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Université catholique de Louvain,
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1. Orthogonal polynomials and Gaussian quadrature formulas.

Let µ be a positive measure on a real interval [a, b], and Pn the related monic orthogonal polynomial
of degree n, i.e., such that

Pn(x) = xn + · · · ,
∫ b

a
Pn(t)Pm(t)dµ(t) = 0,m 6= n, n = 0, 1, . . . (1)

An enormous amount of work has been spent since about 200 years on the theory and the applications
of these functions. One of their most remarkable properties is the recurrence relation

Pn+1(x) = (x− bn)Pn(x) − a2
nPn−1(x), n = 1, 2, . . . , (2)

with P0(x) ≡ 1, P1(x) = x − b0. See, among numerous other sources, books by Chihara [17], Gautschi
[39, 41], Ismail [55], chap. 18 of NIST handbook [89], and other surveys [44, 69, 70].

Orthogonal polynomials are critically involved in the important class of Gaussian integration formulas.

A classical integration formula
∫ b
a f(t)dµ(t) ≈ w1f(x1) + · · · + wNf(xN ) (Newton-Cotes, Simpson, etc.)

is the integral
∫ b
a p(t) dµ(t) of the polynomial interpolant p of f at the points x1, . . . , xN . Interpolation

errors can sometimes become quite wild, to the opposite of least squares approximations made with a
polynomial q of degree N , achieving

min
q

∫ b

a
(f(t) − q(t))2dµ(t) ⇒

∫ b

a
(f(t) − q(t))r(t) dµ(t) = 0

for any polynomial r of degree < N . We want the favorable aspects of both sides! i.e., easy use of
numerical integration formulas, and safety of least squares approximation. Take at least for f a polynomial
of degree N , say, f(t) = tN , see that f−p vanishes at x1, . . . , xN and will be orthogonal to all polynomials
of degree < N if it is a constant times PN , so if x1, . . . , xN are the zeros of PN . All least squares problems
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are then satisfactorily solved with the discrete scalar product (f, g)N =
∑N

1 wjf(xj)g(xj). See Davis &
Rabinowitz [22, § 2.7], Boyd [11, chap. 4] for this discussion.

Approximate integration formulas are not only used in the area or volume calculations from time to
time, they are also used massively in pseudospectral solutions of big partial derivative equations and other
functional equations. As an example of numerical procedure, a polynomial approximation to the solution

of a functional equation F (u) = 0 is determined by orthogonality conditions
∫ b
a F (u(t))r(t) dµ(t) = 0

for any polynomial r of degree < N (Galerkin method), where the integral is replaced by its Gaussian
formula (F (u), r)N = 0. See for instance Boyd [11, chap. 3, 4], Fornberg [32, § 4.7], Mansell & al. [75],
Shizgal [98].

2. Power moments and recurrence coefficients.

2.1. Recurrence coefficients and examples. Let us consider the generating function of the moments
µn, which is called here the Stieltjes function of the measure dµ

S(x) =

∫ b

a

dµ(t)

x− t
=
µ0

x
+
µ1

x2
+ · · · , x /∈ [a, b], µn =

∫ b

a
tndµ(t). (3)

Sometimes, S is called the Stieltjes transform of dµ, but technically, the Stieltjes transform of a measure
is the integral of (x + t)−1dµ(t) on the positive real line [52, chap. 12]. For measures on the whole real
line, one should use the name “Hamburger transform”. P. Henrici [53, §14.6] speaks of “Cauchy integrals
on straight line segments”, Van Assche [103] calls S “Stieltjes transform” for (3) in all cases. “Markov
function” is also used [4, 44] when it is clear that there is no danger of confusion with random processes.

The power expansion (3) is an asymptotic expansion. If [a, b] is finite, the expansions converges when
|x| > max(|a|, |b|).

The function S is also the first function of the second kind [5, 6]

Qn(x) =

∫ b

a

Pn(t) dµ(t)

x− t
.

The recurrence relation (2) holds for the Qns too. Indeed,

Qn+1(x) =

∫ b

a

[(t− bn = t− x+ x− bn)Pn(t) − a2
nPn−1(t)] dµ(t)

x− t
= −µ0δn,0 + (x− bn)Qn(x) − a2

nQn−1(x). At n = 0, Q1(x) − (x− b0)Q0(x) + µ0 = 0. We have

Qn(x)

Qn−1(x)
=

a2
n

x− bn − Qn+1(x)

Qn(x)

,

[38, eq.(5.1-5.2)], [42, eq.(2.15)], and

S(x) = Q0(x) =
µ0

x− b0 −
a2

1

x− b1 −
. . .

Qn+1(x)

Qn(x)

,

[107, eq. (59.2)]. For bounded [a, b], the continued fraction converges for all x /∈ [a, b] [38, 53, 107].
Some examples, which will be inspiring later on, are

S(x) =
1

2

∫ 1

−1

dt

x− t
=

1

2
log

x+ 1

x− 1
=

1

x
+

1

3x3
+

1

5x5
+ · · · (4)

S(x) =

∫ 1

−1

|t|dt
x− t

=

∫ 1

0

2txdt

x2 − t2
= x log

x2

x2 − 1
=

1

x
+

1

2x3
+

1

3x5
+ · · · (5)

This shows how logarithmic singularities are often seen in Stieltjes functions.
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Here is a case with an explicit logarithmic singularity in the weight function

S(x) = −
∫ 1

0

log t dt

x− t
= Li2(x

−1) =

∞
∑

1

1

n2 xn
, (6)

where Li2 is the dilogarithm function[89, §25.12].
A last example with Euler’s Beta function:

S(x) =

∫ 1

0

tq−1(1 − t)p−q dt

x− t
=
µ0

x
+
µ1

x2
+
µ2

x3
+ · · · ,

µn = B(n+ q, p− q + 1) =
Γ(n+ q)Γ(p− q + 1)

Γ(n+ p+ 1)
(7)

The recurrence relation (2) is needed in various applications, whence the importance of getting the
recurrence coefficients (Lanczos constants) from the moments µn (Schwarz constants, see [19] for these
names). Some of our examples have been solved in the past, see the results in Table 1.

(4) (5) (7)
Legendre mod. Jacobi Jacobi on (0, 1)

Chihara Abramowitz
[17, chap. 5, § 2 (G)] [1, § 22.2.2, § 22.7.2]

a2
n

n2

4n2 − 1

2n + 1 − (−1)n

4(2n + 1 + (1)n)

n(n+ p− 1)(n + q − 1)(n + p− q)

(2n+ p− 2)(2n + p− 1)2(2n + p)

bn 0 0
2n(n+ p) + q(p − 1)

(2n + p+ 1)(2n + p− 1)
Table 1. Some known recurrence coefficients formulas.

General formulas for the recurrence coefficients from the power moments follow from the set of linear

equations
∑n−1

0 µi+jc
(n)
j = −µi+n, i = 0, . . . , n − 1 for the coefficients c

(n)
j of Pn(x) = xn +

∑n−1
0 c

(n)
j xj ,

yielding b0 + · · · + bn−1 = −c(n)
n−1 and µ0a

2
1 · · · a2

n = Dn+1/Dn, where Dn is the determinant of the stated
set of equations (Hankel determinant). Various algorithms organize the progressive construction of the
recurrence coefficients from the power moments but have an enormous condition number for large degree,
whence the importance of alternate numerical methods [39], which will be considered in next section.

In some serendipitous cases, as seen in Table 1, closed-form formulas have been found [17, chapters 5
and 6] [89, § 18.3-18.37].

n 0 1 2 3 4 5

a2
n

7
144

647
11025

71180289
1172105200

332349955856
5405644687527

39672481023099631594375
641525900508218274561936

bn
1
4

13
28

8795
18116

124351943
252694908

43450203422161
87773135347044

23506086742557104854013941
47335997944735259180626044

Table 2. First recurrence coefficients for the weight − log t on (0, 1).

No formula is known for the dilogarithm case (6), and nothing simple must be expected, as seen from
the first ones in table 2, whose asymptotic behavior will be investigated in table 7; see also [80].
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2.2. Asymptotic behavior of recurrence coefficients. Asymptotic behavior of an and bn has been
enormously investigated. The simplest, and most meaningful, result is that, if the derivative w = µ′ of
the absolutely continuous1 part is positive a.e. on (a, b), then

an → a∞ =
b− a

4
, bn → b∞ =

a+ b

2
, n→ ∞. (8)

This seemingly simple result took decades to receive a complete proof, see the surveys by D.S. Lubinsky
[69, §3.2], P. Nevai [84, §4.5], [85], and Van Assche’s book [103, §2.6] for accurate statements and story.

A closer look to the Jacobi recurrence coefficients (7), Table 1 gives

an =
1

4
− (q − 1)2 + (p − q)2 − 1/2

16n2
+ o(n−2), bn =

1

2
+

(q − 1)2 − (p− q)2

8n2
+ o(n−2).

For a general interval (a, b), the Jacobi weight is (b−x)α(x−a)β , and the relevant asymptotic behavior
is

an =
b− a

4

(

1 − α2 + β2 − 1/2

4n2
+ o(n−2)

)

,

bn =
a+ b

2
− (b− a)(α2 − β2)

8n2
+ o(n−2).

(9)

This behavior is thought to be present for all weights behaving like powers near the support’s endpoints.
Interior singularities create wilder oscillating perturbations, as it will be recalled later on. Lambin and
Gaspard [63, Appendix] made interesting numerical tests on problems of solid-state physics by reducing
the oscillating terms through sums and products, their formulas2 are:

a1 · · · an = constant ×
(

b− a

4

)n (

1 +
α2 + β2 − 1/2

4n
+ o(1/n)

)

,

b0 + · · · + bn = n
a+ b

2
+ constant +

(b− a)(α2 − β2)

8n
+ o(1/n). The constants are known from Szegő’s

theory, see § 5.3. Complete expansions in powers of 1/n have been established when the weight function
is (b− x)α(x− a)β times a positive analytic function on [a, b] [62, Thm. 1.10], quite a strong condition.
Perturbation of a Jacobi weight is considered by Nevai and Van Assche [86, § 5.2], but their trace-class
condition

∑ |an − a∞| + |bn − b∞| < ∞ is rather strong too, as we will encounter expected O(1/n) and
O(1/(n log n)) perturbations. See also L.Lefèvre et al. [66] for more applications with Jacobi polynomials.

Many more refinements will be studied in § 5 and 6.

3. Modified moments.

A very efficient technique for computing large numbers of recurrence coefficients is described here.

3.1. Main properties and numerical stability. We consider a sequence of polynomials {R0, R1, . . . }
with Rn of degree n. Here, Rn need not be monic. The related modified moment of degree n is defined
as

νn =

∫ b

a
Rn(t) dµ(t). (10)

We want to compute the recurrence relation coefficients (2) from the modified moments of dµ. The
algebraic contents of the problem is the same as before, as each modified moment is a finite linear
combination of the power moments, but the numerical accuracy in finite precision can be strongly en-

hanced: with the notation (f, g) for the scalar product
∫ b
a f(x)g(x) dµ(x), we again compute the values

1dµ = dµabsolutely continuous + dµsingular.
2The product b1 · · · bn of [63] is here a2

1 · · · a
2
n.
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(Pn, Rj), n, j = 0, 1, . . . , N − 1 by

GN =







(R0, R0) · · · (R0, RN−1)
...

...
...

(RN−1, R0) · · · (RN−1, RN−1)







=











(R0, P0) 0 · · · 0
(R1, P0) (R1, P1) · · · 0

...
. . .

(RN−1, P0) (RN−1, P1) · · · (RN−1, PN−1)





















1/‖P0‖2

1/‖P1‖2

. . .

1/‖PN=1‖2





















(P0, R0) (P0, R1) · · · (P0, RN−1)
0 (P1, R1) · · · (P1, RN−1)

. . .
...

0 0 · · · (PN−1, RN−1)











(11)

Where the left-hand side is the Gram matrix of the basis {R0, . . . , RN−1}, factored in (11) as a lower
triangular matrix times a diagonal matrix times an upper triangular matrix which happens to be the
transposed of the first factor. The equation (11) is the matrix writing of the Gaussian (!) elimination
method, also known for a positive definite matrix as Cholesky’s method [12, 13]. See also Bultheel & Van
Barel [15, § 4.2] for this connection of the Gram-Schmidt method with modified moments.

The numerical stability of the computation of the factors of the right-hand side of (11) is measured by
the condition number of the matrix GN , which is the ratio of the extreme eigenvalues of the matrix (for
a general nonsymmetric matrix, singular values must be considered [45, 109]), after a convenient scaling
replacing Rn(x) by Rn(x)/ρn.

The extreme eigenvalues are easily seen as the inf and sup on real vectors [c0, . . . , cN−1] of the ratio
∑

j

∑

k cjck(Rj/ρj , Rk/ρk) =
∫ b
a p

2(x) dµ(x)
∑

j c
2
j

, where p(x) =
∑

j cjRj(x)/ρj (Rayleigh quotient [109, §54]).

Now, in the important special case where the Rn/ρns are the orthonormal polynomials with respect to
a measure dµR with the same support as dµ, the extreme eigenvalues are the inf and sup on the real

polynomials p of degree < N of

∫

p2(x)dµ(x)
∫ b
a p

2(x)dµR(x)
so, these eigenvalues remain bounded and bounded from

below if dµ(x)/dµR(x) is similarly bounded [8].

3.2. Legendre examples.

Let Rn(x) = Pn

(

2x− a− b

b− a

)

. From tables and formulas of Legendre polynomials [1, 89] etc., one has

R0 = 1, R1(x) = (2x − a − b)/(b − a), Rn+1(x) = [(2n + 1)(2x − a − b)Rn(x)/(b − a) − nRn−1(x)]/(n +

1), Rn(a) = (−1)n, Rn(b) = 1, ‖Rn‖2
R =

∫ b
a R

2
n(x)dx = (b − a)/(2n + 1). The integral of Rn is of special

interest, it is
∫ x
a Rn(t)dt = (b− a)(Rn+1(x) −Rn−1(x))/(2(2n + 1)) when n > 0 [32, p.157].

