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1. Orthogonal polynomials and Gaussian quadrature formulas.

Let µ be a positive measure on a real interval [a, b], and Pn the related monic orthogonal
polynomial of degree n, i.e., such that

Pn(x) = xn + · · · ,
∫ b

a
Pn(t)Pm(t)dµ(t) = 0,m 6= n, n = 0, 1, . . . (1)

An enormous amount of work has been spent since about 200 years on the theory and the appli-
cations of these functions. One of their most remarkable properties is the recurrence relation

Pn+1(x) = (x− bn)Pn(x) − a2
nPn−1(x), n = 1, 2, . . . , (2)

with P0(x) ≡ 1, P1(x) = x − b0. See, among numerous other sources, books by Chihara [17],
Gautschi [39, 41], Ismail [55], chap. 18 of NIST handbook [89], and other surveys [44, 69, 70].

Orthogonal polynomials are critically involved in the important class of Gaussian integration

formulas. A classical integration formula
∫ b
a f(t)dµ(t) ≈ w1f(x1) + · · · + wNf(xN ) (Newton-

Cotes, Simpson, etc.) is the integral
∫ b
a p(t) dµ(t) of the polynomial interpolant p of f at the

points x1, . . . , xN . Interpolation errors can sometimes become quite wild, to the opposite of least
squares approximations made with a polynomial q of degree N , achieving

min
q

∫ b

a
(f(t) − q(t))2dµ(t) ⇒

∫ b

a
(f(t) − q(t))r(t) dµ(t) = 0

for any polynomial r of degree < N . We want the favorable aspects of both sides! i.e., easy use
of numerical integration formulas, and safety of least squares approximation. Take at least for
f a polynomial of degree N , say, f(t) = tN , see that f − p vanishes at x1, . . . , xN and will be
orthogonal to all polynomials of degree < N if it is a constant times PN , so if x1, . . . , xN are
the zeros of PN . All least squares problems are then satisfactorily solved with the discrete scalar
product (f, g)N =

∑N
1 wjf(xj)g(xj). See Davis & Rabinowitz [22, § 2.7], Boyd [11, chap. 4] for

this discussion.
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Approximate integration formulas are not only used in the area or volume calculations from
time to time, they are also used massively in pseudospectral solutions of big partial derivative
equations and other functional equations. As an example of numerical procedure, a polynomial
approximation to the solution of a functional equation F (u) = 0 is determined by orthogonality

conditions
∫ b
a F (u(t))r(t) dµ(t) = 0 for any polynomial r of degree < N (Galerkin method), where

the integral is replaced by its Gaussian formula (F (u), r)N = 0. See for instance Boyd [11, chap. 3,
4], Fornberg [32, § 4.7], Mansell & al. [75], Shizgal [98].

2. Power moments and recurrence coefficients.

2.1. Recurrence coefficients and examples. Let us consider the generating function of the
moments µn, which is called here the Stieltjes function of the measure dµ

S(x) =

∫ b

a

dµ(t)

x− t
=
µ0

x
+
µ1

x2
+ · · · , x /∈ [a, b], µn =

∫ b

a
tndµ(t). (3)

Sometimes, S is called the Stieltjes transform of dµ, but technically, the Stieltjes transform of a
measure is the integral of (x+ t)−1dµ(t) on the positive real line [52, chap. 12]. For measures on
the whole real line, one should use the name “Hamburger transform”. P. Henrici [53, §14.6] speaks
of “Cauchy integrals on straight line segments”, Van Assche [103] calls S “Stieltjes transform” for
(3) in all cases. “Markov function” is also used [4, 44] when it is clear that there is no danger of
confusion with random processes.

The power expansion (3) is an asymptotic expansion. If [a, b] is finite, the expansions converges
when |x| > max(|a|, |b|).

The function S is also the first function of the second kind [5, 6]

Qn(x) =

∫ b

a

Pn(t) dµ(t)

x− t
.

The recurrence relation (2) holds for the Qns too. Indeed,

Qn+1(x) =

∫ b

a

[(t− bn = t− x+ x− bn)Pn(t) − a2
nPn−1(t)] dµ(t)

x− t
= −µ0δn,0 + (x− bn)Qn(x) − a2

nQn−1(x). At n = 0, Q1(x) − (x− b0)Q0(x) + µ0 = 0. We have

Qn(x)

Qn−1(x)
=

a2
n

x− bn − Qn+1(x)

Qn(x)

,

[38, eq.(5.1-5.2)], [42, eq.(2.15)], and

S(x) = Q0(x) =
µ0

x− b0 −
a2

1

x− b1 −
. . .

Qn+1(x)

Qn(x)

,

[107, eq. (59.2)]. For bounded [a, b], the continued fraction converges for all x /∈ [a, b] [38, 53, 107].
Some examples, which will be inspiring later on, are

S(x) =
1

2

∫ 1

−1

dt

x− t
=

1

2
log

x+ 1

x− 1
=

1

x
+

1

3x3
+

1

5x5
+ · · · (4)

S(x) =

∫ 1

−1

|t|dt
x− t

=

∫ 1

0

2txdt

x2 − t2
= x log

x2

x2 − 1
=

1

x
+

1

2x3
+

1

3x5
+ · · · (5)

This shows how logarithmic singularities are often seen in Stieltjes functions.
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Here is a case with an explicit logarithmic singularity in the weight function

S(x) = −
∫ 1

0

log t dt

x− t
= Li2(x

−1) =

∞
∑

1

1

n2 xn
, (6)

where Li2 is the dilogarithm function[89, §25.12].
A last example with Euler’s Beta function:

S(x) =

∫ 1

0

tq−1(1 − t)p−q dt

x− t
=
µ0

x
+
µ1

x2
+
µ2

x3
+ · · · ,

µn = B(n+ q, p− q + 1) =
Γ(n+ q)Γ(p− q + 1)

Γ(n+ p+ 1)
(7)

The recurrence relation (2) is needed in various applications, whence the importance of getting
the recurrence coefficients (Lanczos constants) from the moments µn (Schwarz constants, see [19]
for these names). Some of our examples have been solved in the past, see the results in Table 1.

(4) (5) (7)
Legendre mod. Jacobi Jacobi on (0, 1)

Chihara Abramowitz
[17, chap. 5, § 2 (G)] [1, § 22.2.2, § 22.7.2]

a2
n

n2

4n2 − 1

2n + 1 − (−1)n

4(2n + 1 + (1)n)

n(n+ p− 1)(n + q − 1)(n + p− q)

(2n+ p− 2)(2n + p− 1)2(2n + p)

bn 0 0
2n(n+ p) + q(p − 1)

(2n + p+ 1)(2n + p− 1)
Table 1. Some known recurrence coefficients formulas.

General formulas for the recurrence coefficients from the power moments follow from the set

of linear equations
∑n−1

0 µi+jc
(n)
j = −µi+n, i = 0, . . . , n − 1 for the coefficients c

(n)
j of Pn(x) =

xn +
∑n−1

0 c
(n)
j xj , yielding b0 + · · · + bn−1 = −c(n)

n−1 and µ0a
2
1 · · · a2

n = Dn+1/Dn, where Dn is the

determinant of the stated set of equations (Hankel determinant). Various algorithms organize
the progressive construction of the recurrence coefficients from the power moments but have
an enormous condition number for large degree, whence the importance of alternate numerical
methods [39], which will be considered in next section.

In some serendipitous cases, as seen in Table 1, closed-form formulas have been found [17,
chapters 5 and 6] [89, § 18.3-18.37].

n 0 1 2 3 4 5

a2
n

7
144

647
11025

71180289
1172105200

332349955856
5405644687527

39672481023099631594375
641525900508218274561936

bn
1
4

13
28

8795
18116

124351943
252694908

43450203422161
87773135347044

23506086742557104854013941
47335997944735259180626044

Table 2. First recurrence coefficients for the weight − log t on (0, 1).

No formula is known for the dilogarithm case (6), and nothing simple must be expected, as
seen from the first ones in table 2, whose asymptotic behavior will be investigated in table 7; see
also [80].
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2.2. Asymptotic behavior of recurrence coefficients. Asymptotic behavior of an and bn has
been enormously investigated. The simplest, and most meaningful, result is that, if the derivative
w = µ′ of the absolutely continuous1 part is positive a.e. on (a, b), then

an → a∞ =
b− a

4
, bn → b∞ =

a+ b

2
, n→ ∞. (8)

This seemingly simple result took decades to receive a complete proof, see the surveys by D.S.
Lubinsky [69, §3.2], P. Nevai [84, §4.5], [85], and Van Assche’s book [103, §2.6] for accurate
statements and story.

A closer look to the Jacobi recurrence coefficients (7), Table 1 gives

an =
1

4
− (q − 1)2 + (p − q)2 − 1/2

16n2
+ o(n−2), bn =

1

2
+

(q − 1)2 − (p− q)2

8n2
+ o(n−2).

For a general interval (a, b), the Jacobi weight is (b− x)α(x− a)β , and the relevant asymptotic
behavior is

an =
b− a

4

(

1 − α2 + β2 − 1/2

4n2
+ o(n−2)

)

,

bn =
a+ b

2
− (b− a)(α2 − β2)

8n2
+ o(n−2).

(9)

This behavior is thought to be present for all weights behaving like powers near the support’s
endpoints. Interior singularities create wilder oscillating perturbations, as it will be recalled later
on. Lambin and Gaspard [63, Appendix] made interesting numerical tests on problems of solid-
state physics by reducing the oscillating terms through sums and products, their formulas2 are:

a1 · · · an = constant ×
(

b− a

4

)n (

1 +
α2 + β2 − 1/2

4n
+ o(1/n)

)

,

b0 + · · · + bn = n
a+ b

2
+ constant +

(b− a)(α2 − β2)

8n
+ o(1/n). The constants are known from

Szegő’s theory, see § 5.3. Complete expansions in powers of 1/n have been established when the
weight function is (b − x)α(x − a)β times a positive analytic function on [a, b] [62, Thm. 1.10],
quite a strong condition. Perturbation of a Jacobi weight is considered by Nevai and Van Assche
[86, § 5.2], but their trace-class condition

∑ |an −a∞|+ |bn − b∞| <∞ is rather strong too, as we
will encounter expected O(1/n) and O(1/(n log n)) perturbations. See also L.Lefèvre et al. [66]
for more applications with Jacobi polynomials.

Many more refinements will be studied in § 5 and 6.

3. Modified moments.

A very efficient technique for computing large numbers of recurrence coefficients is described
here.

3.1. Main properties and numerical stability. We consider a sequence of polynomials {R0, R1, . . . }
with Rn of degree n. Here, Rn need not be monic. The related modified moment of degree n is
defined as

νn =

∫ b

a
Rn(t) dµ(t). (10)

We want to compute the recurrence relation coefficients (2) from the modified moments of dµ.
The algebraic contents of the problem is the same as before, as each modified moment is a finite
linear combination of the power moments, but the numerical accuracy in finite precision can be

1dµ = dµabsolutely continuous + dµsingular.
2The product b1 · · · bn of [63] is here a2

1 · · · a
2
n.
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strongly enhanced: with the notation (f, g) for the scalar product
∫ b
a f(x)g(x) dµ(x), we again

compute the values (Pn, Rj), n, j = 0, 1, . . . ,N − 1 by

GN =







(R0, R0) · · · (R0, RN−1)
...

...
...

(RN−1, R0) · · · (RN−1, RN−1)







=











(R0, P0) 0 · · · 0
(R1, P0) (R1, P1) · · · 0

...
. . .

(RN−1, P0) (RN−1, P1) · · · (RN−1, PN−1)





















1/‖P0‖2

1/‖P1‖2

. . .

1/‖PN=1‖2





















(P0, R0) (P0, R1) · · · (P0, RN−1)
0 (P1, R1) · · · (P1, RN−1)

. . .
...

0 0 · · · (PN−1, RN−1)











(11)

Where the left-hand side is the Gram matrix of the basis {R0, . . . , RN−1}, factored in (11) as a
lower triangular matrix times a diagonal matrix times an upper triangular matrix which happens
to be the transposed of the first factor. The equation (11) is the matrix writing of the Gaussian
(!) elimination method, also known for a positive definite matrix as Cholesky’s method [12, 13].
See also Bultheel & Van Barel [15, § 4.2] for this connection of the Gram-Schmidt method with
modified moments.

The numerical stability of the computation of the factors of the right-hand side of (11) is
measured by the condition number of the matrix GN , which is the ratio of the extreme eigenvalues
of the matrix (for a general nonsymmetric matrix, singular values must be considered [45, 109]),
after a convenient scaling replacing Rn(x) by Rn(x)/ρn.

The extreme eigenvalues are easily seen as the inf and sup on real vectors [c0, . . . , cN−1] of

the ratio

∑

j

∑

k cjck(Rj/ρj , Rk/ρk) =
∫ b
a p

2(x) dµ(x)
∑

j c
2
j

, where p(x) =
∑

j cjRj(x)/ρj (Rayleigh

quotient [109, §54]). Now, in the important special case where the Rn/ρns are the orthonormal
polynomials with respect to a measure dµR with the same support as dµ, the extreme eigenvalues

are the inf and sup on the real polynomials p of degree < N of

∫

p2(x)dµ(x)
∫ b
a p

2(x)dµR(x)
so, these eigenvalues

remain bounded and bounded from below if dµ(x)/dµR(x) is similarly bounded [8].

3.2. Legendre examples.

Let Rn(x) = Pn

(

2x− a− b

b− a

)

. From tables and formulas of Legendre polynomials [1, 89] etc.,

one has R0 = 1, R1(x) = (2x − a − b)/(b − a), Rn+1(x) = [(2n + 1)(2x − a − b)Rn(x)/(b − a) −
nRn−1(x)]/(n + 1), Rn(a) = (−1)n, Rn(b) = 1, ‖Rn‖2

R =
∫ b
a R

2
n(x)dx = (b − a)/(2n + 1). The

integral of Rn is of special interest, it is
∫ x
a Rn(t)dt = (b − a)(Rn+1(x) − Rn−1(x))/(2(2n + 1))

when n > 0 [32, p.157].

