(s;t) + G(s+ 1;1)
F(s;t+ 1)G(s;t+ 1) = F(s;t)G(s3t) + p(t) — p(t + 1) (2.154)
with
F(s+1L;t)+G(s5t) = —(A(s+ 1)+ B(s+ 1)+ A1)
F(s;t)G(s;t) = B(s+1)A(s) — u(t). (2.155)

Before going further on, let us remark as in the previous case that for the
operator

A(S)E; — (A(s) + B(s)) + B(s)E; ' — A(1), (2.156)
the factorization (2.152) is equivalent to
H(sit) — p(t) = (A(S)Es +G(s:10)) (A(s)Bq + F(si1)
H(sit+1)—pu(t) = (A(S)Es+ F(s;t)) (A(s)Es + G(s;t)) (2.157)

where

H(s;t) =
A(8)[A(s+ 1)E2 — (A(s+ 1)+ B(s+ 1)
+A(t)Es + B(s+ 1)], (2.158)

the factorization system (2.154) remaining unchanged.

Consider next in more general situations, type (2.152) factorization for
a given operator

H(s;t) = E2 — V(s;t)Es + W(s). (2.159)

Contrary to the one in Eq. (2.114), such a factorization satisfies naturally
some self-similarity condition. Namely, we easily remark that

H(s;t+1) = H(s;t)+ (V(s;t) — V(s;t + 1)) E;. (2.160)

Hence presumably, the system in Eq. (2.154) can be applied in our eigenvalue
problems without additional reductions .
Indeed, one can prove the following
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Proposition 2.1 Let u(t), F(s;t) and G(s;t) be any solutions of the system
(2.154) such that

F(s;t) —G(s;t—1) #0,6=0,1,2,... (2.161)
then the equation

Glsi 1) Wy(s + 1) = [F(sit) + Gls = L;0)]y(s)
+F(s—1;=1)Wy(s —1) =0 (2.162)

admits fort = 0,1,2, ... non-trivial solutions satisfying difference (in s) and
three-term recurrence (in t) relations. Moreover, if

F(s;t) —G(s;t— 1) = c1(t)y(s) + c2(t) (2.163)

1(¢

c1(t) # 0, those solutions are of polynomial (in y(s)) type (with degrees
t=0,1

2,..).

Proof. We need basically to ensure the equivalence between the system
(2.154) and the factorization

H(sit)— t) = (Bo+G
H(sit+1) - t) = (Bo+F

~—~

5;t)) (Es + F(s31))
s;t)) (Es + G(s;t)) (2.164)

~—~

H(s;t) = E2—[F(s+1;t) +G(s;)|Es + F(s; —1)G(s;—1)

at) = wt) — u(-1). (2.165)
This is easily done after ”integration” (in ¢) of the second equation in (2.154)
transforming the system in
F(s+1L;t4+1)+G(s;t+ 1) = F(s;t) + G(s + 1;t)
F(s;t)G(s;t) = F(s; —1)G(s; —1) — p(t) + p(=1). (2.166)
Next, it follows from the first equation in (2.154) that the unit is a solution

of the equation in (2.162) for ¢ = 0. In other words, the function ®¢(s) given
by

Qo(s+1) = —G(s; —1)Pg(s) (2.167)
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is a solution of H(s;t) in Eq. (2.165) for t = 0.
Now, let ®;(s) be a function such that

H (s;t)®4(s) = 0. (2.168)
According to Eq. (2.164),
Piyi(s) = (Es+ F(s;1)) Pu(s)
CiO®(s) = (Bt Glsit) B (9). (2.169)

Subtracting the two equations gives
Boi1(s) + Al — DBa(s) = (F(si1) — Glsit — D)by(s)  (2170)
If Eq. (2.161) is satisfied, then we obtain as solutions of (2.168) the sequence
g (s) #0
@, (s) = (Es 4+ F(s;0)) @o(s)

byFq.(2.161)
PELID () (<Gl —1) + Flsi0) # 0

byEq.(2.170)
Oi(s) £ 0, t=2,3,.... (2.171)

Consequently, the corresponding non-trivial solutions of the equation in
(2.162) read

W, (s) = &gt (s).04(s) (2.172)

and satisfy difference and three-term recurrence relations analog to (2.169)
and (2.170) respectively. More precisely, from Eqs. (2.169), (2.172) and
(2.167) we have

Uipi(s) = (=G(s;=1)E; + F(s;1)) We(s)
—a(t)We(s) = (—G(s5—1)Es+ G(s5t)) Uipq(s), (2.173)

from which naturally follows
Uity (s) +a(t — 1)W_qi(s) = (F(s;t) — G(s;t — 1)) Wy(s) (2.174)
or equally (use Eq. (2.166) for s = —1)

Wipi(s) + [F(=1; -1)G(=1;—1) = F(=1;t)G(=1;1)]¥:-1(s)
= (F(s;t) = G(s;t — 1)) Uy(s) (2.175)
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In the event where the condition (2.163) is satisfied, then the functions W,(s)
are, by Eq. (2.174) or (2.175), of polynomial type and one can set

U, = o(t)P(y(s)),t = 0,1,2,. .. (2.176)

Using this relation and (2.173) and (2.174), one easily finds that the poly-
nomials P (y(s)) satisfy the following difference relations

e1(t)acs1 P (3(5)) = (=G5 =) E, + F(s;1)) Po(y(s))
—e1(t+ Da Py(s)) = (~Gls: ~ DB, + F(s:)) P (y(s)  (2177)

and the recurrence relations

a1 P (9(9) + @i Pt (9()) = (2 = b)Puly(s)  (2178)
where

o Bt-1) _ ). o(t+1) _
CEae-Da® T Tawt en D wa® 2119

which can close the proof of the proposition.

Remark 2.1 Let us now return to the system (2.154) (in general) for a more
close observation. The first remarkable of its properties lies on the existence
for it of at least one symmetry. To find it, one needs firstly to ”integrate”
the second equation in (2.154) relatively to ¢ , secondly "differentiate” it
relatively to s. We obtain

F(s+ 1t +1)+G(s+ 15t) = F(s;t) + G(s;t 4+ 1)
F(s+ 1;0)G (s + 1;t) = F(s;1)G(s3t)
+is) - s + 1) (2.130)
where
F(s;t) = F(s;t),
G(sit) = —G(s;t),
f(s) = p(=1) = F(=1;-1)G(=1;-1) + F(s; =1)G(s; —1)(2.181)

So, while the system (2.154) is an Infeld-Hull-Miller factorization system
with ¢ as the "variable of factorization”, the one in Eq. (2.180) is an Infeld-
Hull-Miller factorization system with now s as the ”variable of factorization”.
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Next, from Eqs. (2.154), (2.180) and (2.181) we see that the correspondence

P(sit) = F(ts),
G(sit) = —G(t;s),
f(t) = ji(=1) - F(-1;-1)G(-1;-1) + F(t; —1)G/(t; —1)(2.182)

(remark that a(t) := g(-1) + F(-1; -1)G(-1;-1) — F(-1;t)G(-1;t)) is
a symmelry of the Infeld-Hull-Miller factorization system (2.154) i.e. the
functions in left hand side of Eq. (2.182) are solutions of Eq. (2.154) as
well. This symmetry is probably the main characteristic of the system un-
der consideration. It becomes then of much necessity to understand which
is its intrinsic meaning.

As proved in the preceding proposition, the functions W¢(s),t =0,1,2,...
of the independent variable s € ZT ”generated” by the Infeld-Hull-Miller
factorization system (2.154), satisfy the second-order difference equation

G(s;=1)Wi(s+1) = (F(s;1) + G(s = 151)) We(s)
FFP(s—1;=1)Uy(s — 1) = 0 (2.183)

and the three-term recurrence relation

Uipi(s) — (F(sit) = G(s;t = 1)W(s) + (F(-1; -1)G(=1; -1)
CF(=13t = DG(=1t — 1)) Wy (s) = 0. (2.184)

On the other side, the functions W,(t), s = 0,1,2,... of the independent
variable t € Zt "generated” by the Infeld-Hull-Miller factorization system
(2.180), satisfy the second-order difference equation

G(=1;8)U,(t + 1) + (F(s;t) — G(s;t — 1)U, (t)
—F(=1;t =)W, (t—1) =0 (2.185)

and the three-term recurrence relation

Woe (1) = (Fsi0) + Gls = 1,0)B,(t) + (F(s = 1;=1)Gls — 1;-1)
(=1 —1)G(=1; —1)) Ty (t) = 0.(2.186)

Comparing Eqgs. (2.183) and (2.186) on the one side, Eqs. (2.184) and (2.185)

on the other side, we remark that the sequences of functions W(s) := ‘I;t((ti)
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and \flt(s) = Ll \ifhere ottl) — _G(-1;t) and é(g(t)l) = G(t;-1)) are
mutually dual, i. e. W, (t) = Wy(s) , iff
F(=1;—1)G(=1; —1) = 0. (2.187)

Remark that in the case F(s;t) + G(s — 1;t) and F(s;t) — G(s;t — 1) are
linear functions respectively of say, A(#) (with coefficients not depending on
t) and y(s) (with coefficients not depending on s), Wy(s) and W, (t) are (bis-
pectral) orthogonal polynomials of the variables y(s) and A(f) respectively.
For such polynomials, the symmetry (2.182), constrained by Eq. (2.187),
becomes clearly the usual duality relation between (bispectral) orthogonal
polynomials (see for example [75]).

But as we will see in chapter 3, all the classical (up to the Askey-Wilson
polynomials) polynomials on lattices can be generated from a type (2.154)
Infeld-Hull-Miller factorization system and the corresponding ”superpoten-
tials” satisfy the constraint (2.187). The latter is easily seen verifying for
those polynomials the equality o(0) = 0 (see section 1.2), o(s) in section 1.2
being comparable with I'(s — 1; —1) here (for the Askey-Wilson polynomi-
als, it is necessary first to transform them into equivalent to them g-Racah
polynomials (see such transformation also in section 1.2), in order that Eq.
(2.187) be satisfied, the dual Hahn and their g-versions from the section 1.2
need also additional simple transformations). As a consequence of this and
the preceding observations, we obtain that each class of polynomials dual
to one of the classes of classical (up to ¢-Racah polynomials) polynomials
on lattices, can also be generated from a type (2.154) Infeld-Hull-Miller fac-
torization system (now written as Eq. (2.180)). This observation is clearly
very useful and we will refer frequently to it later. It is worth noting that
the cases of self-duality (Charlier, Meixner and Kravchuk cases) correspond
to one of the following identities (to be verified in section 3.2)

F(t;s) = F(s;t); G(t;s) = —G(s;t) (2.188)
F(t;s) = —F(s;t); G(t;s) = G(s;t). (2.189)

Remark 2.2 Before closing this subsection, another observation is in or-
der. Let us combine the Infeld-Hull-Miller factorization systems (2.154) and
(2.163). We obtain,

F(sit) = G(sit—1) +er(t)y(s) +e2(t)
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G(sit) = Flsit —1) = (cr()y(s + 1) + ea(t))
F(s;t)G(s;t) = F(s;t—1)G(s;t— 1)+ p(t —1) — (). (2.190)

It is interesting to note that such systems are already known in orthogonal
polynomials theory. Indeed, a large subset of so-called Laguerre-Hahn or-
thogonal polynomials (including particularly the Askey-Wilson polynomials)
can be defined by such a system. This fact attesting of the interconnection
between the factorization technique and the Laguerre-Hahn approach to or-
thogonal polynomials [79, 80, 82] will be discussed in more details later in
section 5.2.

2.2.2 Discrete factorization types for the fourth-order differ-
ence operator.

The fourth-order difference operators in which we are concerned are expected
to admit complete set of polynomial eigenfunctions, among which the con-
stant one. So, we can imagine their general form to be:

v

L =A(s)E2 + B(s)E, + V(s) + C(s)E;' + D(s)E]? (2.191)
where
V=-—(A+B+C+D), (2.192)

;17 E,é’ and D, being polynomial or rational functions in s. It is then ex-
pected that

v

LP(y(s)) = A1) Pe(y(s)), (2.193)
for a sequence of polynomials (in y(s)), Pi(y(s)), of degrees, t =0,1,2,...
As for the case of second-order difference operators, we collect possible types

of factorizations in two categories: Spiridonov-Vinet-Zhedanov types and
Infeld-Hull-Miller types.

Spiridonov-Vinet-Zhedanov factorization types.

As in the case of second-order difference operators, we firstly try to apply to
L, a similarity reduction leading to a formal symmetric operator

L =p(s)LiL(s), (2.194)
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for some function j3(s). It is easily seen that the requirement that L be
formal symmetric is equivalent to that j(s) satisfies simultaneously
Pls+2) A
75 Dst2)
P(s+1 B
P (‘;+ )__Bl (2.195)
p*(s) C(s+1)

So, contrary to the second-order case, the problem admits solutions iff

A(s)  B(s+1)B(s)

De+2)  Ce1C6+1) (2.196)

Supposing that this is actually the case, L is formal symmetric and conse-

quently can be factorized as follows (Lo = L):

)
V)
v

Lj— ;=
(Fi(s 4 DB +55(5) + i (s = VETY) (5() s + 55(s) + J5(5)E; )

)
)

Ljpr — it =
(4 () B + 35(9) + F(9ET) (Fi(s + DB +55(5) + G(s — DEFY) .

The corresponding factorization system then reads

Finr (s + D (s +1) = Gi() fi(s +2)
Fior (s + Dgie1(s + 1) + i1 (9)G41(5) = Gi(9)Gi(s + 1) + Gi(s) fi(s + 1)
Fa(s+ 1)+ 3741 () = @ () + 53 (5) + lij — i (2.197)
In its general form (i. e. without the constraint (2.196)), the operator
L admits also three other "compatible” (i.e. for which the corresponding

factorization system is compatible) types of factorization. The first one
reads
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where

o )

=h(s)L;;  Lo=1L;  h(s+1)h(s) = A(s). (2.199)

The corresponding factorization system reads

(s+1) +gj+1(s )PJ+1(5

Gip(s )+f’+1
$) 1 () + Biga (s = DG (s

dj+1(s v g f ](f)(j] (s—1)+p; (S)é] (s)
Gt () By (s = 1) = B (s)Chs (5 — 1), (2.200)
where
Fi(s) =h(s) [i(s);  Gi(s) = h(s)g; (). (2.201)

In the two remaining types, we avoid the additional equation h(s+ 1)h(s) =
A(s). We, on the one side, set (Lo = L):

L;—ji; = (AGS)E2 4 G ()B4 55(5)) (145,90 + [ (5)E;?)
Ligi—ji; = (14 5i() B + F(9)E;2) (A(5)E2 + () Bs + 55(5) )
leading to the system

A($)Bi41 (s +2) + G () = G(s) + A(s — 1)3j(s)
A(8) fi41(5 +2) + Gia1 (9Bja (s + 1) + G () =
3i(s) + 5(); (s — 1) + A(s = 2) [i(s)
Gi+1 () fir (s + 1) + Giar (B (5) = Bi(9) (s — 1) + f5()di (s — 2)
Gi+1(5) fi+1(5) = f3(9)5(s — 2). (2.202)
On the other side, we set (io = i)

v

L;—ji; = (A(S)E2 + G ()Bs + 5i(s) + 35 (5)E; ) (14 [i(9)E; )
Ligi =iy = (14 [()EY) (A(5)B2 + G5(5) By + 55 (5) + 55 (5)E; )
leading to the system

A() i1 (54 2) + i1 (5) = Gi(5) + A(s = 1) fi(s)
i1 () fipr (s + 1) + Biga(s) = §i(s) + Fi ()G (s — 1)
Fra(s) Fi1(5) + G541 (5) = 55(5) + 1.
Gi(5) fi(s = 1) = Fi(8)gi(s - ). (2.203)
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Remark that this factorization leads to the intertwining relation
Liwi (14 Fi(9)EY) = (14 [i(9)ES) L, (2.204)

so that the factorization chain (2.203) is equivalent to the following relations
between the coefficients of L; and L;4q:

f‘:lm(S) = f}j(S) ] ] o
Bjyi(s) = Bj(s)+ Aj(s — 1)](8) — Aj(s) j(f +2)
Vit(s) Vi(s)+ Bj(s — 1) fj(s) — Big1(s) fi(s + 1)
Cira(s) = Cyls) + Vi(s = 1) fi(s) = Viga(s) fi(s)
Dini(s) = fi(s) %((j__;)), (2.205)
or equally
%j+1(8) = f}j(S) ) ) o
Bjy1(s) Bj(s) + Aj(s = 1) f;(s) — A;(s) fi (s +2)
Vigr(s) = Vi(s)+ Bj(s = 1) fi(s) — Bj(s) fi(s + 1)
—Aj(s = () (s + 1) + Fi(s + 1) fi(s + 2) Aj(s)
Cipa(s) = CEfS) + fi()Vi(s = 1) = ‘Z‘(f) - Jfg(s Bi(s 1)
+fi(s+ 1) Bj(s) + Aj(s — D fi(s) fi(s +1)
~Aj(3)fi(s + 1) fis +2)
Disi(s) = fi(s) l]%f((s:;)), (2.206)
knowing that
Ei0i(9) = iy ®y(s) Fs) = — i) (2.207)

The formulas (2.206) extend in some sense, the ones in Eq. (2.139), to the
fourth-order case. They should serve for ”modification” of some polynomi-
als satisfying a fourth-order difference eigenvalue equation, a question which
will not be treated in this thesis.