For − log t on (0, 1), the modified moments are ν0 = 1, νn = −
∫ 1

0
Rn(t) log t dt

=

∫ 1

0

Rn+1(t) −Rn−1(t)

2(2n + 1)t
dt = −

∫ 1

0

Rn(t) +Rn−1(t)

2(n+ 1)t
dt =

(−1)n

n(n+ 1)
, n = 1, 2, . . . [89, 14.18.6 Christoffel

Darboux ], also a special case of Jacobi polynomials formulas by Gautschi [40, eq. (16)].

For − log |t| on (−1, 1): ν2n = −
∫ 1

−1
log |t|P2n(t)dt = −2

∫ 1

0
log(t)P2n(t)dt =

2

4n+ 1

∫ 1

0

P2n+1(t) − P2n−1(t)

t
dt = − 2

2n+ 1

∫ 1

0

P2n−1(t)

t
dt = (−1)n2n (n− 1)!

(2n+ 1)!!
, n = 1, 2, . . .

(ν0 = 2), from [29, 10.10 (52)] with λ = −1.
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For −|t| log |t| on (−1, 1): ν2n = −
∫ 1

−1
|t| log |t|P2n(t)dt = −2

∫ 1

0
t log(t)P2n(t)dt =

(−1)n+1 d

dλ

[

(−λ/2)(−λ/2 + 1) · · · (−λ/2 + n− 1)

(1/2 + λ/2)(3/2 + λ/2) · · · (1/2 + n+ λ/2)

]

λ=1

= (−1)n−1 (2n − 3)!!

2n+1(n+ 1)!

(

2

3
+ · · · + 2

2n − 3
+ 1 +

1

2
+ · · · + 1

n+ 1

)

, n = 2, 3, . . . (ν0 = 1/2, ν2 = −1/16)

from [29, 10.10 (51)].

3.3. Chebyshev examples.

We now have Rn(x) = Tn

(

2x− a− b

b− a

)

. One has R0 = 1, R1(x) = (2x− a− b)/(b − a),

Rn+1(x) = 2(2x − a− b)Rn(x)/(b − a) −Rn−1(x),

Rn(a) = (−1)n, Rn(b) = 1, ‖Rn‖2
R =

∫ b

a

R2
n(x)

√

(x− a)(b− x)
dx = π if n = 0, π/2 if n > 0.

Chebyshev modified moments examples are easy to capture through expansions of functions: if F (x) =

c0/2 +
∑∞

1 cnTn

(

2x− a− b

b− a

)

, then cn =
2

π

∫ b

a

F (t)
√

(t− a)(b− t)
Tn

(

2t− a− b

b− a

)

dt.

Consider first the generating function of Chebyshev polynomials
1

A− x
=

4/(b− a)

z + z−1 − 2u
=

4/(b − a)

z − z−1
[1+

2
∑∞

1 Tn(u)/zn], where A = (a + b)/2 + (b − a)(z + z−1)/4 and x = (a + b)/2 + (b − a)u/2 ∈ [a, b] if
−1 6 u 6 1 ([77, § 5.2], [90], etc.) so,

∫ b

a
Tn

(

2t− a− b

b− a

)

dt

(A− t)
√

(t− a)(b− t)
=

4π

(b− a)(z − z−1)zn
, n = 0, 1, . . . (12)

where A = (a + b)/2 + (b − a)(z + z−1)/4 with |z| > 1 if A /∈ [a, b], or also z = [2A − a − b +

2
√

(A− a)(A− b)]/(b − a).

A logarithmic example: log(x− x0), with x0 ∈ [a, b]. As before, let x = (a+ b)/2
+ (b− a)(z + z−1)/4, x0 = [(a+ b) + (b− a) cos θ0]/2, then, log(x− x0) = log[(a− b) exp(−iθ0)

(1 − z exp(iθ0))(1 − z−1 exp(iθ0))/4] = log((a− b)/4) − iθ0 −
∞
∑

1

zn + z−n

n
exp(inθ0)

= log((a − b)/4) − iθ0 − 2

∞
∑

1

Tn

(

2x− a− b

b− a

)

n
exp(inθ0) [77, 90], etc. Remark that the imaginary part

is a simple discontinuity (jump, sign function) at x0. Other examples can be found in Milovanović &
Cvetković’s paper [82, Thm 2.2].

The examples of § 8 of the present study will be worked through Chebyshev modified moments expan-
sions too, see (40) and (45).

3.4. The algorithm. Stable and efficient computation of the recurrence coefficients of (2) from the
modified moments (10) has been first published by Sack and Donovan in 1969 [94, 95], immediately
enthusiastically commented and expanded by W. Gautschi [37] whose exposition is summarized here (see
also [39, § 2.1.7], [41, viii, pp. 28,36, 58–64, 92–100, 162]).

One does not compute the matrix of the left-hand side of (11) to get the orthogonal polynomials Pn.
Instead, we use polynomials Rn satisfying themselves a known recurrence formula

xRk(x) = AkRk+1(x) +BkRk(x) + · · · + ZkRk−s(x), (13)



8

containing the ordinary moments case when s = 0, some other (possibly formal) orthogonal polynomials
when s = 1, and we shall even try an example where s = 2!
We make vectors

v
(n) = [

∫ b

a
Pn(t)R0(t)dµ(t),

∫ b

a
Pn(t)R1(t)dµ(t), . . . ,

∫ b

a
Pn(t)R2N−n(t)dµ(t)],

looking like the rows of the last factor of (11), for n = 0, 1, . . . ,N − 1, starting of course with the
modified moments at n = 0. By orthogonality of Pn and polynomials of degree < n, one must have

v
(n)
0 = v

(n)
1 = · · · = v

(n)
n−1 = 0. We also define v

(−1) to be the null vector. Then, by (2) and (13),

v
(n+1)
k =

∫ b

a
Pn+1(t)Rk(t)dµ(t) =

∫ b

a
(t− bn)Pn(t)Rk(t)dµ(t) − a2

n

∫ b

a
Pn−1(t)Rk(t)dµ(t)

=

∫ b

a
[AkRk+1(t) + (Bk − bn)Rk(t) + · · · + ZkRk−s(t)]Pn(t)dµ(t) − a2

n

∫ b

a
Pn−1(t)Rk(t)dµ(t)

= Akv
(n)
k+1 + (Bk − bn)v

(n)
k + · · · + Zkv

(n)
k−s − a2

nv
(n−1)
k ,

using therefore elements of v
(n) and v

(n−1).

As one must have v
(n+1)
n−1 = 0, a2

n = An−1v
(n)
n /v

(n−1)
n−1 if n > 0 follows, and v

(n+1)
n = 0 ⇒ bn =

Bn + [Anv
(n)
n+1 − a2

nv
(n−1)
n ]/v

(n)
n = Bn +Anv

(n)
n+1/v

(n)
n −An−1v

(n−1)
n /v

(n−1)
n−1 .

See also that v
(n+1)
k needs v

(n)
k+1, that’s why we need the v

(0)
k s up to k = 2N , in order to have a correct

v
(N)
N .
There will be much ado later on about the Chebyshev polynomials on [a, b] : R0(t) ≡ 1, R1(t) =

T1((2t−a−b)/(b−a)) = (2t−a−b)/(b−a), R2(t) = T2((2t−a−b)/(b−a)) = 2((2t−a−b)/(b−a))2−1, . . .
satisfying

tRn(t) = (b− a)Rn−1(t)/4 + (a+ b)Rn(t)/2 + (b− a)Rn+1(t)/4.

Remark. If we have a software allowing fast shift vector operations shiftleft([a1, . . . , aN ]) = [a2, . . . , aN , 0],
shiftright([a1, . . . , aN ]) = [0, a1, . . . , aN−1], then

v
(n+1) = (b− a)[shiftleft(v(n)) + shiftright(v(n))]/4 + (a+ b)v(n)/2 − a2

nv
(n−1) − bnv

(n) [40].

4. Expansions in functions of the second kind.

We proceed with modified moments and related expansions. The weight function w is not always given
in such an explicit form allowing a fast way to compute the modified moments. It is often better to use
the generating function S(x) of the power moments, but how is S(x) an expansion involving modified
moments?

From now on, we choose Rn to be an orthogonal polynomial of degree n with respect to a weight
function wR on [a, b], and the searched Pn orthogonal with respect to the weight function w so that
dµ(x) = w(x)dx. We will often need the ratio w/wR, a writing more realistic than the Radon-Nykodim
derivative dµ/dµR in most cases.

We saw that the Laurent expansion of the Stieltjes function of w with the power moments is S(x) =
∫ b
a w(t)(x − t)−1dt =

∑∞
0 µk x

−k−1. See here the expansion involving the modified moments νn =
∫ b
a Rn(t)w(t) dt:

4.1. Theorem. Let Rn, n = 0, 1, . . . be orthogonal polynomials related to a weight wR on [a, b], with

‖Rn‖2
R =

∫ b
a R

2
n(t)wR(t) dt, and S(x) =

∫ b
a (x− t)−1w(t)dt be the Stieltjes function of the weight function

w. Then,

S(x) =
∞
∑

0

νn

‖Rn‖2
R

Qn(x), (14)
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for x /∈ [a, b], where νn is the modified moment
∫ b
a Rn(t)w(t) dt, and where

Qn(x) =
∫ b
a (x− t)−1Rn(t)wR(t) dt is the nth function of the second kind related to the weight wR.

Indeed, as Rn is a finite linear combination of powers, which may be inverted as tk =
∑k

n=0 cn,kRn(t),

we have S(x) =
∑∞

k=0

∫ b
a t

k w(t) dt x−k−1 =
∑∞

k=0

∫ b
a [

∑k
n=0 cn,kRn(t)]w(t) dt x−k−1

=
∑∞

n=0 νn[
∑∞

k=n cn,kx
−k−1]. Remark now the Laurent expansion

Qn(x) =
∑∞

k=n

∫ b
a t

kRn(t)wR(t) dt x−k−1 =
∑∞

k=n cn,k‖Rn‖2
R x−k−1. �

There is no convergence problem, at least if a and b are finite, as the Laurent expansions converge
exponentially fast when |x| > max(|a|, |b|).

My first idea was to expand the ratio w/wR in the {Rn} basis, by w(t)/wR(t)

=
∑∞

n=0[
∫ b
a (w(u)/wR(u))wR(u)Rn(u)dt = νn]Rn(t)/‖Rn‖2

R for t almost everywhere in [a, b], but we do
not need to discuss the validity of this expansion. It seems however strange that the theorem seems to
be true in some eerie situations where w and wR have different supports. The price is that the modified
moments are unusually large, which makes them completely useless. This is obvious if the support of w
is bigger than the support of wR, as the Rns are free to become large outside the support of wR. But
things are not better if the support of w is too small! Recall that the condition number of the Gram
matrix GN in (11) depends also on the smallest eigenvalue, which is the infimum on polynomials p of

degree < N of the Rayleigh ratio
∫ b
a p

2w dx/
∫ b
a p

2wR dx, and we may choose p to be very small on the
part of (a, b) which is the support of w. See also Beckermann & Bourreau [8].

Expansions with functions of the second kind share properties of Laurent expansions, such as exponen-
tial speed of convergence outside [a, b], and orthogonal expansions, such as the use of recurrence relations,
see Barrett [7], Gautschi [38].

For Legendre functions, the connection between Laurent expansions and expansions in functions of
the second kind is given by Heine’s series (x− t)−1 =

∑∞
0 (2m + 1)Pm(t)Qm(x),−1 < t < 1, x /∈ [−1, 1]

(NIST [89, § 14.28.2], etc.), so that, gathering the tn terms,

1

xn+1
=

n
∑

0

dnPm(0)/dtn

n!
Qm(x), showing how the Qn expansion is a rearrangement of the Laurent

expansion.
As a matter of fact, Heine’s series is valid for any choice of orthogonal polynomials: expand (x− t)−1

in orthogonal expansion of the Rns:

1

x− t
=

∞
∑

m=0

∫ b

a

Rm(u)wR(u)du

x− u
= Qm(x)

‖Rm‖2
R

Rm(t). See Area et al. [5, 6] for more identities.

The subject matter will now be strongly simplified by turning to the Chebyshev case:

4.2. Chebyshev functions of the second kind. The functions of second kind related to the Chebyshev

polynomials

Rn(x) = Tn((2x− a− b)/(b − a)) are

Qn(x) =

∫ b

a

Tn((2t− a− b)/(b − a)) dt

(x− t)
√

(t− a)(b− t)
=

π

a∞ zn(z − 1/z)
, (15)

where z = [2x− a− b+ 2
√

(x− a)(x− b)]/(b − a) ∼ 4x/(b − a) = x/a∞ for large |x|.
This has been established in (12) of § 3.3, where the A of (12) is the x of (15).
This formula (15) is seen as an exercise in many textbooks, as Davis & Rabinowitz [22, § 1.13], some-

times from the finite part (Hilbert transform) of (15) when x ∈ (a, b), known to be −(π/(2a∞))Un−1(cos θ)
[1, 22.13.3], [77, eq. 9.22a], also used by Weisse & al. [108, eq. (14)]. Then, when x = b∞+2a∞ cos θ±iε is

close to [a, b], we add ±πiTn(cos θ)/
√

(x− a)(b− x) (Sokhotskyi-Plemelj [53, §14.1]), and (15) is restored
in a neighborhood of [a, b].
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It will also be recalled in § 5.3 that the asymptotic formula (21b) is exact in the Bernstein-Szegő case

(when
√

(t− a)(b− t)/w(t) is a polynomial, and when n > half the degree of this polynomial). Henrici
gives (15) in [53, § 14.6, Problem 2] with the symbol ”Un” for our Qn.