For − log t on (0, 1), the modified moments are ν0 = 1, νn = −
∫ 1

0
Rn(t) log t dt

=

∫ 1

0

Rn+1(t) −Rn−1(t)

2(2n + 1)t
dt = −

∫ 1

0

Rn(t) +Rn−1(t)

2(n+ 1)t
dt =

(−1)n

n(n+ 1)
, n = 1, 2, . . . [89, 14.18.6

Christoffel Darboux ], also a special case of Jacobi polynomials formulas by Gautschi [40, eq.
(16)].
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For − log |t| on (−1, 1): ν2n = −
∫ 1

−1
log |t|P2n(t)dt = −2

∫ 1

0
log(t)P2n(t)dt =

2

4n+ 1

∫ 1

0

P2n+1(t) − P2n−1(t)

t
dt = − 2

2n+ 1

∫ 1

0

P2n−1(t)

t
dt = (−1)n2n (n− 1)!

(2n+ 1)!!
, n = 1, 2, . . .

(ν0 = 2), from [29, 10.10 (52)] with λ = −1.

For −|t| log |t| on (−1, 1): ν2n = −
∫ 1

−1
|t| log |t|P2n(t)dt = −2

∫ 1

0
t log(t)P2n(t)dt =

(−1)n+1 d

dλ

[

(−λ/2)(−λ/2 + 1) · · · (−λ/2 + n− 1)

(1/2 + λ/2)(3/2 + λ/2) · · · (1/2 + n+ λ/2)

]

λ=1

= (−1)n−1 (2n− 3)!!

2n+1(n+ 1)!

(

2

3
+ · · · + 2

2n− 3
+ 1 +

1

2
+ · · · + 1

n+ 1

)

, n = 2, 3, . . . (ν0 = 1/2, ν2 =

−1/16) from [29, 10.10 (51)].

3.3. Chebyshev examples.

We now have Rn(x) = Tn

(

2x− a− b

b− a

)

. One has R0 = 1, R1(x) = (2x− a− b)/(b − a),

Rn+1(x) = 2(2x − a− b)Rn(x)/(b − a) −Rn−1(x),

Rn(a) = (−1)n, Rn(b) = 1, ‖Rn‖2
R =

∫ b

a

R2
n(x)

√

(x− a)(b− x)
dx = π if n = 0, π/2 if n > 0.

Chebyshev modified moments examples are easy to capture through expansions of functions:

if F (x) = c0/2 +
∑∞

1 cnTn

(

2x− a− b

b− a

)

, then cn =
2

π

∫ b

a

F (t)
√

(t− a)(b− t)
Tn

(

2t− a− b

b− a

)

dt.

Consider first the generating function of Chebyshev polynomials
1

A− x
=

4/(b − a)

z + z−1 − 2u
=

4/(b− a)

z − z−1
[1 + 2

∑∞
1 Tn(u)/zn], where A = (a+ b)/2 + (b− a)(z+ z−1)/4 and x = (a+ b)/2 + (b−

a)u/2 ∈ [a, b] if −1 6 u 6 1 ([77, § 5.2], [90], etc.) so,

∫ b

a
Tn

(

2t− a− b

b− a

)

dt

(A− t)
√

(t− a)(b− t)
=

4π

(b− a)(z − z−1)zn
, n = 0, 1, . . . (12)

where A = (a + b)/2 + (b − a)(z + z−1)/4 with |z| > 1 if A /∈ [a, b], or also z = [2A − a− b+

2
√

(A− a)(A− b)]/(b − a).

A logarithmic example: log(x− x0), with x0 ∈ [a, b]. As before, let x = (a+ b)/2
+ (b− a)(z + z−1)/4, x0 = [(a+ b) + (b− a) cos θ0]/2, then, log(x− x0) = log[(a− b) exp(−iθ0)

(1 − z exp(iθ0))(1 − z−1 exp(iθ0))/4] = log((a− b)/4) − iθ0 −
∞
∑

1

zn + z−n

n
exp(inθ0

= log((a−b)/4)− iθ0 −2

∞
∑

1

Tn

(

2x− a− b

b− a

)

n
exp(inθ0) [77, 90], etc. Remark that the imaginary

part is a simple discontinuity (jump, sign function) at x0. Other examples can be found in
Milovanović & Cvetković’s paper [82, Thm 2.2].

The examples of § 8 of the present study will be worked through Chebyshev modified moments
expansions too, see (40) and (45).
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3.4. The algorithm. Stable and efficient computation of the recurrence coefficients of (2) from
the modified moments (10) has been first published by Sack and Donovan in 1969 [94, 95], im-
mediately enthusiastically commented and expanded by W. Gautschi [37] whose exposition is
summarized here (see also [39, § 2.1.7], [41, viii, pp. 28,36, 58–64, 92–100, 162]).

One does not compute the matrix of the left-hand side of (11) to get the orthogonal polynomials
Pn. Instead, we use polynomials Rn satisfying themselves a known recurrence formula

xRk(x) = AkRk+1(x) +BkRk(x) + · · · + ZkRk−s(x), (13)

containing the ordinary moments case when s = 0, some other (possibly formal) orthogonal
polynomials when s = 1, and we shall even try an example where s = 2!
We make vectors

v
(n) = [

∫ b

a
Pn(t)R0(t)dµ(t),

∫ b

a
Pn(t)R1(t)dµ(t), . . . ,

∫ b

a
Pn(t)R2N−n(t)dµ(t)],

looking like the rows of the last factor of (11), for n = 0, 1, . . . ,N − 1, starting of course with
the modified moments at n = 0. By orthogonality of Pn and polynomials of degree < n, one must

have v
(n)
0 = v

(n)
1 = · · · = v

(n)
n−1 = 0. We also define v

(−1) to be the null vector. Then, by (2) and
(13),

v
(n+1)
k =

∫ b

a
Pn+1(t)Rk(t)dµ(t) =

∫ b

a
(t− bn)Pn(t)Rk(t)dµ(t) − a2

n

∫ b

a
Pn−1(t)Rk(t)dµ(t)

=

∫ b

a
[AkRk+1(t) + (Bk − bn)Rk(t) + · · · + ZkRk−s(t)]Pn(t)dµ(t) − a2

n

∫ b

a
Pn−1(t)Rk(t)dµ(t)

= Akv
(n)
k+1 + (Bk − bn)v

(n)
k + · · · + Zkv

(n)
k−s − a2

nv
(n−1)
k ,

using therefore elements of v
(n) and v

(n−1).

As one must have v
(n+1)
n−1 = 0, a2

n = An−1v
(n)
n /v

(n−1)
n−1 if n > 0 follows, and v

(n+1)
n = 0 ⇒ bn =

Bn + [Anv
(n)
n+1 − a2

nv
(n−1)
n ]/v

(n)
n = Bn +Anv

(n)
n+1/v

(n)
n −An−1v

(n−1)
n /v

(n−1)
n−1 .

See also that v
(n+1)
k needs v

(n)
k+1, that’s why we need the v

(0)
k s up to k = 2N , in order to have

a correct v
(N)
N .

There will be much ado later on about the Chebyshev polynomials on [a, b] : R0(t) ≡ 1, R1(t) =
T1((2t−a− b)/(b−a)) = (2t−a− b)/(b−a), R2(t) = T2((2t−a− b)/(b−a)) = 2((2t−a− b)/(b−
a))2 − 1, . . . satisfying

tRn(t) = (b− a)Rn−1(t)/4 + (a+ b)Rn(t)/2 + (b− a)Rn+1(t)/4.

Remark. If we have a software allowing fast shift vector operations shiftleft([a1, . . . , aN ]) =
[a2, . . . , aN , 0], shiftright([a1, . . . , aN ]) = [0, a1, . . . , aN−1], then
v

(n+1) = (b− a)[shiftleft(v(n)) + shiftright(v(n))]/4 + (a+ b)v(n)/2 − a2
nv

(n−1) − bnv
(n) [40].

4. Expansions in functions of the second kind.

We proceed with modified moments and related expansions. The weight function w is not
always given in such an explicit form allowing a fast way to compute the modified moments. It
is often better to use the generating function S(x) of the power moments, but how is S(x) an
expansion involving modified moments?

From now on, we choose Rn to be an orthogonal polynomial of degree n with respect to a
weight function wR on [a, b], and the searched Pn orthogonal with respect to the weight function
w so that dµ(x) = w(x)dx. We will often need the ratio w/wR, a writing more realistic than the
Radon-Nykodim derivative dµ/dµR in most cases.
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We saw that the Laurent expansion of the Stieltjes function of w with the power moments

is S(x) =
∫ b
a w(t)(x − t)−1dt =

∑∞
0 µk x

−k−1. See here the expansion involving the modified

moments νn =
∫ b
a Rn(t)w(t) dt:

4.1. Theorem. Let Rn, n = 0, 1, . . . be orthogonal polynomials related to a weight wR on [a, b],

with ‖Rn‖2
R =

∫ b
a R

2
n(t)wR(t) dt, and S(x) =

∫ b
a (x − t)−1w(t)dt be the Stieltjes function of the

weight function w. Then,

S(x) =

∞
∑

0

νn

‖Rn‖2
R

Qn(x), (14)

for x /∈ [a, b], where νn is the modified moment
∫ b
a Rn(t)w(t) dt, and where

Qn(x) =
∫ b
a (x − t)−1Rn(t)wR(t) dt is the nth function of the second kind related to the weight

wR.

Indeed, as Rn is a finite linear combination of powers, which may be inverted as tk =
∑k

n=0 cn,kRn(t),

we have S(x) =
∑∞

k=0

∫ b
a t

k w(t) dt x−k−1 =
∑∞

k=0

∫ b
a [

∑k
n=0 cn,kRn(t)]w(t) dt x−k−1

=
∑∞

n=0 νn[
∑∞

k=n cn,kx
−k−1]. Remark now the Laurent expansion

Qn(x) =
∑∞

k=n

∫ b
a t

kRn(t)wR(t) dt x−k−1 =
∑∞

k=n cn,k‖Rn‖2
R x−k−1. �

There is no convergence problem, at least if a and b are finite, as the Laurent expansions
converges exponentially fast when |x| > max(|a|, |b|).

My first idea was to expand the ratio w/wR in the {Rn} basis, by w(t)/wR(t)

=
∑∞

n=0[
∫ b
a (w(u)/wR(u))wR(u)Rn(u)dt = νn]Rn(t)/‖Rn‖2

R for t almost everywhere in [a, b], but
we do not need to discuss the validity of this expansion. It seems however strange that the theorem
seems to be true in some eerie situations where w and wR have different supports. The price is
that the modified moments are unusually large, which makes them completely useless. This is
obvious if the support of w is bigger than the support of wR, as the Rns are free to become large
outside the support of wR. But things are not better if the support of w is too small! Recall that
the condition number of the Gram matrix GN in (11) depends also on the smallest eigenvalue,

which is the infimum on polynomials p of degree < N of the Rayleigh ratio
∫ b
a p

2w dx/
∫ b
a p

2wR dx,
and we may choose p to be very small on the part of (a, b) which is the support of w. See also
Beckermann & Bourreau [8].

Expansions with functions of the second kind share properties of Laurent expansions, such as
exponential speed of convergence outside [a, b], and orthogonal expansions, such as the use of
recurrence relations, see Barrett [7], Gautschi [38].

For Legendre functions, the connection between Laurent expansions and expansions in functions
of the second kind is given by Heine’s series (x− t)−1 =

∑∞
0 (2m+1)Pm(t)Qm(x),−1 < t < 1, x /∈

[−1, 1] (NIST [89, § 14.28.2], etc.), so that, gathering the tn terms,

1

xn+1
=

n
∑

0

dnPm(0)/dtn

n!
Qm(x), showing how theQn expansion is a rearrangement of the Laurent

expansion.
As a matter of fact, Heine’s series is valid for any choice of orthogonal polynomials: expand

(x− t)−1 in orthogonal expansion of the Rns:

1

x− t
=

∞
∑

m=0

∫ b

a

Rm(u)wR(u)du

x− u
= Qm(x)

‖Rm‖2
R

Rm(t). See Area et al. [5, 6] for more identities.

The subject matter will now be strongly simplified by turning to the Chebyshev case:
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4.2. Chebyshev functions of the second kind. The functions of second kind related to the

Chebyshev polynomials

Rn(x) = Tn((2x− a− b)/(b − a)) are

Qn(x) =

∫ b

a

Tn((2t− a− b)/(b − a)) dt

(x− t)
√

(t− a)(b− t)
=

π

a∞ zn(z − 1/z)
, (15)

where z = [2x− a− b+ 2
√

(x− a)(x− b)]/(b − a) ∼ 4x/(b − a) = x/a∞ for large |x|.
This has been established in (12) of § 3.3, where the A of (12) is the x of (15).
This formula (15) is seen as an exercise in many textbooks, as Davis & Rabinowitz [22,

§ 1.13], sometimes from the finite part (Hilbert transform) of (15) when x ∈ (a, b), known to
be −(π/(2a∞))Un−1(cos θ) [1, 22.13.3], [77, eq. 9.22a], also used by Weisse & al. [108, eq. (14)].

Then, when x = b∞ + 2a∞ cos θ ± iε is close to [a, b], we add ±πiTn(cos θ)/
√

(x− a)(b− x)
(Sokhotskyi-Plemelj [53, §14.1]), and (15) is restored in a neighborhood of [a, b].

It will also be recalled in § 5.3 that the asymptotic formula (21b) is exact in the Bernstein-

Szegő case (when
√

(t− a)(b− t)/w(t) is a polynomial, and when n > half the degree of this
polynomial). Henrici gives (15) in [53, § 14.6, Problem 2] with the symbol ”Un” for our Qn.

