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Preface

These course notes are the result of an algebraic multigrid course for graduate and
PhD students at the Universitit Heidelberg, Germany, in the Wintersemester 98/99.
The intention of the course was to give the students enough familiarity with algebraic
multigrid methods so that they can understand and apply those methods and are
maybe able to conduct their own research in this field.

The discussed algebraic multigrid approaches are classified into several groups. One
or two representatives of these groups are analyzed in detail, while the other mem-
bers of these classes are briefly summarized. Theoretical and numerical results are
presented. Since I did not compute my own numerical experiments, I relied on the
results presented in the corresponding papers.

The selection of the algorithms is not assumed to be complete and does not induce
any rating of the performance of algebraic multigrid methods. Any rating of the
methods discussed in the course notes is avoided. Moreover, I believe that for each
method a problem can be found where it outperforms all other algebraic multigrid
schemes. I hope that after studying this monograph, the reader is able to decide by
himself which algorithm might be best suited for his particular task.

Special thanks are due to the students participating in the course. Their interest in
algebraic multigrid was the main motivation for me to write down these notes.

Please let me know about any errors in the presentation, missing algebraic multi-
grid approaches or papers which should be included in these course notes or in
a future algebraic multigrid course. Feel free to email your remarks, your opin-
ion, any correction, the descriptions of missing algorithm, or missing references to
Christian.Wagner@IWR.Uni-Heidelberg.de.

The course notes can be downloaded free of charge from my homepage
www.iwr.uni-heidelberg.de/iwr/techsim/chris. They shall be used for non-
commercial purposes only.

Heidelberg, January 1999 Christian Wagner
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1 Introduction

1.1 Definitions and Notations

In these course notes, the Euclidean scalar product is denoted by
n
(u,v)2 = Zuivi, u,v € R,
i=1
DEFINITION 1.1.1 A symmetric matriz A = AT € R™™ s positive definite (spd) if

(u,Au)a >0 Vu#0.

A spd matrix A induces the scalar product
(U,U)A = (uaAU)Q'

The Euclidean norm of a vector u € R” is denoted by

[ull2 = v/ (u, u)2- (1.1.1)

Other norms are given by

lulla = V(u,u)a, Aspd, (1.1.2)
n

lully = > fudl, (1.1.3)
=1

|e)loec = max |uy- (1.1.4)
i<n
If A is the result of a discretization of a second order differential equation, the scalar
product (-,-)4 and the corresponding norm || - || 4 are called energy scalar product
and energy norm.

DEFINITION 1.1.2 The matriz norm ||-|| associated to the vector norm ||-|| is defined
by

Au
14 = sup AU

, AeR""
uER™ u#£0 ||u||
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Definition 1.1.2 implies the inequality
IAB|| < [[AllllB]l-
DEFINITION 1.1.3 Let o(A) denote the spectrum of A
o(A) ={ X e C|\ is eigenvalue of A}.
Then, the spectral radius p(A) is defined by

A) = A
p(A) Arenaag)l |

The matrix norm bounds the spectral radius
p(A) < [|A].

The matrix norms associated to the vector norms in (1.1.1)-(1.1.4) are

[Allz = /p(AT A),

lAlz = IBY2AB '?|l5, B spd,
1Al = mgngai,jI,
I= i<n
lllo = max3_lail
j<n

The inequality A < B, A, B € R"*™ is always used as elementwise inequality, which
means

A < B & a;<b;Vi,j
A < B & ai;<b;Vij.
DEFINITION 1.1.4 The matriz A is called M-matriz if
(a) a;; >0 Vi,
(b) ai; <0 Vi#j,
(c) A=t >0.

REMARK 1.1.1 If an irreducible matriz A (see e.g. [Hackbusch 1993; Hackbusch
1994]) fulfills the conditions (a) and (b) in Definition 1.1.4 and

aii > Y laig| Vi

J7i

aii >y |ai|
JF#i
for at least one i, then A is an M-matriz.

and

A lot of other criterions for M-matrices are summarized in [Berman and Plemmons
1979].
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1.2 Linear Systems and Graphs

We consider linear systems of equations resulting from a discretization of an elliptic
second order partial differential equation

V- (D(z) Vu(z) + v(z)u(z)) —o(z)u(z) = f(z), z€Q, (1.2.1)
u(z) = g(z), zelp,
Vu(z) -n = blz), z€Tlp,

where Q C R, Tp,T'y C R, D(z) : Q = R4 y(z) : Q — RE, u(z),0(x), f(z) :
Q>R g(z):T'p—>R,and b(z) : 'y - R

Finite element (see e.g. [Braess 1997]), finite volume (see e.g. [Hackbusch 1989;
Schneider and Raw 1987]) or finite difference discretizations (see e.g. [Hackbusch
1989]) of (1.2.1) lead to a sparse system of linear equations.