4.3. Corollary. Chebyshev modified moments are the coefficients of the expansion of the Stieltjes func-

tion in negative powers of z

(b− a)(z − z−1)

2
S

(

x =
a+ b

2
+

(b− a)(z + z−1)

4

)

= 2ν0 +

∞
∑

1

4νn

zn
. (16)

Indeed, put (15) in (14)

S(x) =
∑∞

0

νn

‖Rn‖2
R

Qn(x) =
ν0

‖R0‖2
R = π

π/a∞
z − z−1

+
∑∞

1

νn

‖Rn‖2
R = π/2

π/a∞
zn(z − z−1)

. �

Consider also (see § 3.3) the generating function of Chebyshev polynomials.

5. Weights with logarithmic singularities. Interior singularity.

5.1. Known results. The influence of an algebraic singularity at c ∈ (a, b) on the recurrence coefficients
has been discussed in [33, 71, 73], it has been observed, and sometimes proved, that

an − a∞ = fn cos(2nθc + ϕc) + o(fn),

bn − b∞ = 2fn cos((2n + 1)θc + ϕc) + o(fn),
(17)

where c =
a+ b

2
+
b− a

2
cos θc, with 0 < θc < π, a∞ =

b− a

4
, b∞ =

a+ b

2
from (8), and where fn and ϕc

depend on the kind of singularity.
We first consider here weak singularities, i.e. when the weight function remains continuous, bounded

and bounded from below by a positive number in a neighborhood of the singular point. For an algebraic
weak singularity,

w(x) ≈ w(c) + constant |x− c|α, α > 0, 0 < w(c) <∞
⇒ fn = constant n−α−1,

(18)

has been shown in [71, p.156], see also the first part of [73].
The proof in [71] makes heavy use of Toeplitz determinants based on Szegő’s theory. The subsections

5.3-5.3.5 that will follow here try to suggest simpler approaches. No new proof will be presented, but
the puzzling fact is that the form (17) holds for all kinds of interior singularities encountered up to now,
whether as proved results, or as conjectures.

In the much more difficult situation of a strong singularity where w(c) = 0 or ∞, the power of n in
fn does not depend on α, it happens that

w(x) ∼ constant |x− c|α, α > −1 ⇒ fn = −(b− a)|α|/(8n), (19)

as conjectured in [73], and brilliantly proved in [33], through new Riemann-Hilbert techniques. Initially
a way to reconstruct systems of differential equations from the properties of the solutions about their
branchpoints (monodromy matrix), ”the Riemann-Hilbert method reduces a particular problem to the
reconstruction of an analytic function from jump conditions”, in the words of A. Its [56, p. 1389].
The method has been applied with striking results to orthogonal polynomials asymptotics [56, p. 1391]
[4, 23, 31, 61, 62], up to, as already noted, the proof of conjectures on interior singularities [33, 34]. For
our orthogonal polynomials problems, we must limit ourselves to weight functions that can be analytically
continued in a domain containing the support, up to a finite number of singular points, and cuts that
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join them. When such a singular point is a branchpoint, the continuation on a surrounding contour (from
”before” to ”after”, when the contour’s turn is achieved) leads to new values, best described by

[

Pn(x) Qn(x)/w(x)
Pn−1(x) Qn−1(x)/w(x)

]

after

=

[

Pn(x) Qn(x)/w(x)
Pn−1(x) Qn−1(x)/w(x)

]

before

[

1 C1

0 C2

]

with suitable C1, C2 making the relevant monodromy matrix around the singular point [74, §3,4], with a
very subtle scale dilation in some regions, this is the new feature found in present day developments of
the Riemann-Hilbert method [4, 23, 33, 34, 31, 61, 62], [55, chap. 22].

In the year 2000, Lubinsky wrote illuminating remarks on the virtues of various techniques, see here a
(slightly shortened) part of the conclusion of his survey: “ At present it seems that the Deift-Fokas-Its-
Kitaev-Kriecherbauer- McLaughlin & al. method [= the new RH] will lead to very precise asymptotics for
restricted classes of weights, while I believe that Bernstein-Szegő-Rakhmanov’s one will lead to asymp-
totics for more general weights, but with weaker error estimates. ” [70, p. 251].

w(t) 1 2 3 4 5 6 7

− log |t| 1
9

56
225

1863
8575

162776
639009

1070243125
4586681781

25913014364304
101783375460481

1934965659283089461
8086464983903415525

−|t| log |t| 1
4

7
36

17
63

647
2975

294777
1099900

134451657
593353348

5943701732
22386249711

Table 3. First recurrence coefficients a2
n for the weights − log |t| and −|t| log |t| on (−1, 1).

5.2. Conjecture. If the weight function has one or several logarithmic singularities of the form w(x) ∼
constant ×|x − c|α log |x − c| near one or several values of c ∈ (a, b), the first terms of the asymptotic

behavior of the related amplitude in (17) are

fn =
A

n
+

B

n log n
+

C

n(log n)2
+ o(1/(n(log n)2)), (20)

with A = −(b − a)|α|/8. When α = 0, B = (b − a) sin(θc)/8 is conjectured, where c = (a + b + (b −
a) cos θc)/2.

One has also (b − a) sin θc = 2
√

(c− a)(b− c). The formula for A in the conjecture is the same as in
(19). As a matter of fact, the validity of the formulas for A and especially B in fn is the weakest part of
the conjecture, and may be wrong.

The examples of tables 3-5 have been computed from the Legendre modified moments of § 3.2.
Table 4 shows a check of conjecture 5.2 for the even weight function −|t| log |t| on (−1, 1). So, θc = π/2

and, as bn ≡ 0, ϕc = 0 or π. Having chosen A < 0, as in (19), ϕ = 0. Then, A and B are estimated
from linear interpolation of n(1/2 − an) in the variable 1/ log n. The limit value −1/4 for A is quite
credible, that B = 1/4 is suggested, and C is estimated from (log n)2[n(an − 1/2) + 1/4 − 1/(4 log n)],
thus assuming A = −1/4 and B = 1/4.

The same experiment with − log |t|, so α = 0, yields indeed A = 0 and, with ϕ = 0, very likely, B = 1/4
in table 5, using an estimate of C as the slope of n(log n)(an − 1/2) as a function of 1/ log n. Assuming
B = 1/4, a new estimate of C is found from [n(log n)(an − 1/2) − 1/4] log n.

No tentative formula for C can be launched from the small number of available cases explored here.
The conjecture 5.2 is motivated by interesting solid-state problems in §8, where weight functions with

logarithmic singularities are encountered, and numerical results are seen in Tables 8 and 9.
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n an n(1/2 − an) B A C
1 0.5000000000 0
2 0.4409585518 0.1180828963
3 0.5194628810
4 0.4663464287 0.1346142850 0.02292049 -0.15114792 -0.12482
5 0.5176930736
8 0.4812117607 0.1503059146 0.06526631 -0.18169237 -0.088775

16 0.4896880521 0.1649911660 0.12215957 -0.20905091 -0.039663
32 0.4944429849 0.1778244819 0.17792267 -0.22916211 0.000490
64 0.4970563023 0.1883966532 0.21986008 -0.24126182 0.025789

128 0.4984622524 0.1968316976 0.24558204 -0.24744598 0.038691
256 0.4992050878 0.2034975345 0.25876286 -0.25016202 0.043609
512 0.4995922083 0.2087893758 0.26411801 -0.25112734 0.044200

1024 0.4997919518 0.2130413275 0.26527060 -0.25131178 0.042822
2048 0.4998942823 0.2165098115 0.26447849 -0.25119724 0.040791
4096 0.4999464395 0.2193838028 0.26297659 -0.25100005 0.038747
8192 0.4999729247 0.2218007622 0.26136741 -0.25080641 0.036952

16384 0.4999863366 0.2238608480 0.25990460 -0.25064392 0.035477
32768 0.4999931141 0.2256377520 0.25864776 -0.25051440 0.034304

Table 4. Analysis of the recurrence coefficients for the weight −|t| log |t| on (−1, 1).

n an n(log n)(an − 1/2) C B C
1 0.3333333333
2 0.4988876516 -0.0015420423
3 0.4661110117
4 0.5047097547 0.0261164255 -0.038348 0.053778 -0.310368
5 0.4830498129
8 0.5039795051 0.0662011853 -0.166724 0.146378 -0.382198

16 0.5023625151 0.1048045226 -0.321122 0.220625 -0.402567
32 0.5012250826 0.1358660071 -0.430640 0.260122 -0.395558
64 0.5005968024 0.1588500221 -0.477978 0.273779 -0.379082

128 0.5002823026 0.1753268095 -0.479713 0.274195 -0.362316
256 0.5001318186 0.1871251805 -0.458004 0.269720 -0.348652
512 0.5000612761 0.1957173003 -0.428836 0.264459 -0.338633

1024 0.5000284796 0.2021431261 -0.400894 0.259979 -0.331718
2048 0.5000132625 0.2070968803 -0.377733 0.256638 -0.327119
4096 0.5000061941 0.2110317678 -0.360050 0.254318 -0.324128
8192 0.5000029023 0.2142428737 -0.347245 0.252778 -0.322204

16384 0.5000013644 0.2169243207 -0.338296 0.251785 -0.320968
32768 0.5000006434 0.2192063024 -0.332167 0.251154 -0.320168

Table 5. Some recurrence coefficients of large index for the weight − log |t| on (−1, 1).

5.3. About the Szegő asymptotic formula.

Warning: up to the end of the present section 5, I develop some ideas on the origin of the formulas
(17), trying to show in several ways how they are related to the Szegő’s theory.

No new proof follows, alas, but perhaps valuable work will be inspired by what follows.
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The Szegő’s theory is centered on the asymptotic behavior of the orthogonal polynomials of large
degree. This description has been achieved by G. Szegő long ago, and is available of course in his book
[101, chap. 12], also in the surveys by Lubinsky [69, 70] and Nevai [84], and in Van Assche’s book [103,
§1.3.1] the formula for the orthonormal polynomial is

pn(x) ≈ p(0)
n (x) = (2π)−1/2[zn exp(λ(z−1)) + z−n exp(λ(z))], (21a)

where x = b∞ + 2a∞ cos θ, z = eiθ, and

λ(z) = λ0/2 + λ1z + λ2z
2 + · · ·

is the half constant term and the part with positive powers of the Laurent-Fourier expansion

− log[w(x)
√

(x− a)(b− x)] = − log[2a∞w(b∞ + 2a∞ cos θ)| sin θ|] =
∞

∑

−∞

λkz
k = λ(z) + λ(z−1)

on |z = eiθ| = 1. The condition of asymptotic validity is the minimal condition log[w(x)
√

(x− a)(b− x)] ∈
L1 (Szegő class). The function D(z) = exp(−λ(z)) is the Szegő function associated to the weight w, it

is analytic without zero in the unit disk, and satisfies |D(z)|2 → w(x)
√

(x− a)(b− x) when |z| → 1.
Remark that the λ−n = λns are real. When exp(λ(z)) is a polynomial of degree, say d, the formula (21a)

is exact for n > d/2 (Bernstein-Szegő class [70, § 2.1]). For a general weight in the Szegő class, p
(0)
n (x) in

(21a) is not a polynomial but has an expansion κ
(0)
n xn + κ

′(0)
n xn−1 + · · · for large x. Also, the two sides

of (21a) tend to be equal in some L2 norm [70, eq. (12)] etc.

In the simplest case w(x) = 1/
√

(x− a)(b− x), pn(x) =
√

2/π cosnθ =
√

2/πTn((x−b∞)/(2a∞)), λ(z) ≡
0. For Chebyshev polynomials of the second kind, w(x) =

√

(x− a)(b− x), pn(x) =
sin(n+ 1)θ

a∞
√

2π sin θ
=

(1/
√

2π)Un((x − b∞)/(2a∞)), w(x)
√

(x− a)(b− x) = (x − a)(b − x) = 4a2
∞ sin2 θ = −a2

∞(z − z−1)2 =

a2
∞(1 − z2)(1 − z−2), eλ(z) = 1/[a∞(1 − z2)].

For the function of the second kind qn(x) =

∫ b

a

pn(t)w(t) dt

x− t
,

qn(x) ≈ q(0)n (x) = (2π)1/2 4

b− a

exp(−λ(z−1))

zn(z − z−1)
, (21b)

see Barrett[7], also Van Assche[103, §5.4 ].

We also have z = cos θ + i sin θ = (b − a)−1[2x − a − b + 2
√

(x− a)(x− b)], with the square root
such that |z| > 1 if x /∈ [a, b], in which case only the term containing zn has to be considered in
(21a). Remark that x = b∞ + a∞(z + 1/z) ⇒ z = (x − b∞)/a∞ + O(1/x) when x is large, allowing

to estimate the coefficients of xn and xn−1: with p
(0)
n (x) and q

(0)
n (x) of (21a)-(21b), when x is large,

pn(x) ≈ p
(0)
n (x) = κ

(0)
n xn + κ

′(0)
n xn−1 + · · · , and

κ(0)
n =

exp(λ0/2)√
2π (a∞)n

,
κ
′(0)
n

κ
(0)
n

= −nb∞ + a∞λ1. (22)

Indeed, p
(0)
n (x) = (2π)−1/2zn exp(λ0/2 +λ1z

−1 +λ2z
−2 + · · · ) and z = x/a∞ − b∞/a∞ − a∞/x+O(x−2),

so, the coefficient of xn, κ
(0)
n = (2π)−1/2 exp(λ0/2)/a

n
∞, and z = x/a∞ − b∞/a∞ − a∞/x + O(x−2) ⇒

p
(0)
n (x)/κ

(0)
n = (a∞z)

n exp(λ1z
−1 + λ2z

−2 + · · · ) = (a∞z)
n + a∞λ1(a∞z)

n−1 + a2
∞(λ2

1/2 + λ2)(a∞z)
n−2 +

· · · = xn − (nb∞ − a∞λ1)x
n−1 + · · · .