Infeld-Hull-Miller factorization types.
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As in the case of second-order, we consider now the operator H(s;t) =
E2.[L — A(t)] (for simplicity, we consider here the case of linear lattices).
The factorization then reads

H(s;t) — ji; =
(A(s)B2 + Q(s; B, + G(s51 ) (A(5)B2 + P(s;) B, + F(s:1))
H(s;t+1) — ji; =
(A()EB2 + P(s;)B, + F(s51)) (A(s)E2 + Q(s; 1) E, + G(s31) ) (2.208)
where
H(s;t) = A(s)H (s;t) (2.209)
that is
A(s)B(s+2) = A(s)P(s+2;t) + A(s+ 1)Q(s;1)
A)\V(s+2) = A()F(s+2;t)+ P(s+ 1;1)Q(s;t) + G(s;1) A(s)
A()C(s+2) = Q(s;t)F(s+ 1;8) + G(s;8)P(s; 1)

AS)D(s+2) = G(s;t)F(s;t) — ju(t). (2.210)
The corresponding factorization chain reads
AS)P(s+2;t+ 1)+ Q(s;t + 1) A(s + 1) = A(s) Q(s + 2;1)
+P(s;t)A(s + 1);

A(S)F(s+2t+ 1)+ Q(s;t + )P(s+ 13t + 1)

+G(sit+ 1) A(s) =
A($)G(s+2;8) + Qs+ L;1)P(s;t) + F
A(s;t+ D) F(s+ 1;t+ 1)+ G(s;t+ 1)P

P(s;t)G(s+ 1;t) + F(s; 1) Q(s; t);

F(s;t+1)G(s;t+ 1) = F(s;t)G(s;t) + p(t) — ot +1).  (2.211)

Consider next the operator

£)A(s);
1

(sit
(s5t+1) =

H(sit) = HY (s;t)H™ (s58) + (ji(t) — ji(=1)) (2.212)
where
HY(s;t) = A(s)E? 4 Q(s;1)E, + G(s;t)
H™(s;t) = A(S)EX4P(s;1)E, + F(s;1)

A(s) = —(Qs;—1) +G(s; —1)). (2.213)
Analogue to the proposition 2.1 is the following
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Proposition 2.2 Letting F(s;t), G(s;t), P(s;t), Q(s;t), and fi(t) be solu-
tions of the factorization system (2.211), such that

P(s;t) — Q(s;t — 1) #0; F(s;t) —G(s;t—1)#0,t=0,1,...(2.214)

then, the equation

H(s;t)Ps(s) =0 (2.215)
admits for t =0,1,2,... non-trivial solutions
q)O(S) = 17
Gip1(s) == H™(s;t)P(s),t=0,1,2,... (2.216)

Moreover, if

P(s;t) = Q(s;t — 1) +co(t)s + c1(2)
F(s;t) =G(s;t — 1) + ca(t)s + cs(t) (2.217)

then the obtained solutions are of polynomial (in s) type.

Proof. It is clear that for F,G, P, Q and i given by Eq. (2.211), the factor-
ization

 H{sit) = () —i(=1) = H(s;0)H™(s31)
H(sit+1) = (@) - i(=1)) = H™(sst)H (s;t)  (2.218)

takes place. Hence we can write

Hisst+ DH (s;t) = H™ (s;0)H(s;1)
H(s; ) HF (s;8) = HF(s;)H(s;t+1). (2.219)
That justifies the difference relations
Qiarls) = H(s:0)0(s)
—(fi(t) = i(=1))®e(s) = HT(s;t)Pr41(s) (2.220)

and consequently the recurrence relation

Biar () + (it — 1) = ji(=1)) @11 (s)

1) -
(P(s;t) — Qs;t — 1)) Ps(s+ 1) + (F(s5t) — G(s;t — 1)) D4(s). (2.221)
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The solution ®4(s) in Eq. (2.216) is obtained by loading ¢ = —1 in the
second equation in (2.218) while the remaining solutions ®(s), t = 1,2, ...
in Eq. (2.216) are obtained using the first equation in (2.220) and (2.221),
considering Eq. (2.214). Moreover, using Eq. (2.221), it becomes clear that
under the constraints (2.217), the full sequence is of polynomial (in s) type,
which proves the proposition.

Remark that in the case of orthogonal polynomials, one obtains, using
the corresponding three-term recurrence relation and the recurrence relation
in Eq. (2.221), that the obtained polynomials satisfy an usual three-term
difference relation. As a consequence (see Theorem 1 in [80]), the obtained
polynomials will be of semi-classical (see Chapter 5) type .

Let us now combine the system (2.211) and the conditions (2.217). The
result is

P(s;t) = Q(s;t — 1) + N(s;t);
Q(s;t) =P(s;t — 1) ;{?s(j—)l)N(S—I_ 2t);

G(sit) = F(s;t— 1) + Mjﬁl(g(w 1;t—1)
FN(s+1;1)) - 7N§(+5;¢>P(s; t—1) — M(s+ 2;1);
Q(s;t+ ) F(s+ 1;t+ 1)+ G(s;t+ 1)P(s;t4+ 1) =
P(sit)G(s+ 1;1) + F(s54) Q(s;1);
F(s;t+1)G(s;t+ 1) = F(s;)G(s;8) + ji(t) — gt +1). (2.222)

where

N(s;t) = co(t)s+ e1(t)
M (s;t) = ea(t)s + ca(t). (2.223)

Further simplifications give

Q(s;t) = Q(s;t —2)+ N(s;t—1) — Ai(j)l)N(s—I— 2;t);

P(s;t) =P(s;t—2) — A?s(j-)l)N(S—I_ 2;t— 1) + N(s;t);

g(s;t):g(s;t—Q)—}—M(s;t—1)—|—M[Q(5—|—1;t—3)

A(s+1)




68 1.2 Discrete factorization types

FN(s+1;6—2) - %(:—;%N(s—l—S;t—l)—l—N(s—l— 1;1)]

_NCH) (Q(sit — 2) + N(s;t— 1)) — M(s+ 2;t);

A(s)
F(s;t)=F(s;t—2)+ %(Q(s—l—l;t—%

FN(s+ Lit—1)) — %P(s;t— 2) + M(s;1)

—M(s+2;t—1);

M(s+ 1;t 4+ 1)(P(s;t) — %E%N(S—I—Q;t—l— 1))

—%N(s +2;t4+ 1)G(s+ 1;t) + F(s;t) N(s;t+ 1)

+(QUsit) + N (st + D)[F(si1) + T2 Qs + 131
+N(s+1Li41)) - M%17’(8;0—1\4(s+2;t+1)]:0;

F(s;it)M(s5t+1) + (G(s:t) + M(s;t + 1) [T (Q(s + 150)

}i(.s+1)
FN(s+ 114 1)) — %P(s;t) — M(s+2;t+1)] - ji(t)
+ji(t + 1) = 0. (2.224)

Remark 2.3 The system (2.222) (or (2.224)) is in our sense a certain ex-
tension of the one in Eq. (2.190), from the second-order situation to the
fourth-order one. As the system (2.190) can serve as a starting point for the
definition of the Laguerre-Hahn polynomials, it is legitimate to expect that
the system (2.222) (or (2.224)) can serve as a starting point for the definition
of a class of polynomials extending the usual Laguerre-Hahn polynomials.
This question will not however be treated in this thesis.



Chapter 3

Discrete factorization
techniques for the
hypergeometric polynomials
on lattices

The major concern of this chapter consists in revisiting the ”eigenelement
problem” (1.4), and its particular case (1.64) using the factorization tech-
nique approach. More precisely, we need to show practically that the oper-
ators in Eqs. (1.4) and (1.64) can on the one side be generated and on the
other be solved using the factorization technique (see problem 1 and 2, in
the introduction).

The cases of Charlier, Meixner and Kravchuk polynomials are firstly treated
separately, to illustrate the performance of the quasi-periodicity method (sec-
tion 3.1). Even if we performed those results independently, a ¢g-version of the
quasi-periodicity method was already used in [109] to generate the ¢-versions
of the Charlier, Meixner and Kravchuk polynomials. Shape-invariant Infeld-
Hull-Miller factorization technique is next used for solving the problems (1
and 2) relatively to the operator in Eqs. (1.4) and (1.64) (see section 3.2 and
3.3 respectively). Details are also given for each special class of polynomi-
als. Also, difference hypergeometric functions generalizing the Askey-Wilson
polynomials are given (see section 3.3).

69
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3.1 Discrete factorization techniques for the Char-
lier, the Meixner and Kravchuk polynomials.

Let us write the system (2.118) under the constraints (2.140) and set for
simplicity 7 := 0. We have
filt+ ) +gi(z) = folx) + g0(z) + po —
fil@)gi(z) = fo(z)go(z = 1)

fole+1-=0)+go(z—6) = fyvo1(z)+ogn—1(z)+pv—1 — pN

folx = 8)go(z —6) = fyn-o1(z)gn-1(z —1). (3.1)
For a given solution of that system, set
Ho = (Ex + go) (1+ foE;") + o (3.2)
and write
R=RnN_1...Rqg; L=1Ly...Ln_1 (3.3)

as given in Eq. (2.60). According to Eqs. (2.59) and (2.67), it is clear
that, a solution of Eq. (3.1) having been found, for establishing polynomial
eigenfunctions for Hy, it remains basically to find the starting function for the
iterations. As we are searching polynomial eigenfunctions, we in preference
suppose that the ladder is ”bounded below” and search the starting function
®y(z) as a solution of

Hoq)0($)

R®o(z) #
Ldo(z—1) = 0. (3.4)

3.1.1 The Charlier case.

For this case, we set N = 1,6 = 0 and the system (3.1) becomes

Jolw+1) = fo(z)+po—m
go(z) = go(z—1). (3.5)

A standard solving of it gives

foo = (Wo—m)z+a
go = Co- (3.6)
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On the other side, Eq. (3.4) reads

(Ez + (fo(z + 1) + go(2) + po) + fo(x)go(z)E;") @o(z) =0
(14 fo(z)E;") ®o(z) # 0

(Ez + go(z)) Po(z — 1) =0, (3.7)
giving
B = —go(a+ 1)

go(z) # fo(x)
(fo(z +1) = go(z + 1)) = (fo(2) = go(2)) = —po. (3-8)
Loading the formulas (3.6) in (3.8) allows to fix the coefficients of fy and go:

pa =2p0; o # 0 (3.9)

and we will take for simplicity po = 1, py = 2.
Thus according to Eq. (2.59), we are led to

Ho®,(z) =\, ®,(z)

A= —7n
B () = (1 - (2 — e1)ESY) @, (2)
kn®n_1(z) = (Ex + o) Pp(2), nezt. (3.10)

Then, using the equations in (3.10), we arrive to the three-term recurrence
relations for the functions ®,, (and so for the relating polynomials):

coPpt1(z) + (n— o) Pp(z) + kpn®@roi(z) = (2 — 1) Py (). (3.11)

From the third equation in (3.10), we have that ®,(c;) = constant (in z
and n). As a consequence, we find from Eq. (3.11), k, = —n. Up to a
linear change of variable X = z — ¢y, the obtained polynomials C,(z) =
&' (z)®,(z) and second-order difference operator Ho = &5 Ho®g are the
Charlier ones (see for example the first chapter with i = —¢g). This solves
simultaneously the "problem 1”7 and the "problem 27, for the Charlier poly-
nomials.

3.1.2 The Meixner and Kravchuk cases.
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Here, we set N =2,§ =1 and the system (3.1) becomes

fHilz+1)+g1(x) Jo(z) + go(z) + po — w1
fiz)gi(z) = fo(z)go(z — 1)
fo() +go(z—1) = fi(®)+g1(z) +p1 — p2
folz = 1)go(z —1) = fi(z)g1(z —1). (3.12)
Solving it gives
folz) = Cowfﬁ-l-coﬁ—l-cou
— Cp Cy — 1
_ H2 — Ho _ M2~ o
filz) = o 1—co T+ 19 — ¢o 1—co
golz) = Mf__clzom + ¢
N M2~ Mo H1— Mo
gi(z) = e Tt T (3.13)

The equations (3.4) now read

(Es + (fo(z + 1) + go(z) + po) + fo(z)go(2)E; ") @o(z) = 0
(1+ fi(z)EZY) (14 fo(z)EZ!) ®o(z) # 0
(Ez + 90(2)) (Ez + g1(2)) Po(z — 1) = 0. (3.14)

Or equivalently

Bolt) 4 (fofo+ 1) + go(@) + fi0) + fo(®)g0(x) 2= = 0

%li—:)ll*‘(fo(;r—}—l) + filz + 1)) + fo(z) fr(z + 1)%%17£ 0

Po(z) _ o(z)g1(x)—go(x) fo(z)
Do(z—1) ™ fO(T+1g)+90£(]I)+;Log—g1(I—}-l)—go(z)‘ (3.15)

Loading the solutions from Eq. (3.13) into the basic conditions (3.15) gives

p2 =2p0;  po#0; o # 1 (3.16)

(the relations (3.16) of course suffice as well for (3.13) to satisfy Eq. (3.15))
and we chose for convenience g = 1 — 1/¢g, having in mind that ¢g does
never equal to the unit. Let fy, fi,jo and §, be the corresponding solutions
from Eq. (3.13). So, again, according to Eqgs. (2.59) and (2.67), we are led
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to the following relations
Ho®,(z) =\, P, (z)
An=-n(l-2L), nezt
co
®op1 () = (Ex+ (fi(z + 1)+ folz + 1)) + filx + 1) fo(2))ES) @, ()
0o s (2) = (Ba + (31 (2 + 1) + G0(2)) + 1 (2)do() B o (2)(3.17)
Next, using the equations in (3.17), we obtain the following three-term re-

currence relations for the eigenfunctions &, (z) (and for the corresponding
polynomials):

A (m) Py (2) + B(0) @ (2) + 7 () By (2) = —2(1 — émn(m) (3.18)
where
a(n) == v(n) = dug
B(n) = co(cgcl-l-coul—Co—Cj(ci)ilc-:;-}-cl)—l‘}'(cg—l)n‘ (3.19)

(There is of course self-duality between Eq. (3.18) and the first equation
in (3.17) (up to similarity reductions)). For determining d,, we first fix
w1 = (1 —1/e)(1 — cgey) (for this choice, the coefficients of E;! in all the
equations in (3.17) become "multiple” of z) and then set z = 0 into the
four equations in (3.17) and (3.18) (after which the evoked coefficients of
course vanish). As a result, we can evaluate d,, in standard ways and find
d, = (1—1/co)*n(n — cocy). The resulting polynomials M, (z) = ®5'®, ()
and second-order difference operator Hy = Q)EIHO(DO are the Meixner ones
(see for example the second chapter with g = 1/¢g,7 = 1 — ¢gc1), up to a
multiplication by (x—1)". The Kravchuk polynomials are obtained formally

from the Meixner ones by setting v = —N;u = -£=. This of course solves

p—1’
simultaneously the ”problem 17 and the "problem 27, for the Meizner and

Kravchuk polynomials.

3.2 Discrete factorization techniques for the hy-
pergeometric polynomials on linear lattices.

3.2.1 The general case.
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Consider the hypergeometric operator on linear lattice y(s) = s (see Eq.
(1.64))
L=o0(2)AV+7(z)A (3.20)
where
o(z) = 0or® + o1z + 095 7(2) = Tox + 71 (3.21)

We wish to use the factorization technique for studying the eigenelement
problem for L. We particularly show how to solve types 1 and 2 problems
(see introduction) for that operator.

Let

oz +1) = (o(z) + 7(2))e(2), (3.23)

A(t) a function to be determined later.
We can show the following

Lemma 3.1 There exists functions A(t), u(t), f(z;t) and g(z;t) such that
the operator H(xz;t) factorizes into
H(zit) — u(t) = (Ex + g(2;1)) (Be + f(231))
H(z;t+1) — p(t) = (Be + f(2:1)) (Ex + g(251)). (3.24)

Proof. The factorization (3.24) can be obtained by searching the unknowns
A(t), u(t), f(z;t) and g(z;t) in the equations

fle+ L) +g(zt) = —(o(@+1)+7(z+1)+ A1)
flait)g(z;t) = (o(z) +7(z))o(z+1) - p()
A(f—g) = At+1)—A@). (3.25)

The two first equations in (3.25) suggest to search f and g under the forms

flait) = o) = ()~ A0 + (i)

gz:0) = —o(e+1) — A0+t 151) (3.26)
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where ¢(z;t) = ¢(t)z + ¥(t). The corresponding system in the variables
o(t), ¥(t), A(t) and pu(t) resulting in the comparison of the coefficients in z
is compatible and we find

6(t) = %TO oy %/\(t) + %/\(t +1)
¢(t) (11 + 70 — 00 — ¢(t)) + (00 + 01 + 570) A(t)
2¢(t) —|— 20’0 —T0

plt) = DO +6(0) + 01+ 00— 1) = A1) 00+

120y + 1) — b(t) (09 + 11 + %/\(t)) _ i/\Q(t), (3.27)

while A(#) satisfies
At +1) = 2(a0 + M)A+ 1) + A2(t) — 200 (t) + 20070 — 75 = 0 (3.28)

which proves the lemma.
The preceding lemma allows to prove the following

Proposition 3.1 The operator L in Fq. (3.20) admits a sequence of non-
trivial eigenfunctions satisfying difference and three-term recurrence rela-
tions. In particular, that operator admits necessarily a sequence of polyno-
mial eigenfunctions P;(z) of degreet =0,1,2,....

Proof. Supposing that ®;(z) is an eigenfunction of L corresponding to A(t)
from Eq. (3.28), so the functions ®;yq(z) obtained using Eqs. (3.24) and
(3.23) as satisfying the relations

Dy (@) = [(0(2) + 7(2)) B + f(2:8)] (®4(2))
—u()®:(z) = [(o(2) + 7(2)) Ex + g(2; )] (Pr41(2)) (3.29)

are eigenfunctions (if not zeros) of L corresponding to A(t 4+ 1). A combina-
tion of the equations in (3.29) gives

egr () + plt — D®ioa(e) = (f(e:0) — glast - 1)®e(a).  (3.30)

A non-trivial (i.e. non-vanishing) starting function ®¢ having been chosen,
the condition p(0) # 0 (this condition is satisfied for a general solution of
Eq. (3.28) as it is satisfied for example for X(t)(see Eq. (3.31) below))
guarantees the fact that @ is also non-trivial, after which Eq. (3.30) leads
to the expected sequence.