For example, a finite difference discretization of the one-dimensional model problem

—u"(z) = f(z), 2€Q=(0,1),
u(z) = 0, zeIp=4{01},

on the uniform grid

Qh:{wieﬂmi:ih,z':l,...,n,h:n+1} (1.2.2)
yields the linear system
Au=f, AeRY™ u feR",
2 -1
-1 2 -1
A= , fi= 0 f(=i).
-1 2 -1
-1 2

The finite difference discretization of the two-dimensional model problem,

—Au(z) = f(z), z€Q=(0,1) x(0,1), (1.2.3)
u(z) = 0, zelp=09,

on the uniform grid

L . 1
Qh:{$(l,]) EQ|$(Z,]) :(Zh’7]h)’ i,j=1,...,n, h= n+1}

with a lexicographic numbering (see e.g. [Hackbusch 1993; Hackbusch 1994]) of the
grid points generates the linear system

Au= fa Ae R’n-nxn-n’ uaf € Rn-n’ .f(z,]) = h2 f(‘T(Z,]))
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with the system matrix

z I, 4 1
I, Z —I, 1 4 -1

I, Z —I, 1 4 -1
_1, Z 1 4
(1.2.4)
(Z € R*™*™). I, denotes the n x n identity matrix. The matrix A in (1.2.4) can be
written in stencil notation (see e.g. [Hackbusch 1993; Hackbusch 1994)) as

-1
A= -1 4 -1|. (1.2.5)

A sparse matrix A is always connected with a graph G4(V, E). In the remainder
of this section, some definitions from graph theory are summarized. The interested
reader is referred to [George and Liu 1981] for a more complete introduction.

DEFINITION 1.2.1 Corresponding to a sparse nXxn matriz A with symmetric sparsity
pattern (i.e. a;j # 0 & aj; # 0), let GA(V, E) be the graph that consists of a set
V ={v1,...vn} of n ordered vertices (nodes, unknowns), and a set of edges E such
that the edge e; ; € E exists (connecting v; and v;) if and only if a; ; # 0, i # j.

For a vertex v;, the set of neighbor vertices N; is defined by
N; = {’Uj € V|6i,]' € E}

|N| denotes the number of elements in the set N. The degree of a vertex deg(v;) =
|N;| is just the size of Nj.

The restriction to matrices with symmetric sparsity pattern does not cause any loss
of generality. It is only a condition for the sparse matrix data structure (in the
computer code), which must guarantee that a;; is stored if a;; is stored even if
aji = 0.

As an example case, Figure 1.1 shows the graph G 4(V, E) of the matrix
4 -1 -1 0
-1 4 0 -1
A= 700 4 1| (1.2.6)
0 -1 -1 4

1.3 The Linear Iteration Scheme

In these course notes, the construction of efficient approximate inverses M for the
linear iteration scheme

w0 = 4@ ¢ M(f — Au®) (1.3.1)
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V3 V4
Figure 1.1: The graph of the matrix (1.2.6).

is discussed. These approximate inverses are in general good preconditioners for
conjugate gradient type Krylov subspace methods as well (see e.g. [Golub and van
Loan 1983; Hackbusch 1993; Hackbusch 1994; Barrett et al. 1994]).

The iteration matrix
T=I-M14

describes the propagation of the error e = u — u(®

) — e,

The sequence u(") converges towards the solution u of the linear system Au = f if
and only if
p(T) < 1.

The spectral radius p(T') of the iteration matrix describes the convergence rate of
the linear iteration. For M and A spd, the error reduction of the conjugate gradient

method is given by
k(M—1A) -1

VEM-TA)+1

k(B) = ||B|| ||B~!|| is called condition of B.

le V]| < le@].

Finally, two simple convergence results should be mentioned.

LEMMA 1.3.1 Let A be spd and M be given such that the error matrix N = M — A is
symmetric and positive semi-definite. Then, the energy norm of the iteration matriz
T =1— M~'A is bounded by

ITla <1,

PROOF. See [Hackbusch 1994], Remark 4.8.3. ]
The following definition of a regular splitting was introduced in [Varga 1962].