For pn(x) = κnx
n + κ′nx

n−1 + · · · itself, from the recurrence relation (2) Pn(x) = pn(x)/κn = (x −
bn−1)Pn−1(x) − a2

n−1Pn−2(x), and ‖Pn‖2 = µ0a
2
1 · · · a2

n:

κn =
1√

µ0 a1 · · · an
,

κ′n
κn

= −b0 − · · · − bn−1. (23)
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Each term of (23) behaves like the corresponding term of (22) when n→ ∞.
In terms of z such that x = a∞z + b∞ + a∞/z:

pn(x)/κn = an
∞z

n + an−1
∞ (nb∞ − b0 − · · · − bn−1)z

n−1 + · · · (24)

We have gathered useful asymptotic material, and try to see how it allows to explain the formulas (17).

First, a quick check of (21a):

∫ b

a
pn(x)pm(x)w(x)dx ≈

∫ b

a
p(0)

n (x)p(0)
m (x)w(x)dx

=
1

2π

∫ b

a
[zn exp(λ(z−1))+z−n exp(λ(z))][zm exp(λ(z−1))+z−m exp(λ(z))]

exp(−λ(z) − λ(z−1))dx

a∞|z − z−1| . With

x = b∞ + a∞(z + z−1), dx = a∞(z − z−1)
dz

z
, we have the integral on the unit circle

1

4πi

∮

[zn+m exp(λ(z−1) − λ(z)) + zn−m + zm−n + z−n−m exp(λ(z) − λ(z−1))]
dz

z
. The central terms

leave no residue if m 6= n. When m = n, the result is unity, together with perturbations involving high
index Fourier coefficients of exp(λ(z) − λ(z−1)).

The same technique is now used in order to get these high index coefficients, and how they enter the
following estimate of recurrence coefficients finer asymptotics:

an − a∞ ≈ a∞
2

(ψ−2n+2 − ψ−2n), bn − b∞ ≈ a∞(ψ−2n+1 − ψ−2n−1), (25)

where the ψs are the Fourier coefficients of

ψ(eiθ) = exp(λ(e−iθ) − λ(eiθ)) =

∞
∑

−∞

ψke
ikθ. (26)

The formula (25) has been established by a long and painful proof through Toeplitz determinants in
[71, p. 153, 158, 167] for weak singularities (the weight function w being continuous and bounded from
below by a positive number at the singular point). It is wondered here if we can reach (25) more easily,
and if these formulas still hold for stronger singularities, but to which strength?

Remark that
∑

2(an − a∞)z−2n + (bn − b∞)z−2n−1 ∼ a∞
∑

[ψ−k+2z
−k − ψ−kz

−k] = sum of negative
exponents of z in (z−2 − 1)ψ(z).

Remark also that exp(λ(z−1) − λ(z)) = D(z)/D(z−1) in Szegő’s notation, is an inner function3, i.e.,
of modulus unity when |z| = 1, so

∑

ψnψn+k = δk,0.
An even stronger estimate follows from a refinement of the asymptotic matching of (22) and (23):

√

µ0e
λ0

2π

a1 · · · an

an
∞

− 1 ∼ −ψ−2n

2
, b0 + · · · + bn−1 − nb∞ + a∞λ1 ∼ −a∞ψ−2n+1. (27)

Can we find a quick and dirty argument for (25) and (27)?

5.3.1. From orthogonal polynomials coefficients. Consider the square of the norm of the monic orthogonal

polynomial µ0a
2
1 · · · a2

n = ‖Pn‖2 ≈ ‖P (0)
n ‖2 =

∫ b
a (p

(0)
n (t))2w(t)dt/(κ

(0)
n )2 with p

(0)
n being the right-hand side

of (21a). We take a better look at the integral

∫ b

a
(p(0)

n (t))2w(t)dt =
1

4πi

∮

[z2n exp(λ(z−1)− λ(z)) + 2 +

z−2n exp(λ(z)−λ(z−1))]
dz

z
= 1+ψ−2n/2+ the half of the coefficient of exp 2niθ in the complex conjugate

ψ(eiθ) which is ψ−2n/2 again. We now need κ
(0)
n , already estimated in (22), but we need again a refined

estimation. The coefficient of xn in p
(0)
n is estimated through the projection on the nth degree element of an

orthonormal basis of polynomials, so, by pn(x) times the scalar product of p
(0)
n and the unknown pn, which

3D itself is an outer function [44, § 8], [70, p.211].
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we replace by. . . p
(0)
n (this part of the argument is very weak), and we get refined κ

(0)
n = the κ

(0)
n of (22)

times the square of the norm of p
(0)
n , which is 1+ψ−2n as seen above, and µ0a

2
1 · · · a2

n ≈ 2π exp(−λ0)(a∞)2n

1 + ψ−2n
follows, leading to the first part of (27). For the second part, see that −b0 − · · · − bn−1 is the coefficient

of xn−1 of pn(x)/κn ≈ p
(0)
n (x)/κ

(0)
n estimated by its projections on pn and pn−1 again replaced (same

caution) by p
(0)
n and p

(0)
n−1. Result is −b0 − · · · − bn−1 ≈ κ

′(0)
n /κ

(0)
n + (κ

(0)
n−1/κ

(0)
n ) times the scalar product

of p
(0)
n and p

(0)
n−1 =

1

4πi

∮

[z2n−1 exp(λ(z−1) − λ(z)) + z + 1/z + z−2n+1 exp(λ(z) − λ(z−1))]
dz

z
= ψ−2n+1

as seen before in similar situations, and the second part of (27) follows.
This way to get (27) is far from being a valuable proof! The argument repeatedly confuses pn and

p
(0)
n , ignoring that p

(0)
n is normally NOT a polynomial, so that various ways of estimating coefficients

yield various results, of which the most convenient ones are kept. I even turned to some numerical tests
to be sure of the numerical credibility of (25), actually of the first part of (27): with w(x) = (1 −
x2)−1/2 exp(|x|) on (−1, 1), λ(eiθ)+λ(e−iθ) = −| cos θ|, λ2n = 2(−1)n/((4n2 − 1)π), λ(z) = (2/π)(−1/2−
z2/3+z4/15−· · · ) = −(1+z2)

1

2πiz
log

1 + iz

1 − iz
= iπ−1 cos θ log[i cot(π/4+θ/2)] on |z = eiθ| = 1, actually

cos θ[−1/2 + iπ−1 log cot(π/4 + θ/2)] when −π/2 6 θ 6 π/2, cos θ[1/2 + iπ−1 log cot(−π/4 + θ/2)] when
π/2 6 θ 6 3π/2 : λ(e−iθ) − λ(eiθ) = 2iπ−1 cos θ log cot(±π/4 + θ/2). We check that λ(e−iθ) + λ(eiθ) =
−| cos θ| indeed.

From (27), the product Mn = M0a1 · · · an/a
n
∞ → 1 when M0 =

√

µ0 exp(λ0)/(2π). Here, µ0 =
∫ 1
−1w(t)dt = 6.2088, λ0 = −0.63662,M0 = 0.72306, some an, λn, ψn are shown, and 2Mn − 2 shows how

Mn is close to 1 − ψ−2n/2 according to (27) (see Table 6).

n 0 1 2 3 4 5 10
an 0.77414 0.43434 0.52081 0.49034 0.50548 0.49893
λ2n -0.63662 -0.21221 0.042441 -0.01819 0.01011 -0.00643 0.00160
ψ2n 0.95317 0.21745 -0.022831 0.01252 -0.00738 0.00489 -0.00134
ψ
−2n 0.95317 -0.19755 0.058329 -0.02507 0.01353 -0.00838 0.00191

2Mn − 2 0.23899 -0.055036 0.02590 -0.01325 0.00851 -0.00189

Table 6. Results for e|t|/
√

1 − t2.

We see that the relevant information is indeed contained in the ψ−2n coefficients of (26).

5.3.2. From scattering theory. An alternate source of knowledge is therefore most welcome: Van Ass-
che gave in [104] a survey on how Case, Geronimo, and Nevai (and himself too, see [86]) investi-
gated the relation between recurrence coefficients and weight function modification, by introducing a

function φ(x) = lim
n→∞

(z − z−1)Pn(x)

an
∞z

n+1
outside [a, b] for x, i.e., when |z| > 1, and where Pn(x) is the

monic polynomial pn(x)/κn ∼
√

2π an
∞e

−λ0/2pn(x), so that φ(x) = (1 − z−2) exp(λ(z−1) − λ0/2) =
1 + λ1/z + (λ2

1/2 + λ2 − 1)/z2 + · · · , and it is shown in [104] that

φ(x) = 1 −
∞
∑

0

[

bn − b∞
a∞zn+1

+
a2

n+1 − a2
∞

a2
∞z

n+2

]

Pn(x)

an
∞

(28)

valid for x up to the sides of the cut [a, b] in the trace-class case (
∑∞

1 |an − a∞| + |bn − b∞| <∞).
Check Chebyshev polynomials of the first kind: λ(z−1) ≡ 0, φ(x) = lim(z − z−1)[2Tn(x) = zn +
z−n]/zn+1 = 1 − z−2, OK, as only a2

1 = 2a2
∞ is different from a2

∞; Chebyshev polynomials of second
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kind: λ(z) + λ(z−1) = − log(1 − (z + z−1)2/4), λ(z) = log 2 − log(1 − z2), φ(x) = lim(z − z−1)[Un(x) =
(zn+1 − z−n−1)/(z − z−1)]/zn+1 = 1.

Can we extract from (28) information on F (z) =
∑∞

0

[

bn − b∞
a∞z2n+1

+
a2

n+1 − a2
∞

a2
∞z

2n+2

]

?

From (21a) and (22), Pn(x)/(a∞z)
n = pn(x)/(κna

n
∞z

n) contains a part with strongly negative powers
of z which tend to be close to the corresponding part of exp(λ(z) − λ0/2)z

−2n, and the corresponding

part of
∑∞

0

[

bn − b∞
a∞z

+
a2

n+1 − a2
∞

a2
∞z

2

]

Pn(x)

an
∞z

n
, so, (1 − z−2) exp(λ(z−1) − λ0/2)

≈ 1−e−λ0/2
∑∞

0

[

bn − b∞
a∞

z−n−1 +
a2

n+1 − a2
∞

a2
∞

z−n−2

]

[zn exp(λ(z−1))+z−n exp(λ(z))], or, after division

by eλ(z)−λ0/2, (1 − z−2)ψ(z) ≈ eλ0/2−λ(z) − ∑∞
0

[

bn − b∞
a∞

z−1 +
a2

n+1 − a2
∞

a2
∞

z−2

]

ψ(z)

−∑∞
0

[

bn − b∞
a∞

z−2n−1 +
a2

n+1 − a2
∞

a2
∞

z−2n−2

]

. This confirms that the latter series is related to the nega-

tive powers part of ψ(z) precisely as stated in (25) .

5.3.3. From recurrence relations as matrix products. An interesting exercise is also to recover (21a-21b)
from (25) by working a linearization of a product of 2× 2 matrices containing the recurrence coefficients:

[

pN−1(x) qN−1(x)
pN (x) qN (x)

]

=

N−1
∏

n=0

[

0 1
−aN−1−n/aN−n (x− bN−1−n)/aN−n

]

×
[

0
√
µ0/a0

1/
√
µ0 S(x)/

√
µ0

]

,

see ([79]), and we write each matrix factor above as A+EN−n, with A =

[

0 1
−1 (x− b∞)/a∞

]

. Then,

(A+ EN−1) · · · (A+ E0)

≈ AN +
N−1
∑

n=0

AN−1−nEnA
n, seeing that A =

[

1 1
z z−1

] [

z 0
0 z−1

] [

1 1
z z−1

]−1

= U diag(z, z−1)U−1, where

z+ z−1 = (x− b∞)/a∞, so AN−1−nEnA
n = U diag(zN−1−n, z−N+1+n)U−1EnU diag(zn, z−n)U−1 and we

find U−1EnU ≈ (z−1 − z)−1

[

en(z) en(z−1)
−en(z) −en(z−1)

]

, where

en(z) = [(an+1 − a∞)z2 + (bn − b∞)z + an − a∞]/a∞, so that off-diagonal elements of the sum are

z±(N−1)
∑

z∓2nen(z∓1) containing again the sum
∑

2(an − a∞)z∓2n + (bn − b∞)z∓(2n+1).
It seems here that much energy has been spent on incomplete proofs, and that somebody should achieve

a decent one!

5.3.4. Relation with Fourier coefficients asymptotics. So, (25)-(27) relates recurrence coefficients asymp-
totics to Fourier coefficients of large index, a well worked subject.
The main influence of a singularity at θ = θc on the Fourier coefficient

∫ π
−π f(θ) exp(inθ)dθ of a function

f is exp(inθc)f̂(n/(2π)), see Lighthill [67, p. 8, p.43, p.72], where f̂ is the Fourier transform4 of f . An
algebraic singularity of the form |θ − θc|α is shown to correspond to an n−α−1 behavior. This case is
also given with much detail by A. Erdélyi [30, §2.8], and Zygmund [114, chap. 5, §2.24]. The nature of
a weak singularity w(c) + const. |x− c|α with 0 < w(c) < ∞, is left unchanged by taking logarithms or
exponentials, also in conjugate functions [114, chap.5, §2.6 and 2.24], so, the 1/nα+1 is kept unchanged
up to the ψns and (18) is confirmed.

Stretching the argument for weak singularity to a strong singularity such as w(t) ∼ constant |t − c|α
near c, the logarithm of w behaves like α log | cos θ − cos θc|

4The Fourier transform in Lighthill’s book is written with kernel exp(−2πixy).



17

= constant +α Re log(1 − eiθ/zc)(1 − e−iθ/zc) whence λn ∼ −α Re z−n
c /n = −α cos(nθc)/n, λ(z) ∼

(α/2) log((1 − zeiθc)(1 − ze−iθc)) = (α/2) log(2eiθ(cos θ − cos θc)) on the circle. Keeping logarithms of
positive numbers to be real, λ(eiθ) ∼ (α/2)[log 2+iθ+log(cos θ−cos θc)] when −θc < θ < θc, (α/2)[log 2+
iθ−iπ+log(cos θc−cos θ)] otherwise. Then, λ(e−iθ)−λ(eiθ) ∼ −iαθ on the first arc, iα(π−θ) on the second

arc, and its exponential has ψn = (2π)−1[
∫ θc

−θc
exp(−i(n+α)θ)dθ+exp(iαπ)

∫ 2π−θc

θc
exp(−i(n+α)θ)dθ] =

2

π

sin(απ/2) cos(nθc + α(θc − π/2))

α+ n
showing an 1/n asymptotic behavior, but the amplitude is not right,

it should have been −a∞|α|/2 from (19).