4.3. Corollary. Chebyshev modified moments are the coefficients of the expansion of the Stieltjes

function in negative powers of z

(b− a)(z − z−1)

2
S

(

x =
a+ b

2
+

(b− a)(z + z−1)

4

)

= 2ν0 +
∞

∑

1

4νn

zn
. (16)

Indeed, put (15) in (14)

S(x) =
∑∞

0

νn

‖Rn‖2
R

Qn(x) =
ν0

‖R0‖2
R = π

π/a∞
z − z−1

+
∑∞

1

νn

‖Rn‖2
R = π/2

π/a∞
zn(z − z−1)

. �

Consider also (see § 3.3) the generating function of Chebyshev polynomials.

5. Weights with logarithmic singularities. Interior singularity.

5.1. Known results. The influence of an algebraic singularity at c ∈ (a, b) on the recurrence
coefficients has been discussed in [33, 71, 73], it has been observed, and sometimes proved, that

an − a∞ = fn cos(2nθc + ϕc) + o(fn),

bn − b∞ = 2fn cos((2n + 1)θc + ϕc) + o(fn),
(17)

where c =
a+ b

2
+
b− a

2
cos θc, with 0 < θc < π, a∞ =

b− a

4
, b∞ =

a+ b

2
from (8), and where fn

and ϕc depend on the kind of singularity.
We first consider here weak singularities, i.e. when the weight function remains continuous,

bounded and bounded from below by a positive number in a neighborhood of the singular point.
For an algebraic weak singularity,

w(x) ≈ w(c) + constant |x− c|α, α > 0, 0 < w(c) <∞
⇒ fn = constant n−α−1,

(18)

has been shown in [71, p.156], see also the first part of [73].
The proof in [71] makes heavy use of Toeplitz determinants based on Szegő’s theory. The

subsections 5.3-5.3.5 that will follow here try to suggest simpler approaches. No new proof will be
presented, but the puzzling fact is that the form (17) holds for all kinds of interior singularities
encountered up to now, whether as proved results, or as conjectures.
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In the much more difficult situation of a strong singularity where w(c) = 0 or ∞, the power
of n in fn does not depend on α, it happens that

w(x) ∼ constant |x− c|α, α > −1 ⇒ fn = −(b− a)|α|/(8n), (19)

as conjectured in [73], and brilliantly proved in [33], through new Riemann-Hilbert techniques.
Initially a way to reconstruct systems of differential equations from the properties of the solutions
about their branchpoints (monodromy matrix), ”the Riemann-Hilbert method reduces a particular
problem to the reconstruction of an analytic function from jump conditions”, in the words of A.
Its [56, p. 1389]. The method has been applied with striking results to orthogonal polynomials
asymptotics [56, p. 1391] [4, 23, 31, 61, 62], up to, as already noted, the proof of conjectures on
interior singularities [33, 34]. For our orthogonal polynomials problems, we must limit ourselves
to weight functions that can be analytically continued in a domain containing the support, up
to a finite number of singular points, and cuts that join them. When such a singular point is
a branchpoint, the continuation on a surrounding contour (from ”before” to ”after”, when the
contour’s turn is achieved) leads to new values, best described by

[

Pn(x) Qn(x)/w(x)
Pn−1(x) Qn−1(x)/w(x)

]

after

=

[

Pn(x) Qn(x)/w(x)
Pn−1(x) Qn−1(x)/w(x)

]

before

[

1 C1

0 C2

]

with suitable C1, C2 making the relevant monodromy matrix around the singular point [74, §3,4],
with a very subtle scale dilation in some regions, this is the new feature found in present day
developments of the Riemann-Hilbert method [4, 23, 33, 34, 31, 61, 62], [55, chap. 22].

In the year 2000, Lubinsky wrote illuminating remarks on the virtues of various techniques,
see here a (slightly shortened) part of the conclusion of his survey: “ At present it seems that
the Deift-Fokas-Its-Kitaev-Kriecherbauer- McLaughlin & al. method [= the new RH] will lead
to very precise asymptotics for restricted classes of weights, while I believe that Bernstein-Szegő-
Rakhmanov’s one will lead to asymptotics for more general weights, but with weaker error esti-
mates. ” [70, p. 251].

w(t) 1 2 3 4 5 6 7

− log |t| 1
9

56
225

1863
8575

162776
639009

1070243125
4586681781

25913014364304
101783375460481

1934965659283089461
8086464983903415525

−|t| log |t| 1
4

7
36

17
63

647
2975

294777
1099900

134451657
593353348

5943701732
22386249711

Table 3. First recurrence coefficients a2
n for the weights − log |t| and −|t| log |t| on (−1, 1).

5.2. Conjecture. If the weight function has one or several logarithmic singularities of the form

w(x) ∼ constant ×|x− c|α log |x− c| near one or several values of c ∈ (a, b), the first terms of the

asymptotic behavior of the related amplitude in (17) are

fn =
A

n
+

B

n log n
+

C

n(log n)2
+ o(1/(n(log n)2)), (20)

with A = −(b− a)|α|/8. When α = 0, B = (b − a) sin(θc)/8 is conjectured, where c = (a + b+
(b− a) cos θc)/2.

One has also (b− a) sin θc = 2
√

(c− a)(b− c). The formula for A in the conjecture is the same
as in (19). As a matter of fact, the validity of the formulas for A and especially B in fn is the
weakest part of the conjecture, and may be wrong.

The examples of tables 3-5 have been computed from the Legendre modified moments of § 3.2.
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n an n(1/2 − an) B A C
1 0.5000000000 0
2 0.4409585518 0.1180828963
3 0.5194628810
4 0.4663464287 0.1346142850 0.02292049 -0.15114792 -0.12482
5 0.5176930736
8 0.4812117607 0.1503059146 0.06526631 -0.18169237 -0.088775

16 0.4896880521 0.1649911660 0.12215957 -0.20905091 -0.039663
32 0.4944429849 0.1778244819 0.17792267 -0.22916211 0.000490
64 0.4970563023 0.1883966532 0.21986008 -0.24126182 0.025789

128 0.4984622524 0.1968316976 0.24558204 -0.24744598 0.038691
256 0.4992050878 0.2034975345 0.25876286 -0.25016202 0.043609
512 0.4995922083 0.2087893758 0.26411801 -0.25112734 0.044200

1024 0.4997919518 0.2130413275 0.26527060 -0.25131178 0.042822
2048 0.4998942823 0.2165098115 0.26447849 -0.25119724 0.040791
4096 0.4999464395 0.2193838028 0.26297659 -0.25100005 0.038747
8192 0.4999729247 0.2218007622 0.26136741 -0.25080641 0.036952

16384 0.4999863366 0.2238608480 0.25990460 -0.25064392 0.035477
32768 0.4999931141 0.2256377520 0.25864776 -0.25051440 0.034304

Table 4. Analysis of the recurrence coefficients for the weight −|t| log |t| on (−1, 1).

Table 4 shows a check of conjecture 5.2 for the even weight function −|t| log |t| on (−1, 1).
So, θc = π/2 and, as bn ≡ 0, ϕc = 0 or π. Having chosen A < 0, as in (19), ϕ = 0. Then,
A and B are estimated from linear interpolation of n(1/2 − an) in the variable 1/ log n. The
limit value −1/4 for A is quite credible, that B = 1/4 is suggested, and C is estimated from
(log n)2[n(an − 1/2) + 1/4 − 1/(4 log n)], thus assuming A = −1/4 and B = 1/4.

The same experiment with − log |t|, so α = 0, yields indeed A = 0 and, with ϕ = 0, very likely,
B = 1/4 in table 5, using an estimate of C as the slope of n(log n)(an − 1/2) as a function of
1/ log n. Assuming B = 1/4, a new estimate of C is found from [n(log n)(an − 1/2) − 1/4] log n.

No tentative formula for C can be launched from the small number of available cases explored
here.

The conjecture 5.2 is motivated by interesting solid-state problems in §8, where weight functions
with logarithmic singularities are encountered, and numerical results are seen in Tables 8 and 9.

5.3. About the Szegő asymptotic formula.

Warning: up to the end of the present section 5, I develop some ideas on the origin of the
formulas (17), trying to show in several ways how they are related to the Szegő’s theory.

No new proof follows, alas, but perhaps valuable work will be inspired by what follows.
The Szegő’s theory is centered on the asymptotic behavior of the orthogonal polynomials of

large degree. This description has been achieved by G. Szegő long ago, and is available of course
in his book [101, chap. 12], also in the surveys by Lubinsky [69, 70] and Nevai [84], and in Van
Assche’s book [103, §1.3.1] the formula for the orthonormal polynomial is

pn(x) ≈ p(0)
n (x) = (2π)−1/2[zn exp(λ(z−1)) + z−n exp(λ(z))], (21a)

where x = b∞ + 2a∞ cos θ, z = eiθ, and

λ(z) = λ0/2 + λ1z + λ2z
2 + · · ·
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n an n(log n)(an − 1/2) C B C
1 0.3333333333
2 0.4988876516 -0.0015420423
3 0.4661110117
4 0.5047097547 0.0261164255 -0.038348 0.053778 -0.310368
5 0.4830498129
8 0.5039795051 0.0662011853 -0.166724 0.146378 -0.382198

16 0.5023625151 0.1048045226 -0.321122 0.220625 -0.402567
32 0.5012250826 0.1358660071 -0.430640 0.260122 -0.395558
64 0.5005968024 0.1588500221 -0.477978 0.273779 -0.379082

128 0.5002823026 0.1753268095 -0.479713 0.274195 -0.362316
256 0.5001318186 0.1871251805 -0.458004 0.269720 -0.348652
512 0.5000612761 0.1957173003 -0.428836 0.264459 -0.338633

1024 0.5000284796 0.2021431261 -0.400894 0.259979 -0.331718
2048 0.5000132625 0.2070968803 -0.377733 0.256638 -0.327119
4096 0.5000061941 0.2110317678 -0.360050 0.254318 -0.324128
8192 0.5000029023 0.2142428737 -0.347245 0.252778 -0.322204

16384 0.5000013644 0.2169243207 -0.338296 0.251785 -0.320968
32768 0.5000006434 0.2192063024 -0.332167 0.251154 -0.320168

Table 5. Some recurrence coefficients of large index for the weight − log |t| on (−1, 1).

is the half constant term and the part with positive powers of the Laurent-Fourier expansion

− log[w(x)
√

(x− a)(b− x)] = − log[2a∞w(b∞ + 2a∞ cos θ)| sin θ|] =

∞
∑

−∞

λkz
k = λ(z) + λ(z−1)

on |z = eiθ| = 1. The condition of asymptotic validity is the minimal condition log[w(x))
√

(x− a)(b− x)] ∈
L1 (Szegő class). The function D(z) = exp(−λ(z)) is the Szegő function associated to the weight

w, it is analytic without zero in the unit disk, and satisfies |D(z)|2 → w(x)
√

(x− a)(b− x) when
|z| → 1. Remark that the λ−n = λns are real. When exp(λ(z)) is a polynomial of degree, say d,
the formula (21a) is exact for n > d/2 (Bernstein-Szegő class [70, § 2.1]). For a general weight in

the Szegő class, p
(0)
n (x) in (21a) is not a polynomial but has an expansion κ

(0)
n xn +κ

′(0)
n xn−1 + · · ·

for large x. Also, the two sides of (21a) tend to be equal in some L2 norm [70, eq. (12)] etc.

In the simplest case w(x) = 1/
√

(x− a)(b− x), pn(x) =
√

2/π cosnθ =
√

2/πTn((x−b∞)/(2a∞)), λ(z) ≡
0. For Chebyshev polynomials of the second kind, w(x) =

√

(x− a)(b− x), pn(x) =
sin(n+ 1)θ

a∞
√

2π sin θ
=

(1/
√

2π)Un((x − b∞)/(2a∞)), w(x)
√

(x− a)(b− x) = (x − a)(b − x) = 4a2
∞ sin2 θ = −a2

∞(z −
z−1)2 = a2

∞(1 − z2)(1 − z−2), eλ(z) = 1/[a∞(1 − z2)].

For the function of the second kind qn(x) =

∫ b

a

pn(t)w(t) dt

x− t
,

qn(x) ≈ q(0)n (x) = (2π)1/2 4

b− a

exp(−λ(z−1))

zn(z − z−1)
, (21b)

see Barrett[7], also Van Assche[103, §5.4 ].

We also have z = cos θ + i sin θ = (b − a)−1[2x − a − b + 2
√

(x− a)(x− b)], with the square
root such that |z| > 1 if x /∈ [a, b], in which case only the term containing zn has to be considered
in (21a). Remark that x = b∞ + a∞(z + 1/z) ⇒ z = (x − b∞)/a∞ + O(1/x) when x is large,

allowing to estimate the coefficients of xn and xn−1: with p
(0)
n (x) and q

(0)
n (x) of (21a)-(21b), when



14

x is large, pn(x) ≈ p
(0)
n (x) = κ

(0)
n xn + κ

′(0)
n xn−1 + · · · , and

κ(0)
n =

exp(λ0/2)√
2π (a∞)n

,
κ
′(0)
n

κ
(0)
n

= −nb∞ + a∞λ1. (22)

Indeed, p
(0)
n (x) = (2π)−1/2zn exp(λ0/2 + λ1z

−1 + λ2z
−2 + · · · ) and z = x/a∞ − b∞/a∞ − a∞/x+

O(x−2), so, the coefficient of xn, κ
(0)
n = (2π)−1/2 exp(λ0/2)/a

n
∞, and z = x/a∞−b∞/a∞−a∞/x+

O(x−2) ⇒ p
(0)
n (x)/κ

(0)
n = (a∞z)

n exp(λ1z
−1+λ2z

−2+· · · ) = (a∞z)
n+a∞λ1(a∞z)

n−1+a2
∞(λ2

1/2+
λ2)(a∞z)

n−2 + · · · = xn − (nb∞ − a∞λ1)x
n−1 + · · · .

For pn(x) = κnx
n + κ′nx

n−1 + · · · itself, from the recurrence relation (2) Pn(x) = pn(x)/κn =
(x− bn−1)Pn−1(x) − a2

n−1Pn−2(x), and ‖Pn‖2 = µ0a
2
1 · · · a2

n:

κn =
1√

µ0 a1 · · · an
,

κ′n
κn

= −b0 − · · · − bn−1. (23)

Each term of (23) behaves like the corresponding term of (22) when n→ ∞.
In terms of z such that x = a∞z + b∞ + a∞/z:

pn(x)/κn = an
∞z

n + an−1
∞ (nb∞ − b0 − · · · − bn−1)z

n−1 + · · · (24)

We have gathered useful asymptotic material, and try to see how it allows to explain the
formulas (17).