DEFINITION 1.3.1 The matriz M describes a regular splitting A= M — N of A, if

M is regular,
M 1>0, and N >0.
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LEMMA 1.3.2 Let A with A~' > 0 and a regular splitting A = M — N be given.
Then, the spectral radius of the iteration matriz T = I — M~1 A is given by

p(T) = oA N)

__pa B
PATN)+1°

PROOF. See [Varga 1962; Hackbusch 1993; Hackbusch 1994]. O
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2 Standard Multigrid Methods

The first multigrid method has been introduced by Fedorenko in 1961 [Fedorenko
1961]. Their actual efficiency was first realized by Brandt [Brandt 1973] and applied
to a large class of problems. In 1976, independent of this development, Hackbusch
introduced multigrid methods [Hackbusch 1976].

2.1 Smoothers

The development of multigrid methods started with a detailed analysis of classic
iterative methods for the solution of a linear system of equations

Au=f
like the Jacobi, the GauB-Seidel or the ILU scheme:

W) = L (f = A,
M = D (Jacobi),
M = D+ L (GauB-Seidel),
M = (D+LDYD+U) (ILU)

(A= D+ L+ U, where L (U) is a strict lower (upper) triangular matrix).

It is easy to check that these methods reduce only the high frequency error compo-
nents. Hence, instead of reducing the error (V) = u—u(®, they actually only smooth
the error (see Figure 2.1). Therefore, these methods are called smoothers.

For a quantitative analysis of the damped Jacobi iteration
W) =@ L DN - Au), w<1,

note that the eigenvectors e(*#) of A and S = I —w D~ 'A for the five point stencil
(1.2.4) are

eg’f)) = sin(nvhi) sin(rphj), v,u=1,...,n. (2.1.1)
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©)
1)
e

Figure 2.1: The smoothing effect.

The corresponding eigenvalues A(*#)(A) and A(*#)(S) of A and S are

AP (A) = 4 —2cos(mvh) — 2cos(mph), (2.1.2)
AVH(S) = 1 —w—0.5w(cos(mvh) + cos(muh)).

Figure 2.2 shows A##)(S) for two values of w. Hence, the low frequency error com-
ponents are only slowly reduced by a damped Jacobi iteration. Similar results can
be shown for the GaufB-Seidel and the ILU-Iteration (see e.g. [Briggs 1987; Hack-
busch 1985]). A similar analysis and a detailed introduction to standard multigrid
methods can be found in [Wesseling 1992].

w=1/2 —
w=2/3 -

Figure 2.2: Spectrum of the damped Jacobi iteration (h = 1/64).

Therefore, after a couple of smoothing steps, a smooth correction must be added
to the approximate solution. The idea of the multigrid methods is to compute the
smooth correction vy on a coarser grid and interpolate the correction on the fine
grid

wltD) = 4 + Pog.
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The coarse grid correction vy is the solution of a linear system Ay vy = dg on a
coarse grid Qp.

2.2 Prolongation and Restriction

Let two uniform one-dimensional grids p and Qg (1.2.2) with H = 2h be given.
Then, a linear interpolation (prolongation) P from a coarse grid vector uy € R"#
to the fine grid vector up € R™ , n;, = 2ng + 1, is defined by

(uh)l = (PUH)l =0.5 (UH)I,
(uh)nh = (PUH)nh =05 (UH)nHa

_ (P ) (un)i : deven A i=2,...,n—1,
(un)i = (Pus)i =4 0.5 ((up) izt + (wum)igs) : iodd A i=3,...,n—2

(see Figure 2.3).

Figure 2.3: One-dimensional prolongation.

A linear interpolation for a two-dimensional grid is illustrated in Figure 2.4. In the
Example shown in Figure 2.4, the components (up)(2,2), (un)(3,3), (un)(3,4) of the fine
grid vector up = Pupg are computed according to

(un)22) = 0.5[(um)u) + (um)e)l;
(un)z3) = (um)(22)
(un)34y = 0.5[(um)e2) + (vm)e;3) |-

The linear interpolation can be written in stencil notation as
0 1/2 1/2

P=|1/2 1 1/2
1/2 1/2 0
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2) 3) 3,4)
2) 2.3)
1,1)
1 1/2 1/2
1/2
1/2
2.2 H(2,3)
(1,2)

Figure 2.4: Two-dimensional prolongation.