So, (25)-(27) hold for weak singularities 0 < w(c) <∞ as they should, but fail for at least one important

class of strong singularities w(c) = 0 or ∞.

Remind that the correct result has been established through the new Riemann-Hilbert method [33, 34].

And what about a logarithmic singularity of the conjectures of § 5.2-6.2, as encountered with 2−dimensional
crystals?

Let w(x) −A log |x− c| be continuous in a neighborhood of c ∈ (a, b).

Now, in the case of conjecture 5.2, logw(t) has a log log singularity! There is probably not much
literature on Fourier coefficients of a log(log |t − c|) singularity, but Zygmund [114, chap. 5, §2.31] and
Wong & Lin [111] show how to arrive at a n−m−1(log n)β−1 from a |t− c|m(log |t− c|)β singularity, when
m is an integer. Take m = 0 and β → 0, as log(log |t−c|) is the limit when β → 0 of β−1[(log |t−c|)β −1],
we may expect the 1/(n log n) of the conjecture. Two meaningful examples will be considered in § 8.

5.3.5. Relation between jumps and logarithmic singularities. The Fourier series conjugate to the real part
of

∑

cke
ikθ is the imaginary part of the same expansion [114, § 1]. Jumps and logarithmic singulari-

ties are conjugate phenomena. A simple demonstration is given by the real part of log(1 − z/eiθc) =
−∑∞

1 eik(θ−θc)/k when z = eiθ. When |z| < 1 and z close to eiθ, 1 − z/eiθc is almost pure imaginary,
and the complex logarithm is about iπ/2 + log |θ − θc| when θ < θc, and −iπ/2 + log |θ − θc| otherwise,
so, a logarithm in the real part corresponds to a jump in the imaginary part, and these two kinds of
singularities create similar asymptotic behaviors in the Fourier coefficients, maybe the work done for a
jump [34] can be the basis for a proof of the conjecture 5.2.

Unfortunately, the loose considerations of the preceding subsection suggest to look at the logarithm of
the weight function. If the logarithm of a jump (between two positive values) is still a jump, log(log) is
something new.

6. Weights with logarithmic singularities. Endpoint singularity.

6.1. Numerical tests. B. Danloy [21] considered the generation of orthogonal polynomials of degrees
up to N related to dµ(x) = − log x on (0, 1) through the exact and stable computation of integrals

J(F ) = −
∫ 1
0 F (x) log x dx of some polynomials F of degree 6 2N − 1 by J(F ) =

∫ 1
0 x

−1G(x)dx, where
G is the integral of F vanishing at 0. If G is numerically available everywhere on [0, 1], an N−point

Legendre integration formula will do. As G(x) =
∫ x
0 F (t)dt = x

∫ 1
0 F (xu)du, another Legendre formula,

x being now a known value, may be used for G(x) itself.
This technique is probably close to using Legendre modified moments, with Rn(x) = the Legendre

polynomial of argument 2x − 1, as in § 3.2. Powers of logarithms are considered by Sidi [99]. It is then
possible to compute safely thousands of recurrence coefficients, as done in table 7.

As the weight function − log x vanishes at the upper endpoint, we certainly have α = 1 in a comparison
with the Jacobi weight (1 − x)αxβ. With β = 0, one should have limit values (α2 + β2 − 1/2)/4 = 1/8

and (α2 −β2)/2 = 1/2, so an = 1/4− 1/32

n2
+ o(n−2), bn =

1

2
− 1

8n2
+ o(n−2), from (9) when a = 0, b = 1,

and α = 1, β = 0.
The next terms in the asymptotic description of an and bn are suspected to behave like 1/(n2 log n):
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6.2. Conjecture. If the weight function has no interior singularity, and if w(x)/[−(x − a)β log(x− a)]
and w(x)/(b − x)α have positive bounded limits at x = a and x = b, then there are constants A,A′, B,

etc. such that

an =
b− a

4
+
A

n2
+

B

n2 log n
+

C

(n log n)2
+ o((n log n)−2),

bn =
a+ b

2
+
A′

n2
− 2B

n2 log n
− 2C

(n log n)2
+ o((n log n)−2),

(29)

with A = −(b− a)
α2 + β2 − 1/2

16
, A′ = −(b− a)(α2 − β2)

8
, as in (9).

Why emphasize these three terms of what is likely an expansion in powers of 1/ log n? because the
simplest test w(x) = − log x on (0, 1) leads to aB = 0 case! With α = 1 and β = 0, A = −1/32, A′ = −1/8
again from (9).

n an ρn −C bn σn 2C
0 0.250000000000000000
1 0.22047927592204921588 0.464285714285714286
2 0.24224947318051246417 0.485482446456171340
3 0.24643170234147606161 0.492103081871360859
4 0.24795568192105814439 0.700546 0.006028 0.495028498758353905 -0.21874 -0.13728
8 0.24947732897332924671 0.474951 0.015806 0.498497801978252749 -0.41642 -0.16225

16 0.24986904694972974076 0.460701 0.025461 0.499581244730037590 -0.75288 -0.15954
32 0.24996748208328437450 0.508006 0.033249 0.499888698235926998 -1.29198 -0.14526
64 0.24999194570788315582 0.592370 0.038811 0.499971199714645076 -2.09634 -0.12892

128 0.24999800446165694617 0.707118 0.042466 0.499992656969610461 -3.20529 -0.11476
256 0.24999950495806105131 0.849780 0.044723 0.499998142922055425 -4.61770 -0.10405
512 0.24999987701903611419 1.018952 0.046047 0.499999532447336313 -6.29481 -0.09660

1024 0.24999996940989087467 1.213451 0.046786 0.499999882584593121 -8.18165 -0.09176
2048 0.24999999238321795744 1.432144 0.047177 0.499999970557423757 -10.2303 -0.08879
4096 0.24999999810192130108 1.673977 0.047368 0.499999992623709105 -12.4114 -0.08710
8192 0.24999999952670709122 1.938042 0.047451 0.499999998153046342 -14.7130 -0.08623

16384 0.24999999988192528940 2.223611 0.047476 0.499999999537711061 -17.1353 -0.08587
32768 0.24999999997053220987 2.530139 0.047473 0.499999999884319298 -19.6838 -0.08581
65536 0.24999999999264358437 2.857242 0.047457 0.499999999971057923 -22.3658 -0.08593

Table 7. Data for − log x on (0, 1): an, ρn (see text),
(log 2n)2/(1024ρn); bn, σn, (log n)2/(64σn).

We therefore try to guess the behavior of the corrections εn and ηn in an =
1

4
− 1

32n2
+ εn and

bn =
1

2
− 1

8n2
+ ηn. As logarithmic terms vary so slowly, we only look at powers n = 2k, k = 2, 3, . . . A

little amount of luck is always welcome: we first look at
1

n2(an − 1/4)
to be sure of the 1/32. That being

settled, let ρn =
1

1

n2(an − 1/4)
+ 32

∼ − 1

1024n2εn
. Values of ρn make the third column of table 7, and it is

pleasing to see for n = 512, 1024, . . . , the unmistakable quadratic behavior ρn = 1.02, 1.21, 1.43, 1.67, . . . ,
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almost one hundredth of the squares of the binary logarithm of n (of 2n, actually), and −C is estimated

from
(log 2n)2

1024ρn
.

For bn, σn =
1

1

n2(bn − 1/2)
+ 8

∼ − 1

64n2ηn
, and −2C must be the limit of

(log n)2

64σn
(last column).

We find here C suspiciously close to the theoretical value −3/64 = −0.046875 (see below), but the
values seen in the fourth column of table 7 suggest an enormous wave with a crest at 16384 before more
oscillations. A similar wave must hold in the last column, we are here not so close to the theoretical value
2C = −3/32 = −0.9375 . One would like to investigate further the dependence of A,B and C on α, β,
more powers of logarithms. . .

Stop press: Percy Deift and Oliver Conway [24] sent this to me on March 31, 2017: ”For the log
weight − log(x) on [0, 1] we prove that as n → ∞, the recurrence coefficients an, bn have the following
asymptotic behavior: an = 1/4 − 1/(32n2) + C/(n log n)2 + O(1/(n2(log n)3)), bn = 1/2 − 1/(8n2) −
2C/(n log n)2 +O(1/(n2(log n)3)), where C = −3/64 ≈ −0.047, which is close to your conjectured value.

To prove this result we use Riemann-Hilbert/steepest-descent methods, but not in the standard way.”
End of quote.

Note that this also means that B = 0 has been proved as well for this weight.
We have at least an interesting relation to the interior singularity conjecture of §5.2 (for which no proof

has yet been announced): let x = a+(b−a)t2, then Pn(x) = (b−a)nP̃2n(t), where P̃2n is the even monic
orthogonal polynomial of degree 2n with respect to the even weight function |t|w(a+(b−a)t2) on [−1, 1],
as well known ([17, chap. 1,§8], etc.), as is the recurrence relation:

P̃2n+2(t) = t

[

P̃2n+1(t) = tP̃2n(t) − ã2
2n

P̃2n(t) + ã2
2n−1P̃2n−2(t)

t

]

− ã2
2n+1P̃2n(t),

so, an = (b−a)ã2nã2n−1, bn = a+(b−a)(ã2
2n + ã2

2n+1). In our example − log |t| on (0, 1), the ãs make the

last row of table 3, ã2
1 = 1/4, ã2

2 = 7/36, ã2
3 = 17/63 . . . and check that sums and products reconstruct the

recurrence coefficients of − log t of table 2. As ãn = 1/2+(−1)ns[Ã/n+B̃/(n log n)+· · · ] is expected from
the conjecture of § 5.2 (here, c = 0 and θc = π/2, s = cosϕc = −1 in (17)), then O(n−2) perturbations
follow. We must therefore go up to O(n−2) terms in the ãns, including the Jacobi polynomials endpoint
effect (9)

ãn =
1

2
+ s(−1)n

[

Ã

n
+

B̃

n log n
+ · · ·

]

− 2
2α2 − 1/2

16n2
+ · · · , as |t|w(t2) behaves like |t∓ 1|α near t = ±1,

and where the next term in the brackets is most likely a 1/(n log2 n) term.
Then, in an = ã2nã2n−1 = [(ã2n + ã2n−1)

2 − (ã2n − ã2n−1)
2]/4, and

bn = ã2
2n + ã2

2n+1 = [(ã2n + ã2n+1)
2 + (ã2n − ã2n+1)

2]/2, (ã2n − ã2n±1)
2 is easily found to be O(n−2) with

the same expansion as in 4

[

Ã

2n
+

B̃

2n log 2n
+ · · ·

]2

=
Ã2

n2
+

2ÃB̃

n2 log 2n
+ · · · For ã2n + ã2n±1, one must

take differences into account:
Ã

2n
− Ã

2n± 1
∼ ±Ã

4n2
etc.

ã2n + ã2n±1 = 1 − 2α2 − 1/2

16n2
± sÃ

4n2
± sB̃

4n2 log 2n
+ · · · ,

(ã2n + ã2n±1)
2 = 1 +

1/2 − 2α2 ± 4sÃ

8n2
± sB̃

2n2 log 2n
+ · · · ,

2an and bn ∼ 1

2
+

1/2 − 2α2 ∓ 4sÃ

16n2
∓ sB̃

4n2 log 2n
∓

[

Ã2

2n2
+

ÃB̃

n2 log 2n
+

2ÃC̃ + B̃2

2n2 log2 2n
+ · · ·

]

.
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If w(t) ≈ (x− a)β log(x− a) near a, w̃(t) = |t|w(a + (b− a)t2) ≈ |t|1+2β log |t| near t = 0. Then, with

the power 1 + 2β in conjecture 5.2, Ã = |1 + 2β|/4, and

2an and bn ∼ 1

2
+

1/2 − 2α2 ∓ 2[(2Ã + s/2 = |β|)2 − 1/4]

16n2
∓ B̃(4Ã+ s)

4n2 log n
+ · · · . Finally:

an ∼ 1

4
+

1/2 − α2 − β2

16n2
− B̃(|1 + 2β| + s)

8n2 log n
, bn ∼ 1

2
+
β2 − α2

8n2
+
B̃(|1 + 2β| + s)

4n2 log n
.

As β = 0 and s = −1 hold for the weight − log t on (0, 1), the 1/(n2 log n) term is indeed vanishing. The
1/(n2 log2 n) term has not been worked further here. . .

6.3. Trying multiple orthogonal polynomials. Warning: this subsection deals with a trend which
proved not to be fruitful in the present case, but could be inspiring in other situations. Fact is that I do
not know any other explicit family of orthogonal (of some sort) polynomials with respect to a logarithmic
weight function.

Quite another trend is given by known formulas for some multiple orthogonal polynomials, summarized
here [44, § 12], [55, chap. 23], [76]: the polynomial Rn = R{n1,...,np} of degree n = n1 + · · ·np is a multiple
orthogonal polynomial with respect to the measures dµ1, . . . , dµp if Rn is orthogonal to polynomials of
degree < n1 with respect to dµ1, of degree < n2 w.r.t. dµ2, . . . , of degree < np w.r.t. to dµp. This
goes back to Hermite and Padé, and even to Jacobi (Jacobi-Perron algorithm), see [14]. An interesting
recurrence relation (13) with s = p occurs when5 nj = 1 + ⌊(n − j)/p⌋, j = 1, . . . , p.