76 3.2 DF'T for the hypergeometric polynomials on linear lattices

For searching the polynomial eigenfunctions, let us return to the equation
for A(t) in (3.28). Polynomials that we are looking for are given on linear
lattice. We can for this reason suppose that the polynomials dual to them
are given ”at most” on non-linear lattice y(s) = égs* + ¢15 + ¢ (this is of
course in reality correct). As a consequence, the eigenvalue A(f) needs to be
searched under the form A(¢) = cot? + c1t + cg. Loading this in Eq. (3.28),
we obtain

A(t) = oot + [(ro — 00)® + 4ogL] 2t + . (3.31)

where ¢ is a free parameter. The constraint of existence of constant eigen-
function of L (the polynomial of degree zero) leads to (v = 0):

AO(t) = ot + oot (t — 1) (3.32)

(one can of course find this classically using L).
Let fO(z;t), ¢°(z;¢) , ¢°(¢), ¥°(¢) and u®(¢) be the corresponding functions
in Eqgs. (3.26) and (3.27). We have according to Eq. (3.26)

J@t) = g°(5t — 1) = ea(t)z + eq(t) (3.33)
where

Cg(t) = ¢0(t) + Qbo(t — 1) — 70 + 20’0
ea(t) =90(t) + 900t = 1) + ¢°(t = 1) + 01 — 71 + 00
+2 (Xt = 1) = X°(1)). (3.34)

Consequently, according to Eqgs. (3.29), (3.30), the polynomials that we are
searching for satisfy the difference relations (see Eq. (2.177))

ca(t)art1 B () = [(0(2) + 7(2)) Ex + f(2;1)] (Fi(2))
—c3(t + Darpa Bi(2) = [(0(2) + 7(2)) Bz + g(2;0)] (P (2)) - (3.35)

and the three-term recurrence relations
a1 P + 0P+ ai Py = 2Py (3.36)

where

(3.37)
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Thus we can take Py = constant, P;(z) following the first equation in (3.35)
and Pi(z),t=2,3,...following Eq. (3.36). However, we must keep in mind
some additional constraint: the polynomials P;(z),t = 0,1,2,3,... must
be of degree t exactly (or equally, the eigenvalues A(#) must be mutually-
different i.e. A(¢1) # A(t2) for 1 # t2). It can be seen that that condition is
satisfied iff

To+mog#0,m=-2,-1,0,1,2,3... (3.38)

This completes the proof of the proposition. At the same time, the ”"problem
17 for the hypergeometric polynomials on linear lattices is solved.

For solving the problem 2, we need to make a somewhat converse way. Recall
that the problem in itself consists in generating from solutions of the factor-
ization chain (2.118) a second-order difference operator having a complete
set of polynomial eigenfunctions. Let us remark first that as the functions
f%(z;t) and ¢°(z;t) from the preceding proposition are solutions of the equa-
tions in (3.25), so they are also solutions of a type (2.118) factorization chain.
As a consequence, according to the proposition 2.1, the operator

L=z =1)Es — (f°(2;) + ¢°(x = ) + [z = ,-1EZ" (3.39)

admits a sequence of polynomial eigenfunctions. On the other side, one
easily verifies that

¢(z;—1) = —(o(z) + 7(2)); Pz —1;-1) = —o(z) (3.40)
Taking into account next of the first equation in (3.25), we obtain that
L=—(L-A). (3.41)

As we showed in the preceding that the operator L admits a complete set of
polynomial eigenfunctions, this solves the "problem 27 for the hypergeomet-
ric polynomials on linear lattices (and the polynomials dual to them (such as
dual Hahn), according to the remark 2.1).

Remark 3.1 This solution of the problem 2 is found by converting the way
followed for solving the problem 1. In section 6.2, we will show that a solu-
tion to the problem 2 can be given more originally i.e. starting more purely
from a type (2.118) factorization chain.
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Remark 3.2 If we consider the functions f‘(z;t) and ¢‘(z;t) in Eq. (3.26)
corresponding to A‘(¢) in Eq. (3.31), then, according to the proposition 2.1,
the operator

9'(z;-1)E; — (f'(z;8) + ¢'(z — 1;8)) + f'(z = 1, -DE;! (3.42)

admits a sequence of polynomial solutions as well but now depending to
an additional parameter «. A simple verification shows however that this
parameter (¢) is inessential and the concerned polynomials are essentially
the already evoked ones. Indeed, we note first that the expression in center
of Eq. (3.42) can be written as

fi@t) + gtz — L) = f(2;0) + g'(z — 1;0) — (A*(Z) — A*(0))
=g'(z; 1)+ f'(z = 1;=1) = (A'(t) = A*(0)). (3.43)

As a consequence, the operator in Eq. (3.42) is also a type —(L — A%(t))
operator with

o(z) = "z -1 -1)7(2) == —(g'(z; 1) — f'(z — 1;-1))

—~

M(1) = N(t) — A/(0). (3.44)

However, let us remark that if the eigenfunction of L corresponding to A*(0)
is known, one should generate a set of eigenfunctions (not of polynomial
type) of L generalizing (in ¢) the hypergeometric polynomials. Similar ques-
tion will be treated in the following section for the hypergeometric difference
operator on ¢g-nonlinear lattices.

3.2.2 The concrete cases.

The polynomial eigenfunctions of L studied here can be given by a ”Ro-
drigues type formula”

P@) = ST (B + flait =1 - ))ola), (3.45)

c(t) being some constant (in z), easily determined from Eq. (3.35). They sat-
isfy type (3.35) difference relations and three-term recurrence relations in Eq.
(3.36). They constitute the hypergeometric polynomials or equally the clas-
sical polynomials on linear lattices. Data necessary for the factorization of
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the hypergeometric operator on linear lattice, for the concrete cases of Char-
lier, Meixner (the Kravchuk case is found by replacing v = —N,u = ]%)
and Hahn polynomials are displayed in Table 3.1, Table 3.2 and Table 3.3
respectively. One will note for example the evoked in Eqs. (2.188)-(2.189)

"self-duality” of f(z;t) and g(z;t) for the Charlier and Meixner polynomials.



80 3.3 DF'T for the hypergeometric polynomials on ¢-nonlinear lattices

Table 3.1: Data for the Charlier case

H(z;t) | F? = (z+p+ @)+ D) E+p(z +1)
o(x) e

flast) -z 41

g(z;t) —p

p(t) pit + p

() t

Table 3.2: Data for the Meixner case

H(z;t) | B> = [(p+ Do+ ply +1) + T+ AO]IE + pa? + p(y + Dz + yp
o(x) Pl (z 4 7)

flast) -z 41

g(z;1) —p(z+y+t+1)

p(t) plty +£2 +t+7)

A(t) t(1 - p)

3.3 Discrete factorization techniques for the hy-
pergeometric polynomials on g-nonlinear lat-
tices.

3.3.1 Discrete factorization techniques for the Askey-Wilson poly-
nomials.

Consider now the hypergeometric operator on g¢-nonlinear lattice y(s) =

qs+2q_s (recall that for p finite, this is "equivalent” to the general case in Eq.

(9)) (see Eq. (1.4)):

A \% A
£ =o0(s . +7(s
a5 TV A
The preceding study of the eigenelements problem for the operator L is now
going to be extended to that of £.
Let us rewrite the operator £ under the form

1 G(s) _ (oal(s) o(s) o(s) 4
Ay@_%)'[Ay(s)Es Bt am) fnes] e

(3.46)
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Table 3.3: Data for the Hahn case

H(z;t) E2+[2$2+(6+ﬁ—a—2N):U+(5—|—26—0z—3N—ﬁN
“A)E+[2*+ 4+ 8 —-a—2N)z*>+ (6 + 38 — 3a — 6N
+N2 - 2NpB+aN —af)z?+ (4438 — 3a — 6N + 2N*?
—4Nﬁ—|—2Noz—2aﬁ—}—NQﬁ—}—Nozﬁ):U—l—l—}—ﬁ—a—QN

+N?2 —2NB+aN —aB+ N?3+ Nap
, [(z+541)
z) T(—z+N)

o(
f(($;t) mQ—(N—I—oz—I—t—l)x—(ﬁ—l—l)(N—l)—%/\(t)—i—zb(t)
glz;t

(

) 2+ BHt+B-N)z+2+6+1- N - 3A(t) - 9(1)

t) D) (P(t) — 1= BN —1) = ZAB) (B+ (N - 1)

—IAB(N+a—-1)+(t+a+B+1)(B+1)(N-1)
+HiAB(E+2)(E+ o+ 5 +1)

A(t) tla+0+t+1)
e (t+o+p+1)(B+1) (N=1)=A(t) (N+a) +3 A(t) (a+5+2)
¥(t) 332ita+s
where
6(s) =o(-s). (3.48)
Evaluating
G(y(s)) = cg”+ca’+es+eq g
1. 1 s s —s —2s
STWE)AY(s —5) = cag™ +es¢” —esq™ —eaq™? (3.49)
and
1 S —S
Ay(s—3) = al@®—a7)
Ay(s) = er(eg” —q %)
Vy(s) = cr(¢® —aq7°). (3.50)
where ¢;, 1 = 1,...,7 are some constants (in s) and letting s, s2,s3 and

s4 be the (set, mutually-different) roots of o(s), one verifies that, up to a
multiplication by a constant, the operator in Eq. (3.47) can be written as

1

z—Zz

E= — (A()E, - [A() + B(2)] + B()E; ") (3.51)
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where
( ) Z_2+A_1Z_1+A0+A12+A222
gz—z—1
( ) 224 A1z A+ A2+ A 522
z—qz—1

Ag=1A1=—(a+b+c+d);Ag=ab+ ac+ ad + bc+ bd + cd
Ay = —(abe + abd + bed + acd); Ay = abed
z=q°
a=¢"b=g¢"c=q";d=q"
E}(h(x(2))) = h(x(¢'2)),i€ Z
X(2) = =5 (3.52)

The operator £ can also be written as [62]:

£(2) = v(2)By — (v(2) +o(z7")) + vz HE;

’U(Z) _ (1— az)((l sz))((ll qc;))(l—dz)‘ (353)

Letting D, ,

X(z) = 2=, (3.54)

be the Askey-Wilson first-order divided difference operator [16], one can also
write £ as:

£ = [(QZ;) Zzi(_zl) D, z2z_lv(q_%z)w(q_%z)} D,, (3.55)
where

The Askey-Wilson polynomials P, (x(z)) (see chapter 1 ), satisfy the second
order ¢-difference equation:

EPa(x(2)) = Mn)Pu(x(2)) (3.57)
where

An) = —(1 — ¢ ™) (1 — abedg™™"). (3.58)
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The operator £ was shown in [60] to be symmetric (more precisely, the
operator in square brackets, in the r.h.s. of Eq. (3.55), is adjoint to the
first-order Askey-Wilson divided difference operator) in the space S, p ¢4 of
real polynomials in x(z) with the inner product

z

(1) = 5= § I (D) (3.59)

where w(z) is given by Eq. (3.56) and C'is a deformation of the unit circle.
Considering the representation in Eq. (3.55) and the equation in (3.57), we
will refer to £, everywhere in this thesis, as the Askey-Wilson second order
q-difference operator.

It is clear that the A(f)-eigenfunctions of £ are exactly the zero-functions
of the operator

E=(z-21) (2-20). (3.60)
Let
H(zt) = E,b(z)£67(2)
= EZ - [Alg2) + B(g2) + K(g2)MDIE, + Blgz)A(2) (3.61)
where

K(z)=2z—-2"1. (3.62)
We can prove the following

Lemma 3.2 There exists functions A(t), u(t), F(z;t) and G(z;t) such that
the operator H(z;t) factorizes into
Hzst) — p(t) = (Bq + G(21)) (Eg + F(231))
H(wst+1) - ult) = (By + F(50)) (B, + G(51). (3.63)

Proof. The operatorial relations (3.63) are equivalent to the system:

Flqz;t)+G(z5t) = —(Algz) + Blgz) + K(qz)A(t))
F(z4)G(z;t) A(2)B(gz) — p(t)
Ay(Flz3t) = G(z31)) = (A(E+1) = A@1)K(g2) (3.64)
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where Ah(z) = h(qz) — h(z2).
Using the g-integration, we first transform the system (3.64) in :

F(zt)+ Flazt) = —(Alg2) + B(g2) = (-1 = 2= — 5
—(B1+A(t)g)=
F(z1)G(z1) = A(2)B(qz) — p(t)
G(zt) = F(zt) = SiEL, Bidt (3.65)
where §_; = A(t%)q_/\(t); (1 = qB_1; Po remaining arbitrary for the moment.

Observing the first equation in (3.65) and then using the last one, it becomes
sensible to search F(z;t) and then G(z;t) under the forms:

f(Z't) = F—2Z_2+F—12_1+f170+F1z+F2z2
! T qz—z"
G(zt) = <F—2—ﬁ—1)z‘2+<F—1—ﬁo);—_ljjw(m+ﬁoq)z+<F2+mq)z2 (3.66)

Taking X, u, Bo, -2, F_1, Iy, F1, I, as unknowns, the system (3.64) will
then be transformed in an algebraic system of 16 equations for 8 unknowns.
To solve it (by hand), up to A excluded, one first determines the last 7
unknowns from 7 equations as functions of A and then very delicately ensures
himself that they satisfy other 8 equations, while A satisfies its own equation.
The result is:

Falh): AP (3.67)
Fy(t) ’\(t)ql__/:‘]ng) 2 q2;-_|_q1A2
- AMt)g—A(t+1 At+1)—A
folt) iy (2= 2 4 A=A 2

4%)(& + gA_1) 4 (2A1¢> + 24,A_1¢)}
Bolt _ Aj+qA_

F_y(t) ( o
Fi(t) : _‘15g(t) _ A1+3A_1
Fo(t) s ol = 6 = Aol + 6) + Az2(a = 1) + (A0 + A+ 1))
p(t): Ao+ AA_ g7+ AgAzq? + Fo(t)Bo1(t) + F_1(t)Bo(t)
—2F_(t)Fo(t) — F2,(t).
and

(A1) — g (t+ 1)) = * (g + 1) (A1) — gt + 1)) (A(H)
“At+1)) = 2¢(q = 1) (g + A2) (A1) — gA(t+ 1)) + q(¢* - 1)
(g4 A2)(A(t) = At +1)) + (1 = A2) (g — 1)%(¢* — A2) =0, (3.68)
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which proves the lemma.
Using this lemma, we prove the following

Proposition 3.2 The operator £ in Eq. (3.51) (or equally £ in Fq. (3.46)
admits a sequence of non-trivial eigenfunctions satisfying difference and three-
term recurrence relations. In particular, that operator admits necessarily a
sequence of polynomial eigenfunctions Py(x(z)) of degree t =0,1,2,....

Proof. The proof of this proposition is similar to that given for the propo-
sition 3.1, reason for which we give it only under a sketched form. The
cigenfunctions W,y; of £ corresponding to A(t) given by Eq. (3.68) satisfy
the difference relations

Vit (2) = [A)Eq + F (2 1)] (Ve (2))
—()V(2) = [A(2)Eq + G(2 )] (P141(2)) (3.69)

from which we deduce
Uy(z) + p(t — D)W_q(2) = (F(z3t) — G253t — 1)) Wy(2). (3.70)

A non-trivial (i.e. non-vanishing) starting function ¥y having been chosen,
the condition p(0) # 0 (this condition is satisfied for a general solution of
Eq. (3.68) as it is satisfied for example for A*(t)(see Eq. (3.71) below))
guarantees the fact that Wy is also non-trivial, after which Eq. (3.70) leads
to the expected sequence.

The eigenvalue A(t) corresponding to polynomial eigenfunctions is now searched
under the form A(#) = coq’ + ¢1¢7" + ¢3 (since the dual polynomials are ex-
pected to be given on g-nonlinear lattice y(s) = ¢oq°® + é1¢~° + ¢3). Loading
this in Eq. (3.68), we obtain

A5(t) = —(1 —eq™ ") (1 — Age™ g™ (3.71)

where € is a free parameter. The constraint of existence of constant eigen-
function ( the polynomial of degree zero) gives (¢ = 1):

M) = —(1—-¢7 (1 - Axg"™). (3.72)

Letting F'(z;t), G'(2;¢) and p'(f) be the corresponding solutions of Eq.
(3.64), we obtain

Fl(zit) = G (25t — 1) = cs(t)x(2) + co(t) (3.73)
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where

cs(t) = 24507 gt — 2¢7!

co(t) = _bol®) +§0(t — 1), (Vt € 7). (3.74)

In particular,

const.P1(x(z)) = (A(Z)Eq—l—fl(z;()))(l)

= [243¢7" = 2]x(2) — ﬂOQ(O) 44 _QZA‘l. (3.75)

As a consequence, the polynomials that we are searching for satisfy the
difference relations (see Eq. (2.177))

es(t) a1 Prra(x(2) = [A()B, + F1 ()] (Pi(x(2)))
—es(t+ Darp Pu(x(2) = [A(D)E, + G (5:8)] (Pua(x(2)  (3.76)

and the three-term recurrence relations

a1 Py + 0Py + a;Proy = x(2) Py (3.77)
where
1 J—
by = _CQ(t); a? = M (3.78)
Cg t) Cg(t)Cg(t — 1)

(
We thus (using Eqs. (3.75) and (3.77)) reach the expected set of polynomial
eigenfunctions Py(x(z)), t = 0,1,2,... of £. To guarantee that P; be of
degree equal exactly to ¢ or equally A(t1) # A(tq), for 1 # ta, we need to
assure

cs(m) #0,m# —1,0,1,2.... (3.79)

This completes the proof of the proposition and at the same time, the ”prob-
lem 17, for the hypergeometric polynomials on g-nonlinear lattices is solved.
As for the linear case, the problem 2 is solved converting the process of solv-
ing the problem 1. Now the second-order operator generated by solving the
factorization chain reads:

£=G"(5-1)E, — (Fi(50)+G' (= = L)+ F'(z = L-DE;" (3.80)
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with, as one can verify,
Gl(z;—1) = —A(2); Flz = 1;-1) = -B(2). (3.81)

Consequently, taking into account the first equation in (3.64), we obtain that

S

£=- (3.82)
As we have already shown that the operator £ admits a sequence of poly-
nomial eigenfunctions and taking into account of Eq. (3.60), this solves the
"problem 27, for the hypergeometric polynomials on g-nonlinear lattices (and
the polynomials dual to them, according to the remark 2.1).

Remark 3.3 As the Askey-Wilson polynomials are the unique polynomial
eigenfunctions of £ (ﬁt,t = 0,1,2,..., of degree exactly ¢) corresponding
to the eigenvalue in Eq. (3.72) (see theorem 3.4 in [31]), the produced
hypergeometric polynomials are necessarily the Askey-Wilson ones. More
precisely, letting P, t = 0,1,2... be the set of polynomials produced by the
first relation in Eq. (3.69) starting at Py = 1 (they are all polynomials in
X(z) according to Eqgs. (3.75) and (3.77)):

{OP(x(2) = [[IAG)E, + F(zt—1— (1)t =1,2,3,...  (3.83)

=0
¢(t) being some non-null constant (in z), or equally
t—1

) Pi(x(2)) = % [IIE, + Fleit = 1= (@) 6= 1,2,3,... (3:84)

=}

where

and letting pi(z;a,b,¢c,d),t = 0,1,2,... be the Askey-Wilson polynomials,
so we have necessarily

Pr = c(t).pe (3.85)

for some constant (in z) é(t).
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Remark 3.4 Remarks similar to remark 3.1 and remark 3.2 are adaptable to
the case of the g-nonlinear lattices.