First, a quick check of (21a):

∫ b

a
pn(x)pm(x)w(x)dx ≈

∫ b

a
p(0)

n (x)p(0)
m (x)w(x)dx

=
1

2π

∫ b

a
[zn exp(λ(z−1))+z−n exp(λ(z))][zm exp(λ(z−1))+z−m exp(λ(z))]

exp(−λ(z) − λ(z−1))dx

a∞|z − z−1| .

With x = b∞ + a∞(z + z−1), dx = a∞(z − z−1)
dz

z
, we have the integral on the unit circle

1

4πi

∮

[zn+m exp(λ(z−1) − λ(z)) + zn−m + zm−n + z−n−m exp(λ(z) − λ(z−1))]
dz

z
. The central

terms leave no residue if m 6= n. When m = n, the result is unity, together with perturbations
involving high index Fourier coefficients of exp(λ(z) − λ(z−1)).

The same technique is now used in order to get these high index coefficients, and how they
enter the following estimate of recurrence coefficients finer asymptotics:

an − a∞ ≈ a∞
2

(ψ−2n+2 − ψ−2n), bn − b∞ ≈ a∞(ψ−2n+1 − ψ−2n−1), (25)

where the ψs are the Fourier coefficients of

ψ(eiθ) = exp(λ(e−iθ) − λ(eiθ)) =
∞
∑

−∞

ψke
ikθ. (26)

The formula (25) has been established by a long and painful proof through Toeplitz determi-
nants in [71, p. 153, 158, 167] for weak singularities (the weight function w being continuous
and bounded from below by a positive number at the singular point). It is wondered here if we
can reach (25) more easily, and if these formulas still hold for stronger singularities, but to which
strength?

Remark that
∑

2(an − a∞)z−2n + (bn − b∞)z−2n−1 ∼ a∞
∑

[ψ−k+2z
−k − ψ−kz

−k] = sum of
negative exponents of z in (z−2 − 1)ψ(z).

Remark also that exp(λ(z−1)−λ(z)) = D(z)/D(z−1) in Szegő’s notation, is an inner function3,
i.e., of modulus unity when |z| = 1, so

∑

ψnψn+k = δk,0.

3D itself is an outer function [44, § 8], [70, p.211].
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An even stronger estimate follows from a refinement of the asymptotic matching of (22) and
(23):

√

µ0e
λ0

2π

a1 · · · an

an
∞

− 1 ∼ −ψ−2n

2
, b0 + · · · + bn−1 − nb∞ + a∞λ1 ∼ −a∞ψ−2n+1. (27)

Can we find a quick and dirty argument for (25) and (27)?

5.3.1. From orthogonal polynomials coefficients. Consider the square of the norm of the monic

orthogonal polynomial µ0a
2
1 · · · a2

n = ‖Pn‖2 ≈ ‖P (0)
n ‖2 =

∫ b
a (p

(0)
n (t))2w(t)dt/(κ

(0)
n )2 with p

(0)
n be-

ing the right-hand side of (21a). We take a better look at the integral

∫ b

a
(p(0)

n (t))2w(t)dt =

1

4πi

∮

[z2n exp(λ(z−1) − λ(z)) + 2 + z−2n exp(λ(z) − λ(z−1))]
dz

z
= 1 + ψ−2n/2+ the half of the

coefficient of exp 2niθ in the complex conjugate ψ(eiθ) which is ψ−2n/2 again. We now need κ
(0)
n ,

already estimated in (22), but we need again a refined estimation. The coefficient of xn in p
(0)
n is es-

timated through the projection on the nth degree element of an orthonormal basis of polynomials,

so, by pn(x) times the scalar product of p
(0)
n and the unknown pn, which we replace by. . . p

(0)
n (this

part of the argument is very weak), and we get refined κ
(0)
n = the κ

(0)
n of (22) times the square of the

norm of p
(0)
n , which is 1+ψ−2n as seen above, and µ0a

2
1 · · · a2

n ≈ 2π exp(−λ0)(a∞)2n

1 + ψ−2n
follows, lead-

ing to the first part of (27). For the second part, see that −b0−· · ·−bn−1 is the coefficient of xn−1 of

pn(x)/κn ≈ p
(0)
n (x)/κ

(0)
n estimated by its projections on pn and pn−1 again replaced (same caution)

by p
(0)
n and p

(0)
n−1. Result is −b0 − · · · − bn−1 ≈ κ

′(0)
n /κ

(0)
n + (κ

(0)
n−1/κ

(0)
n ) times the scalar product of

p
(0)
n and p

(0)
n−1 =

1

4πi

∮

[z2n−1 exp(λ(z−1)−λ(z))+z+1/z+z−2n+1 exp(λ(z)−λ(z−1))]
dz

z
= ψ−2n+1

as seen before in similar situations, and the second part of (27) follows.
This way to get (27) is far from being a valuable proof! The argument repeatedly confuses pn

and p
(0)
n , ignoring that p

(0)
n is normally NOT a polynomial, so that various ways of estimating

coefficients yield various results, of which the most convenient ones are kept. I even turned
to some numerical tests to be sure of the numerical credibility of (25), actually of the first
part of (27): with w(x) = (1 − x2)−1/2 exp(|x|) on (−1, 1), λ(eiθ) + λ(e−iθ) = −| cos θ|, λ2n =

2(−1)n/((4n2 − 1)π), λ(z) = (2/π)(−1/2 − z2/3 + z4/15 − · · · ) = −(1 + z2)
1

2πiz
log

1 + iz

1 − iz
=

iπ−1 cos θ log[i cot(π/4+θ/2)] on |z = eiθ| = 1, actually cos θ[−1/2+iπ−1 log cot(π/4+θ/2)] when
−π/2 6 θ 6 π/2, cos θ[1/2 + iπ−1 log cot(−π/4 + θ/2)] when π/2 6 θ 6 3π/2 : λ(e−iθ) − λ(eiθ) =
2iπ−1 cos θ log cot(±π/4 + θ/2). We check that λ(e−iθ) + λ(eiθ) = −| cos θ| indeed.

From (27), the product Mn = M0a1 · · · an/a
n
∞ → 1 when M0 =

√

µ0 exp(λ0)/(2π). Here,

µ0 =
∫ 1
−1 w(t)dt = 6.2088, λ0 = −0.63662,M0 = 0.72306, some an, λn, ψn are shown, and 2Mn − 2

shows how Mn is close to 1 − ψ−2n/2 according to (27).

n 0 1 2 3 4 5 10
an 0.77414 0.43434 0.52081 0.49034 0.50548 0.49893
λ2n -0.63662 -0.21221 0.042441 -0.01819 0.01011 -0.00643 0.00160
ψ2n 0.95317 0.21745 -0.022831 0.01252 -0.00738 0.00489 -0.00134
ψ
−2n 0.95317 -0.19755 0.058329 -0.02507 0.01353 -0.00838 0.00191

2Mn − 2 0.23899 -0.055036 0.02590 -0.01325 0.00851 -0.00189

Table 6. Results for e|t|/
√

1 − t2.
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We see that the relevant information is indeed contained in the ψ−2n coefficients of (26).

5.3.2. From scattering theory. An alternate source of knowledge is therefore most welcome: Van
Assche gave in [104] a survey on how Case, Geronimo, and Nevai (and himself too, see [86])
investigated the relation between recurrence coefficients and weight function modification, by

introducing a function φ(x) = lim
n→∞

(z − z−1)Pn(x)

an
∞z

n+1
outside [a, b] for x, i.e., when |z| > 1, and

where Pn(x) is the monic polynomial pn(x)/κn ∼
√

2π an
∞e

−λ0/2pn(x), so that φ(x) = (1 −
z−2) exp(λ(z−1) − λ0/2) = 1 + λ1/z + (λ2

1/2 + λ2 − 1)/z2 + · · · , and it is shown in [104] that

φ(x) = 1 −
∞
∑

0

[

bn − b∞
a∞zn+1

+
a2

n+1 − a2
∞

a2
∞z

n+2

]

Pn(x)

an
∞

(28)

valid for x up to the sides of the cut [a, b] in the trace-class case (
∑∞

1 |an −a∞|+ |bn − b∞| <∞).
Check Chebyshev polynomials of the first kind: λ(z−1) ≡ 0, φ(x) = lim(z − z−1)[2Tn(x) =
zn + z−n]/zn+1 = 1 − z−2, OK, as only a2

1 = 2a2
∞ is different from a2

∞; Chebyshev polynomials
of second kind: λ(z) + λ(z−1) = − log(1 − (z + z−1)2/4), λ(z) = log 2 − log(1 − z2), φ(x) =
lim(z − z−1)[Un(x) = (zn+1 − z−n−1)/(z − z−1)]/zn+1 = 1.

Can we extract from (28) information on F (z) =
∑∞

0

[

bn − b∞
a∞z2n+1

+
a2

n+1 − a2
∞

a2
∞z

2n+2

]

?

From (21a) and (22), Pn(x)/(a∞z)
n = pn(x)/(κna

n
∞z

n) contains a part with strongly negative
powers of z which tend to be close to the corresponding part of exp(λ(z) − λ0/2)z

−2n, and the

corresponding part of
∑∞

0

[

bn − b∞
a∞z

+
a2

n+1 − a2
∞

a2
∞z

2

]

Pn(x)

an
∞z

n
, so, (1 − z−2) exp(λ(z−1) − λ0/2)

≈ 1− e−λ0/2
∑∞

0

[

bn − b∞
a∞

z−n−1 +
a2

n+1 − a2
∞

a2
∞

z−n−2

]

[zn exp(λ(z−1)) + z−n exp(λ(z))], or, after

division by eλ(z)−λ0/2, (1 − z−2)ψ(z) ≈ eλ0/2−λ(z) − ∑∞
0

[

bn − b∞
a∞

z−1 +
a2

n+1 − a2
∞

a2
∞

z−2

]

ψ(z)

− ∑∞
0

[

bn − b∞
a∞

z−2n−1 +
a2

n+1 − a2
∞

a2
∞

z−2n−2

]

. This confirms that the latter series is related to

the negative powers part of ψ(z) precisely as stated in (25) .

5.3.3. From recurrence relations as matrix products. An interesting exercise is also to recover
(21a-21b) from (25) by working a linearization of a product of 2 × 2 matrices containing the
recurrence coefficients:

[

pN−1(x) qN−1(x)
pN (x) qN (x)

]

=

N−1
∏

n=0

[

0 1
−aN−1−n/aN−n (x− bN−1−n)/aN−n

]

×
[

0
√
µ0/a0

1/
√
µ0 S(x)/

√
µ0

]

,

see ([79]), and we write each matrix factor above as A+EN−n, with A =

[

0 1
−1 (x− b∞)/a∞

]

.

Then, (A+ EN−1) · · · (A+ E0)

≈ AN +
N−1
∑

n=0

AN−1−nEnA
n, seeing that A =

[

1 1
z z−1

] [

z 0
0 z−1

] [

1 1
z z−1

]−1

= U diag(z, z−1)U−1,

where z+z−1 = (x−b∞)/a∞, so AN−1−nEnA
n = U diag(zN−1−n, z−N+1+n)U−1EnU diag(zn, z−n)U−1

and we find U−1EnU ≈ (z−1 − z)−1

[

en(z) en(z−1)
−en(z) −en(z−1)

]

, where
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en(z) = [(an+1 − a∞)z2 + (bn − b∞)z+ an − a∞]/a∞, so that off-diagonal elements of the sum are

z±(N−1)
∑

z∓2nen(z∓1) containing again the sum
∑

2(an − a∞)z∓2n + (bn − b∞)z∓(2n+1).
It seems here that much energy has been spent on incomplete proofs, and that somebody should

achieve a decent one!

5.3.4. Relation with Fourier coefficients asymptotics. So, (25)-(27) relates recurrence coefficients
asymptotics to Fourier coefficients of large index, a well worked subject.
The main influence of a singularity at θ = θc on the Fourier coefficient

∫ π
−π f(θ) exp(inθ)dθ of

a function f is exp(inθc)f̂(n/(2π)), see Lighthill [67, p. 8, p.43, p.72], where f̂ is the Fourier
transform4 of f . An algebraic singularity of the form |θ−θc|α is shown to correspond to an n−α−1

behavior. This case is also given with much detail by A. Erdélyi [30, §2.8], and Zygmund [114,
chap. 5, §2.24]. The nature of a weak singularity w(c) + const. |x − c|α with 0 < w(c) < ∞,
is left unchanged by taking logarithms or exponentials, also in conjugate functions [114, chap.5,
§2.6 and 2.24], so, the 1/nα+1 is kept unchanged up to the ψns and (18) is confirmed.

Stretching the argument for weak singularity to a strong singularity such as w(t) ∼ constant
|t− c|α near c, the logarithm of w behaves like α log | cos θ − cos θc|
= constant +α Re log(1−eiθ/zc)(1−e−iθ/zc) whence λn ∼ −α Re z−n

c /n = −α cos(nθc)/n, λ(z) ∼
(α/2) log((1−zeiθc)(1−ze−iθc)) = (α/2) log(2eiθ(cos θ−cos θc)) on the circle. Keeping logarithms
of positive numbers to be real, λ(eiθ) ∼ (α/2)[log 2 + iθ + log(cos θ − cos θc)] when −θc < θ < θc,
(α/2)[log 2 + iθ − iπ + log(cos θc − cos θ)] otherwise. Then, λ(e−iθ) − λ(eiθ) ∼ −iαθ on the

first arc, iα(π − θ) on the second arc, and its exponential has ψn = (2π)−1[
∫ θc

−θc
exp(−i(n +

α)θ)dθ + exp(iαπ)
∫ 2π−θc

θc
exp(−i(n + α)θ)dθ] =

2

π

sin(απ/2) cos(nθc + α(θc − π/2))

α+ n
showing an

1/n asymptotic behavior, but the amplitude is not right, it should have been −a∞|α|/2 from (19).