Let p = 2, dµ1(x) = xα1dx and dµ2(x) = xα2dx on (0, 1). The corresponding polynomials Rn are
explicitly known [3, 58]. As they are orthogonal to polynomials of degree < min(n1, n2) with respect to
any linear combination with constant coefficients of dµ1 and dµ2, let us take α1 and α2 → 0, then the

orthogonality holds with respect to the constant weight and the limit of
xα2 − xα1

α2 − α1
which is log x [55,

§ 23.3.2.1], there we are: Rn does half of the job, as it is orthogonal with respect to the logarithmic
weight to polynomials of degree < n/2 if n is even, of degree < (n − 1)/2 if n is odd. We have Rn(x) =

1

n1!n2!

dn2

dxn2

[

xn2
dn1

dxn1
xn1(x− 1)n

]

[3, §3.3], symmetric in n1 and n2, Rn(0) = (−1)n, Rn(1) =
n!

n1!n2!
,

R0 = 1, R1(x) = 2x− 1, R2(x) = 9x2 − 8x+ 1, R3(x) = 40x3 − 54x2 + 18x− 1, R4(x) = 225x4 − 400x3 +
216x2 − 36x+ 1, and the recurrence relation

xRn(x) =
4(n+ 1)2(n+ 2)

(3n+ 2)2(3n+ 4)
Rn+1(x) +

4(n2 + 19n/9 + 1)

(3n+ 2)(3n + 4)
Rn(x)

+
4n(27n2 − 16)

9(3n − 2)(3n + 2)2
Rn−1(x) +

4n(n− 1)

3(3n − 2)(3n + 2)
Rn−2(x) if n is even,

=
4(n + 1)

9(3n + 1)
Rn+1(x) +

4(9n2 − n− 1)

9(3n − 1)(3n + 1)
Rn(x) +

4n2

3(n + 1)(3n + 1)
Rn−1(x)

+
4n(n− 1)2

3(3n − 1)(3n + 1)(n + 1)
Rn−2(x) if n is odd. (30)

The vectors of scalar products v
(n) = [(R0, Pn), (R1, Pn), . . . ] have only a finite number of nonzero

elements from (Rn, Pn) to (R2n+1, Pn).

v^{(0)} = [ 1 -1/2 0 0 0 0 0 ... ]

v^{(1)} = [ 0 7/72 -11/144 -1/40 0 0 0 0 ... ]

v^{(2)} = [ 0 0 647/25200 -3/175 -89/4900 -1/504 0 0 ... ]

5The floor ⌊x⌋ = the largest integer 6 x.
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Unfortunately, numerical stability for large n is poor, the amplification of the effects of rounding errors
is about 2n/2 after n steps. This may be related to the behavior of |Rn(x)| on [0, 1], increasing from 1 to
about 2n instead of keeping an approximately equal ripple, as orthogonal polynomials do.

Classical multiple orthogonal polynomials through the Sonine-Hahn criterium (the derivatives of the
polynomials being multiple orthogonal polynomials themselves) have been studied by Douak & Maroni
[25]. See also Van Assche & Coussement [106] for another approach.

7. About matrices in solid-state physics.

7.1. Matrix approximation of the Hamiltonian operator. A solid-state system is a stable arrange-
ment of atoms (whose positions are the sites) which may create, or at least amplify, interesting physical
phenomena, such as electrical conductivity and even superconductivity, magnetization. . . The description
of the behavior of such a system is achieved by a complex-valued function (called a wavefunction, which
will simply be denoted as a state hereafter) of the time variable and d space variables, with d = 1, 2, or 3
according to our present knowledge of the world. The measure of some physical properties (observables),
such as the magnetization, is the value of an appropriate linear functional or operator acting on the
current state. At any given time, the states are to be found in a subset of L2(Rd). This formidable set
of functions6 is often approximated by the set of linear combinations of a finite set of simple ”atomic
functions” with a small support around each site, quite similar to finite elements constructions.

A state is therefore a vector u of, say, N elements representing the relative weight of the sites in the
decomposition of the wavefunction. Actually, the state depends on the time t and satisfies the Schrödinger
equation

du(t)

dt
= − i

~
Hu(t), (31)

where H is a real symmetric matrix of order N approximating the relevant one-particle Hamiltonian
operator of the system. The (m,n) element of H describes the coupling of energy between sites m and
n (self-coupling if m = n). This coupling decreases fast if m and n are far apart, and one often considers
only nearby values (closest neighbor approximation, or tight-binding approximation see Economou’s book
[28, §5.2], also the first pages of Giannozzi & al. [43] and Haydock [49, 50]).
Consider for instance a one-dimensional chain of sites {. . . , xn−1, xn, xn+1, . . . } at distance xn+1−xn = ℓ
from each neighbor. If all the interactions between nearest neighbors are identical, we have

H =















. . .
. . .

. . .

α β α
α β α

α β α
. . .

. . .
. . .















(32)

In this case like in more realistic systems, the Hamiltonian operator is therefore represented by a huge
sparse symmetric matrix where each row is associated to a site and contains a small number of nonzero
elements corresponding to neighboring sites (tight-binding approximation).

When the Hamiltonian operator is independent of time, the Schrödinger equation (31) is solved by

u(t) = exp(−itH/~)u(0) =

∞
∑

r=0

(−itH)ru(0)

r!~r
, (33)

Starting with an initial state vector u(0).

Equation of motion method [49, §34]: we examine the diffusion of an electron initially localized on some
site, say the mth one, at x = xm, therefore described by a vector u(0) with a single nonzero element.

6And this is only for a single-electron operator, otherwise we should have to consider a power of L2(Rd).
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By applying the evolution operator (33) to this initial state, we have to look at the mth column of a
combination of powers of the matrix H .

On the one-dimensional example given by (32) when β = 0, the elements of the powers of H are
Laurent coefficients of the same powers of αz−1 + αz (symbol of a Toeplitz matrix [72, § 3 and 5]). So,

from the binomial theorem, the diagonal element of H
2r is

(

2r

r

)

α2r =
(2r)!

(r!)2
α2r and (33) is the Bessel

function

∞
∑

r=0

(−iαt)2r

(r!)2~2r
= J0(2αt/~) at the diagonal element n = m, in−mJn−m(2αt/~) [57, Chap. IX] at

the nth element of the lattice, or, with x = xm + (n −m)ℓ, and reinstating β through multiplication by

e−iβt/~,

u(t)n = e−iβt/~in−m J|xn−xm|/ℓ(2αt/~). (34)

See [96] for what seems to be similar calculations, perhaps in [97] too.

b b b b b b b b b

b

b b b b b b b b b b b b b b b b b bb b

b

b

b

b

b

b b
b

b

b

b

b

b

b

b

b

t = 0 t = ±0.5~/α t = ±1.2024~/α

Figure 1. Diffusion of a single site occupation in a one-dimensional lattice.

Fig. 1 shows absolute values of components of a state vector u(t)m−4, . . . ,u(t)m+4 at various time
values, starting with u(0)n = δn,m. The last time value is such that 2αt/~ = 2.404825 . . . , the first zero
of J0 [1, p. 409] [57, IX, Table 32a]. Only the values on the lattice are relevant, the linear interpolation
in Fig. 1 has no special meaning.

7.2. Density of states. We now apply (33), using the eigenvalues and eigenstates (Ep,v
(p)) of the

simplified Hamiltonian operator H . We now have

u(t) =
∑

p

exp(−itEp/~)(v(p),u(0)) v
(p), (35)

where (v(p),u(0)) is the usual (complex) scalar product of the two vectors v
(p) and u(0).

We consider the projection u(t)n on the nth site starting from the mth site, and rearrange the sum
∑

p exp(−itEp/~)v
(p)
m v

(p)
n , as

∫ b
a exp(−itE/~)dNm,n(E), where Nm,n(E) is a staircase function discon-

tinuous at each eigenvalue. When n = m, dNn,n(E) is the sum of the positive terms |v(p)
n |2 for the

eigenvalues Ep in an interval of length dE around E. The result nn,n(E)dE, where nn,n(E) is called the
(local) density of states.

By ”local”, it is meant that the result depends on the initial state u(0). If this state is concentrated on
a single site, or on a small number of neighbors, the resulting n(E)dE is obviously related to this starting
site. For perfect crystals, as investigated in subsection 7.4, there is only a small number of non equivalent
results. One often wants the average, or total, density of states of the whole system, and this asks for
the trace of (EI − H)−1. For perfect crystals, the average density of states is a weighted sum of a small
number of non equivalent local densities of states [49, § 23]. In the examples that will be considered in
§ 8, there is only one local density of states, therefore identical to the average one.
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In the example (32), the eigenvalues are Ep = β + 2α cos(pπ/N) if the matrix has N rows & columns;

normalized eigenvectors are v
(p)
n =

√

2/N sin(npπ/N) (average value of the sine squares is 1/2), see [46,
chap. 7], [49, §12] .
In our example, starting from the mth site, at x = xm = mℓ, (35) becomes at the nth site at time t

u(t)n = 2
∑

p

exp(−it[β + 2α cos(pπ/N)]/~) sin(mpπ/N) sin(npπ/N)/N

∼ (2/π)

∫ π

0
exp(−it(β + 2α cos θ)) sin(θxm/ℓ) sin(θxn/ℓ)dθ

(36)

when we let N → ∞ (continuous spectrum), with x = nℓ, θ = pπ/N .
If a = β − 2α < E < b = β + 2α, let E = β + 2α cos θE, then, between E and E + dE, there are

(N/π)|θE+dE − θE| eigenvalues, to multiply by the average of the squares of eigenvector elements, what

remains is π−1

∣

∣

∣

∣

arccos

(

E + dE − β

2α

)

− arccos

(

E − β

2α

)
∣

∣

∣

∣

≈ dE

π
√

4α2 − (E − β)2
.

Nobody indulges in such awkward ways! Instead, one considers the Green functions [28, 43, 48, 49,
50, 87]

Gm,n(x) =

∫ b

a

nm,n(t) dt

x− t
= ((xI − H)−1)m,n,

which, if m = n, have the properties of the Stieltjes functions of the first section!
In the example above, (36) becomes at x = nℓ,

u(t)n =
1

π

∫ π

0
exp(−it(β + 2α cos θ)/~)[cos(θ(xn − xm)/ℓ) − cos(θ(xn + xm)/ℓ)]dθ

= e−itβ/~ [im−nJn−m(−2αt/~) − im+nJn+m(−2αt/~)]

[1, §9.1.21] [89, §10.9.2], where we recover (34), considering that Jn+m → 0 when n and m are large: we
only consider x = xn close to xm.

7.3. The recursion (Lanczos) method. Let u
(0) be a state represented by a vector of R

N (only the
space variables are considered now), and µn = (u(0),Hn

u
(0)), where ( , ) is the usual scalar prod-

uct of R
N . From the expansion of u

(0) in the orthonormal set of eigenstates {v(p)} as seen above,

µn =
∑

pE
n
p |(u(0),v(p))|2 =

∫ b
a t

ndµ(t), where dµ(t) is the relevant density of states times dt. As H

is a very sparse matrix, the vectors H
n
u

(0) are easy to compute and they may be rearranged in an
orthonormal sequence u

(n) = pn(H)u(0) by linear algebra constructions. Of course, this means that

δm,n = (u(m),u(n)) = (pm(H)u(0), pn(H)u(0)) = (u(0), pm(H)pn(H)u(0)) (from symmetry of H) =
∫ b
a pm(t)pn(t)dµ(t), so pn = κnPn is the orthonormal polynomial of degree n with respect to dµ. There-

fore, from the recurrence relation tpn(t) = anpn−1(t) + bnpn(t) + an+1pn+1(t),Hpn(H) = anpn−1(H) +

bnpn(H) + an+1pn+1(H), or Hu
(n) = anu

(n−1) + bnu
(n) + an+1u

(n+1):

H [u(0) | u
(1) | u

(2) | · · · ] = [u(0) | u
(1) | u

(2) | · · · ]











b0 a1

a1 b1 a2

a2 b2 a3

. . .
. . .

. . .











, (37)

so that the Hamiltonian matrix and the tridiagonal matrix of the recurrence coefficients have the same
spectrum (should we be able to build N vectors u

(n)s). From u
(n−1) (if n > 0) and u

(n), one gets an

and bn by an = (u(n−1),Hu
(n)), bn = (u(n),Hu

(n)) [65] [39, § 3.1.7.1] [45, chap. 9]. For the biography of
Cornelius Lanczos (Kornél Löwy), see [88].

The recursion method has been, and still is, quite an inspiration in solid-state physics! [18, 36, 43,
49, 50, 51, 60]. The Hamiltonian operator of a given physical system is approximated by a matrix H as
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above, and a set of recurrence coefficients is produced by the Lanczos method. The features of the weight
function are then ”read” from the asymptotic behavior of these recurrence coefficients.

The reverse procedure is used here: from the known densities of states of model systems, the recurrence
coefficients are produced through modified moments, and asymptotic properties are investigated.

7.4. Perfect crystals. A perfect crystal is the repetition of a d−dimensional cell of atoms along d vectors
a1, . . . ,ad [83].

If there is a large but finite number of atomic positions (sites), the Hamiltonian operator is a large
matrix acting on a vector v(x1, . . . , xd) as Hv at the available site (x1, . . . , xd) =

∑

m hmv(x+δm), where
each δm is a vector relating x to one of its neighbors in its cell and neighboring cells. See the next section
for two examples.

Let us try a vector exp(ik · x) = exp(i(k1x1 + · · · + kdxd)). The product by H reproduces the same
vector times the scalar function h(k) =

∑

m hm exp(ik · δm) which are therefore the eigenvalues of H ,
for various real not equivalent vectors k (Brillouin zone [43, §4]), i.e., such that each k · δm ∈ [0, 2π) or
[−π, π). In mathematician’s lingo, h(k) is the symbol of the Toeplitz matrix H (Grenander & Szegő [47,
chap. 5,6, and notes of chap. 5])! More technically, H of a perfect crystal is a block-Toeplitz matrix
with a matrix symbol.

Assuming the eigenvalues to be distributed like the k−vectors (recall the simple 1D case where each k
such that sin(kNℓ) = 0 produces an eigenvalue), the number of eigenvalues less than some E is N times
the volume N (E) in the Brillouin zone of the k−vectors such that h(k) 6 E, and the Green function

of the average (total) density of states is trace((xI − H)−1) =
∑ 1

x− Ep
= N

∫

E=h(k)=t

dN (t)

x− t
=

N

∫

k∈B

|dk|
x− h(k)

with the Brillouin zone B.