A bilinear interpolation is given by

1/4 1/2 1/4
P=1]1/2 1 1)2
1/4 1/2 1/4

Interpolatory prolongations in three spatial dimensions are straightforward. Stan-
dard refinement techniques make sure, that each fine grid unknown can be linearly
interpolated using two coarse grid nodes. Therefore, linear prolongation operators
can be constructed on a hierarchy of regularly refined arbitrary finite element meshes.

Since a correction vy has to be calculated, the right hand side dy for the equation on
the coarse grid is the result of a restriction of the fine grid residual d, = f, — Ay, ugf)
to the coarse grid. The most simple restriction Rj,; is just to take the values of
the residual at the corresponding fine grid nodes for the coarse grid right hand side.

This means for the one-dimensional example in Subsection 2.2
(di)i = (Rinj dp); = (dn)2:-
The standard restriction is the adjoined operator of the prolongation

R=pP = (L dPT. 2.2.1
(%) (2.2.1)

The factor (%)d reflects the different dimensions of the fine and coarse grid spaces.
This leads for the one-dimensional example in Section 2.2 to

(dr)i = (Rdy)i = 0.5[0.5(dp)2i—1 + (dp)2: + 0.5 (dn)2i41],
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Figure 2.5: One-dimensional restriction.

(see Figure 2.5).

For the two-dimensional example in Figure 2.4, we get for (du)(2,2)

(du)22) = (Rdn)22) = 1/4[0.5(dn)(2,2) +0.5(dn)(2,3) + 0.5 (dn)(3,2)
+0.5 (dn) (3,4 + 0.5 (dp)(a,3) + 0.5 (dn) (a,4) + (dn)(3,3)]-

2.3 The Multigrid Algorithm

In general, there are two possibilities for the choice of the matrix Ay on the coarse
grid. One option is to discretize the partial differential equation on the coarse grid
with the same method which has been applied on the fine grid.

The second possibility
Ag=RA, P

is called Galerkin approximation. For some discretizations, these two options are
equivalent.

The combination of a smoothing procedure and a coarse grid correction leads to the
two-grid method. The smoothing procedure S”(uy, fx) returns an improved solution
for the right hand side f} starting with u; and computing v steps.

ALGORITHM 2.3.1 Let two grids Qp, D Qg, prolongation and restriction operators
P, R between these grids, matrices Ay, = A, Ay, and a smoothing iteration S be
given. Then, the algorithm TGM(uy, fr) defines the approximate inverse MrEéM for
the two grid method.

TGM (up, fr)
{
up = S (Uh, fn);
dg = R(fn— Apun);
vg = A;JI dy;
up = up + Pog;



18 Introduction

up = S (un, fn);

Since the exact solution of the coarse grid system Ag v, = dg in Algorithm 2.3.1 is
usually still very time consuming, it is recursively replaced by vy two-grid iteration
steps. This yields the multigrid algorithm.

ALGORITHM 2.3.2 Let a hierarchy of grids Qo C 4 C --- C ..., prolongation and
restriction operators Pjj_1, Rj_1; between these grids, matrices A; and smoothing
iterations Sy on these grids be given. Then, the algorithm MGM(uy,,. , fi,.xs lmax)
defines the approzimate inverse MI\Z%;M on the finest grid €, .

MGM(U’Z’ fla D

{
if(1=0) w=A4]"fi;
else

{

up = S (uy, fi) ;
di—1=Ri—1,(fi —Ajw);
v1 =03

for(j=0; j<v; j=4+1) MGM(v;_1,d;_1,0 —1);
w=u+ Py 19 1;
u = S (uy, f1) ;

For v = 1 or v = 2, the method is called V(v1,14)-cycle or W(vy,v5)-cycle respec-
tively. For a 4-level method, Figure 2.6 shows the order in which the grids are visited
for v =1 and v = 2. A dot represents a smoothing operation. The grid transfer
operators are symbolized by lines.

RO

Figure 2.6: V- and W-cycle.

w

N

[EY

o
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2.4 Numerical Complexity and Storage Requirement

We can assume, that the number of unknowns n; on each level €2; and the storage
requirement s; on each level are bounded by

ny < Qlmax—lp, N =N, U< 1,

and
35 < Csmy.

For uniform grids, ¢ is approximately given by 9 ~ (1/2)¢, where d denotes the
spatial dimension. The storage requirement s;_, for the multigrid method can
therefore be estimated by

Imax Imax 1— ﬁlmax+1
o= 35 < Oon 3 et = o L

Let w; < Cy ny be the computational work on level [ aside from the work for the
coarse grid correction. The numerical complexity w; of a multigrid method starting
on level [ is then bounded by

wy < Wy +ywpq-

This yields

l l

max ~ _ max _ 1 _ 197 Imax+1
i € ST < Gy 3 9o = G ST

=0 =0

Hence, for an efficient method, ¥ - v < 1 is required.