We pass now to the discussion concerning the generalization of the Askey-
Wilson polynomials.

3.3.2 The generalization of the Askey-Wilson polynomials.

We envisage to show how to produce a sequence of functions ®,(z,¢) gen-
eralizing the Askey-Wilson polynomials in that sense that they are eigen-
functions of the Askey-Wilson operator £ and ®,(z,¢) — P;(x(z)) while
e — 1.

Let us consider the equation:

Ly(z,6) = X¥(0)y(z,¢), (3.86)

This equation is not new: A little wider equation (with £ instead of £) has
been explicitly solved in [19] in terms of difference hypergeometric functions.
In our situation, according to [19], one first solves the non-homogeneous
equations:

(2-2%(0)) u(z,2,0) = G(2,2,0) (3.87)

where

1

_ (osg,abcdac™1g7 )
G(Z7 €, O() — afaba,aca,ada,0giq) o

(az,az7"5q) o (3.88)

and (0;q) oo = lim;0 (03 q);, for the following values of a:

q q _q

a:=1 o o= — : .
ac ad

The corresponding solutions are the functions [19]:

u(z, e, a)
_ (azaz"lig) e oo (oeabedac™l g™ aaz,a0z"tq); 4
T (aazaazTlig) o Zi:o (abo,aca,ado,ag;q); q- (389)

Let us remark that the Askey-Wilson polynomials appear here as the func-
tions u(z,¢7% 1), t=0,1,2,...

The solutions of the homogeneous equation (3.86) are then obtained by op-
erating adequate (considering Eq. (3.88)) linear combinations of any two of
the functions (3.89).
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Among the solutions of the homogeneous equation (3.86), we are interested
in those having a constant limit when € converges to the unit. Let us take
the 7adequate” linear combination of u(z,¢,1) and u(z,¢,a), o # 1:

y(2,¢)

(g,abcde™ g7 aba,aca,ada,agiq)es , [
(ab,ac,ad,q,ae,abedae=1g=1;q) u(p,g,a). (390)

=u(z,e,1) -«

It is easily seen that y(z,1) = 1. However, if §(z,¢) is another "adequate”
linear combination of u(z,¢e,a;) and u(z, €, ag) where a; and «y differ both
from the unit and each other, then g(z, 1) # constant. In other words g(z, 1)
is the nonconstant solution of the Askey-Wilson equation for ¢ = 0.

Our point here resides in the following

Proposition 3.3 Ify(z,¢e) is the solution in Fq. (3.90) of Eq. (3.86) , then
the functions

Qo(z,6) = y(z,¢),
Oi(z,8) = H[A(Z)Eq + Fo(zt —1—1)]y(z,€), (3.91)
F=1.2.3... ..

generalize the Askey-Wilson polynomials in that sense that they are eigen-
functions of the Askey-Wilson operator £ (corresponding to A\*(t)) and they
converge to them when € converges to the unit.

Proof. The fact that the functions in Eq. (3.91) are eigenfunctions of the
Askey-Wilson operator £ corresponding to A*(%), is a consequence of the fact
that ®g(z;¢) is an eigenvector of £ corresponding to A°(0). To be assured
that the functions in Eq. (3.91) converge to the Askey-Wilson polynomials
(of course, up to a multiplication by a non-null constant), we need essen-
tially to remember that A°(¢) converges to A'(f) when e converges to the
unit and then compare the r.h.s. of Eqs. (3.91) and (3.83), which proves the
proposition.

Remark 3.5 By a direct verification, one finds that
(A(2)E, +G'(z;-1))(1) = 0. (3.92)

For this reason, the functions extending the Askey-Wilson polynomials , us-
ing lowering operators A(2)E, + G!(z;t) relatively to ¢ from Z* to Z~, are
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all vanishing. They are on their side generalized by the functions obtained
by applying the lowering operators A(z)E, + G*(z; - (¢t +1)),: = 0,1,2...
to y(2;€). Moreover if TW,(2) (or +W,(z)) are the eigenfunctions obtained by
applying ¢-times the "raising” (or ”lowering”) operator to 7(z,1), so their
generalizations are obtained by performing similar operations starting now
at 7(z,¢). Let us note finally that the present generalizations are also dif-
ference hypergeometric functions (in the sense of [19]) reason for which they
are closely related to the Askey-Wilson polynomials.



Chapter 4

Discrete factorization
techniques for the
modification of the
hypergeometric polynomials
on linear lattices

In the preceding chapter, Sturm-Liouville difference operators (more pre-
cisely, hypergeometric difference operators of Nikiforov-Suslov-Uvarov) were
generated and solved from ”quasi-periodicity” or simple shape-invariance
(symmetry) non-linear difference equations. In the present chapter, we aim
to "modify” known solvable Sturm-Liouville difference operators into new
ones, avoiding in the same time any significant self-similarity such as shape-
invariance or ”quasi-periodicity” so that the new difference operators do not
belong to the same family as the old one. A special case of the Meixner
polynomials My’c)(:v + 1) will be "modified” efficiently, into a new complete
sequence of non-classical orthogonal polynomials.

4.1 Generalities.

Clarifying the leading idea, let us first consider a general situation. The
studied second-order difference operator H,

H(z) = u(2)E, +v(z) + w(z)E; ", (4.1)

91
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is in the first place, supposed to act in a linear space of functions, say £, and
to admit a non-empty set of eigenfunctions. One can fix (¥4, As) as one of
its pairs of eigenfunctions and corresponding eigenvalues. In that case, one
can make the following factorization

H - X3y =LsRs
H—Xs = RsLs (4.2)

where

Rs =1+ fa(z)EZY; Ls = u(z)E; + ga(z);

falz) = g (4.3)
As it can be easily seen, the similarity reductions
pHp™";  pHp™! (4.4)
where
p?(z+1) _ u(x) i 2 (z+1) _ u(x)
PG Tl 7@ FaEraa@) (4.5)

allow to transform H and H into their formal symmetric form (i.e. like

A(z + )E, + B(z) + A(z)E;'). Denote by ¢*(a,b; p?) the linear space of

vectorial functions (¢ (a),¥(a+ 1),...,%(b)), in which is defined a discrete-
weighted inner product

b
(4,0), = 3 ¥(2)0()p*(x), —00 < a < b < +o. (1.6)

Such defined ¢2(a, b; p?) is well known to be a separable Hilbert space (see
for example [2], for a general theory). )
The similar space for 52 will be denoted by ¢2(a, b; p?).

Letting {¥,, Ao}, @ € N, (a denumerable set of index , not containing &),
be a set of eigenfunctions and corresponding mutually different eigenvalues
of H, one easily finds that the set (U4, As), {Va, Ao}, @ € N, where

‘iloz = Ry¥,

LV =0, (4.7)
is a resulting set of eigenfunctions and corresponding mutually different
eigenvalues of H. Moreover, the completeness of W4, ¥,, a € N, in

KQ(EL,B; p%) can be deduced from that of W,, a € N, in £2(a,b;p?) in the
sense of the following proposition.
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Proposition 4.1 Supposing that

(c1) LsO4 € (*(a,+00;p?), and {Rs0,} € (2(a+1,400; %), for {0,}

and ©4 belonging to the first and second space respectively.
(¢2) O4(z) =Os(z) =0, z < a+1.
(e3) {©,} is complete in (*(a + 1,+00; p?).

Then

(r1) The operators Ls and Ry are (p*, p?)-mutually adjoint, in that sense
that

(04, R504) 2 = (L5003, 0,) 2 (4.8)

(r2) ©2 and {Rs0,} are complete in (*(a + 1,+o0; p2), where

50 (o — ) Yalz), z>a+1
6&(:6)_{0, r<a+1;

f’a(m) being defined by
LaYa(z) = 0. (4.9)

Before proving this proposition, some remarks are in order. Let us first
note that {.} symbolizes the set of elements as the one in the brackets for
varying index « in N,. Next, in the choice of +00 as the right boundary of
the interval of orthogonality, one needs to see only the search of complete-
ness avoiding at the same time nonsignificant particularities.

Proof of the proposition: Simple summation by parts gives

(La©s,04) 2 = YF ™ u(2)0a(z + 1)0, (2)p?(2)
+ 0% ga(z )@a ) a(T)p (96)
Za+1 u(z 1)
+3re ga(l‘)@a r) a(z)p (r)
= Ea-l—l u(m -1)©
(

a—|—1 Ja

3

v

Q
—_—~
8

~—

©)

Q

A

\_/

: (4.10)
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where we used (¢2) for the last equality. On the other side

(Os, Ra Oa) 52 = Y081 0a(2)[0a(2) + fa(2)Oa(z — 1)]5%(2)
= Y151 0a(2)0a(2)p* (z) + 171 Oa (2) fa(2)Oa (z — 1) (). (4.11)

Remarking that, the equality of (4.10) and (4.11) requires the conditions set
by the definitions in Eq. (4.5), this proves (r1).

Remark next that for proving the completeness of the system in (r2) in
02(a + 1, +00; p?), it suffices to prove its closure in that space seen that the
latter is separable and Hilbertian , while the equivalence between the com-
pleteness and the closure of systems in such spaces is a well-known result
(see for example [63], theorem 4, parag.4, chap.3).

Let ©4 be an element satisfying (c1). Onme can suppose without annoying
any hypothesis that it satisfies (¢2) as well. Suppose next that, that element
is orthogonal to the full set {Rs0,}. So by the already proved (r1) and
using (¢3) and (c2), one obtains that the unique possibly non-vanishing co-
ordinate of L;04 is the one in the a® place. Clearly, this coordinate reads
u(a)Os(a+1). But as it is easily seen, up to a multiplication by a constant,
this is exactly the structure of the semi-infinite vector L&(:)g. In other words,
(:)gY is essentially the unique element orthogonal to the whole set {R;0,}
which proves (r2) and the proposition is completely proved.

Type (4.8) "mutually adjointness” was intensively used in [60, 89] to give
simplest proves of the orthogonality relations for most of classical polynomi-
als (including the Askey-Wilson class). In those works, the role of L; and
R; were played by the usual difference relations (considered there as the
starting point) lowering and raising the degree of the polynomials and ”per-
turbing” the parameters. Thus, p? and j? differed only by a ”perturbation”
of parameters.

Here, p? and j? will differ more than in the unique shape: We expect p? to

2

be ”non-classical” for given ”classical” p“. This will be done efficiently on

the special case of Meixner polynomials MT(LQ’C)(JC +1).

For treating the question of orthogonality for the new functions U, U,
a € N,,in /*(a, b; p?), one can adopt the following way. Firstly, certify, using
the reasoning of the preceding proposition, the orthogonality of U, and every
WU,, a € N, (provided that & = a + 1;b = b= +00). Secondly, deduce the
orthogonality of U, and \ilg for a # 3, a, 8 € N,, as that of eigenfunctions
corresponding to mutually different eigenvalues for a symmetric operator H,
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provided that (obtained using simple summation by parts)
u(z)p?(x) (PaAbs — WpAl,) [, = 0. (4.12)

It is this way that will be followed later to verify the orthogonality relations
for the functions (polynomials) modifying the already evoked special case of

Meixner polynomials M}LQ’C)(:C +1).

Thus, from a Sturm-Liouville operator for which the eigenfunction ex-
pansion is known, we can generate a new (in that sense that the operators
need to belong to different families) Sturm-Liouville operator and the corre-
sponding eigenfunction expansion.

But as we are "transforming” polynomials, the situation is delicate seen that,
even found, the ”transformation function” W4 can’t be generally taken as a
polynomial, while the ”transformed functions”, ¥, ¥, o € N, need to be
polynomials or rational functions satisfying additional constraints. So, for
a given Sturm-Liouville difference operator, a copious reservoir of ”good”
transformation functions, can’t be expected.

Remark that, in what precedes, the transformation function was deliberately
chosen outside of the ”transformable system” ¥,,a € N,. Supposing that
the transformable functions W, (z) are, not only explicit functions of z, but
also of «, so it has also a sense to chose as the transformation function, a
function W, for which v € N,. In that case, the new functions need to be
searched as

. RV,

g, = e 4.13
N (1.13)

so that the transformed W., must be understood as a limit (Hospital rule)
of the right hand side of Eq. (4.13) for @ — 7. In orthogonal polynomials
theory, transformations as in Eq. (4.13) (we mean here, when the acting
functions are and are considered as explicit functions of the independent
variable ) are referred to as the Christoffel transformations having as in-
verse, the so-called Geronimus transformations. Much interesting studies
and applications of those transformations can be found in [113, 44] and ref-
erences therein.

Let us recall that in the preceding chapter, we have shown (practi-
cally) that the operator H is "generable” and ”solvable” from simple shape-
invariance (symmetry) factorization chains.
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”"modify” a special case of the Meixner polyno-

In this chapter below, we
mials, namely the Mﬁz’c)(x + 1), sending them into a complete system of
non-classical orthogonal rational (polynomial) functions.

Consider the operator
H=0AV+ 1A= (0 +7)E, — (20 + 1) + oE;" (4.14)
and let A\, = n7’ + 20”n(n — 1); P,(z), n = 0,1,2,..., be its eigenvalues

and the above evoked corresponding polynomial eigenfunctions. According
to the above discussions, we can transform the polynomials as

Pu(@) = Pa() + fa(2) Pale — 1) (4.15)
where
fale) = -5, (4.16)

obviously provided that the function W4 (z) does not belong to the sequence
P,(z), n =0,1,2,.... Moreover, since the hypergeometric polynomials on
linear lattices are (if taken in their canonical forms), not only polynomials
in 2 but also in n (called dual polynomials), we can also use the Christoffel
transformation (we here shifted  comparatively to Eq. (4.13), in order that
the obtained polynomials (in n) be of degree exactly equal to z):

Po(e +1) - B P (2)

Ao — ),

) (n) = (4.17)

Thus by Eq. (4.17), one can transform the polynomials dual to the hyper-
geometric polynomials (recall that for the Charlier, Meixner and Kravchuk
polynomials, there exists self-duality) into non-classical polynomials with ra-
tional coefficients in the three-term recurrence relation. In [44], one can find
detailed discussions concerning the applications of the Christoffel transfor-
mation to any family of orthogonal polynomials admitting a dual sequence
of orthogonal polynomials (i.e. ¢-Racah polynomials and specializations).
It is worth here noting that the functions dual to the polynomials obtained
by Eq. (4.17) are not necessarily of polynomial type. It is indeed easily seen
that the functions

lim P{")(n) (4.18)

n—y
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are not necessarily polynomials in 2. Taking for example the Hahn case,
choosing for simplicity v = 0, one obtains

(0) _ 1,—z,a+ 3+ 2
= (0) sl ( a+1,—-N

1) : (4.19)

Here, the interesting us transformation is the one given by Eqs. (4.15)-(4.16).
In this case, for already explained reasons, the transformation function W (z)
would lie outside the set of transformable polynomials P,(z). Moreover as
it can be easily seen, if we expect that the transformed polynomials be of

different degree (and so be independent), we must avoid the choice of W4(z)
Ya(z)

as a polynomial. However, for evident reasons, the rapport Ta(e=T) must
be in preference a rational function, say gzgig - Thus, if for example the
new ground state (provided it belongs to ¢?(a, b; p*)) appears in the form

\il&(z) = go((z)), the new polynomials should be checked inside the set of

No(z) and the different numerators of the fractions
P,(z—1), n=0,1,... (4.20)

where

U, (z) _ Ns(z)
Us(z—1) D@(ac)7

(4.21)

while the actual new weight should read as D;*(z)3%(z). The example 2.2
(see the first chapter) of Samsonov-Ovcharov (see [104]), on the "modifica-
tion” of Hermite polynomials, is a typical example (unique in the literature,
to our best knowledge) of a realization of this scheme. For the polynomials
on lattice, this scheme will be realized below only for a special case of the
Meixner polynomials, namely the MéQ’c)(ac—l— 1), the question remaining open
for higher polynomials.

Remark that once the transformation (4.20)-(4.21) is realized, the obtained
functions are not only rational functions in z, but also polynomials in n (of
degree z). For the Charlier case, such polynomials can be found in [44].
It is however clear that for any choice the transformation function W (z)
(not necessarily satisfying Eq. (4.21)) outside the transformable sequence,
the transformation in Eq. (4.20) will lead necessarily to polynomials in n,
under the unique condition that the transformable polynomials in z, be also
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polynomials in n (i.e. ¢-Racah polynomials and specializations). In this ap-
proach (i.e. m as a variable and z as an index), the interest of the condition
in Eq. (4.21) resides only in the fact that the functions (in z) dual to the
so-obtained polynomials (in n) will be of rational type.

The last remark, before opening calculations, concerns the degrees of

the polynomials (in z) to be obtained by Eqs. (4.20)-(4.21). Writing the

operator H'D+(a;) under the form

~ 1
H'D&(x)

= GAV 4+ 7FA + 7, (4.22)

one easily notes that the functions &, 7 and o are not necessarily of de-
gree 2, 1 and 0 respectively. In other words, INJDQ% is not necessarily
of hypergeometric type. Consequently, as in the case of "modified” by
Samsonov-Ovcharov Hermite polynomials, we can not expect that the corre-
sponding polynomials (numerators in Eq. (4.20)) be of degrees exactly equal
n=0,1,2,3,.... There is clearly, no matter to be worried by this seen that
the polynomials conserve most of other properties common to usual orthog-
onal polynomials (completeness, orthogonality, difference and recurrence re-
lations, difference equations, duality,...). The question of global study of
orthogonal polynomials of such a category have been already raised in [44].

4.2 The Meixner case.
The special case of Meixner polynomials MT(LQ’C)(JC + 1) can be transformed
as follows. From the equation,

(04 7By — 20 +7) + 0B | Pa(a) = A Pa(0), (4.23)
one can, specializing the coefficient of ¢ and 7, deduce the following
K(c,d;2)Py(z) = (c—1)nP,(z)
K(e,d;2)e"Pr(z) = —(c—1)ne=*Po(z) (4.24)
where

K(c,d;z) = c(z+ d)E, — (c+ 1) (z+ d) + (z + d)E;* (4.25)
and the polynomials ]%’n(m) are obtained from P,(z) replacing z by —z and
d by —d.
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As it can be easily seen, the polynomials Pn(x) are not orthogonal (the
interval of orthogonality does not exist). However, they can be written as

Popi(z) = (2 4+ d)Py(z),n=10,1,2,... (4.26)
so that the polynomials P, () satisfy
K(c,d;z)P,(z) = (c—1)nP,(z)
K(e,d;z)e ™" Py(z) = —(c—1)(n+2)c " Py(z) (4.27)
where
K(e,diz)=clz+d+DE, = [(c+ Dz +d)+c—1]+ (2 +d- 1)E;"

and the polynomials P, (z) are obtained from P,(z) replacing = by —z and
d by —d.