So, there is no need to estimate numerically the density of states of a perfect crystal, as the job has been
done long ago. But recurrence coefficients found in this ideal case may be useful in later investigations
of realistic models of true physical systems.

8. Two famous 2-dimensional lattices.

8.1. The square lattice. The four vectors relating a site to its neighbors are (±ℓ, 0), (0,±ℓ), see fig. 2,
so that h(k1, k2) = 2 cos(k1ℓ) + 2 cos(k2ℓ) (multiplied by the relevant physical energy constant, and we
also ignore the multiplications by 2 and ℓ).

b b

b

b

b

x

−2 −1 0 1 2

Figure 2. Square lattice: nearest neighbors and density of states.

Then (Economou [28, §5.3.2]),
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S(x) = G0,0(x) = (π)−2

∫ π

0

∫ π

0

dk1 dk2

x− cos k1 − cos k2
=

2

πx
K

(

2

x

)

, (38)

where K(u) =

∫ π/2

0

dθ
√

1 − u2 sin2 θ
=

∫ 1

0

dr
√

(1 − r2)(1 − u2r2)
is the complete elliptic integral of the

first kind of modulus u (the (π)−2 factor is for convenience, so as to have S(x) ∼ 1/x for large x, unity
as total weight).

Indeed, we integrate in k2 for a given k1, seeing that the integral from 0 to π is half the integral

on the circle of
dζ/(iζ)

x− cos k1 − (ζ + 1/ζ)/2
, where ζ = exp(ik2), so π times the residue of −2/[ζ2 − 2(x −

cos k1)ζ+1] at the pole in the unit disk, and this residue is
1

√

(x− cos k1)2 − 1
, and

dk1
√

(x− cos k1)2 − 1
=

√
1 − α2 dξ

√

(1 − ξ2)[x+ 1 − α+ ((x+ 1)α− 1)ξ][x − 1 − α+ ((x− 1)α − 1)ξ]

if cos k1 =
ξ + α

1 + αξ
. If α is such that

(x+ 1)α− 1

x+ 1 − α
= −(x− 1)α− 1

x− 1 − α
, we find

dk1
√

(x− cos k1)2 − 1
=

α dξ
√

(1 − ξ2)(1 − α4ξ2)
when α+α−1 = x, so the result is 2απ−1

K(α2) =
2α

π(1 + α2)
K

(

2α

1 + α2

)

,

from the Gauss-Landen transformation formula (Borwein [10, §2.7],
Jahnke & Emde [57, chap. V, C, §2.2], NIST [89, §19.8]), whence the result (38).

When x is real outside [−2, 2], K has an argument in (−1, 1) in (38) and is real there. When x ∈

[−2, 2],
2

πx
K

(

2

x

)

=
1

π

∫ x/2

0

dr
√

(1 − r2)(x2/4 − r2)
± i

π

∫ 1

x/2

dr
√

(1 − r2)(r2 − x2/4)
=

sign x

π
K(x/2) ±

i

π
K(

√

1 − x2/4) so7, the weight function is [28, eq. 5.39]

w(x) = (1/π2)K(
√

1 − x2/4), −2 6 x 6 2. (39)

Near x = 0, using K(1 − ε) ∼ (1/2) log(8/ε) (from [1, 17.3.26] with m1 = 1 − (1 − ε)2), the density of

states has a (log(
√

32/|x|))/π2 behavior near the origin.
The power moments are the coefficients of the expansion of S(x) = µ0/x + µ1/x

2 + · · · . From the
known expansion of K [89, §19.5.1] etc., µ2n+1 = 0,

µ2n =

(

1 × 3 × · · · (2n − 1)

n!

)2

=
1

π

(

2n Γ(n+ 1/2)

Γ(n+ 1)

)2

= 1, 1, 9/4, 25/4, 1225/64, . . .

As the spectrum is [−2, 2] (the extreme values of cos k1 +cos k2), the Chebyshev moments are here the
moments of Tn(x/2) = 1, x/2, (x2 − 2)/2, (x3 − 3x)/2, (x4 − 4x2 + 2)/2, . . . , so ν0 = 1, ν2 = −1/2, ν4 =
1/8, ν6 = −1/8, . . . which must of course be computed in a sensible way, as they seem fortunately to be

much smaller than the µns. We need an expansion of S(x) in negative powers of z = x/2 +
√

x2/4 − 1,
from (16). By a stroke of luck, z = 1/α used in the proof of (38), so we return to an intermediate result

S(x) = 2/(πz)K(z−2) and apply (16) ν0 +
∞

∑

1

2νn

zn
=

2(z − z−1)

πz
K(z−2), whence ν0 = 1, ν2 = −1/2, and

ν4n = −ν4n+2 =
1

22n+1

(

1 × 3 × · · · (2n− 1)

n!

)2

, n = 1, 2, . . . (40)

It is then possible to compute tens of thousands recurrence coefficients with the algorithm of § 3.4. Some
of them are given in Table 8. As θc = π/2, we expect an −a∞ ≈ fn cos(nπ+ϕc) = (−1)nfn cosϕc. There
is also a 1/(8n2) Legendre-Jacobi contribution from the endpoints. After subtraction of this 1/(8n2),
the (−1)n behavior is clear on the 10 first items of the table. The amplitude fn of (17) being thought

7use the change of variable r2 = 1 − (1 − x2/4)s2 for the second integral.
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to decrease like 1/(n log n) from conjecture 5.2, we consider ρn = n log n(an − 1 − 1/(8n2)), the limit is
reached so slowly that values of ρn are shown on powers of 2. Assuming a A + B/ log n behavior, the
slope B is estimated from two successive values, and the limit A by ρn −B/ log n (Neville extrapolation).
With {a, b, c} = {−2, 2, 0}, the conjecture 5.2 expects the limit 1/2. A second degree extrapolation makes
this guess even more credible.

n an ρn extr1 slope extr2
1 1.000000000
2 1.118033989 0.1203081542
3 0.974679435 -0.1292279653
4 1.037456404 0.1643807059
5 0.983962900 -0.1692895338
6 1.020931612 0.1876981566
7 0.988501032 -0.1913801051
8 1.014170249 0.2032383673
9 0.991116578 -0.2061868767

10 1.010573403 0.2146792890
16 1.005830221 0.2369760223 0.338188987 (-0.280621925) 0.395424284
32 1.002516216 0.2655192494 0.379692157 (-0.395693147) 0.441946913
64 1.001117839 0.2894108176 0.408868658 (-0.496811193) 0.467221659

128 1.000505800 0.3093937275 0.429291186 (-0.581746101) 0.480347508
256 1.000231686 0.3261864584 0.443735575 (-0.651830709) 0.487068739
512 1.000107052 0.3404045226 0.454149035 (-0.709575197) 0.490596148

1024 1.000049789 0.3525479246 0.461838543 (-0.757544840) 0.492596572
2048 1.000023277 0.3630130761 0.467664590 (-0.797927924) 0.493881804
4096 1.000010930 0.3721112300 0.472190923 (-0.832439487) 0.494822587
8192 1.000005151 0.3800864351 0.475788896 (-0.862366588) 0.495577749

16384 1.000002435 0.3871307257 0.478706503 (-0.888656889) 0.496212143
32768 1.000001155 0.3933961897 0.481112684 (-0.912006619) 0.496752864

Table 8. Square lattice: values of an, ρn = n log n[an−1−1/(8n2)], limit after 1st degree
extrapolation, slope, and limit through 2nd degree extrapolation.

The graph of the weight function in Fig. 2 is established from ∓πw(x) = imaginary part of the limit of

S(x±εi) (Sokhotskyi-Plemelj [53, §14.1]) for x in the spectrum. S(x) is computed as
1

x− b0 −
a2

1

x− b1 −
. . .

which diverges on the spectrum. This problem is solved by replacing
a2

N

x− bN − a2
N+1

. . .

by
a2
∞

x− b∞ − a2
∞

. . .

=

a∞/z = [x − b∞ −
√

(x− a)(x− b)]/2 which has a well-defined imaginary part on the two sides of the
spectrum [a, b]. This is the termination method of Haydock & Nex [51, 87], and Lorentzen, Thron, and
Waadeland [20, 68, 102] going back to Wynn [112, 113]. Máté, Nevai, and Totik [78, 85] introduced the
use of Turán determinants p2

n(x) − pn−1(x)pn+1(x) as a way to recover the weight function when n is
large. Indeed, when (21a) applies,

[

pn(x) pn+1(x)
pn−1(x) pn(x)

]

≈ 1√
2π

[

−1 1
−z−1 z

] [

zn exp(λ(z−1)) 0
0 z−n exp(λ(z))

] [

−1 −z
1 z−1

]

,
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so that the determinant ≈ −(2π)−1(z − z−1)2 exp(λ(z−1) + λ(z))

= (2a2
∞π)−1

√

(x− a)(b− x)/w(x). The termination formula, and the Turán determinants formula are
extended to spectra of several intervals = formulas for limit p−periodic continued fractions with p > 1
[20, 68, 105]. Turán determinants are also used in unbounded supports cases [100].

Of course, the formulas (38) and (39) are considered too, the complete elliptic integral K is computed
by the AGM method [1, 10, 89].

8.2. Hexagonal lattice: graphene.

Graphene is a two-dimensional hexagonal arrangement of carbon atoms, of extreme importance in
theoretical and applied physics [16, 27, 59, 64].

One half of the sites (the ”A” sites) of the hexagonal arrangement of fig. 3 are related to their
neighbors through the three vectors (1/2 ±

√
3/2), (−1, 0), and these neighbors make the other half

(the ”B” sites) with (−1/2 ±
√

3/2), (1, 0) Horiguchi [54, §3], Katsnelson [59, §1.2], hA→B(k1, k2) =
2eik1/2 cos(k2

√
3/2) + e−ik1 , hB→A(k1, k2) = 2e−ik1/2 cos(k2

√
3/2) + eik1 .

b

b

b

bbc

bc

bc

bcA B

x

−3 −2 −1 0 1 2 3

Figure 3. Graphene: nearest neighbors and density of states.

Using a matrix symbol for a short while, we see that the Hamiltonian operator acts on a vector

exp(ik · x) where the A−sites and the B−sites are considered separately, as

[

0 hA→B(k)
hB→A(k) 0

]

, so

that the eigenvalues are E(ξ) = ±
√

hA→B(k)hB→A(k) = ±
√

4 cos2 ξ2 + 4cos ξ1 cos ξ2 + 1, where ξ1 =

3k1/2, ξ2 = k2

√
3/2, and the relevant Green function is

S(x) = G0,0(x) =
1

2π2

∫ π

0

∫ π

0

[

1

x− E(ξ)
+

1

x+ E(ξ)

]

dξ1dξ2

=
x

π2

∫ π

0

∫ π

0

dξ1dξ2
x2 − 4 cos2 ξ2 − 4 cos ξ1 cos ξ2 − 1

=

√
ux

π
K(u), where u =

x4 − 6x2 − 3 −
√

(x2 − 1)3(x2 − 9)

8x
.

(41)

The last formula [54] is established by a first integral in ξ1 = −i log ζ so that we integrate −idζ/[(x2 −
4 cos2 ξ2−1)ζ−2(ζ2+1) cos ξ2] on the unit circle, and we integrate the residue on ξ2 as

x

π

∫ π

0

dξ2
√

(x2 − 1 − 4 cos2 ξ2)2 − 16

=
2x

π

∫ π/2

0

dξ2
√

x4 − 6x2 + 1 − 4(x2 − 1) cos(2ξ2) + 4 cos2(2ξ)

=
x

π

∫ 1

−1

d cos(2ξ2)
√

[1 − cos2(2ξ2)][x4 − 6x2 + 1 − 4(x2 − 1) cos(2ξ2) + 4 cos2(2ξ2)]
.

As before, we change the variable cos(2ξ2) =
η + α

1 + αη
, resulting in
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x

π

∫ 1

−1

√
1 − α2 dη

√

[1 − η2][(x4 − 6x2 + 1)(1 + αη)2 − 4(x2 − 1)(1 + αη)(η + α) + 4(η + α)2]
.

We keep only even powers of η if α+ α−1 = (x2 − 5)/2, and we have then

αx

π
√

1 + 2α

∫ 1

−1

dη
√

[1 − η2][1 − u2η2]
, with u2 = α3 2 + α

1 + 2α
=

(

α(2 + α)

x

)2

=

(

α2x

1 + 2α

)2

. Note that

α = (
√
x2 − 1 −

√
x2 − 9)2/8 ∼ 2/x2 and u = (α+ 2α2)/x

= [x4 − 6x2 − 3 −
√

(x2 − 1)3(x2 − 9)]/(8x) = 8x/[x4 − 6x2 − 3 +
√

(x2 − 1)3(x2 − 9)] ∼ 4/x3 when x is
large.

The properties of the density of states in fig. 3 follow from the last line of (41) as we follow the
imaginary part of S(x− iε): u is nonreal when x ∈ (1, 3) and (−3,−1). For x between −1 and 1, u is real

but outside (−1, 1). Near x = 1, u = −1+ i(x−1)3/2 + · · · , K(u) ∼ log(4/
√

1 − u2) ∼ (−3/4) log |x−1|+
constant, [1, 17.3.26][57, chap. V, §C.1 and 3], S(x) ∼ −(3i)/(4π) log |x− 1|+ constant Near x = 3, the

limit imaginary part of K is π/4, so
√

3/4 = 0.433013... for S. Near x = 0, u ∼ −3/(4x), K(u) ∼ π/(2u)
(from the Gauss-Landen formula seen above), and Im(S(x)) ∼ |x|/

√
3.