So, (25)-(27) hold for weak singularities 0 < w(c) < ∞ as they should, but fail for at least one

important class of strong singularities w(c) = 0 or ∞.

Remind that the correct result has been established through the new Riemann-Hilbert method
[33, 34].

And what about a logarithmic singularity of the conjectures of § 5.2-6.2, as encountered with
2−dimensional crystals?

Let w(x) −A log |x− c| be continuous in a neighborhood of c ∈ (a, b).

Now, in the case of conjecture 5.2, logw(t) has a log log singularity! There is probably not
much literature on Fourier coefficients of a log(log |t− c|) singularity, but Zygmund [114, chap. 5,
§2.31] and Wong & Lin [111] show how to arrive at a n−m−1(log n)β−1 from a |t− c|m(log |t− c|)β
singularity, when m is an integer. Take m = 0 and β → 0, as log(log |t − c|) is the limit when
β → 0 of β−1[(log |t− c|)β − 1], we may expect the 1/(n log n) of the conjecture. Two meaningful
examples will be considered in § 8.

5.3.5. Relation between jumps and logarithmic singularities. The Fourier series conjugate to the
real part of

∑

cke
ikθ is the imaginary part of the same expansion [114, § 1]. Jumps and logarithmic

singularities are conjugate phenomena. A simple demonstration is given by the real part of
log(1 − z/eiθc) = −∑∞

1 eik(θ−θc)/k when z = eiθ. When |z| < 1 and z close to eiθ, 1 − z/eiθc

is almost pure imaginary, and the complex logarithm is about iπ/2 + log |θ − θc| when θ < θc,
and −iπ/2 + log |θ − θc| otherwise, so, a logarithm in the real part corresponds to a jump in
the imaginary part, and these two kind of singularities create similar asymptotic behaviors in

4The Fourier transform in Lighthill’s book is written with kernel exp(−2πixy).
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the Fourier coefficients, maybe the work done for a jump [34] can be the basis for a proof of the
conjecture 5.2.

Unfortunately, the loose considerations of the preceding subsection suggest to look at the
logarithm of the weight function. If the logarithm of a jump (between two positive values) is still
a jump, log(log) is something new.

6. Weights with logarithmic singularities. Endpoint singularity.

6.1. Numerical tests. B. Danloy [21] considered the generation of orthogonal polynomials of
degrees up to N related to dµ(x) = − log x on (0, 1) through the exact and stable computation

of integrals J(F ) = −
∫ 1
0 F (x) log x dx of some polynomials F of degree 6 2N − 1 by J(F ) =

∫ 1
0 x

−1G(x)dx, whereG is the integral of F vanishing at 0. IfG is numerically available everywhere

on [0, 1], an N−point Legendre integration formula will do. As G(x) =
∫ x
0 F (t)dt = x

∫ 1
0 F (xu)du,

another Legendre formula, x being now a known value, may be used for G(x) itself.
This technique is probably close to using Legendre modified moments, with Rn(x) = the Le-

gendre polynomial of argument 2x − 1, as in § 3.2. Powers of logarithms are considered by Sidi
[99]. It is then possible to compute safely thousands of recurrence coefficients, as done in table 7.

As the weight function − log x vanishes at the upper endpoint, we certainly have α = 1 in
a comparison with the Jacobi weight (1 − x)αxβ. With β = 0, one should have limit values

(α2+β2−1/2)/4 = 1/8 and (α2−β2)/2 = 1/2, so an = 1/4− 1/32

n2
+o(n−2), bn =

1

2
− 1

8n2
+o(n−2),

from (9) when a = 0, b = 1, and α = 1, β = 0.
The next terms in the asymptotic description of an and bn are suspected to behave like

1/(n2 log n):

6.2. Conjecture. If the weight function has no interior singularity, and if w(x)/[−(x−a)β log(x−
a)] and w(x)/(b − x)α have positive bounded limits at x = a and x = b, then there are constants

A,A′, B, etc. such that

an =
b− a

4
+
A

n2
+

B

n2 log n
+

C

(n log n)2
+ o((n log n)−2),

bn =
a+ b

2
+
A′

n2
− 2B

n2 log n
− 2C

(n log n)2
+ o((n log n)−2),

(29)

with A = −(b− a)
α2 + β2 − 1/2

16
, A′ = −(b− a)(α2 − β2)

8
, as in (9).

Why emphasize these three terms of what is likely an expansion in powers of 1/ log n? because
the simplest test w(x) = − log x on (0, 1) leads to a B = 0 case! With α = 1 and β = 0,
A = −1/32, A′ = −1/8 again from (9).

We therefore try to guess the behavior of the corrections εn and ηn in an =
1

4
− 1

32n2
+ εn and

bn =
1

2
− 1

8n2
+ηn. As logarithmic terms vary so slowly, we only look at powers n = 2k, k = 2, 3, . . .

A little amount of luck is always welcome: we first look at
1

n2(an − 1/4)
to be sure of the 1/32.

That being settled, let ρn =
1

1

n2(an − 1/4)
+ 32

∼ − 1

1024n2εn
. Values of ρn make the third

column of table 7, and it is pleasing to see for n = 512, 1024, . . . , the unmistakable quadratic
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n an ρn −C bn σn 2C
0 0.250000000000000000
1 0.22047927592204921588 0.464285714285714286
2 0.24224947318051246417 0.485482446456171340
3 0.24643170234147606161 0.492103081871360859
4 0.24795568192105814439 0.700546 0.006028 0.495028498758353905 -0.21874 -0.13728
8 0.24947732897332924671 0.474951 0.015806 0.498497801978252749 -0.41642 -0.16225

16 0.24986904694972974076 0.460701 0.025461 0.499581244730037590 -0.75288 -0.15954
32 0.24996748208328437450 0.508006 0.033249 0.499888698235926998 -1.29198 -0.14526
64 0.24999194570788315582 0.592370 0.038811 0.499971199714645076 -2.09634 -0.12892

128 0.24999800446165694617 0.707118 0.042466 0.499992656969610461 -3.20529 -0.11476
256 0.24999950495806105131 0.849780 0.044723 0.499998142922055425 -4.61770 -0.10405
512 0.24999987701903611419 1.018952 0.046047 0.499999532447336313 -6.29481 -0.09660

1024 0.24999996940989087467 1.213451 0.046786 0.499999882584593121 -8.18165 -0.09176
2048 0.24999999238321795744 1.432144 0.047177 0.499999970557423757 -10.2303 -0.08879
4096 0.24999999810192130108 1.673977 0.047368 0.499999992623709105 -12.4114 -0.08710
8192 0.24999999952670709122 1.938042 0.047451 0.499999998153046342 -14.7130 -0.08623

16384 0.24999999988192528940 2.223611 0.047476 0.499999999537711061 -17.1353 -0.08587
32768 0.24999999997053220987 2.530139 0.047473 0.499999999884319298 -19.6838 -0.08581
65536 0.24999999999264358437 2.857242 0.047457 0.499999999971057923 -22.3658 -0.08593

Table 7. Data for − log x on (0, 1): an, ρn (see text),
(log 2n)2/(1024ρn); bn, σn, (log n)2/(64σn).

behavior ρn = 1.02, 1.21, 1.43, 1.67, . . . , almost one hundreth of the squares of the binary logarithm

of n (of 2n, actually), and −C is estimated from
(log 2n)2

1024ρn
.

For bn, σn =
1

1

n2(bn − 1/2)
+ 8

∼ − 1

64n2ηn
, and −2C must be the limit of

(log n)2

64σn
(last

column).
We find here C suspiciously close to the theoretical value −3/64 = −0.046875 (see below),

but the values seen in the fourth column of table 7 suggest an enormous wave with a crest at
16384 before more oscillations. A similar wave must hold in the last column, we are here not so
close to the theoretical value 2C = −3/32 = −0.9375 . One would like to investigate further the
dependence of A,B and C on α, β, more powers of logarithms. . .

Stop press: Percy Deift and Oliver Conway [24] sent this to me on March 31, 2017: ”For
the log weight − log(x) on [0, 1] we prove that as n → ∞, the recurrence coefficients an, bn
have the following asymptotic behavior: an = 1/4 − 1/(32n2) + C/(n log n)2 + O(1/(n2(log n)3),
bn = 1/2 − 1/(8n2) − 2C/(n log n)2 + O(1/(n2(log n)3), where C = −3/64 ≈ −0.047, which is
close to your conjectured value.

To prove this result we use Riemann-Hilbert/steepest-descent methods, but not in the standard
way.” End of quote.

Note that this also means that B = 0 has been proved as well for this weight.
We have at least an interesting relation to the interior singularity conjecture of §5.2 (for which

no proof has yet been announced): let x = a+ (b− a)t2, then Pn(x) = (b− a)nP̃2n(t), where P̃2n

is the even monic orthogonal polynomial of degree 2n with respect to the even weight function
|t|w(a+ (b− a)t2) on [−1, 1], as well known ([17, chap. 1,§8], etc.), as is the recurrence relation:
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P̃2n+2(t) = t

[

P̃2n+1(t) = tP̃2n(t) − ã2
2n

P̃2n(t) + ã2
2n−1P̃2n−2(t)

t

]

− ã2
2n+1P̃2n(t),

so, an = (b − a)ã2nã2n−1, bn = a + (b − a)(ã2
2n + ã2

2n+1). In our example − log |t| on (0, 1), the

ãs make the last row of table 3, ã2
1 = 1/4, ã2

2 = 7/36, ã2
3 = 17/63 . . . and check that sums and

products reconstruct the recurrence coefficients of − log t of table 2. As ãn = 1/2+(−1)ns[Ã/n+

B̃/(n log n)+ · · · ] is expected from the conjecture of § 5.2 (here, c = 0 and θc = π/2, s = cosϕc =
−1 in (17)), then O(n−2) perturbations follow. We must therefore go up to O(n−2) terms in the
ãns, including the Jacobi polynomials endpoint effect (9)

ãn =
1

2
+ s(−1)n

[

Ã

n
+

B̃

n log n
+ · · ·

]

− 2
2α2 − 1/2

16n2
+ · · · , as |t|w(t2) behaves like |t∓ 1|α near

t = ±1, and where the next term in the brackets is most likely a a 1/(n log2 n) term.
Then, in an = ã2nã2n−1 = [(ã2n + ã2n−1)

2 − (ã2n − ã2n−1)
2]/4, and

bn = ã2
2n + ã2

2n+1 = [(ã2n + ã2n+1)
2 +(ã2n− ã2n+1)

2]/2, (ã2n− ã2n±1)
2 is easily found to be O(n−2)

with the same expansion as in 4

[

Ã

2n
+

B̃

2n log 2n
+ · · ·

]2

=
Ã2

n2
+

2ÃB̃

n2 log 2n
+ · · · For ã2n + ã2n±1,

one must take differences into account:
Ã

2n
− Ã

2n± 1
∼ ±Ã

4n2
etc.

ã2n + ã2n±1 = 1 − 2α2 − 1/2

16n2
± sÃ

4n2
± sB̃

4n2 log 2n
+ · · · ,

(ã2n + ã2n±1)
2 = 1 +

1/2 − 2α2 ± 4sÃ

8n2
± sB̃

2n2 log 2n
+ · · · ,

2an and bn ∼ 1

2
+

1/2 − 2α2 ∓ 4sÃ

16n2
∓ sB̃

4n2 log 2n
∓

[

Ã2

2n2
+

ÃB̃

n2 log 2n
+

2ÃC̃ + B̃2

2n2 log2 2n
+ · · ·

]

.

If w(t) ≈ (x−a)β log(x−a) near a, w̃(t) = |t|w(a+(b−a)t2) ≈ |t|1+2β log |t| near t = 0. Then,

with the power 1 + 2β in conjecture 5.2, Ã = |1 + 2β|/4, and

2an and bn ∼ 1

2
+

1/2 − 2α2 ∓ 2[(2Ã + s/2 = |β|)2 − 1/4]

16n2
∓ B̃(4Ã + s)

4n2 log n
+ · · · . Finally:

an ∼ 1

4
+

1/2 − α2 − β2

16n2
− B̃(|1 + 2β| + s)

8n2 log n
, bn ∼ 1

2
+
β2 − α2

8n2
+
B̃(|1 + 2β| + s)

4n2 log n
.

As β = 0 and s = −1 hold for the weight − log t on (0, 1), the 1/(n2 log n) term is indeed vanishing.
The 1/(n2 log2 n) term has not been worked further here. . .

6.3. Trying multiple orthogonal polynomials. Warning: this subsection deals with a trend
which proved not to be fruitful in the present case, but could be inspiring in other situations.
Fact is that I do not know any other explicit family of orthogonal (of some sort) polynomials with
respect to a logarithmic weight function.

Quite another trend is given by known formulas for some multiple orthogonal polynomials,
summarized here [44, § 12], [55, chap. 23], [76]: the polynomial Rn = R{n1,...,np} of degree n =
n1 + · · ·np is a multiple orthogonal polynomial with respect to the measures dµ1, . . . , dµp if Rn

is orthogonal to polynomials of degree < n1 with respect to dµ1, of degree < n2 w.r.t. dµ2, . . . ,
of degree < np w.r.t. to dµp. This goes back to Hermite and Padé, and even to Jacobi (Jacobi-
Perron algorithm), see [14]. An interesting recurrence relation (13) with s = p occurs when5

nj = 1 + ⌊(n− j)/p⌋, j = 1, . . . , p.