As is easily seen, the polynomials P,(z), n = 0,1,2,..., are orthogonal
on [—d + 1,+00) with the weight p?(z) = ¢“(z +d), (0 < ¢ < 1). The
corresponding coefficients in the three-term recurrence relations are

(n+1)(c+1)+dc—d 2 n(n+1)c

b, =— ; = 0.
c—1 fin (c—1)2

(4.28)

It is clear that the parameter d is essentially a translating one. Namely, set-
ting d = 1, the polynomials P,(z) are exactly the special Meixner My(LQ’C)(:C).
However, for future convenience, we will fix d = 2, so that the polynomials
candidate to the transformation are the translated Meixner M;LQ’C)(:U +1).

Thus, we have shown

M(e; ) MP)(z 4+ 1) = (¢ — )aM2) (z + 1),
M(c;z)e "M, (z) = —(c — 1) (n + 2)c™" M, (z) (4.29)

where
M(c;z) =c(z+3)E; — [(e+ Dz +3c+ 1]+ (z + 1)E;! (4.30)

and the polynomials M, (z) are obtained from P, (z) replacing d by 2.
Let us remark that the candidate transformation functions U, (z) = ¢™* M, (z)
need not to be "quadratically integrable”. As already noted, the essential

is that the ratio —2u(2) simplifies in a rational function say g”gg, so that
Y

Wy (z—-1)
the transformed function W, (z) = P, (z) — D]j(”lff)l)Pn(x — 1) would have as
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numerators, polynomial functions.
Recapitulation.
The polynomials to ”modify” are the Meixner MT(LQ’C)(JC + 1). They satisfy
[4(2)Eq + 0(2) + w(@)E;! | MP) (2 +1) = (e — )nMEI (2 + 1) (4.31)
where
u(z) = c(z + 3); v(z)=—[(c+ 1)z + 3¢+ 1]; w(z) =z + 1,(4.32)

as well as the usual recurrence relations with

c+1ln+3c—-1 n(n+ 1)c
. 2 _

b, = — , -
c—1 i (c—1)2

(4.33)

and the difference relations

(c = Danu MG (2 +1) = [u(@)Ey + k(z;n)] M3 (2 +1),
—(e=1Da M@ +1) = [u(@)Es+(z;0)]MP)(z + 1), (4.34)

n—1
where
k(z;n) = —az+n-1,
l(z;n) = —c(z+3+n). (4.35)
They are orthogonal on [—1,+00) with weight p?(z) = ¢®(z + 2).
The transformation functions are the functions ¢~ M, (x), eigenfunctions of

the same operator as the Meixner Méz’c) (x4 1), corresponding to the eigen-
values —(c — 1)(n + 2). Precisely, M, (z) = Mg’c)(—m - 3).

The new rational type functions are \11%0($), \1177n+1($)7 n,vy=0,1,2,...

[e(z + 3)Ex + g,(2)] Wy 0(2) = 0,
Wy (2) = [1+ £ () B ] M (a4 1) (4.36)

where

$(@) = =21, (@) = v(e) — u(e) fy @+ 1) + (= D(7+2).
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They satisfy the second-order eigenvalue difference equation

[u(2)Es + 0y (2) + @y (2)E; '] ‘i’j,O(w) =—(c-1)(v +~2)‘i’w,0(96)7
[u(2)Ey 4 0y (2) + @y (2)EF U, g (2) = (¢ = 1)V npa (2),
ny=0,1,2,. .. (4.37)

where
6(x) = o(e)+ f@)ule - 1) - u(e) fy o+ 1),

- w(z —1)

wy(z) = fy(@) -
! TR -1

The case v = 0 does not lead to non-classical polynomials. The cases v > 1
lead to rational functions orthogonal with non-classical weights and from
which one can extract non-classical polynomials. Below, the computations
results and various discussions are given for the cases of v = 1, v = 2, and
v =3.

(4.38)

Second-order difference eigenvalue equations, eigenfunctions.

In this subsection, in each case, are written explicitly: The coefficients in
the factorization product (4.2), the coefficients in the second-order difference
eigenvalue equations as well as the first six eigenfunctions.

The case v = 1.
The coefficients in the factorization product (4.2) are

fie) = - Sy
gi(z) = — SO0,

The second order difference eigenvalue equation reads as in Eq. (4.37) with

v1(z) = {-((c+1)(c=1)%2> + (¢ = 1)(4c* = Te = 5)x? + (6 — 20c* + 19¢ +
3c%)z + 16¢ — 4¢%)}
/(e =Dz =2)((c =Dz +c=3)};

iy (z) = Lemtledeielled)omioo),
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The new eigenfunctions are

V10(7) = ey’

Wy (2) = B2 n=1,2,3,4,5;...
Qi1(z) =(c— 1)z —2;

Pia(z) = (c—1)%z — 3c+ 3;

Pia(z) = (¢ = 1)((e = 1)%2% +3(c — 1)z — 8¢);

Pis(z) = (c— 1)((c—1)%2® + (Te — 2)(c — 1)222 + (¢ — 1)(12¢% — 19¢ —
3)z — 30c?);

Pra(z) = (c—=1)((e = D*z* +12¢(c — 1)z + (47¢* = 22¢ = T) (c — 1)%z* +
6(c —1)(10¢® — 20¢? — 5¢c — 1)z — 144c¢3);

Pis(z) = (c=1)((c—1)°2°+3(6c+1)(c— D)** +7(17c* = 1) (c — 1)*2° +
9(38¢2+15¢+3)(c—1)%2%24+2(c—1)(180¢* —419¢®> — 131¢? —41c—9)z —840c*);

The case v = 2.

The coefficients in the factorization product (4.2) are

(c—1)2z2+(c—1)(c—7)z—6c—|—12_
fa(z) = - (=122 —(c+5)(c—1)z+6) '

c(z+1)((c=1)222 = (c+5)(c—1)z+6 .
g2(x) = — ((c—l))(2(z2—|—)(c—1)((c—7))1(‘—66)-|-12 )7

The second order difference eigenvalue equation reads as in Eq. (4.37) with

O2(z) = {—((c+ 1)(c — 1)*2® + 3(c? — 5c — 4)(c — 1)%z* — (® + 412 —
85¢ — 53)(c — 1)%2® = 3(c — 1)(c* — ¢® — 63¢® + TTc + 34)z* + (72 — 348¢* +
312¢+ 24¢* + 1263).’r + 180c — 7202)}
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J{((e=1)%2% = (c+5)(c—1)z+6)((c—1)%2*+ (c—1)(c—T)z —6c+12)};

wa(z) = {((c — 1)?2% 4+ (¢ = 1)(c = T)x — 6c + 12)z((c — 1)*2? — 3(c —
e+ Dz +2c+ 202 + 2)}

HAlle=1)%% = (c+5)(c— Dz +6)"};

The new eigenfunctions are

@270(56) = {1}/{(:6—}—2)(:6—}—1)(2(0—1)2$—02+((62—}—100—|—1)(c—1)2)1/2—
4e+5)(2(c— 1)%z — ¢ = ((¢2 4 10c+ 1) (c — 1)))1/? — de +5));

Wy (2) = 220 n=1,2,3,4,5;...

where
Qu(e) = (= 1% — (c+5)(c— Da +6;
Pai(z) = (c—1)((c—1)%2* = (c+ T)(c— 1)z + 12);

Pao(z) = (e = 1)((c = 1)%2® + (2¢ — 7)(c — 1)%2% — (¢ — 1)(3¢* + 19¢ —
12)z + 30c);

Pas(z) = (

c—1)((c—1)*z* 4+ 6(c— 1)*2® + (5c* — 46¢ + 5)(c — 1)%2? —
12(c* + Te+ 1) (e —1

)2z + 108¢%);

Pya(z) = (c— 1)((c— 1)°2° + (11le — 4) (¢ — 1)*z* + 7(5¢? — 10c — 1)(c —
1)%2% + (13¢® — 298¢% + 53¢ + 22) (¢ — 1)%2% — 6(c — 1)(10c* + 58¢* — 73¢? —
19¢ — 4)z + 504¢3);

Pys(z) = (c—1)((c—1)82°+ (17c — 1) (e —1)%25 4+ (101¢? — T4c — 19) (c —

)4:c4+( 23¢? — 685¢? — 115¢+ 1) (c — 1)32® +2(9¢* — 1060 + 242¢* + 164c +
45)(c — 1)%z% — 24(c — 1)(15c° + 85¢* — 124¢® — 40¢? — 13¢ — 3)z + 2880c?);

The case v = 3.

In order to avoid a fourth order algebraic equation, we have fixed the pa-
rameter ¢ taking ¢ = 1/2.
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The coefficients in the factorization product (4.2) now read

2(x47) (22 +172+48) |
f3(z) = - ((r+6))((z'2+15:1?+32))’

z+1)(z+6)(z2+152+32)
g3(z) = -4 Q(z)—(|—7)(z)2(+17z+48) )v

The second order difference eigenvalue equation reads as in Eq. (4.37) with

o3(z) = {-3(x + 3)(37536z + 709z* + 56212° + 2194622 + 432° + 25 +
18432)}
/{2(z +6) (22 + 152 + 32) (z + 7) (2% + 17z + 48) };

b3 (z) = (z+7) (2 +172+48)z(z+5) (22 +132+18) |
ws(T) = (z+6)2(z2+152+32)2 ;

The new eigenfunctions are

J ) — 1 .
\113,0(35) T (z41)(z4+2)(246) (22+15-971/2) (224154971 /2)

Wy (2) = 5320 n=1,2,3,4,5;...

Pai(r) = —(z +15)(z + 4) (2 + 8);
Psa(z) = $(z* + 2423 + 1372% — 662 — 1152);

Pss(z) = —+(2a® + 182* — 72® — 96022 — 1740z + 4032);

Psa(z) = £(197042 — 18432 — 1792* — 120927 + 471422 + 92° 4 25);

Pas(z) = —1=(—1992962 + 103680+ 4352+ 1895823 — 986422 — 31125 -
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Orthogonality, weight functions.

We must refer literally to the results of the discussions in the first section,
particularly those related to the proposition 4.1. Here, « = —1, and the
interval of orthogonality is waited to be [0, 4+00). On the other side, various
solutions of the equation in (4.5) for p, are

pi(z) = ﬁl(0)(S_C)i(cf;fc—_?gj?)(z+1)cr;

pi(z) = {c"(z+1) (2 +2)(2zc? —4cx+ 2245 —4c— 24 ((¢* +10c+ 1) (e —
D)) (22¢® —dex +22+5—4c— 2 — ((2+10c4+1)(c = 1)2)V2)(¢? = 8c+
T (24 10e+ 1) (e — 1)2)12)( S+ T+ (¢ + 10c+ 1) (e — 1)) /2) 73(0)}

J{2(=544c+ e = ((P+10c+1)(c = DY) (=5 +de+ 2+ (2 +10c +
D(e=1)2)Y2)(2z¢® —dez 2242 +T7—8c+ ((*4+10c+1) (e — 1)1)1/?) (2262 -
dex + 2z — ((2 4+ 10c+ 1) (e = D)2 42+ 7 -8¢)};

pa(x) = {27°T(z+ 1) (2 +2)(z +6) (22 +15-97"/2) (22 +15+97"/2) (— 17+
97! /%) (174 97'/2)53(0)}
J{12(z +7) (22 — 972 +17) (22 + 17+ 97/ (15 + 97Y/2) (=15 4+ 97'/2)};

Recalling that the bottom function W., o(z) is the solution of the equation
(see Eq. (4.9))

LaY (z) =0, (4.39)

one directly deduces from the proposition 4.1, the orthogonality, on the in-
terval [0, +00), of the bottom function W, o(z) with each of the elements
from the higher ladder \il%n (z),n=1,2,..., relatively to the weights ﬁgy(x)
On the other side, as one can easily verify, the equation (4.12) is verified for
a,=1,2,..., a# 3. Consequently, the transformed operator f{w (in Lh.s.
of Eq. (4.37)) is symmetric in the subspace of £*(0,4o00;p2(z)) generated

by the higher ladder ‘il%n(ac), n = 1,2,.... Hence, the functions from this
ladder are there mutually orthogonal. Thus, we have obtained that all the
new functions ¥, ,(z), n =0,1,2,... are mutually orthogonal on the inter-

val [0, +00) relatively to the weights p2(z) given above.

A direct consequence of this, is the orthogonality relations between polyno-
mials related to the W-functions. Namely:
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The polynomials
Pro(z) = 1;
Pin(z) = (2 +2)(x+1)Prn(z),n=1,2,3,4,5;...

are orthogonal on the same interval as W ,,(z) but now with the weight
2i(z) = [(z + 1)(z + 2)Qu ()] 47 ().

Identically, the polynomials
Pro(z) = Q2(2);
Pon(z) = [Woo(2)] ' Pon(z),n=1,2,3,4,5;. ..

are orthogonal on the same interval as W, , () but now with the weight
() = [[F20(0)]'Q2(x)] 3(a).

Finally, the polynomials
Pso(z) = (z +6)7'Qa(2);
Pan(z) = [(z +6)Us0(2)] "' Panlz),n=1,2,3,4,5;...

are orthogonal on the same interval as W3, (z) but now with the weight
2(x) = [[(@ + 6)Fa0()] ' Qale)]  A(a).

Completion.

The completion of the functions V., ,,(z), n = 0,1,2,..., in £%(0, 4oc; ,53(33))

follows from the one of the Meixner MéQ’c)(ac +1) in £2(—1, 400; p*(z)). This
is a direct consequence of the proposition 4.1. That proposition was in real-
ity formulated so that this completion must hold, once the proposition was
proved. In particular here, @ = —1, so that ©4 and ©, considered in the

proposition 4.1 are obtained respectively from \11%0(;16) and M(gz’c)(.r +1) by
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sending coordinates corresponding to negative z, to 0.

On the other side , the completion of the polynomials P, ,(z),n=0,1,2...

in £2(0, +o00; 92(x)) follows from that of W, (2),n=0,1,2...in £2(0, +oo; P2 ().
This completion holds well in spite of the fact that, in each of the constructed
sequences of polynomials, there exists at least one number n € Z* such that,

no polynomial from that sequence has degree exactly equal n.

Difference and recurrence relations.

As other deductible properties of the new functions, one easily finds from

the formula (4.36) and the recurrence relations for the Meixner Méz’c)(m +1)
(see Eq. (4.33)) polynomials, the following five-term recurrence relations:

}i}w,n+2 (@) + b1 +b, =22+ 1]\1}%§+1 (z)+ [QEL-H + ai :|’ (b —24+1)(by -
O Ny () + [02 (b + bt — 20+ )t (2) + 0202 Woa(a) = 0, =
3,4,....

But as it is easily seen, those recurrence relations are satisfied by any lin-
ear combination (with coefficients depending of z and not of n) of Meixner
MéQ’c)(m +1), and M}LQ’C)(m). In other words, the relations do not depend of
[ (@),

More characteristic recurrence relations for those functions are the follow-
ing three-term recurrence relations that one can establish from the formula
(4.36), the difference eigenvalue equation (4.31) and the difference relations

(4.34)-(4.35) satisfied by the Meixner M )(x + 1) polynomials:

[~ Dagr (S (@)l(x — 15m) - w(z) - £, (2)I(x;m) +
(@)l = )Wy (2) + L (@) — 13 0) (25 2k o
) + @)k - 1 )<w—1)—w<w>z< n) — f(2)k -
k(s myw(e) + £, (2)l(z - (v(w)—An)—fﬁ(' (e~ l(r— 1)) (2)
oD F @ o)) oo B(sm) - 2(@)u(e - 1)+ f, (2)k(z - 1)

w(@) ¥y po1(z) =0, =2,3,...

The obtained functions satisfy also the following third-order difference rela-
tions, which follow clearly from the difference relations (4.34)-(4.35) satisfied

by the Meixner MT(LZ’C)(JC + 1) polynomials, together with the formula (4.36)
and its inverse:
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_’\’YN(C - 1)an+1\il’y,n+1 (z) ={[1+ f,y(,r)E;I][u(,r)Er + k(z;n)][u(z)E: +
94 (2) ]}V 0 ()

Ay

(¢ 1)a ¥y i (2) )
{4+ £, () B () By 1 (o5 m)][u(2) By 4 g, ()10 (@) = 2,3, ...

Using the second-order difference eigenvalue equation (4.37) satisfied by the
new functions and the preceding relations, one can reach if necessary, the
following first-order difference relations

A (e = Va1 Uy (z) = {[-u(@)(v(@ + 1) = X)) + u(z)gy(z + 1) +

(%n)U( 2)+ fy(@)u(z — Du(z) —u(z) f(2)k(z = 15n)g, (2 — 1) /w(2)]E; +

[—u(@)w(z+1) +k(z;n)g,(2) + [ (2) gy (2)u(z — 1) + fr(2)k(z - 15 n)u(z -
1) = f(@)gy(z = Dk(z = 1) (v(z) = An)/w(@)]} Wy ()

A (e=1) a0 o () = {[~u ) 0o d 4 o+ 1) 4
£y (@)u(e — 1)u(@) - u(@)f(@)I(x - Ln)g, (2 - 1)/w(@)]Es + [~u(e
D) +(asm)g, () + o (2)gn (2)ulz — 1)+ f (2)1 (2 — Lin)u(z — 1) - £, o
iz - 1;n)(v(2) = An) 0 (@) Wy a)n = 2,3, ...

n)u(z)+
Jw(z +
)9+ (2 —

It is clear that the polynomials P, ,(z) satisfy the same recurrence relations
as the functions W, ,(z). Their difference relations are also obviously de-
duced from those of W, ,,(z).

Duality.

In a parallel to the above results for the functions \il%n(ac) and the poly-
nomials P, ,(z), one can of course deduce the corresponding results for
the polynomials dual to the polynomials P, ,(z) (more precisely, dual to
the functions W, ,(z)), n = 1,2,..., thanks to the existence of dual (self-
duality) polynomials for the Meixner polynomials. We will denote D, ;(n) =
)0, py1(2), my 2 =0,1,2,..., p(z) = ¢“T'(z + 3).