Due to the computation of an exact solution on the coarsest grid, the constant C,, is
determined by the coarsest grid. Hence, a better estimate can be obtained by using
a different constant CO, for the coarsest grid which, then, allows a smaller constant
C,, for all other grids.

2.5 Convergence Theory

The classic multigrid convergence theory by Hackbusch [Hackbusch 1985] is based
on a splitting of the iteration matrix

Trig =8I —Py1 A7 Ri—1,A) S}

of the two-level method (Algorithm 2.3.2) . Assuming v, = 0, v; = v, the norm of
Trr,,; is bounded by

ITreall < 14" = Pt A7y Bieyall 14 S7 -
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The conditions

| A4; 87|
147" = Pya A7 Ri

Csn(v)h™®, n(v) = 0asv— oo,

<
< Cuah”

leading to
|Trr,ll < CaCsn(v)

are called smoothing property and approximation property. The smoothing prop-
erty measures the performance of the smoother S; and can be analyzed with linear
algebra techniques only. The approximation property describes the quality of the
approximation of the differential operator by the coarse grid matrix A; ;. The in-
vestigation of the approximation property is e.g. based on results from the finite
element theory.

The proof of the approximation property requires that the transfer operators P and
R satisfy certain conditions. Let mp and mp denote the highest degree plus one of
the polynomials that are exactly interpolated by P and R* (see (2.2.1)). Hackbusch
[Hackbusch 1985] deduces the following simple condition for the orders mp and mpg
of the transfer operators

mp +mpg > 2m, (2.5.1)

where 2m is the order of the differential operator. The necessity of (2.5.1) is shown
in [Hemker 1990]. For example, linear interpolation P and R = P* leads to 2+2 > 2
for a second order differential equation.

For a more detailed convergence theory, we refer to the multigrid literature (e.g.
[Bramble, Pasciak, Wang, and Xu 1991; Hackbusch 1985; Xu 1992; Yserentant
1993]).

The theoretical results and the practical experience show that the standard multi-
grid method (Algorithm 2.3.2 with piecewise (bi-)linear prolongation P;; 1) con-
verges very fast and independent of the mesh size h for problem (1.2.1) with smooth
coefficients D(z). But the performance is not robust for more complex problems like
problems with jumping coefficients D(z) or anisotropic problems. Only for some spe-
cial problems, robust smoothers (Section 2.6) can improve the convergence. Many
”real-life“ problems require complicated domains which lead to very fine ”coarsest“
grids Qp. Since the equation Ay ug = fy on the coarsest grid has to be solved almost
exactly, the efficiency of the multigrid method deteriorates for these problems. At
this point, the most promising approaches for an efficient solution of these more
complex problems are algebraic multigrid methods.

2.6 Robust Smoothers

To improve the performance of the standard multigrid method either a better
smoother has to be applied or the coarse grid correction must be modified. This sec-
tion focuses on so-called robust smoothers while the remainder of these course notes
investigates the improvement of the coarse grid correction. A detailed and more
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complete coverage of smoothing techniques can be found e.g. in [Hackbusch 1985;
Hackbusch 1994; Hackbusch 1994; Kettler 1981; Wesseling 1992; Wittum 1989b].

Ordering Techniques

Discretizations of the convection-diffusion equation
V- (eVu(z)+ov@)u@) =Ff z€QCRY, u:Q-R v:Q-R (26.1)
or the Navier-Stokes equation

—Au+R(u-V)u+Vp = f,
V-u = 0,

u:Q —= R p:Q — R generate unsymmetric system matrices.

In some cases, a special ordering of the unknowns for a Gau-Seidel smoother leads
to an efficient method. For instance, an upwind finite volume discretization of (2.6.1)
with e < 1 and v = (1,0)? yields with the downwind ordering shown in Figure 2.7
a system matrix A = L+ D + U with a strict lower triangular matrix L, a diagonal
matrix D, and a strict upper triangular matrix U satisfying

Ul <[l + DIl

Mgs = L+ D is therefore supposed to be a good approximation for A.

Figure 2.7: Downwind ordering.