5The floor ⌊x⌋ = the largest integer 6 x.
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Let p = 2, dµ1(x) = xα1dx and dµ2(x) = xα2dx on (0, 1). The corresponding polynomials
Rn are explicitly known [3, 58]. As they are orthogonal to polynomials of degree < min(n1, n2)
with respect to any linear combination with constant coefficients of dµ1 and dµ2, let us take α1

and α2 → 0, then the orthogonality holds with respect to the constant weight and the limit of
xα2 − xα1

α2 − α1
which is log x [55, § 23.3.2.1], there we are: Rn does half of the job, as it is orthogonal

with respect to the logarithmic weight to polynomials of degree < n/2 if n is even, of degree

< (n−1)/2 if n is odd. We have Rn(x) =
1

n1!n2!

dn2

dxn2

[

xn2
dn1

dxn1
xn1(x− 1)n

]

[3, §3.3], symmetric

in n1 and n2, Rn(0) = (−1)n, Rn(1) =
n!

n1!n2!
, R0 = 1, R1(x) = 2x − 1, R2(x) = 9x2 − 8x +

1, R3(x) = 40x3 − 54x2 + 18x− 1, R4(x) = 225x4 − 400x3 + 216x2 − 36x+ 1, and the recurrence
relation

xRn(x) =
4(n+ 1)2(n+ 2)

(3n+ 2)2(3n+ 4)
Rn+1(x) +

4(n2 + 19n/9 + 1)

(3n+ 2)(3n + 4)
Rn(x)

+
4n(27n2 − 16)

9(3n − 2)(3n + 2)2
Rn−1(x) +

4n(n− 1)

3(3n − 2)(3n + 2)
Rn−2(x) if n is even,

=
4(n + 1)

9(3n + 1)
Rn+1(x) +

4(9n2 − n− 1)

9(3n − 1)(3n + 1)
Rn(x) +

4n2

3(n + 1)(3n + 1)
Rn−1(x)

+
4n(n− 1)2

3(3n − 1)(3n + 1)(n + 1)
Rn−2(x) if n is odd. (30)

The vectors of scalar products v
(n) = [(R0, Pn), (R1, Pn), . . . ] have only a finite number of

nonzero elements from (Rn, Pn) to (R2n+1, Pn).

v^{(0)} = [ 1 -1/2 0 0 0 0 0 ... ]

v^{(1)} = [ 0 7/72 -11/144 -1/40 0 0 0 0 ... ]

v^{(2)} = [ 0 0 647/25200 -3/175 -89/4900 -1/504 0 0 ... ]

Unfortunately, numerical stability for large n is poor, the amplification of the effects of rounding
errors is about 2n/2 after n steps. This may be related to the behavior of |Rn(x)| on [0, 1],
increasing from 1 to about 2n instead of keeping an approximately equal ripple, as orthogonal
polynomials do.

Classical multiple orthogonal polynomials through the Sonine-Hahn criterium (the derivatives
of the polynomials being multiple orthogonal polynomials themselves) have been studied by Douak
& Maroni [25]. See also Van Assche & Coussement [106] for another approach.

7. About matrices in solid-state physics.

7.1. Matrix approximation of the Hamiltonian operator. A solid-state system is a sta-
ble arrangement of atoms (whose positions are the sites) which may create, or at least amplify,
interesting physical phenomena, such as electrical conductivity and even superconductivity, mag-
netization. . . The description of the behavior of such a system is achieved by a complex-valued
function (called a wavefunction, which will simply be denoted as a state hereafter) of the time
variable and d space variables, with d = 1, 2, or 3 according to our present knowledge of the
world. The measure of some physical properties (observables), such as the magnetization, is the
value of an appropriate linear functional or operator acting on the current state. At any given
time, the states are to be found in a subset of L2(Rd). This formidable set of functions6 is often
approximated by the set of linear combinations of a finite set of simple ”atomic functions” with
a small support around each site, quite similar to finite elements constructions.

6And this is only for a single-electron operator, otherwise we should have to consider a power of L2(Rd).
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A state is therefore a vector u of, say, N elements representing the relative weight of the sites
in the decomposition of the wavefunction. Actually, the state depends on the time t and satisfies
the Schrödinger equation

du(t)

dt
= − i

~
Hu(t), (31)

where H is a real symmetric matrix of order N approximating the relevant one-particle Hamil-
tonian operator of the system. The (m,n) element of H describes the coupling of energy between
sites m and n (self-coupling if m = n). This coupling decreases fast if m and n are far apart, and
one often considers only nearby values (closest neighbor approximation, or tight-binding approx-
imation see Economou’s book [28, §5.2]) also the first pages of Giannozzi & al. [43] and Haydock
[49, 50]).
Consider for instance a one-dimensional chain of sites {. . . , xn−1, xn, xn+1, . . . } at distance xn+1−
xn = ℓ from each neighbor. If all the interactions between nearest neighbors are identical, we
have

H =















. . .
. . .

. . .

α β α
α β α

α β α
. . .

. . .
. . .















(32)

In this case like in more realistic systems, the Hamiltonian operator is therefore represented
by a huge sparse symmetric matrix where each row is associated to a site and contains a small
number of nonzero elements corresponding to neighboring sites (tight-binding approximation).

When the Hamiltonian operator is independent of time, the Schrödinger equation (31) is solved
by

u(t) = exp(−itH/~)u(0) =

∞
∑

r=0

(−itH)ru(0)

r!~r
, (33)

Starting with an initial state vector u(0).

Equation of motion method [49, §34]: we examine the diffusion of an electron initially localized
on some site, say the mth one, at x = xm, therefore described by a vector u(0) with a single
nonzero element. By applying the evolution operator (33) to this initial state, we have to look at
the mth column of a combination of powers of the matrix H .

On the one-dimensional example given by (32) when β = 0, the elements of the powers of H are
Laurent coefficients of the same powers of αz−1 +αz (symbol of a Toeplitz matrix [72, § 3 and 5]).

So, from the binomial theorem, the diagonal element of H
2r is

(

2r

r

)

α2r =
(2r)!

(r!)2
α2r and (33) is

the Bessel function

∞
∑

r=0

(−iαt)2r

(r!)2~2r
= J0(2αt/~) at the diagonal element n = m, in−mJn−m(2αt/~)

[57, Chap. IX] at the nth element of the lattice, or, with x = xm + (n −m)ℓ, and reinstating β

through multiplication by e−iβt/~,

u(t)n = e−iβt/~in−m J|xn−xm|/ℓ(2αt/~). (34)

See [96] for what seems to be similar calculations, perhaps in [97] too.
Fig. 1 shows absolute values of components of a state vector u(t)m−4, . . . ,u(t)m+4 at various

time values, starting with u(0)n = δn,m. The last time value is such that 2αt/~ = 2.404825 . . . ,
the first zero of J0 [1, p. 409] [57, IX, Table 32a]. Only the values on the lattice are relevant, the
linear interpolation in Fig. 1 has no special meaning.
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t = 0 t = ±0.5~/α t = ±1.2024~/α

Figure 1. Diffusion of a single site occupation in a one-dimensional lattice.

7.2. Density of states. We now apply (33), using the eigenvalues and eigenstates (Ep,v
(p)) of

the simplified Hamiltonian operator H. We now have

u(t) =
∑

p

exp(−itEp/~)(v(p),u(0)) v
(p), (35)

where (v(p),u(0)) is the usual (complex) scalar product of the two vectors v
(p) and u(0)).

We consider the projection u(t)n on the nth site starting from the mth site, and rearrange

the sum
∑

p exp(−itEp/~)v
(p)
m v

(p)
n , as

∫ b
a exp(−itE/~)dNm,n(E), where Nm,n(E) is a staircase

function discontinuous at each eigenvalue. When n = m, dNn,n(E) is the sum of the positive

terms |v(p)
n |2 for the eigenvalues Ep in an interval of length dE around E. The result nn,n(E)dE,

where nn,n(E) is called the (local) density of states.
By ”local”, it is meant that the result depends on the initial state u(0)). If this state is

concentrated on a single site, or on a small number of neighbors, the resulting n(E)dE is obviously
related to this starting site. For perfect crystals, as investigated in subsection 7.4, there is only a
small number of non equivalent results. One often wants the average, or total, density of states
of the whole system, and this asks for the trace of (EI −H)−1. For perfect crystals, the average
density of states is a weighted sum of a small number of non equivalent local densities of states
[49, § 23]. In the examples that will be considered in § 8, there is only one local density of states,
therefore identical to the average one.

In the example (32), the eigenvalues are Ep = β + 2α cos(pπ/N) if the matrix has N rows &

columns; normalized eigenvectors are v
(p)
n =

√

2/N sin(npπ/N) (average value of the sine squares
is 1/2), see [46, chap. 7], [49, §12] .
In our example, starting from the mth site, at x = xm = mℓ, (35) becomes at the nth site at time
t

u(t)n = 2
∑

p

exp(−it[β + 2α cos(pπ/N)]/~) sin(mpπ/N) sin(npπ/N)/N

∼ (2/π)

∫ π

0
exp(−it(β + 2α cos θ)) sin(θxm/ℓ) sin(θxn/ℓ)dθ

(36)

when we let N → ∞ (continuous spectrum), with x = nℓ, θ = pπ/N .
If a = β− 2α < E < b = β+2α, let E = β+2α cos θE , then, between E and E+ dE, there are

(N/π)|θE+dE − θE | eigenvalues, to multiply by the average of the squares of eigenvector elements,

what remains is π−1

∣

∣

∣

∣

arccos

(

E + dE − β

2α

)

− arccos

(

E − β

2α

)∣

∣

∣

∣

≈ dE

π
√

4α2 − (E − β)2
.
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Nobody indulges in such awkward ways! Instead, one considers the Green functions [28, 43,
48, 49, 50, 87]

Gm,n(x) =

∫ b

a

nm,n(t) dt

x− t
= ((xI − H)−1)m,n,

which, if m = n, have the properties of the Stieltjes functions of the first section!
In the example above, (36) becomes at x = nℓ,

u(t)n =
1

π

∫ π

0
exp(−it(β + 2α cos θ)/~)[cos(θ(xn − xm)/ℓ) − cos(θ(xn + xm)/ℓ)]dθ

= e−itβ/~ [im−nJn−m(−2αt/~) − im+nJn+m(−2αt/~)]

[1, §9.1.21] [89, §10.9.2], where we recover (34), considering that Jn+m → 0 when n and m are
large: we only consider x = xn close to xm.

7.3. The recursion (Lanczos) method. Let u
(0) be a state represented by a vector of R

N

(only the space variables are considered now), and µn = (u(0),Hn
u

(0)), where ( , ) is the

usual scalar product of R
N . From the expansion of u

(0) in the orthonormal set of eigenstates

{v(p)} as seen above, µn =
∑

pE
n
p |(u(0),v(p))|2 =

∫ b
a t

ndµ(t), where dµ(t) is the relevant den-

sity of states times dt. As H is a very sparse matrix, the vectors H
n
u

(0) are easy to compute
and they may be rearranged in an orthonormal sequence u

(n) = pn(H)u(0)) by linear algebra

constructions. Of course, this means that δm,n = (u(m),u(n)) = (pm(H)u(0)), pn(H)u(0)) =

(u(0), pm(H)pn(H)u(0)) (from symmetry of H) =
∫ b
a pm(t)pn(t)dµ(t), so pn = κnPn is the or-

thonormal polynomial of degree n with respect to dµ. Therefore, from the recurrence relation
tpn(t) = anpn−1(t) + bnpn(t) + an+1pn+1(t),Hpn(H) = anpn−1(H) + bnpn(H) + an+1pn+1(H),

or Hu
(n) = anu

(n−1) + bnu
(n) + an+1u

(n+1):

H [u(0) | u
(1) | u

(2) | · · · ] = [u(0) | u
(1) | u

(2) | · · · ]











b0 a1

a1 b1 a2

a2 b2 a3

. . .
. . .

. . .











, (37)

so that the Hamiltonian matrix and the tridiagonal matrix of the recurrence coefficients have the
same spectrum (should we be able to build N vectors u

(n)s). From u
(n−1) (if n > 0) and u

(n),

one gets an and bn by an = (u(n−1),Hu
(n)), bn = (u(n),Hu

(n)) [65] [39, § 3.1.7.1] [45, chap. 9].
For the biography of Cornelius Lanczos (Kornél Löwy), see [88].

The recursion method has been, and still is, quite an inspiration in solid-state physics! [18, 36,
43, 49, 50, 51, 60]. The Hamiltonian operator of a given physical system is approximated by a
matrix H as above, and a set of recurrence coefficients is produced by the Lanczos method. The
features of the weight function are then ”read” from the asymptotic behavior of these recurrence
coefficients.

The reverse procedure is used here: from the known densities of states of model systems, the
recurrence coefficients are produced through modified moments, and asymptotic properties are
investigated.

7.4. Perfect crystals. A perfect crystal is the repetition of a d−dimensional cell of atoms along
d vectors a1, . . . ,ad [83].

If there is a large but finite number of atomic positions (sites), the Hamiltonian operator
is a large matrix acting on a vector v(x1, . . . , xd) as Hv at the available site (x1, . . . , xd) =
∑

m hmv(x + δm), where each δm is a vector relating x to one of its neighbors in its cell and
neighboring cells. See the next section for two examples.
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Let us try a vector exp(ik · x) = exp(i(k1x1 + · · · + kdxd)). The product by H reproduces
the same vector times the scalar function h(k) =

∑

m hm exp(ik · δm) which are therefore the
eigenvalues of H , for various real nonequivalent vectors k (Brillouin zone [43, §4]), i.e., such that
each k · δm ∈ [0, 2π) or [−π, π). In mathematician’s lingo, h(k) is the symbol of the Toeplitz
matrix H (Grenander & Szegő [47, chap. 5,6, and notes of chap. 5])! More technically, H of a
perfect crystal is a block-Toeplitz matrix with a matrix symbol.

Assuming the eigenvalues to be distributed like the k−vectors (recall the simple 1D case where
each k such that sin(kNℓ) = 0 produces an eigenvalue), the number of eigenvalues less than some
E is N times the volume N (E) in the Brillouin zone of the k−vectors such that h(k) 6 E, and

the Green function of the average (total) density of states is trace((xI − H)−1) =
∑ 1

x− Ep
=

N

∫

E=h(k)=t

dN (t)

x− t
= N

∫

k∈B

|dk|
x− h(k)

with the Brillouin zone B.