D, »(n) are polynomials in n, of degree exactly equal z + 1 and satisfy the
usual three-term recurrence relations (in z) with (see Eq. (4.37)):

by = 0 (2); al, =iy (z)u(z - 1). (4.40)
The polynomials in n

Dyo=1; D,y =(c—1)n— by; (4.41)
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Dyst1 = ((c=1)n—by2)Dyy— a2, Dypoy, z=1,2,... (4.42)

are forx = 0,1,2...of degree exactly equal z and are clearly orthogonal, the
condition required in the well known Favard theorem (b, ; reel and a%w > 0,

z > 1), being satisfied. On the other side, D, ;:(n) = Dy 5(n)p(0) ¥y n41(0),
where from Eq. (4.36), V. 41(0) = (7)n(55)"[/5(0) + 1 + in(1 — 1)),
Mo=1,Y)n=7(y+1)...(y+n—-1),n=1,2.... Consequently,

= ) o (’Y)n(ﬁ)n 1 ~

Vo nt1(2) = Zrgay [2/5(0) + 2+ n(1 = 2)]Dy 2(n),

z,n=0,1,.... (4.43)

This ends the solution of the "problem 37 for the special Meizner
M (2 +1).

Concluding this chapter, let us remark that, on their turn, the obtained
polynomials and functions can be transformed in a similar manner. Here,
the reservoir of transformation functions is composed of

Dsn(z) =[14 fLES M, (2), n,a € N, n # @, (4.44)
and clearly, the process can, in principle, be repeated infinitely.

The existence of other efficiently ”modifiable” particular cases of the hy-
pergeometric difference operator H in Eq. (4.14), "higher” to the special

Meixner Méz’c)(:v + 1) treated here, is not of course precluded. As noted
in [36], it is neither precluded that such generated solvable Hamiltonians
should be generated by type quasi-periodicity or shape-invariance (symme-
try) techniques. The non-classical polynomials for example in ([40], equation
(4.13)) related to the Hermite polynomials generated by ”quasi-periodicity”
methods had been rediscovered in [104], using the "modification method” on
the Hermite polynomials (see the case m = 2 in [104]). Those related to the
Jacobi polynomials in [77] were generated by shape-invariance (symmetry)
techniques. On the side, we know that in ”Laguerre-Hahn” theory [79], a
whole subset of non-semi-classical Laguerre-Hahn polynomials can be gen-
erated by simple shape-invariance (symmetry) of factorization chains (see
explicit examples in the second-section of the following chapter).

It is worth remarking that no efficient ”modification” of a fourth-order
Sturm-Liouville difference (or differential) operator (using for example one
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of the formulas from section 2.2.2) is known in literature.

Remark next that if the constraint of being polynomials is rejected as well for
the "transformable” functions as for the ”transformed” ones (retaining only
the constraints of integrability and completeness), the situation becomes
much easier. Thus, nowadays, the used here method is one of the main tools
for generating new exactly solvable Hamiltonians in quantum mechanics (see
for example [90, 98, 99, 100, 120]).

In [118] were studied transformations of orthogonal polynomials such that
the weights of the new polynomials are obtained by multiplying a rational
function to the weights of the original ones. Let us note that although the
weights @%(m), v = 1,3 are obtained by multiplying rational functions to
p%(ac), v = 1,3, respectively, the situation here is generally that the new
weights are obtained from the old ones by multiplying to them not by ra-
tional functions but a ratio of products of Gamma and may be exponential
functions. So that the polynomials studied here are not in principle of the
same kind than those from [118]. Another remarkable difference resides in
that the polynomials studied in [118] are "ordinary” orthogonal polynomials
satisfying a three-term recurrence relation and having degrees exactly equal
0,1,2,... while the orthogonal polynomials studied here do not satisfy the
usual three-term recurrence relation and are not of degrees exactly equal
0,1,2,... (see above).

As already noted the polynomials studied here conserve most of the prop-
erties of ”ordinary” orthogonal polynomials (completeness, orthogonality,
difference and recurrence relations, difference (eigenvalue) equations, du-
ality,...). Other explicit examples of such orthogonal polynomials are in
[104, 40, 44].



Chapter 5

The Laguerre-Hahn
orthogonal polynomials on
special non-uniform lattices

The Laguerre researches in orthogonal polynomials theory were essentially
based on the theory of continued fractions satisfying first order differential
equations. The corresponding orthogonal polynomials appeared then as the
denominators in the n** Padé approximation. The crucial question solved
by Laguerre him self [74], consisted then of showing how to construct the
differential equations satisfied by those polynomials.

The Hahn works went generally in the converse sense [53, 54]: Characterize
orthogonal polynomials satisfying linear differential equations. It appeared
that those are nothing else than the polynomials studied by Laguerre from
continued fractions point of view.

In such a situation, a question naturally arises: What is the essential charac-
teristic of the polynomials appearing in the Laguerre and Hahn researches?
In other words, what can be seen as the ”Laguerre-Hahn” polynomials? The
answer is in [79] (see [78] for the continuous case): The Laguerre-Hahn poly-
nomials can be considered as those for which the corresponding Stieltjes
function (the continued fraction) satisfies a certain Riccati equation. It ap-
pears that most of known orthogonal polynomials belong to this class. This
chapter is devoted to them considering that we surprisingly have noted the
existence of a significant interconnection between the so-called ”Laguerre-
Hahn” approach to orthogonal polynomials and the discussed above shape-
invariant Infeld-Hull-Miller factorization technique.

111
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The plan of the chapter reads as follows: We firstly recall notions and
results on Laguerre-Hahn polynomials on special nonuniform lattices [79,
80, 82], that will be useful in the following section and in the chapter 6
(section 5.1) (this matter and other results can be found in details in the
cited Magnus works). Next, we attempt to show the interconnection between
the factorization technique and the Laguerre-Hahn approach to orthogonal
polynomials on special nonuniform lattices (section 5.2).

5.1 Definitions and properties.

Searching for two functions 7, () and 7, (z) such that the difference operator
Flna(z)) — fm(z) -

n2(z) = m(z)
leaves a polynomial of degree n — 1 when applied to a polynomial of degree

n, one finds that n2(z) and 7;(z) must be two roots y of some quadratic
equation [79, 80]:

(Pf)(=)

F(z,y) := coy® + 2c12y + ca® + 2c3y + 2¢42 + 5 = 0.

Searching next for a parameterization z(s), y(s) such that n2(z(s)) =
y(s+1), m(z(s)) = y(s), one is led to [79, 80]:

x(s) = ¢1¢°+ g7 ° + 3,
- 1 .
y(s) = éaz(s— 5) + s, (5.2)

the so-called special non-uniform lattice (snul).
Let P,(y(s)) be a sequence of orthogonal on snul lattice polynomials with
the orthogonality measure de,

the corresponding Stieltjes function. The polynomials P, (y(s)) are called
(class k) Laguerre-Hahn orthogonal on snul polynomials (LHP) iff the Stielt-
jes function S(y(s)) satisfies the Riccati equation [79]:
S(y(s —S(y(s
A (s)) 2 I=SUED = B(a(s))S (y(s + 1)) S (y(s))
+C (w(s)) Sl ESWED 4 p(g(s)) (5.3)
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where A, B, C and D are polynomials of degrees < Kk +2, k + 2, K+ 1 and
K, respectively. Most of nowadays known orthogonal polynomials belong to
this class. The subclass of semi-classical orthogonal polynomials [79, 80],
corresponds to the case B = 0. The classical polynomials appear then as the
semi-classical of class Kk = 0.

Next, let P}jﬁ”}n (y(s)), m € ZT be the m-associated polynomials of

P,(y(s)), i.e.

gt P+ (b = y(s) P+ an P = 0,
an+1Pn+1 + (bn - y(S))P + an -1 — 0 (54)

(n,m=0,1,2,...) and let S,, (y(s)) be the corresponding Stieltjes functions.
It can be proved that (see [79]) S,.(y(s)) also satisfies a Riccati equation
similar to Eq. (5.3):

A () 22 UEN=S D) — B, (2(5)) S (y(s + 1)) S (0(5))
WS 4 p, (2(s)),m=0,1,2,...  (5.5)

HCp ((5)) 2ot

where A,,, By, Cy, and Dy, (Ag = A, Bo = B, Co =C, Dy = D) are as well
polynomials of degree < k42, k+2, k+1 and k&, respectively. In other words,
the class of Laguerre-Hahn polynomials is invariant under the operation of
passage to associated polynomials (see another approach in [122]).

Let us write Eq. (5.5) in the homographic form:

(il 4 €2BE)S, (y(s)) + Do (2(s))

2 . (5.6)
y(érl()—(y)()s) - (2( D — B, (2(5)) Sm(y(s))

Sm(y(s+1)) =

The coefficients of this transformation iterate as follows [79]:

Amy1(z(s )
(s+1) y()
= Anllll . CalO)  (y(5 4 1) — by) D (2(5));

Am+1( (s)) _ Cmy1(z(s))
(5+1) y(s) 2
)

) Con1(z(s))
s 2

= sty sl 4 (y(s) = b,) D (a(s));
( Angr () m+1<w<s)>) (i~ Azl Clz())
W(s+1) () 1 Wist1)—y(5)

= 2D Dy — 021Dy Do (5.7)
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with
B (2(s)) = a2, Dyu_1(2(s)), m:=0,1,2,.... (5.8)

Consider next the following notations (letting from now on m = n):

an(2(s)) = —<y<;“i8”5235) — G B (o )= 5+{§<23 [ 4 Calolo)

jtn, being the moments of de.

Using the relations (5.7),(5.8) and (5.4), it has been established in [79] that
the Laguerre-Hahn polynomials satisfy the following difference-recurrence
relations:

Bn(@(8)) Pu(y(s)) + anDn(2(s)) a1 (y(s))
= Bo(w () Pa(y(s+ 1)) +70(2 () Py (y(s + 1)), (5.10)
an(z(s)) Pa(y(s + 1)) + anDn(2(s)) Poor (y(s + 1))
= a0 ((5)) Pa(y(s)) + 70(2 () P (y(s)), (5.11)
Bt (2(9) P2 (y(s + 1) + g Do (2()) PA (y (s 4 1)
= Bo( () A (y(5) + B (2 (5)) Pa(y(s)), (5.12)
1 (2(5)) P23 (91(5)) + g Do (2(3) A (y (5))
= ao(z(s) P2 (y(s + D) + do(a(s) Paly(s + 1)) (5.13)
Remark 5.1 Considering the relations in Eqgs. (5.7) and (5.8) for m :=r,r+
1,..., one finds that the difference-recurrence relations for the polynomials
Pflr_)r, r-associated to P,, are found from the preceding ones by shifting the

initial value for n, from n:=0 to n:=r. One then obtains in place of Egs.

(5.10)-(5.13):

Bu(2(s)) P, (y(5)) + au D (2(5)) P, _, (y())
= B, (z(s) P (s + 1)) + 3 (2 () P (w(s +1), (5.14)
o (2(8) PO, (y(s +1)) + an Do (2()) Py (y(s + 1))
= a, (2(8)) PO, (9(9) + 7 (2(9) P, (), (5.15)
Bt (2(9) P (s + 1)) + anga P (2(9)) P (s + 1))
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)P (y(8)) + 6 (2() P (y(s)), (5.16)
P (y(5)) + s Do (2(5)) P (y())
P (y(s+ 1) + 8.(2()) P (y(s + 1), (5.17)

In the semi-classical situation, y9(z) = 0 and it was proven in [80] that
the class of semi-classical on snul lattices polynomials is fully characterized
by the equations (5.10) and (5.11). Similar question remains open for the
Laguerre-Hahn polynomials. Moreover, in the semi-classical case, the sec-
ond order difference equation is obtained directly by a combination of the
equations (5.10) and (5.11). The result reads [79]:

Dn(2(s = 1))Bo((s)) Puly(s + 1))
—[Pr(2(s = 1)) Bn(2(s)) = Dnlz(s))an(2(s = 1)) Paly(s))
—Dn(z(s))ao(z(s = 1)) Paly(s = 1)) = 0. (5.18)

In the classical case, D,(z(s)) is a constant (in z) and Eq. (5.18) becomes:

Po(2(5)) Pa(y(s + 1)) = [Ba(2(s)) = an(z(s = 1))]Pa(y(s))
—ag(z(s—1))P,(y(s—1))=0. (5.19)

— S

In the Laguerre-Hahn case, vo(z) is no more vanishing so that we are led to
work with the presence of r-associated notion when searching for such equa-
tions. In [79] (see also [82]), the Laguerre-Hahn polynomials were shown to
be expressible in a combination of products of functions each satisfying sec-
ond order difference and three-term recurrence equations. Namely, consider
the following equation

H(s;n)en(y(s)) =0 (5.20)
where
H(s;n) =Dy(z(s — 1)Es + [Du(z(s))an(z(s — 1))

D (a(s — 1))Ba(2(s)] + Dae(s))[adDo(a(s — 1))D-1(x(s — 1))
~ao(a(s - 1)fo(x(s — 1)JET". (5.21)

Consider on the other side the recurrence equation

Unt19n(Y) = (Y = bn)on(y) — anpn-1(y). (5.22)

It was proven in [79] (see also [82]) the following
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Proposition 5.1 There exists sequences of functions {@l} and {¢%}, n €
7, satisfying simultaneously the difference equation (5.20) and the recurrence
relation (5.22) such that

— 1 oL (et (1) -2 (e, ()
Puly) = oS (W)eZ, (W) —e2()el, (v)’
" 1 el _ ) —en(v)e;_; (v)
& n—r(y)—f‘w—o AR ) (5:23)

Moreover, an algorithm for establishing fourth order difference equation sat-
isfied by those polynomials (LHP) was given in [79]. We will not go further
in this matter here: In chapter 6, we will return to this question establishing
the fourth order difference equation (using an algorithm different of that
from [79]) for the concerned polynomials and giving it explicitly for some
particular cases of them.

For the moment, the recalled notions allow to start the following section.

5.2 Interconnection between the DFT and the Laguerre-
Hahn approach to orthogonal polynomials.

We are going to show very simply but very surprisingly that the system (5.7)
can be considered as an extension of the factorization chain (2.154) submit-
ted to the condition (2.163).

Rewrite for convenience as follows the equations in (5.7) (taking into
account of Eq. (5.9))

Bt (z(s)) = —an(z(s)) = (y(s + 1) — ba)Du(z(s))
ny1(2(5)) = =PBn(z(s)) = (y(s) = bn)Dn(z(s))
Ont1Bng1 = @iy — a2D, D,y + an+1Dn+1Dn, (5.24)

the factorization chain (2.154) and the condition in Eq. (2.163)

fs+Ln+1)+g(sin+1) = f(s;n) +g(s+15n)
flsin+Dg(s;n+1) = fs;n)g(sin) + p(n) — p(n+1) (5.25)

f(ssn) —g(ssm—1) = er(n)y(s) + cz2(n). (5.26)
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A combination of the first equation in (5.25) and the equation (5.26) trans-
forms Eqs. (5.25)-(5.26) in

g(ss;m)=g(s;n—1) = (c1(n)y(s + 1) + c2(n))
flsin) = g(sin = 1)+ er(n)y(s) + ea(n)
fsin+1)g(s;n+1) = f(s;n)g(s;n) + p(n) —p(n+1).  (5.27)
On the other side, a combination of the first and second equations in (5.24)

transforms it in

Brt1(2(s)) _ ant1(z(s+l)) _ Bngi(z(s+1)) _ anti(z(s)

Dn(z(s))  Dale(s+1)) — Da(z(s+1))  Dn(z(s))
O‘n-}—lﬁn-}-l = anﬁn - azanDn—l + (L?L+1Dn+1pn (5-28)
pp1(2(s)) = —Bn(x(s)) — (y(s) — bp) Drn(z(s)). (5.29)

Our point here consists in saying that the system of equations (5.24) can be
considered as an extension of Eq. (5.27) or identically, Eqs. (5.28)-(5.29)
relatively to Eqs. (5.25)-(5.26).

This observation is founded at least in appearance. A more founded argu-
ment consists in remarking that if for the polynomial D, (z), only one term,
say the leading, is different from zero i.e. D, (z) = d(n)z" (one may consider
the general situation when the variables z and n in D, (z) are separable i.e.
D,.(z) = c¢(n)p(z), ¢(n) and p(z) constant and polynomial in z respectively),
then the equations in (5.24) are made equivalent to the ones in (5.27) (or
identically, Eqs. (5.28)-(5.29) relatively to Eqgs. (5.25)-(5.26)) by setting

flsim) o= Qo)
g(s;n) = W (5.30)

In other words, under the condition
D, = d,z", (5.31)

the systems of equations (5.24) and (5.27) (or identically, Eqs. (5.28)-(5.29)
and (5.25)-(5.26)) are first both factorization chains available in orthogonal
polynomials theory, second mutually-equivalent and third allow (each on its
side) in principle to generate a special (but without restriction in rapport
with the class k) part of Laguerre-Hahn orthogonal polynomials. But as
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the system of equations (5.24) (or equally Eqgs. (5.28)-(5.29)) fully charac-
terizes the Laguerre-Hahn polynomials, so the system of equations (5.24)
can be considered in orthogonal polynomials theory as a generalization of
the Infeld-Hull-Miller factorization chain (5.27) or identically, (5.28)-(5.29)
relatively to Eqgs. (5.25)-(5.26).

To express this in operatorial language, we first transform Eq. (5.28) "inte-
grating” (in n) the second equation so that to obtain

Bun GO _ oot | Solelett)) _ aalo(s)
Due(s)) ~ Da(e(i1)) = Do(e(s+1) ~ Dr(els))
st (205) Bag (2(5)) _ 0((5))Bol(s)~a2Do (#(s))Ds (2(5) | 3
Dot ()DL (e(s)) = D1 () D2 (3)) +any, (5:32)

from which we next easily verify the following product

DGy H(sim) — iy =

)
oy (B P <:c<s>>>] [y (Ba o+ g (2(5))]

S5 + )_a%—}—l:

D] 5y (Bs = Busi(2())]  (5.33)

H(
oty (Bs + o (@ 5>

where
Hisin) = pitem B — B0
g (2(51)) 43 Do (2()) D1 (2(5)) —aro(2()) o ()
~ Daa(si)) 1B T Do e(3)) - (5:34)

The rapport between this second order operator and the one in Eq. (5.21)
is clear (taking into account of the first equation in (5.32) as well):

1
Dn(2(s))Pn(z(s + 1))
so that we are doing effectively with the Laguerre-Hahn polynomials.

It is very important to remark that the raising and lowering operators in Eq.
(5.33) were originally found in [79, 82] as those linking the zeros of H(s;n)
to that of H(s;n+ 1) and vice-versa.