Check of first power moments: µn is the constant Fourier coefficient of the power (4 cos2 ξ2+4cos ξ1 cos ξ2+

1)n, S(x) =
1

x
+

3

x3
+

15

x5
+

93

x7
+

639

x9
+ . . . =

1
x

− 3
x

− 2
x

− 3
x

− 5/3
x

− 44/15
x

− 393/220
x

−· · · The

Chebyshev moments are the moments of Tn(x/3) = 1, x/3, 2x2/9− 1, 4x3/27− x, 8x4/81− 8x2/9 + 1, . . .
as the spectrum is [−3, 3] (extreme real values of ± the square root of 4 cos2 ξ2 + 4cos ξ1 cos ξ2 + 1 =
(cos ξ1 + 2cos ξ2)

2 + sin2 ξ1), so ν0 = 1, ν2 = −1/3, ν4 = −5/27, . . . More instances are ν6 = 47/243, ν8 =
−167/729, ν10 = 1013/6561.

From (16), ν0/2 and νn, n > 0,= the coefficients of z−n of

3(z − z−1)

4
S

(

x =
3(z + z−1)

2

)

=
3(z − z−1)

4

[

2

3(z + z−1)
+ 3

(

2

3(z + z−1)

)3

+ · · ·
]

=
1

2
− 1

3z
+ · · ·

How to compute accurately a very large set of these coefficients? A recurrence relation is an invaluable
tool for efficient and economical computation of a sequence. Of course, one must be lucky, or clever,
enough to find such a relation. For instance, Piessens & al. [91, 92], Milovanović & Cvetković [82] find
recurrence relations for examples of Chebyshev modified moments.

An important family of recurrence relations is found for sequences of Taylor (or Laurent, or Frobenius)
coefficients of solutions of linear differential equations with rational coefficients (Laplace method, see
Milne-Thomson [81, chap. 15], Bender & Orszag [9, § 3.2, 3.3], Andrews & al. [2, App. F]). Let

F (x) =
∑∞

0 cnx
n be a solution of the differential equation

∑δ
m=0Xm(x)dmF (x)/dxm =

∑∞
0 αnx

n,

where Xm(x) is the polynomial
∑d

p=0 χm,px
p, and where the right-hand side is a known expansion.

Then, substituting the unknown expansion
∑

crx
r of F (x) into the differential equation,

∑δ
m=0Xm(x)[

∑∞
r=m r(r − 1) · · · (r −m + 1)crx

r−m] =
∑∞

0 αnx
n, and we gather the terms contributing

to the xn power:
∑δ

m=0

∑d
p=0 χm,p(n +m− p)(n +m− p− 1) · · · (n − p− 1)cn+m−p = αn,

n = 0, 1, . . . , which is the sought recurrence relation involving cn+δ, . . . , cn−d. Chebyshev expansions
themselves are considered by Fox & Parker [35, Chap. 5], Paszkowski [90], see also the ’Chebfun’ package
[26].

We apply this programme to the coefficients of the expansion

3(z − z−1)S(x)/4 = 3(z − z−1)
√
uxK(u)/(4π) =

ν0

2
+

∞
∑

n=1

ν2n

z2n
(42)

where u is the algebraic function
x4 − 6x2 − 3 −

√

(x2 − 1)3(x2 − 9)

8x
, and where x = 3(z + 1/z)/2.
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First, u(1 − u2)d2
K/du2 + (1 − 3u2)dK/du − uK = 0 [89, § 19.4.8] turns into the more beautiful

d2(
√
uK)

du2
− 2

u

1 − u2

d(
√
uK)

du
+

√
uK

4u2
= 0.

Next, u is the root of u + 1/u = (x4 − 6x2 − 3)/(4x) behaving as 4/x3 for large x, we translate in z
from x = 3(z + 1/z)/2, leading to the rather formidable

u±1 =
27z4 + 36z2 + 2 + 36z−2 + 27z−4 ∓ (z − z−1)(9z2 + 14 + 9z−2)3/2

64(z + z−1)
(43)

So, we differentiate u+ u−1 =
27z4 + 36z2 + 2 + 36z−2 + 27z−4

32(z + z−1)
as

(1 − u−2)du =
81z5 + 171z3 + 106z − 106z−1 − 171z−3 − 81z−5

32z(z + z−1)2
dz, or

du

u dz
=

(z2 − 1)(9z2 + 14 + 9/z2)2

32(z2 + 1)2(u− u−1)
= −(9z2 + 14 + 9/z2)1/2

z2 + 1
, (44)

which is already better looking than before, and we build the differential equation for
√
uK in the

slightly modified form u
d

du

[

u
d
√
uK(u)

du

]

− u+ u−1

u− u−1
u
d
√
uK(u)

du
+

√
uK(u)

4
= 0 with respect to the

variable z:

z2 + 1

(9z2 + 14 + 9/z2)1/2

d

dz

[

z2 + 1

(9z2 + 14 + 9/z2)1/2

d
√
uK

dz

]

+
27z4 + 36z2 + 2 + 36z−2 + 27z−4

(z − z−1)(9z2 + 14 + 9/z2)3/2

z2 + 1

(9z2 + 14 + 9/z2)1/2

d
√
uK

dz
+

√
uK

4
= 0.

Finally, we turn to the full function of (16) and (41), say F (z) = (z − z−1)S(x) = constant times

(z − z−1)
√
uxK(u) by substituting

√
uK(u) into constant (z − z−1)−1(z + z−1)−1/2S

z2 + 1

(9z2 + 14 + 9/z2)1/2

d

dz

[

z2 + 1

(9z2 + 14 + 9/z2)1/2

d(z − z−1)−1(z + z−1)−1/2F

dz

]

+
(z2 + 1)(27z4 + 36z2 + 2 + 36z−2 + 27z−4)

(z − z−1)(9z2 + 14 + 9/z2)2
d(z − z−1)−1(z + z−1)−1/2F

dz

+
(z − z−1)−1(z + z−1)−1/2F

4
= 0, so

(z2 + 1)2(9z2 + 14 + 9z−2)(z − z−1)2d2F/dz2

+ (z2 + 1)(9z4 − 14z2 − 72 − 42z−2 − 9z−4)(z − z−1)dF/dz

+ 8(3z4 + 18z2 + 22 + 18z−2 + 3z−4)F = 0

Now, put F (z) = ν0/2 +
∑∞

1

ν2n

z2n
in the differential equation (9z8 + 14z6 − 9z4 − 28z2 − 9 + 14z−2 +

9z−4)
∑

2n(2n+1)ν2nz
−2n−2−(9z7−14z5−81z3−28z+63z−1 +42z−3 +9z−5)

∑

2nν2nz
−2n−1 +8(3z4 +

18z2 + 22 + 18z−2 + 3z−4)[ν0/2 +
∑

ν2nz
−2n] = 0, and consider the contributions to z−2n

9(n + 3)2ν2n+6 + 2(7n2 + 35n+ 45)ν2n+4 − 9(n2 − 2n− 7)ν2n+2 − 4(7n2 − 11)ν2n

− 9(n2 + 2n− 7)ν2n−2 + 2(7n2 − 35n + 45)ν2n−4 + 9(n− 3)2ν2n−6 = 0, n = 0, 1, . . . (45)
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starting at n = −2 with ν0 = 1/2 (which is actually ν0/2) and νn = 0 for n < 0 (the ν0/2 anomaly can be
relieved if we define ν−n = νn, remark indeed that the coefficient of ν2n+k is the coefficient of ν2n−k with
n→ −n). The next items are −1/3,−5/27, 47/243,−167/729, 1013/6561, . . . as already seen before, but
the recurrence relation (45) allows now to compute incredibly easily any number of these coefficients, one
could get one million of them if needed!

Actual computation of a large number of moments by using (45) in the obvious way may lead to
numerical disaster, should the wanted solution ν2n be dominated by another solution, say, ω2n of the
same recurrence (45), i.e., if ν2n/ω2n → 0 when n→ ∞ [110, § 2.6]. Numerical approximations of starting
values ν0, etc. lead to the actual production of some combination ν2n + εω2n and this becomes hopeless
for large n, however small ε is. As the starting values are rational numbers in our case, computations
with rational numbers avoid the problem, but calculations are space and time consuming for large n.
See also the discussions of minimal solutions by Gautschi [38], and in the preface8 of Abramowitz and
Stegun’s handbook [1].

Any solution ω2n of the seven terms recurrence relation (45) can be investigated through its generating
function G(z) satisfying the same differential equation as the equation for F (z) seen above. This equation

has singular points at ±1,±i, and (−7±4
√

2 i)/9 = exp(±iθc), all of them on the unit circle. The Taylor
expansion of G has therefore a unit convergence radius, and all the solutions ω2n have a less than
exponential growth. This can also be seen through contour integral formulas for the Taylor coefficients
(Laplace’s method, [81, chap. XV]). More details can be found from asymptotic estimation of integrals
[9, chap. 6].

n an ρn slope extrap. ϕ/π ρn−1/ρn

1 1.732050807568877 0
2 1.414213562373095 0.33595
3 1.732050807568877 -0.12782
4 1.290994448735806 -0.18423
5 1.712697677155351 0.44419
6 1.336549152243806 -0.46936
7 1.628436152438179 0.23792
8 1.419330149577324 0.16886
9 1.556750628851699 -0.57145

10 1.460678158360451 0.77835
11 1.544107839921112 -0.67587
12 1.448901939699682 0.30117
13 1.564500085917823 0.19001
14 1.431783794658055 -0.57642
15 1.567701045607340 0.68518

135 1.507049663059332 0.98260 (0) 0.98260 0.7932 -0.7722
1383 1.500654249446685 1.11873 (-2.07548) 1.40571 0.7922 -0.7751
2007 1.500299317783996 -1.13581 (-2.11734) 1.41425 0.7918 -0.7767
4087 1.500149457578103 -1.15763 (-2.09351) 1.40939 0.7902 -0.7795
8210 1.499924544322330 1.17608 (-2.08240) 1.40713 0.7920 -0.7760

16077 1.500038998496210 -1.19159 (-2.07718) 1.40606 0.7910 -0.7780
34062 1.499974587460581 -1.20647 (-2.07210) 1.40503 0.7920 -0.7757
61370 1.499985980208882 -1.21710 (-2.07231) 1.40507 0.7910 -0.7778

Table 9. Graphene: values of n, an, ρn = n log n[an − 3/2 + (3/4)(−1)n/n − (3/16)/n2],
(slope), extrap., ϕ/π, ρn−1/ρn.

8Masterpieces deserve to be read entirely, including the preface!
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The main asymptotic behavior of our own νn follows from S(x) ∼ −(3i)/(4π) log |x − 1|+ con-
stant near x = ±1, seen above, so, near z = ±z±1

0 = ± exp(±iθ0), where cos θ0 = 1/3, z0 = (1 +

2i
√

2)/3, from (16): (6/8)(z − 1/z)S(x) ∼ ±(3
√

2/4π) log(z ± z±1
0 ) whence νn = 0 when n is odd,

νn ∼ 2
3
√

2

4π

zn
0 + z−n

0

n
=

3
√

2 cos(nθ0)

πn
when n is even. For instance, ν1000000 = −0.2197681875531559 10−6

and (3
√

2/π) cos(106θ0) = −0.2197654658865520.
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Figure 4. Graphene: 100 first ρn = n log n[an − 3/2 + (3/4)(−1)n/n− (3/16)/n2] .

Do we really need the recursion method? The plain Chebyshev, or Fourier, coefficients are already so
efficient that they can be preferred, as discussed by Weisse & al. [108, §V.B.2, Table II]. See also Prevost
[93] on weight reconstruction with Chebyshev moments.

Anyhow, computing recurrence coefficients from modified moments yields the main behavior an →
a∞ = (b−a)/4 = 1.5 as expected from (8). The next correction is given by the |x|α behavior near x = 0,
with α = 1, and is an ∼ a∞ − ((b− a) cos(nπ)|α|)/(8n) = 1.5− 0.75(−1)n/n. The Jacobi-Legendre effect
of the endpoints ±3 is (b−a)/(32n2) = 3/(16n2). The remaining behavior times n log n believed to be the
right factor ρn = n log n[an−1.5+0.75(−1)n/n−0.1875/n2] is shown in table 9, and is expected to behave
like a constant times cos(2nθc+ϕc). Starting with a large index (here, 135), only crest values are retained,
i.e., such that 2nθc + ϕc happens to be very close to an integer multiple of π. The neighboring values
ρn−1 and ρn+1 are then very close together, that’s how the interesting values of n are selected. Moreover,
the almost common value of ρn−1/ρn and ρn+1/ρn must then be almost cos(2θc) = −7/9 = −0.7777 . . . ,
checked in the last column of table 9 (the first approximated crest is at n = 10, see also Fig. 4), whereas
ϕ/π is estimated through the fractional part of 2nθc/π for these very particular values of n, of which
only those in approximate geometric progression have been selected, in the hope to have a better view
of the limit of |ρn|. Although the phase ϕ is very stable, the evolution of |ρn| towards its limit is again
excruciatingly slow. An approximate law A+B/ log n is again assumed with the slope B estimated from
two successive values, and A as |ρn|−B/ log n (extrapolated value). With two contributions at ±1 in the

spectrum [−3, 3], the formula from 5.2 amounts to expecting
√

2 = 1.414 . . . which is neither close nor
far from the numerical estimate 1.405 . . .

The first 69999 recurrence coefficients a1, . . . , a69999 are given in the file
http://perso.uclouvain.be/alphonse.magnus/graphene69999.txt

of size about 2M, with a precision of 25 digits, in the following format:

1.7320508075688772935274463,

1.4142135623730950488016887,

1.7320508075688772935274463,

1.2909944487358056283930885,

http://perso.uclouvain.be/alphonse.magnus/graphene69999.txt
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1.7126976771553505360155865,

...

1.4999899549568860858094207,

1.5000093070617496121273346,
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[33] A. Foulquié Moreno, A. Mart́ınez-Finkelshtein, V.L. Sousa, On a conjecture of A. Magnus concerning the asymptotic

behavior of the recurrence coefficients of the generalized Jacobi polynomials, J. Approx. Theory 162 (2010) 807-831.
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