So, there is no need to estimate numerically the density of states of a perfect crystal, as the
job has been done long ago. But recurrence coefficients found in this ideal case may be useful in
later investigations of realistic models of true physical systems.

8. Two famous 2-dimensional lattices.

8.1. The square lattice. The four vectors relating a site to its neighbors are (±ℓ, 0), (0,±ℓ),
see fig. 2, so that h(k1, k2) = 2 cos(k1ℓ) + 2 cos(k2ℓ) (multiplied by the relevant physical energy
constant, and we also ignore the multiplications by 2 and ℓ).

b b

b

b

b

x

−2 −1 0 1 2

Figure 2. Square lattice: nearest neighbors and density of states.

Then (Economou [28, §5.3.2]),

S(x) = G0,0(x) = (π)−2

∫ π

0

∫ π

0

dk1 dk2

x− cos k1 − cos k2
=

2

πx
K

(

2

x

)

, (38)

where K(u) =

∫ π/2

0

dθ
√

1 − u2 sin2 θ
=

∫ 1

0

dr
√

(1 − r2)(1 − u2r2)
is the complete elliptic integral

of the first kind of modulus u (the (π)−2 factor is for convenience, so as to have S(x) ∼ 1/x for
large x, unity as total weight).

Indeed, we integrate in k2 for a given k1, seeing that the integral from 0 to π is half the

integral on the circle of
dζ/(iζ)

x− cos k1 − (ζ + 1/ζ)/2
, where ζ = exp(ik2), so π times the residue of

−2/[ζ2 − 2(x − cos k1)ζ + 1] at the pole in the unit disk, and this residue is
1

√

(x− cos k1)2 − 1
,
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and
dk1

√

(x− cos k1)2 − 1
=

√
1 − α2 dξ

√

(1 − ξ2)[x+ 1 − α+ ((x+ 1)α − 1)ξ][x − 1 − α+ ((x− 1)α− 1)ξ]

if cos k1 =
ξ + α

1 + αξ
. If α is such that

(x+ 1)α− 1

x+ 1 − α
= −(x− 1)α− 1

x− 1 − α
, we find

dk1
√

(x− cos k1)2 − 1
=

αdξ
√

(1 − ξ2)(1 − α4ξ2)
when α + α−1 = x, so the result is 2απ−1

K(α2) =

2α

π(1 + α2)
K

(

2α

1 + α2

)

, from the Gauss-Landen transformation formula (Borwein [10, §2.7],
Jahnke & Emde [57, chap. V, C, §2.2], NIST [89, §19.8]), whence the result (38).

When x is real outside [−2, 2], K has an argument in (−1, 1) in (38) and is real there.

When x ∈ [−2, 2],
2

πx
K

(

2

x

)

=
1

π

∫ x/2

0

dr
√

(1 − r2)(x2/4 − r2)
± i

π

∫ 1

x/2

dr
√

(1 − r2)(r2 − x2/4)
=

sign x

π
K(x/2) ± i

π
K(

√

1 − x2/4) so7, the weight function is [28, eq. 5.39])

w(x) = (1/π2)K(
√

1 − x2/4), −2 6 x 6 2. (39)

Near x = 0, using K(1 − ε) ∼ (1/2) log(8/ε) (from [1, 17.3.26] with m1 = 1 − (1 − ε)2), the
density of states has a (log(

√
32/|x|))/π2 behavior near the origin.

The power moments are the coefficients of the expansion of S(x) = µ0/x+ µ1/x
2 + · · · . From

the known expansion of K [89, §19.5.1] etc., µ2n+1 = 0,

µ2n =

(

1 × 3 × · · · (2n − 1)

n!

)2

=
1

π

(

2n Γ(n+ 1/2)

Γ(n+ 1)

)2

= 1, 1, 9/4, 25/4, 1225/64, . . .

As the spectrum is [−2, 2] (the extreme values of cos k1 + cos k2), the Chebyshev moments are
here the moments of Tn(x/2) = 1, x/2, (x2 − 2)/2, (x3 − 3x)/2, (x4 − 4x2 + 2)/2, . . . , so ν0 =
1, ν2 = −1/2, ν4 = 1/8, ν6 = −1/8, . . . which must of course be computed in a sensible way,
as they seem fortunately to be much smaller than the µns. We need an expansion of S(x) in

negative powers of z = x/2 +
√

x2/4 − 1, from (16). By a stroke of luck, z = 1/α used in
the proof of (38), so we return to an intermediate result S(x) = 2/(πz)K(z−2) and apply (16)

ν0 +

∞
∑

1

2νn

zn
=

2(z − z−1)

πz
K(z−2), whence ν0 = 1, ν2 = −1/2, and

ν4n = −ν4n+2 =
1

22n+1

(

1 × 3 × · · · (2n− 1)

n!

)2

, n = 1, 2, . . . (40)

It is then possible to compute tens of thousands recurrence coefficients with the algorithm of
§ 3.4. Some of them are given in Table 8. As θc = π/2, we expect an − a∞ ≈ fn cos(nπ + ϕc) =
(−1)nfn cosϕc. There is also a 1/(8n2) Legendre-Jacobi contribution from the endpoints. After
subtraction of this 1/(8n2), the (−1)n behavior is clear on the 10 first items of the table. The
amplitude fn of (17) being thought to decrease like 1/(n log n) from conjecture 5.2, we consider
ρn = n log n(an−1−1/(8n2)), the limit is reached so slowly that values of ρn are shown on powers
of 2. Assuming a A+B/ log n behavior, the slope B is estimated from two successive values, and
the limit A by ρn − B/ log n (Neville extrapolation). With {a, b, c} = {−2, 2, 0}, the conjecture
5.2 expects the limit 1/2. A second degree extrapolation makes this guess even more credible.

The graph of the weight function in Fig. 2 is established from ∓πw(x) = imaginary part of
the limit of S(x ± εi) (Sokhotskyi-Plemelj [53, §14.1]) for x in the spectrum. S(x) is computed

as
1

x− b0 −
a2

1

x− b1 −
. . .

which diverges on the spectrum. This problem is solved by replacing

7use the change of variable r2 = 1 − (1 − x2/4)s2 for the second integral.
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n an ρn extr1 slope extr2
1 1.000000000
2 1.118033989 0.1203081542
3 0.974679435 -0.1292279653
4 1.037456404 0.1643807059
5 0.983962900 -0.1692895338
6 1.020931612 0.1876981566
7 0.988501032 -0.1913801051
8 1.014170249 0.2032383673
9 0.991116578 -0.2061868767

10 1.010573403 0.2146792890
16 1.005830221 0.2369760223 0.338188987 (-0.280621925) 0.395424284
32 1.002516216 0.2655192494 0.379692157 (-0.395693147) 0.441946913
64 1.001117839 0.2894108176 0.408868658 (-0.496811193) 0.467221659

128 1.000505800 0.3093937275 0.429291186 (-0.581746101) 0.480347508
256 1.000231686 0.3261864584 0.443735575 (-0.651830709) 0.487068739
512 1.000107052 0.3404045226 0.454149035 (-0.709575197) 0.490596148

1024 1.000049789 0.3525479246 0.461838543 (-0.757544840) 0.492596572
2048 1.000023277 0.3630130761 0.467664590 (-0.797927924) 0.493881804
4096 1.000010930 0.3721112300 0.472190923 (-0.832439487) 0.494822587
8192 1.000005151 0.3800864351 0.475788896 (-0.862366588) 0.495577749

16384 1.000002435 0.3871307257 0.478706503 (-0.888656889) 0.496212143
32768 1.000001155 0.3933961897 0.481112684 (-0.912006619) 0.496752864

Table 8. Square lattice: values of an, ρn = n log n[an − 1 − 1/(8n2)], limit after
1st degree extrapolation, slope, and limit through 2nd degree extrapolation.

a2
N

x− bN − a2
N+1

. . .

by
a2
∞

x− b∞ − a2
∞

. . .

= a∞/z = [x − b∞ −
√

(x− a)(x− b)]/2 which has a well-

defined imaginary part on the two sides of the spectrum [a, b]. This is the termination method
of Haydock & Nex [51, 87], and Lorentzen, Thron, and Waadeland [20, 68, 102] going back to
Wynn [112, 113]. Máté, Nevai, and Totik [78, 85] introduced the use of Turán determinants
p2

n(x) − pn−1(x)pn+1(x) as a way to recover the weight function when n is large. Indeed, when
(21a) applies,

[

pn(x) pn+1(x)
pn−1(x) pn(x)

]

≈ 1√
2π

[

−1 1
−z−1 z

] [

zn exp(λ(z−1)) 0
0 z−n exp(λ(z))

] [

−1 −z
1 z−1

]

,

so that the determinant ≈ −(2π)−1(z − z−1)2 exp(λ(z−1) + λ(z))

= (2a2
∞π)−1

√

(x− a)(b− x)/w(x). The termination formula, and the Turán determinants for-
mula are extended to spectra of several intervals = formulas for limit p−periodic continued frac-
tions with p > 1 [20, 68, 105]. Turán determinants are also used in unbounded supports cases
[100].

Of course, the formulas (38) and (39) are considered too, the complete elliptic integral K is
computed by the AGM method [1, 10, 89].

8.2. Hexagonal lattice: graphene.
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Graphene is a two-dimensional hexagonal arrangement of carbon atoms, of extreme importance
in theoretical and applied physics [16, 27, 59, 64].

One half of the sites (the ”A” sites) of the hexagonal arrangement of fig. 3 are related to
their neighbors through the three vectors (1/2 ±

√
3/2), (−1, 0), and these neighbors make the

other half (the ”B” sites) with (−1/2 ±
√

3/2), (1, 0) Horiguchi [54, §3], Katsnelson [59, §1.2],
hA→B(k1, k2) = 2eik1/2 cos(k2

√
3/2) + e−ik1, hB→A(k1, k2) = 2e−ik1/2 cos(k2

√
3/2) + eik1.

b

b

b

bbc

bc

bc

bcA B

x

−3 −2 −1 0 1 2 3

Figure 3. Graphene: nearest neighbors and density of states.

Using a matrix symbol for a short while, we see that the Hamiltonian operator acts on a vector

exp(ik·x) where the A−sites and the B−sites are considered separately, as

[

0 hA→B(k)
hB→A(k) 0

]

,

so that the eigenvalues are E(ξ) = ±
√

hA→B(k)hB→A(k) = ±
√

4 cos2 ξ2 + 4cos ξ1 cos ξ2 + 1,

where ξ1 = 3k1/2, ξ2 = k2

√
3/2), and the relevant Green function is

S(x) = G0,0(x) =
1

2π2

∫ π

0

∫ π

0

[

1

x− E(ξ)
+

1

x+ E(ξ)

]

dξ1dξ2

=
x

π2

∫ π

0

∫ π

0

dξ1dξ2
x2 − 4 cos2 ξ2 − 4 cos ξ1 cos ξ2 − 1

=

√
ux

π
K(u), where u =

x4 − 6x2 − 3 −
√

(x2 − 1)3(x2 − 9)

8x
.

(41)

The last formula [54] is established by a first integral in ξ1 = −i log ζ so that we integrate
−idζ/[(x2 − 4 cos2 ξ2 − 1)ζ − 2(ζ2 + 1) cos ξ2] on the unit circle, and we integrate the residue on

ξ2 as
x

π

∫ π

0

dξ2
√

(x2 − 1 − 4 cos2 ξ2)2 − 16 cos2 ξ2

=
2x

π

∫ π/2

0

dξ2
√

x4 − 6x2 + 1 − 4(x2 − 1) cos(2ξ2) + 4 cos2(2ξ)

=
x

π

∫ 1

−1

d cos(2ξ2)
√

[1 − cos2(2ξ2)][x4 − 6x2 + 1 − 4(x2 − 1) cos(2ξ2) + 4 cos2(2ξ2)]
.

As before, we change the variable cos(2ξ2) =
η + α

1 + αη
, resulting in

x

π

∫ 1

−1

√
1 − α2 dη

√

[1 − η2][(x4 − 6x2 + 1)(1 + αη)2 − 4(x2 − 1)(1 + αη)(η + α) + 4(η + α)2)]
.

We keep only even powers of η if α+ α−1 = (x2 − 5)/2, and we have then

αx

π
√

1 + 2α

∫ 1

−1

dη
√

[1 − η2][1 − u2η2)]
, with u2 = α3 2 + α

1 + 2α
=

(

α(2 + α)

x

)2

=

(

α2x

1 + 2α

)2

. Note

that α = (
√
x2 − 1 −

√
x2 − 9)2/8 ∼ 2/x2 and u = (α+ 2α2)/x

= [x4 − 6x2 − 3 −
√

(x2 − 1)3(x2 − 9)]/(8x) = 8x/[x4 − 6x2 − 3 +
√

(x2 − 1)3(x2 − 9)] ∼ 4/x3

when x is large.
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The properties of the density of states in fig. 3 follow from the last line of (41) as we follow the
imaginary part of S(x− iε): u is nonreal when x ∈ (1, 3) and (−3,−1). For x between −1 and 1,

u is real but outside (−1, 1). Near x = 1, u = −1 + i(x − 1)3/2 + · · · , K(u) ∼ log(4/
√

1 − u2) ∼
(−3/4) log |x − 1|+ constant, [1, 17.3.26][57, chap. V, §C.1 and 3], S(x) ∼ −(3i)/(4π) log |x −
1|+ constant Near x = 3, the limit imaginary part of K is π/4, so

√
3/4 = 0.433013... for S.

Near x = 0, u ∼ −3/(4x), K(u) ∼ π/(2u) (from the Gauss-Landen formula seen above), and

Im(S(x)) ∼ |x|/
√

3.