In the event where Eq. (5.31) is verified, it is easily seen that the product
(5.33) is nothing else than the Infeld-Hull-Miller factorization product (see
Eq. (2.154)), which justifies again the evoked generalization.

Let us recall that in Eq. (5.24), the semi-classical situation corresponds to
the case

H(s;n) =

E;(H(s;n)), (5.35)

agDo(z(s))D_1(z(s)) = 0. (5.36)
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In the "classical” situation (Eq. (5.36) together with x = 0), the general case
consists of Askey-Wilson polynomials (or Associated Askey-Wilson polyno-
mials for £ = 0, a3Do(z(s))D—1(z(s)) # 0) [79] (see also section 6.2 below).
On its side, the product (5.33) coincides essentially (the lattices (5.2) need
first to be transformed in their canonical forms as in section 6.2 below) with
the factorization (3.63) of the Askey-Wilson operator £ (see Eq. (3.51)). In-
deed, in section 6.2, it will appear occasionally from practical computations
that the operator in left hand side of Eq. (5.19) coincides essentially with
(z — 271 [£ = X' (n)] (see Eq. (3.72) for A!(n)).

Let us remark that the present is in fact one of the possible generaliza-
tions of the technique of factorization (2.152), (2.154), the already encoun-
tered extension to the fourth-order situation (section 2.2.2, in particular the
remark 2.3) being probably the most natural.

What can we in fact do explicitly? In the ”classical” situation (k =
0), the general solution will be given occasionally in section 6.2. In non-
classical situations (k > 1), the general solution can no more be given in
term of elementary functions. Indeed, the experience from the continuous
(limit of discrete case) case [81] shows that the coefficients in the three-
term recurrence relation satisfy type Painlevé equations. Reason for which
probably, the passage from the situations in which £ = 0 to those of Kk > 1
quickly increases difficulties. Let us study here one of the §implest purely

Laguerre-Hahn situations, namely (recall the notation D,, = d(n)4d(n)z(s))

k=1 z(s) = s =y(s); adod_y # 0. (5.37)

In that case, the system of equations (5.24) can be reduced to the following
system of non-linear difference equations satisfied by the coefficients in the
three-term recurrence relations (with two degrees of freedom in parameters
in less: the general will be given in section 6.3):
—%043 - %012 + 04302+gbn+2 + 0435n+103z+2

—}—(%agn — o+ az)bpy + (o — %04371)571
—2a3ai+1bn+1 — 2a3bna721+1 + azalb,_ | + azb,a? + (202

—|—20z3)ai+1 — (a3 + ag)a? — (az + ag)a%H =0, (5.38)

—2a1 + agn 4+ oz — (a3 + az)bpy1 + (a2 + a3)b,
—agb? + asb? | — asal + azal , =0, (5.39)
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while the expressions for «,, 3, and D,, read respectively

— 1 1 2 2
Qng1 i= —{[on — a3 — 59 — a3n + aza,  ybnyo + azbpyia o
3 1 1 2
+(503 + ga3n — ay + 502)byp1 — azbras g
2 1, 72 3 2
—a3y 11 bnt1 — gosby g + (a2 + Fas)agy — (a2

+3as)a2 ] + [on — tas — tas — Lasn]s + [Las]s?}; (5.40)

— 1 1 1
Brg1 i= [043G3L+gbn+2 + O‘an—}—lai_}_z + (zasn + a3 — a1 — 5a2)bnp

2 2 1 12 1 2
—asag 1 buy1 — asbrar ) + 5a3by g+ (o + 5043)an+1 — (g

—}—%ag)aiw] + [oq + %ag - %053 - %&3’@]8 + [—%0@,]52; (5.41)
D, = [—%053 — ay + asb,] + [as]s. (5.42)

One needs to note that although the system (5.38)-(5.39) is related to Painlevé
transcendent (see [81] for the continuous case), some of its particular cases
may have elementary particular solutions. For example, setting

(a17a27a3) = (0517071);
1
(o1, 2,a3) = <Za3 + &3((1% — ag), —as, ag) . (5.43)
and
1 2 2
(1,09,03) = 103 + 2as(aj — af), —as, as ), (5.44)

we obtain as particular solutions of Eqs. (5.38)-(5.39), the pairs

by = +
2
a? = —inQ—I—aln—l-%(ag—a%—Fal—%)(‘Un
1 1
—|—§(a3 +ai —ay + 1) (5.45)
by = d
1 1
U LI g (.10
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and
1
b = S(na(a} - a)i
1 1
al = —gnz—l—(g—I—a%—a%)n—l—a% (5.47)

respectively, leading to Laguerre-Hahn polynomials orthogonal with respect
to quasi-definite (but not positive-definite) moment functionals. It is clear
that the first example (i.e. Eq. (5.45)) satisfies the condition (5.31) and so,
considering Eq. (5.29), is "generable” from Infeld-Hull-Miller factorization
chain (2.154)).
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Chapter 6

The fourth order difference
equation for the
Laguerre-Hahn polynomials
on special non-uniform
lattices

The Magnus result in proposition 5.1 is in our sense very interesting. It per-
mits, when working with the Laguerre-Hahn polynomials, to limit oneself to
relatively simple difference operator i.e. the operator in Eq. (5.21). This
is an operator of only second-degree and we less or more handle it: We can
for example factorize it as in Eq. (5.33). The unique uncomfortable thing
lies in our sense in the fact that the functions ¢l and 2, from which the
Laguerre-Hahn polynomials are expressed, are not easily palpable.

In any case it would be useful to establish a linear fourth-order difference
equation, whose coefficients are ”difference” (in s and n) polynomials of
o, (2(5)), Bn(x(8)), Du(z(s)) and a2, satisfied by the Laguerre-Hahn poly-
nomials themselves, in analogy with the equation (5.18) for the semi-classical
polynomials. That is probably the best characterization result that we can
expect to obtain in this direction. We can not expect for example to establish
an eigenelement equation of a fixed order say A, which solutions include all
the Laguerre-Hahn polynomials, in analogy with the second-order difference
eigenelement equation for the ”classical” polynomials. Indeed, we know on
the one side that the class of Laguerre-Hahn polynomials is invariant under

123
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a finite number of Christoffel and Geronimus transformations [122, 113]. On
the other side, a combination of a finite number of such transformations can
lead for example to the so-called modified-Laguerre polynomials L%’M(;r)
[61] when applied to the Laguerre polynomials L2 (z) [114]. But it is known
from [61] that for & € ZF, the polynomials LM (z) satisfy a differential
eigenvalue equation of order 2ae + 4. In other words, for any non-negative
integer «, the polynomials LM (z) are examples of (differential) Laguerre-
Hahn polynomials satisfying a differential eigenvalue equation of order 2a+4.
Which implies that the evoked number A does not exist and our saying is
demonstrated. The demonstration should be easier if one considers the case
of infinite order difference eigenvalue equation satisfied by the generalized
Meixner polynomials [27], which are clearly semi-classical (and consequently
of Laguerre-Hahn type).

An algorithm for establishing the fourth order-difference equation for the
Laguerre-Hahn polynomials has been already given in [79].
In the first section of the present chapter, we establish (using an algorithm
different of that from [79]) practically the equation in question in general
case. In the second section, we give it explicitly and separately for the
cases of polynomials r-associated to all ”classical” polynomials, while in the
last, we give it "semi-explicitly” (up to a system of non-linear difference
equations satisfied by the coefficients in the three-term recurrence relations)
for the class one (k = 1) Laguerre-Hahn polynomials on linear lattice.

6.1 The general case.

Without any surprise, the equation needs to be extracted from the set of
difference-recurrence relations (5.10)-(5.13). The presence of terms with as-
sociated polynomials (contrary to the semi-classical situation) does not of
course facilitates the things.

Let us combine together the equations (5.10) and (5.11) on the one side and
the equations (5.12) and (5.13), on the other side. As a result, we obtain :

0 (2(5)) Paly(s +2)) + o (2(5)) Pa(y (s + 1)) + v (2(5)) Pa(y(5)
ta(2(5)) P2 (y(s +2)) + 2a(2(5) Py (y(s) = 0, (6.1)

Fal(9)) Pa(y(s +2)) + g (2(5)) Pa(y(5)) + ha(2(5)) P, (y (s + 2))
toa(2(5) P, (y(s + 1)) + wa(2()) P2 (y(s)) = 0. (6.2)
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where:
7a(2(s)) 1= EEEE (2 (9)) = ~ BEE tn(o (o)) = R
2n(2(s)) 1= = 28 Fo(a(s)) 1= — gl a2 (9)) 1= pE,
ho(2(s)) 1= — gD, (2(5)) 1= D

Du(e(s+1))Dn(e(s))

v (2(s)) = Dn(z(S))anH( (s41)) ~Dn(z(s+1))Bn1(2(s)) (6.3)

= Dole(et)on(e(e) Dale () (e(x+1)
Cala(s)) = :
( D (251 D)) D (2(5))

Solving the equations (6.1) and (6.2) relatively to P7(L1_) (y(s+2)), P, ( Y (y(s+

1)) and Pél_)l(y(s)), as linear combinations of P,(y(s+ 3)) , P.(y(s + 2)),
P,(y(s+1)) and P,(y(s))), with coefficients depending on z(s) and n and
taking into account the fact that for example Pil_)l(y(s + 1)) is a shift of

P7£1_)1 (y(s)), we obtain the expected fourth order difference equation:

Ane (st N (1)
[z TGN TG DR maGr) D +2)
s ({51 (o)
)~ Fa () e o
(541)) o (a(5+1)) K
(5+1))= Fr(a(s+1)) Bl
()= Kn(2(5))Gn(a(s
2] Fla(s) Bl ()
1
1
(
(

+|+

)
et Pa(y(s+1)
)

)
)
)

)
) =Fn(z(s+1)) Ln(z
))=Fal (=

5))
5))

RG] ()

z(s)) L (2(5))Ga(e
H G ) Va2 (3) = T (o)) B
)= Fu(
(@(s+1 )=Fn(c(s+1)) Bn
Pt 2] P (y(a(s - 2))
REBLNER) nlY
=0 (6.4)

En(z(s+ n TS n S P
G'n( ( 1))))“n ( 1)) (( ((5+11))))] n(y(s ))
FEn(xz(s))—Mpy Gn

where (having in mind Eqs. (6.3) and (5.9)):

An(o(s)) 1= el (el Nnlel6o D) fu(aleinle(e=1)),
Bu(a(s)) i= 0w (a(s = 2)) + =l talsleoinllet),
2))

Cn(2(s)) = Cal@(s —
4 i (5=2) (an(@(s=))n (2(5=1)) ~tn(z(s=1))on ((s=1))
o (2 (s=1))En((s-1)) ’

En(2(s)) = vn(w(s = 2)); Gn(w(s)) := zn(w(s = 2));
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Ko (a(s)) 1= 222(=2)in(e(o=2) —hn (o(s=)on(z(s=2)),

L(a(s)) = —2lGAnle=t N (2 (s)) = v (s — 2));
My (o(s)) o= el (alo ) (r(o-2)en(e(o-2)

This solves the "problem 5” for the Laguerre-Hahn polynomials on special
nonuniform lattices.

Remark 6.1 Considering the remark 5.1, we clearly note that the fourth order
difference equation for P7(LT_)T is obtained from the preceding one satisfied by
P, by shifting the initial value for n, from n := 0 to n := r. More precisely,
one needs to replace in Eq. (6.3) ag, fo, Yo and g respectively by o, 3., 7,

and 4,.

Remark 6.2 We have already in this section used the solutions of the system
of equations (6.1) and (6.2), solved relatively to the P( )1, as functions of the
FP,. Adding a solution of that system now relatively to the P, as functions
of the P( )1, we obtain the following inverse difference relations:

PO, (y(5)) = @ (2(5)) [Paly(s))]; (6.6)
Pa(y(s) = W (2() [P, (w(9))); (6.7)
where
P, (2(5)) [0 (y(5))]
= R G G e P (0 (54 3))
H P R e F S G, (y (s + 2)
+[£ (( ((5122)))) n(( ((:22)))) :E;;E:%JLV” iiiﬁ))ﬂ@n(y(8+ 1))
H R G R 2 6 (o e Nt 1o (0 (5), (6.8)
and

W (2(5))[0n(y(s))]
= [ An(2(542)) N ((5+2)
Fon((542)) R (2(54+2)) =G ((542)) N (2(5+2))

h—

10, (y(s+3))
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Bn(z(s—}—Q))Nn(z(s—I—Z)) Ixn(z(s—}—Q))Fn(z(s—}—Q))
HE co2) Fole(o42) G (e(o+ D) Va2 0 V(5 T 2))
ool 20 nfos42)~ Pt 2 (5420
HE e o12) Rt )G (ot )T (x<s+2>)]0”(y(8+1))
Enfols 1) oot~ Fa(s+2) Vinla(s12)
H o (e(o42) R o(o42)) G olo52)) N (oo 2) 0 V() (6-9)

where the hat has the meaning that X is obtained from X by replac-
INg 00, Cns Vny bns Zny frs Gy ons Oy Wi DY oy Oy Wiy froy Gy by 2y Oy Gy v e
spectively (thanks to the symmetric form of the system (6.1)-(6.2)).
Shifting in ®,, and ¥,, the initial value for n from n := 0 to n := r, it becomes
clear that the obtained operators play the role of ”raising” and ”lowering”
operators within the sequence of (normalized) polynomials satisfying the
following three-term recurrence relation:

P (y(s)) = (y(s) — b)) PUAD (y(s)) — a2y PT5D (y(s)).
(6.10)

6.2 The fourth order difference equation for the
polynomials r-associated to the classical poly-
nomials.

We now go further and calculate explicitly the coefficients in the fourth or-
der difference equation satisfied by the polynomials PT(LT_)T r-associated to the
classical orthogonal polynomials (up to the Askey-Wilson polynomials). Let
us remark first that the problem consists essentially in solving the system
(5.7) (in the classical case i.e. K =0, Bp = 0). The coefficients in the fourth
order difference equation are then obtained directly using Eqgs. (6.3) and
(6.5) and considering the remark 6.1.

In the following, the cases of linear, ¢-linear and Askey-Wilson lattices are
treated in details separately. For simplicity, canonical forms of lattices are
chosen.

6.2.1 The linear case: y(s) :=s, z(s) = s.

Considering Eq. (5.9), one notes that a,(z(s)) and §,(z(s)) need to be
searched under the forms (recall that we are searching classical solutions, so
£ =01in Eq. (5.3)):

an(2(s)) = —(a) +aps+aps’),
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Ba((s)) = B+ Pus+ais’, (6.11)

Those expressions satisfy the system (5.7) iff (here and in all that follows,
To, %1, T2, Yo, Y1, are arbitrary constants):

a,(z(8) == {[223n + 2oy1 — 2971]8? + [-223n? + (—29y1 + 32271)n
ty1z1 — zi)s + [237° + (zay1 — 22221)n% + (2270 — Y171 + 77
+2290)n — zoz1 + Toy1]}/
{—2z9n —y1 + 21 }; (6.12)

Bn(z(s)) = {[223n + 22y — o21]s? + [223n2 + (—2921 + 322y1)n
+yi — a]s + [230° + (—zoxy + 2291 )0 + (2220 + T2yo — Y174
+yi)n + yoyr — yoz1]}/
{2z9n +y1 — 21 }; (6.13)

D, (z(s)) := —2z9n — x93 — y1 + 21; (6.14)

by = {(223 — 2971 — 2oy1)n? + (223 + 29y1 — 3227y + 23 — yi)n
+(zay1 — 2221 + Toy1 — ToZ1 + =T — Yoy1 + Yo1
—y121)}/
{423n? + (423 + 4woyy — 4z9x1)n + 239y1 — 27924
+yi — 221 + 27 ); (6.15)

a? = (—z3n® + (3a3z1 — 323y1)n® + (—3zdy? — 22320 — 223yo

—|—7$%y1$1 — 333%;?%)714 + (—5$2$%y1 + 5$2y%:61 + 4:6%@/0331 — :Ugyf’
—4xizoys + 4adzozy + zo2d — 4xdyoyr)nd + (—2dyd — 232l
+atyr + 223yozo — 3zazoyt + yiT1 — 222y0yi + Srayoyi T
+5x0x0y1 21 — 2$2$0.’r% — 3x2y0$% — 233%3/%)712 + (—2z2y0z071
=22 Y190 + 297120 + YiT1yo — 2TY170 + 222381 — T2YSY
+zoyder — zaxdyr + 2iyo + 2z2y0zoyr — YiTo) N}/
{1623n* + (3223y,
—32z5m1)n° + (—4823y1 71 + 24732? — 42} + 2422y n? + (—24z0yim
+24zy2ty; — 8o} — dadyr 4 4ajzy + 8zayt)n + (—2jyi + i — dyiny
+62tyf + 223y121 — daiyr — 232f + 2] b (6.16)
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S

6.2.2 The ¢-linear case: y(s) :=¢°, z(s) := ¢°.
Now, a,(z(s)) and 5, (z(s)) need to be searched under the forms:

an(z(s)) = —(apg™* 4y +ang’),
Ba(z(s)) = ang™ + B, + Brd’. (6.17)

Those expressions satisfy the system (5.7) iff :

o (2(3)) = {[y2q22¢*" — 23)¢° + [(1229 + qy221)¢*" + (=1 229
—z271)q"] + [209¢°"y2 — ToT2¢"]q" "}/
{9220" = ¢*v20"}; (6.18)

Bu(z(8)) = {[¥2¢*¢®™ — y2q224"1¢° + [(192¢* + qy221)¢*" + (=122
—qy21)q"] + [Toy20q*" — zo2]q %}/
{*y20*" — qz2}; (6.19)

Dy(2(s)) = 227 2q™" — y2q"; (6.20)

by = {= (P21 + 12011 " + (P21 + Py21 + Pyrzs
+11220°)¢*" — (172q° + 22719)q"}/
{a'v3¢"" + (—y2q22
—22y24°)¢*" + 23}; (6.21)

al = {—y3q*2oq™ + (Y3 0 + Y3 y1e1 + Py3rona)¢® — (W3¢ yian
+22¢3y1y271 4+ Py3at — Pyirors + ¢ yiver2) " — (¢ yivas
—22¢°1ya1 — ¢yt — 2207 y22t — 236707 4 2¢° Y3 wons

+2y22023¢2) 0" — (—y220230* + 220y Y221 + 23¢° Y1

+22¢* Y22} + 11 2123¢%)¢°" + (qroal + yazor3q® + yiz123q°) "

—qzor34"}/
{*y36®" — (Y3m20® + 2y5220° + y3220*) " + (223y3 42
+223y2¢° + 223y2q) ¢ — (23y20* + 23y + 223Y20)¢*" + 23} (6.22)
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6.2.3 The Askey-Wilson case: y(s) := qs+2q_s , 2(8) == qq® + ¢ °.