Check of first power moments: µn is the constant Fourier coefficient of the power (4 cos2 ξ2 +

4cos ξ1 cos ξ2+1)n, S(x) =
1

x
+

3

x3
+

15

x5
+

93

x7
+

639

x9
+. . . =

1
x

− 3
x

− 2
x

− 3
x

− 5/3
x

− 44/15
x

−
393/220

x
−· · · The Chebyshev moments are the moments of Tn(x/3) = 1, x/3, 2x2/9−1, 4x3/27−

x, 8x4/81 − 8x2/9 + 1, . . . as the spectrum is [−3, 3] (extreme real values of ± the square root of
4 cos2 ξ2 + 4cos ξ1 cos ξ2 + 1 = (cos ξ1 + 2cos ξ2)

2 + sin2 ξ1), so ν0 = 1, ν2 = −1/3, ν4 = −5/27, . . .
More instances are ν6 = 47/243, ν8 = −167/729, ν10 = 1013/6561.

From (16), ν0/2 and νn, n > 0,= the coefficients of z−n of

3(z − z−1)

4
S

(

x =
3(z + z−1)

2

)

=
3(z − z−1)

4

[

2

3(z + z−1)
+ 3

(

2

3(z + z−1)

)3

+ · · ·
]

=
1

2
− 1

3z
+

· · ·
How to compute accurately a very large set of these coefficients? A recurrence relation is an

invaluable tool for efficient and economical computation of a sequence. Of course, one must be
lucky, or clever, enough to find such a relation. For instance, Piessens & al. [91, 92], Milovanović
& Cvetković [82] find recurrence relations for examples of Chebyshev modified moments.

An important family of recurrence relations is found for sequences of Taylor (or Laurent,
or Frobenius) coefficients of solutions of linear differential equations with rational coefficients
(Laplace method, see Milne-Thomson [81, chap. 15], Bender & Orszag [9, § 3.2, 3.3], An-
drews & al. [2, App. F]). Let F (x) =

∑∞
0 cnx

n be a solution of the differential equation
∑δ

m=0Xm(x)dmF (x)/dxm =
∑∞

0 αnx
n, where Xm(x) is the polynomial

∑d
p=0 χm,px

p, and where

the right-hand side is a known expansion. Then, substituting the unknown expansion
∑

crx
r of

F (x) into the differential equation,
∑δ

m=0Xm(x)[
∑∞

r=m r(r − 1) · · · (r −m + 1)crx
r−m] =

∑∞
0 αnx

n, and we gather the terms con-
tributing to the xn power:
∑δ

m=0

∑d
p=0 χm,p(n +m− p)(n +m− p− 1) · · · (n − p− 1)cn+m−p = αn,

n = 0, 1, . . . , which is the sought recurrence relation involving cn+δ, . . . , cn−d. Chebyshev expan-
sions themselves are considered by Fox & Parker [35, Chap. 5], Paszkowski [90], see also the
’Chebfun’ package [26].

We apply this programme to the coefficients of the expansion

3(z − z−1)S(x)/4 = 3(z − z−1)
√
uxK(u)/(4π) =

ν0

2
+

∞
∑

n=1

ν2n

z2n
(42)

where u is the algebraic function
x4 − 6x2 − 3 −

√

(x2 − 1)3(x2 − 9))

8x
, and where x = 3(z+1/z)/2.

First, u(1−u2)d2
K/du2 +(1−3u2)dK/du−uK = 0 [89, § 19.4.8] turns into the more beautiful

d2(
√
uK)

du2
− 2

u

1 − u2

d(
√
uK)

du
+

√
uK

4u2
= 0.

Next, u is the root of u+ 1/u = (x4 − 6x2 − 3)/(4x) behaving as 4/x3 for large x, we translate
in z from x = 3(z + 1/z)/2, leading to the rather formidable
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u±1 =
27z4 + 36z2 + 2 + 36z−2 + 27z−4 ∓ (z − z−1)(9z2 + 14 + 9z−2)3/2

64(z + z−1)
(43)

So, we differentiate u+ u−1 =
27z4 + 36z2 + 2 + 36z−2 + 27z−4

32(z + z−1)
as

(1 − u−2)du =
81z5 + 171z3 + 106z − 106z−1 − 171z−3 − 81z−5

32z(z + z−1)2
dz, or

du

u dz
=

(z2 − 1)(9z2 + 14 + 9/z2)2

32(z2 + 1)2(u− u−1)
= −(9z2 + 14 + 9/z2)1/2

z2 + 1
, (44)

which is already better looking than before, and we build the differential equation for
√
uK in

the slightly modified form u
d

du

[

u
d
√
uK(u)

du

]

− u+ u−1

u− u−1
u
d
√
uK(u)

du
+

√
uK(u)

4
= 0 with respect

to the variable z:

z2 + 1

(9z2 + 14 + 9/z2)1/2

d

dz

[

z2 + 1

(9z2 + 14 + 9/z2)1/2

d
√
uK

dz

]

+
27z4 + 36z2 + 2 + 36z−2 + 27z−4

(z − z−1)(9z2 + 14 + 9/z2)3/2

z2 + 1

(9z2 + 14 + 9/z2)1/2

d
√
uK

dz
+

√
uK

4
= 0.

Finally, we turn to the full function of (16) and (41), say F (z) = (z − z−1)S(x) = constant

times (z − z−1)
√
uxK(u) by substituting

√
uK(u) into constant (z − z−1)−1(z + z−1)−1/2S

z2 + 1

(9z2 + 14 + 9/z2)1/2

d

dz

[

z2 + 1

(9z2 + 14 + 9/z2)1/2

d(z − z−1)−1(z + z−1)−1/2F

dz

]

+
(z2 + 1)(27z4 + 36z2 + 2 + 36z−2 + 27z−4)

(z − z−1)(9z2 + 14 + 9/z2)2
d(z − z−1)−1(z + z−1)−1/2F

dz

+
(z − z−1)−1(z + z−1)−1/2F

4
= 0, so

(z2 + 1)2(9z2 + 14 + 9z−2)(z − z−1)2d2F/dz2

+ (z2 + 1)(9z4 − 14z2 − 72 − 42z−2 − 9z−4)(z − z−1)dF/dz

+ 8(3z4 + 18z2 + 22 + 18z−2 + 3z−4)F = 0

Now, put F (z) = ν0/2+
∑∞

1

ν2n

z2n
in the differential equation (9z8+14z6−9z4−28z2−9+14z−2+

9z−4)
∑

2n(2n+1)ν2nz
−2n−2−(9z7−14z5−81z3−28z+63z−1 +42z−3 +9z−5)

∑

2nν2nz
−2n−1 +

8(3z4 + 18z2 + 22 + 18z−2 + 3z−4)[ν0/2 +
∑

ν2nz
−2n] = 0, and consider the contributions to z−2n

9(n + 3)2ν2n+6 + 2(7n2 + 35n+ 45)ν2n+4 − 9(n2 − 2n− 7)ν2n+2 − 4(7n2 − 11)ν2n

− 9(n2 + 2n− 7)ν2n−2 + 2(7n2 − 35n + 45)ν2n−4 + 9(n− 3)2ν2n−6 = 0, n = 0, 1, . . . (45)

starting at n = −2 with ν0 = 1/2 (which is actually ν0/2) and νn = 0 for n < 0 (the ν0/2 anomaly
can be relieved if we define ν−n = νn, remark indeed that the coefficient of ν2n+k is the coefficient
of ν2n−k with n → −n). The next items are −1/3,−5/27, 47/243,−167/729, 1013/6561, . . . as
already seen before, but the recurrence relation (45) allows now to compute incredibly easily any
number of these coefficients, one could get one million of them if needed!
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Actual computation of a large number of moments by using (45) in the obvious way may lead to
numerical disaster, should the wanted solution ν2n be dominated by another solution, say, ω2n of
the same recurrence (45), i.e., if ν2n/ω2n → 0 when n→ ∞ [110, § 2.6]. Numerical approximations
of starting values ν0, etc. lead to the actual production of some combination ν2n + εω2n and this
becomes hopeless for large n, however small ε is. As the starting values are rational numbers in
our case, computations with rational numbers avoid the problem, but calculations are space and
time consuming for large n. See also the discussions of minimal solutions by Gautschi [38], and
in the preface8 of Abramowitz and Stegun’s handbook [1].

Any solution ω2n of the seven terms recurrence relation (45) can be investigated through its
generating function G(z) satisfying the same differential equation as the equation for F (z) seen
above. This equation has singular points at ±1,±i, and (−7± 4

√
2 i)/9 = exp(±iθc), all of them

on the unit circle. The Taylor expansion of G has therefore a unit convergence radius, and all
the solutions ω2n have a less than exponential growth. This can also be seen through contour
integral formulas for the Taylor coefficients (Laplace’s method, [81, chap. XV]). More details can
be found from asymptotic estimation of integrals [9, chap. 6].

n an ρn slope extrap. ϕ/π ρn−1/ρn

1 1.732050807568877 0
2 1.414213562373095 0.33595
3 1.732050807568877 -0.12782
4 1.290994448735806 -0.18423
5 1.712697677155351 0.44419
6 1.336549152243806 -0.46936
7 1.628436152438179 0.23792
8 1.419330149577324 0.16886
9 1.556750628851699 -0.57145

10 1.460678158360451 0.77835
11 1.544107839921112 -0.67587
12 1.448901939699682 0.30117
13 1.564500085917823 0.19001
14 1.431783794658055 -0.57642
15 1.567701045607340 0.68518

135 1.507049663059332 0.98260 (0) 0.98260 0.7932 -0.7722
1383 1.500654249446685 1.11873 (-2.07548) 1.40571 0.7922 -0.7751
2007 1.500299317783996 -1.13581 (-2.11734) 1.41425 0.7918 -0.7767
4087 1.500149457578103 -1.15763 (-2.09351) 1.40939 0.7902 -0.7795
8210 1.499924544322330 1.17608 (-2.08240) 1.40713 0.7920 -0.7760

16077 1.500038998496210 -1.19159 (-2.07718) 1.40606 0.7910 -0.7780
34062 1.499974587460581 -1.20647 (-2.07210) 1.40503 0.7920 -0.7757
61370 1.499985980208882 -1.21710 (-2.07231) 1.40507 0.7910 -0.7778

Table 9. Graphene: values of n, an, ρn = n log n[an − 3/2 + (3/4)(−1)n/n −
(3/16)/n2], (slope), extrap., ϕ/π, ρn−1/ρn.

The main asymptotic behavior of our own νn follows from S(x) ∼ −(3i)/(4π) log |x − 1|+
constant near x = ±1, seen above, so, near z = ±z±1

0 = ± exp(±iθ0), where cos θ0 = 1/3,

z0 = (1 + 2i
√

2)/3, from (16): (6/8)(z − 1/z)S(x) ∼ ±(3
√

2/4π) log(z ± z±1
0 ) whence νn = 0

8Masterpieces deserve to be read entirely, including the preface!
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when n is odd, νn ∼ 2
3
√

2

4π

zn
0 + z−n

0

n
=

3
√

2 cos(nθ0)

πn
when n is even. For instance, ν1000000 =

−0.2197681875531559 10−6 and (3
√

2/π) cos(106θ0) = −0.2197654658865520.
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Figure 4. Graphene: 100 first ρn = n log n[an − 3/2 + (3/4)(−1)n/n− (3/16)/n2] .

Do we really need the recursion method? The plain Chebyshev, or Fourier, coefficients are
already so efficient that they can be preferred, as discussed by Weisse & al. [108, §V.B.2, Table
II]. See also Prevost [93] on weight reconstruction with Chebyshev moments.

Anyhow, computing recurrence coefficients from modified moments yields the main behavior
an → a∞ = (b−a)/4 = 1.5 as expected from (8). The next correction is given by the |x|α behavior
near x = 0, with α = 1, and is an ∼ a∞ − ((b − a) cos(nπ)|α|)/(8n) = 1.5 − 0.75(−1)n/n. The
Jacobi-Legendre effect of the endpoints ±3 is (b−a)/(32n2) = 3/(16n2). The remaining behavior
times n log n believed to be the right factor ρn = n log n[an − 1.5 + 0.75(−1)n/n − 0.1875/n2] is
shown in table 9, and is expected to behave like a constant times cos(2nθc + ϕc). Starting with
a large index (here, 135), only crest values are retained, i.e., such that 2nθc + ϕc happens to
be very close to an integer multiple of π. The neighboring values ρn−1 and ρn+1 are then very
close together, that’s how the interesting values of n are selected. Moreover, the almost common
value of ρn−1/ρn and ρn+1/ρn must then be almost cos(2θc) = −7/9 = −0.7777 . . . , checked in
the last column of table 9 (the first approximated crest is at n = 10, see also Fig. 4), whereas
ϕ/π is estimated through the fractional part of 2nθc/π for these very particular values of n, of
which only those in approximate geometric progression have been selected, in the hope to have a
better view of the limit of |ρn|. Although the phase ϕ is very stable, the evolution of |ρn| towards
its limit is again excruciatingly slow. An approximate law A + B/ log n is again assumed with
the slope B estimated from two successive values, and A as |ρn| − B/ log n (extrapolated value).
With two contributions at ±1 in the spectrum [−3, 3], the formula from 5.2 amounts to expecting√

2 = 1.414 . . . which is neither close nor far from the numerical estimate 1.405 . . .
The first 69999 recurrence coefficients a1, . . . , a69999 are given in the file
http://perso.uclouvain.be/alphonse.magnus/graphene69999.txt

of size about 2M, with a precision of 25 digits, in the following format:

1.7320508075688772935274463,

1.4142135623730950488016887,

1.7320508075688772935274463,

1.2909944487358056283930885,

1.7126976771553505360155865,

...

1.4999899549568860858094207,

1.5000093070617496121273346,

http://perso.uclouvain.be/alphonse.magnus/graphene69999.txt
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“Babeş–Bolyai”, Mathematica , Vol. LII, Nr 4, 143–153, Dec. 2007.

[83] J.W. Morris, Jr., The Structure and Properties of Materials, McGraw Hill, 2005.
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and Applied Mathematics 32 (1990) 237-252.
[94] R. A. Sack, A. F. Donovan, An Algorithm for Gaussian Quadrature Given Generalized Moments, Department

of Mathematics, University of Salford, Salford, England, 1969.
[95] R.A. Sack, A.F. Donovan, An algorithm for Gaussian quadrature given modified moments, Numer. Math. 18

(1971/72), 465-478.
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