In that case, one can also verify from Eq. (5.9) that o, (z(s)) and 3, (z(s))
need to be searched under the forms:

ahq E +ohq™ 4 BE+ aBLe’ + B g

an(z(s)) = = ,

7 = qq°
Pad™ + By47° + B2 + q0¢° + ¢*af¢*
On(z(s)) = pra—— . (6.23)

Those expressions satisfy the system (5.7) iff (here as above, we exclude, of
course, trivial solutions):

oy (2(s) == {[¢*yoroq®™ — *y3la* + [(yoz19 + 1 209)¢** + (—yoqn
—y0219)¢"1q° + [—q25q*" + (¢23 + y2zo + qzoy0) ™" + (—qy5 — qzovo
—y0y2)q" + ydal + [(v1z0 + 120)¢*™ + (—yoz1 — Y120)¢*" ¢~ + [¢*" 2]
—¢*"zoyolg™*}/

{[-q20¢® + quoq™¢® + [20¢®" — Yoq™]q°}; (6.24)

Bn(x(s)) = {[¢*¢" ¢ — *yoroq®"1¢** + [(1120q + 21920) 4" + (—yoz14
—y1209)¢*"¢* + [—q2dq™™ + (923 + yazo + qzoy0)¢*" + (—qu3 — qzoo
—yoy2)q" + yaq] + [(vor1 + y170)¢*" + (—y1y0 — Yoz1)q"]¢™° + [¢*"zoyo

—y3lg~*}/
{lqz0e®" — quoq™q® + [—20¢™ + voq™]q°}; (6.25)
D, (z(s)) == 2yoq™"™ — 2z0q9q"™; (6.26)

bn, = {(—y120q — 21920)¢*" + (Y170 + Yo1 + Y120q + Yor19)¢*"
+(=y19%0 — Yozr1)q"}/
{24°23¢"" + 2(—yozo — ¢*Toyo)¢*" + 23 }; (6.27)

a} = {qzdq® + (—2dyoq — x3y2 — qz8)q™ + (y228y0 + z3y2 + xdy121) %"
+(—yor1y120 — yiag — yorizo + qriys — xiyz1 + y2adyo + iyoq) ™"
+(—2q23y8 + 982} — 2y223y0 + Yivoro + yied + yorize — 2ydy2zo
+2yoz1y120)¢*" + (—Yoz1y1 70 — Y32T — 9511 + qroys + Yiy2zo + qrdyd
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—yiyoz0) ™ + (v2ys + Viy2mo + YiT1y1) " + (—v2us — Yaq — qroyd)q"

+lawsl}/
{qz3¢®" + (—iyo — 223yoq — z3y0q?) ¢*" + (2q2yd + 223y5q*
+22818) " + (—xoys — zovs — 2qz0y3)*™ + lays]}- (6.28)

Remark 6.3 The expressions for a,, 3, calculated here (from Eq. (5.7))
in subsections 6.2.1, 6.2.2 and 6.2.3 allow to establish explicitly, through
the second-order difference operator in the left hand side of Eq. (5.19),
the second-order difference operator for ”classical” polynomials on linear, ¢-
linear and ¢g-nonlinear lattices respectively. Let us remark that that operator
admits a sequence of polynomial ”solutions” thanks to the factorization in
Eq. (5.33) for k = 0, a3DoD_1 = 0. Moreover, the fact that the generated
here ”classical” polynomials on lattices are the usual ones can be easily
assured by verifying directly the relation

o ~

H(z,n) = (z — 27 ).[£ = A (n)] (6.29)

where £ is the Askey-Wilson ¢-difference operator in Eq. (3.51), AM(n) is
from Eq. (3.72) and H(z,n) is the evoked operator in the left hand side
of Eq. (5.19) with ¢° replaced by z and «a,, and f, of course as given in
subsection 6.2.3. For that, the correspondence between the parameters used
in £ and A'(n) and those used in subsection 6.2.3 is as follows:

yo:=—-Liy1:=a+b+c+d;y, := —(ab+ ac+ ad + be + bd + cd);
z1 = (abe + abd + bed + acd)q™'; zg := —abedq™ (6.30)

As (as we saw above) in the ”classical” situation the system (5.24) is a (pure)
factorization chain, this means that we occasionally reached the expected in
remarks 3.1 and 3.4 result: generate originally (exclusively) from factor-
ization chains all ”classical” polynomials on lattices i.e. give a direct (not
indirect as in sections 3.2 and 3.3) solution of the ”"problem 27, for those
polynomials.

Remark 6.4 One of the main advantage of the ”factorization” approach (or
equally, as we saw above, the Laguerre-Hahn approach) to orthogonal poly-
nomials consists of the fact that the knowledge of «,, 3,, D, and a2 (from
type (5.24) "factorization chain”) leads not only to the knowledge of the
difference equation satisfied by the corresponding polynomials but also to
that satisfied by the polynomials r-associated to them, all that thanks to
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the remark 6.1. In other words, the expressions calculated for «,,, 3,, D,
and a? in subsections 6.2.1, 6.2.2 and 6.2.3 lead directly (by the remark
6.1) to the expected fourth-order difference equation for all polynomials r-
associated to the ”classical” ones, namely, the polynomials r-associated to
the classical polynomials on linear lattices, on ¢-linear lattices and on ¢-
nonlinear (Askey-Wilson) lattices. This solves the "problem 67, for all the
cited classes of orthogonal polynomials.

6.3 The fourth order difference equation for the
class one Laguerre-Hahn polynomials on linear
lattices.

We saw above that in the classical situation (x =0, By = 0), one success to
solve the system (5.7) in term of elementary functions. We can not expect
to do this in non-classical situations, as we know that in the continuous case,
the coeflicients in the three-term recurrence relations are related to Painlevé
transcendent (see [81] in semi-classical differential situation). Below we give
solutions of Eq. (5.7) for the case of class kK = 1 (Bg not necessary zero) and
for simplicity in the case of linear lattice y(s) = z(s) = s, up to explicit
non-linear difference equations satisfied by the coefficients in the three-term
recurrence relations. This furnishes naturally ”semi-explicit” fourth order
difference equations for the corresponding polynomials by the formula (6.4)
and naturally for the polynomials r-associated to them according to the re-
mark 6.1.

We have (k =1, y(s) = z(s) = s):

(€1, c2, €3, €4, arbitrary parameters)

an(z(s)) = —(af 4 aps+ als® + c35°),
Bn(2(s)) By + Brs + B2s* + c38°, (6.31)

with

ozg = [4XnYnc§ — 4egeseqs + 8cacies — 4Y 401 Xt c% + 4C§CQn + 8036371
—2ckeqn — 3Y, Y2 — n3+1 — (4esn 4+ 8ca + 2¢3 — 2¢4) Yo Yo41 — (—2c3n
—4eg +¢q)Y,? — (=2c3¢qm + deges + 2+ 263n? 4 2¢kn — 2c3¢q — 4y
+8czcon + 4ck + 4dere3) Yy — (2c3¢4m + degeq — 8cgesn — 2¢2n? — 4ck

+c2 + 2c3¢4 — 4ereg — 2¢3n)Y, — (—8¢3 + 8c3n — 32¢3cy — 16cac3¢4
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—4c3es 4 32c0¢3m) Xy, — (=203 — 4e3 4 ¢4 — 2e3n) Y2 — (—32¢3¢3n
—32¢3¢3 — 8cin + 16¢yczeq + 4cicy — 8¢3) Xpy1 — (degeq — 82
—8¢2n)Y, X, 11 — (8c2n + 1263 — 40304)Yn+2Xn+1 +4decocin? + Y3
+3Y, Y2 a1 — 4eaczeqn — C3C4 + 26 n? 4 46103 40204 — (4eseq
—8c2n + 8c2) X, Yyq1 — (8¢2n — 1263 — 4czeq) X, Y11/ (8¢3);

1. 1 ) 1 1 .
o, =c1 — 5(cz3+ca)n+ 0371 Yn7 a2 i=cy+ 763+ 5¢4 — c3m;

ﬁo = [463X Y, — 4cocseq + 8cicacs — 4C§Xn+1Yn+1 + 4620?))71 - 8050371
+(—4czeq + 8cin — 8c3)Y, 41X, + (—8c3n + dezeq — 12¢2) Y, 400X 11
+(—4cseq + 8¢3 4 8c2n)Y, Xpy1 + (—8cin + 12¢4 + 4eseq) Vo1 Xi + 2¢3can
—3Y, 1 Y2 — Yf’_i_l +4cycin? + Y2 +3Y, Y2 1 — 4caczean 4 (deg 4 cq
—2¢3n)Y,2 + (32¢3cy + 32¢3can — 8cin — 16c3c3¢q — 8¢5 + 4c3cq) Xy
+(—4c3cqy — 8¢5 — 32c¢3can + 16¢ge3¢4 + 32¢2c5 + 8cin) X, + (—2¢3n — 2c3
+ecq + 402)Yn2+1 + (4eqe + 4e3 — 2e3c4 — €3 — Bezean — 2czeqn + 4ezeq
+2¢2n? + 2¢2n)Y,, + (8caean — 2¢in? — 4ed + 2c3eqm + 2e304
+4coes — ¢ — deqey — dejez — 203n) nt1 + (—2ca + 2¢3 — 8¢y
+4e3n)Y, Y1 + chey — 2e3n? — deycd + dckeq)/ (8c2);

Bli=1V,+e1 —L(es+ca)n+ Lesn?; B2 = ¢y — Les — Lea + esm;
D, (z(5)) := (ca — 2c3n)s + [(2can — ¢4 — ¢3) Y, + (€4 — c3 — 2¢3n) Yqq
+degean — 2¢403]/(2¢3);

where X, and Y,, given by

@ = X,
b, = (Yo4y1 — Y —2c2+ c3)/(2c3); (6.32)

are required to satisfy the following non-linear difference system

—802Yn+1 Yn+2 — 4C§Yn+2){n+2 n+2 + 80362 + 462 n+2 3Yn+2Yn+1
+3Yn+1Yn+2 - Y3 + 2Y n+1 + 863 n+1Xn+1 - 8020304 - 4C3Y X
—|—166:23an + 8CQYnYn+1 + 3Yn+1Yn — 3Y Yn2+1 — 462Yn + (32626304
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—32¢3cy — 64c2con) X1 + (—8cin — 20¢2 + 4ezcq) X2 Yiya

+(8cgeq — 4¢3 — 1663n) X q1Yy + (dezey — 8c3n + 8¢2) X, Yogy
+(8cin — 12¢2 — 4ezeq) X, Y1 + (—4ezeq + 1663 + 8c2n) X0 Yo
+(=8czeq + 16¢3n + 12¢2) X y1 Vigo + (—2¢2n% — ¢ — 4¢3 + 2c3eqn
—4ciez + 263n)Y, + (—2¢3n? — 4¢3 + 2czeqn — dejes + dezeq — 6cin

—5¢2) Y, 40 + (64ckey + 32ckean — 16¢qc3eq) Xpyo + (4c3n? + 2¢% — dezey
+8¢3 — dezeqn + 8cyez + 4ein) gy + (—16¢3c3¢q — 32¢3¢o
+32c4ean) X, = 0, (6.33)

—2¢3 — 8cyck — 8cics — 4cin + dckean + dckey — 4e3n? — 203Yn2+1
—8c3 X1 + (€4 — 2¢3n — 403)Yn2_|_2 + (8czean — 4deges — 4eacy) Yy + (12¢2¢3
—4cqcq + 8ezean) Yo qo + (—16¢3 — 8c3n + 4ceq) Xpgo + (8cacy — S8caes
—16c3¢2m)Yyq1 + (—2¢3 + 2¢3n — ¢4)Y,2 + (—8¢3 + 8c3n — 4cicq) X,
+(6c3 — 2¢a +4esn)Yot1Ynse + (—4esn + 2¢4 + 2¢3)Y,, Y41 = 0. (6.34)

This solves partially (up to Fqs. (6.33)-(6.34)) the "problem 67, for the class
one Laguerre-Hahn polynomials on linear lattices (and for the polynomials
r-associated to them).

The equations (6.33) and (6.34) are the most general (i.e. without loss of
degree of freedom in parameters) connecting the coefficients in the three-
term recurrence relations for the class one LHP orthogonal on linear lattice.
They contain for example the ones obtained in [45]. Let us remark that the
equations (6.33) and (6.34) can be written in explicit form in rapport with
the highest differences (i.e. X,,+4 and Y,,14). It can be seen also that loosing
one degree of freedom (in parameters ¢;) allows to write Eqs. (6.33)-(6.34)
explicitly not only in function of a2 but also in function of b,,. Let us remark
finally that in principle, in spite of the fact that the present system is related
to Painlevé transcendent (see [81] for the continuous semi-classical case),
some of its particular cases have rational particular solutions as predicted in
[44] (see also [43]).
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The first major concern of this thesis (the first four chapters (chapter 1 is
essentially for recalling related concepts)) deal with the applications of the
discrete factorization techniques in orthogonal polynomials on lattices the-
ory. There is mainly questions of ”generating”, ”solving” or ”modifying”
difference operators admitting complete set of polynomial eigenfunctions.
In sum, we have resorted to three kinds of factorization techniques.

The first one consists in imposing ”quasi-periodicity” behaviour to the fac-
torization chains. This method has been successfully used to generate the
Charlier, the Meixner and Kravchuk polynomials (section 3.1).

The second technique consists in imposing to the factorization chains a spe-
cial ”shape-invariant” behaviour. The method has been successfully used
to generate and to solve the Nikiforov-Suslov-Uvarov hypergeometric dif-
ference operators on linear (Charlier, Meixner, Kravchuk, Hahn), nonlinear
(dual Hahn (thanks to remark 2.1)) (section 3.2) and g-nonlinear lattices
(Askey-Wilson (¢-Racah)) (section 3.3).

In passing, functions generalizing the Askey-Wilson polynomials were given
(subsection 3.3.2).

The third technique goes in the opposite way relatively to the two preceding
ones. It consists in imposing to the factorization that successive links in the
chains belong to totally different families. We must avoid any kind of self-
similarity, such as ”"quasi-periodicity” or ”shape-invariance”. Thus, while
the two first approaches aim either to solve known difference operators or
generate them from elementary factorization systems, this third method con-
sists in "modification” of difference operators: starting from a known exactly
solved Hamiltonian and then generate a new exactly solvable one. Also, be-
sides all the usual physical requirements (integrability, completeness, ...), as
we are dealing with polynomials, an additional sufficiently hard requirement
demands that the new eigenelements family be constituted of polynomials.
Here, we succeeded to ”"modify” a special case of Meixner polynomials, into
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new complete sequences of non-classical orthogonal polynomials on lattices
(section 4.2).

The chapter five (section 5.1 is essentially for recalling related concepts)
deals with what one may call a ”transition” concern: We have shown the in-
terconnection between the factorization technique of Infeld-Hull-Miller type
and the Laguerre-Hahn approach to orthogonal polynomials on lattices. In
passing, explicit examples of pure (i.e. non-semiclassical) Laguerre-Hahn
polynomials were given. Among them, an example of pure Laguerre-Hahn
polynomials ”generable” from Infeld-Hull-Miller factorization chains (section
5.2).

The Chapter six deals with the second major concern of this thesis: That
of establishing difference equations (not necessarily of eigenelements type)
satisfied by orthogonal polynomials. The fourth-order difference equation
satisfied by the Laguerre-Hahn polynomials has been established in general
situation (not explicitly) (section 6.1). Explicitly, it has been established for
all the polynomials r-associated to the classical (up to Askey-Wilson) poly-
nomials on lattices (section 6.2) and for the class one Laguerre-Hahn poly-
nomials on linear lattices (up to a system of non-linear difference equations
satisfied by the coefficients in the three-term recurrence relations)(section

6.3).

It is important to note that most of the questions treated here open nat-
urally to remarkable outlooks:
The formulas in [40] (see Eqs. (2.145), (2.147) here), extending the "quasi-
periodicity” method to the cases of eigenfunctions admitting eigenvalues as
non-linear polynomials of their variables, is nowadays almost non-explored
not only in the discrete situations but also in the continuous ones.
The extension of the factorization techniques, applied here to the second-
order difference eigenelements problems, to the fourth-order situation (see
schemes in section 2.2.2) should offer good perspectives. In particular, as
noted in remark 2.3, it is sensible that the extension of the Infeld-Hull-
Miller factorization technique to the fourth-order situation (see scheme in
section 2.2.2, second part) should lead to a class of polynomials extending
the Laguerre-Hahn polynomials.
We succeeded to "modify” the special case of Meixner polynomials. A nat-
ural question consists in finding other ”modifiable” cases ”higher” than the
Meixner class (i.e. Hahn, Askey-Wilson, ...). Also, the possibility of " modifi-
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cation” of some fourth-order situations (Krall type polynomials) is expected.
Now, to extend problems treated in the 6th chapter, a natural question con-
sists of deepening the study of the non-linear system of difference equations
in (6.33)-(6.34). Here, explicit examples of pure (i.e. non-semiclassical)
Laguerre-Hahn polynomials have been extracted from it. A more systematic
study should open to interesting situations. A complete characterization
from difference equations point of view is expected not only for the semi-
classical but also for the Laguerre-Hahn polynomials on lattices.

The final question comes mostly from simple intuition: The authors of the
so-called ”quasi-periodicity method” have somewhere recalled that the term
” quasi-periodicity” used here has nothing to see with the well known quasi-
periodicity (also called almost periodicity) behaviour of Bohr type [30]. A
question appears: What may be the nature of eigenelements (if any) gener-
ated from factorization chains constrained by Bohr almost periodicity clo-
sure conditions? It is worth noting for the interested reader that our ”annex
thesis” is devoted effectively to Bohr almost periodic functions.
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