Incomplete Block Factorizations

Block factorizations are known [Kettler 1981; Wesseling 1992] to be efficient and
robust smoothers for some two dimensional problems on uniform grids such as
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anisotropic problems (see Section 4.1). The unknowns are ordered such that the
system matrix can be written in block tridiagonal form

Dy Uip 0 .. 0
Ly1 Do :
A— 0 e e 0
: : Dy Up-ap
0 oo 0 Lppw Dy

Block factorizations are often called line factorizations (ILLU) because the blocks
often correspond to grid lines. An exact block factorization is given by

By 0 ... .. 0
Ly Bs :
A = 0
Bp1 0
0 0 Lpn-1 Bn
Bt 0 0 By Uia 0 0
0 B! 0 B,
0
Bl 0 : Bn-1 Un-1n
0 0 B! 0 0 By,

with
Bi=D; — Li;—1 B{ " Ui_1,.

Since the matrices B; are dense, incomplete variants have been proposed. It is, for ex-
ample, possible to compute the diagonal and the first off-diagonals of L; ;_1 B;” 11 Ui,
relatively cheap. Let the operator (Y)® be defined by

. . 1
(y)(p) —J Yij - i —j| < B,
0 : otherwise.

Then, an incomplete block factorization is given by
Bi = D; — (Li;—1 B2, Ui—1,)®).

For more information, we refer to [Axelsson and Eijkhout 1987; Axelsson and Polman
1989; Hemker 1983; Kettler 1981].

Distributive Iterations

Instead of solving Au = f,
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might be solved. B is chosen such that a good approximate inverse M for A B can
be found which leads to a convergent iteration

Il - M~ (AB)| < 1.
This induces the iterative scheme
wt) =@ L BML(f — Au®). (2.6.2)

The scheme (2.6.2) is called distributive iteration, because the matrix B distributes
the correction M~ (f — Au®) over the elements of u. A general discussion of this
approach is given by Wittum [Wittum 1986; Wittum 1989a], who shows that a
number of well known iterative methods for the Stokes and Navier-Stokes equations
can be interpreted as distributed iterations. Taking B = AT and choosing M to be
the GauB-Seidel method for A AT leads to the Kaczmarz [Kaczmarz 1937] method
which converges for every regular matrix A. Convergence is, however, usually very
slow.

2.7 The Hierarchical Basis Multigrid Method

The basic idea of the hierarchical basis multigrid method (HBMG) is a transfor-
mation of the system matrix A from the nodal basis to the hierarchical basis (see
Figure 2.8)

A=JTAJ.

[NNNN
VAN

Figure 2.8: The hierarchical basis in 1D.

Let two nested finite element triangulations €; D €; ; and corresponding finite
element spaces V; D V;_1 be given. The standard basis for V; is the nodal basis

Dyn l
(e, oW (ay) = 6y
An alternative basis is the two-level hierarchical basis

{0, o e\ and 0!V, z; € QN Q1Y

1
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where the basis functions (pgl) corresponding to nodes v; € ;N 2;_1, which occur on

both grids €; and €2; 1, are replaced by the corresponding coarse grid nodal basis
(-1

function ;" /. The splitting of the set of nodes/vertices {; = V into
¥

V=F&C, F=WQ\Q_1, C=qN_

induces a partition of the unknowns u, the right hand side f and the system matrix
A
<AFF AFC) (’UF>:(fF)
Acr Acc uc fc

Any function g(z) € V; can be expanded by using either the nodal basis

ny

l
g(@) = g0l ()

=1

or the two-level hierarchical basis

9@) =3 5@ + Y Gl ().

v, €F v, €C

This defines a mapping J of the form

J= ( I%F ‘;FC ) (2.7.1)

nec

which transforms any coefficient vector g of the representation of the function g(z)
in the two-level hierarchical basis to the coefficient vector g of the representation
with respect to the nodal basis, i.e.

g=1Jg.

The system matrix with respect to the two-level hierarchical basis A; is then given
by

A=J"AJ
with
Apc = Apc+ AprJrc, Acr = Acr + Jho AFr,
Aprp = Arr, Acc = Acc + JEc Arr Jrc = An.

The multilevel hierarchical basis is obtained by recursively replacing the basis func-
O]
%
corresponding coarse grid nodal basis function ¢
hierarchical basis is shown in Figure 2.8.

tions .’ corresponding to nodes v;, which exist on coarser levels too, with the

(-1

i An example for a 3-level
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ExAMPLE 2.7.1
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2 -1
2 -1 -1
2 -1 -1
A= 2 -1
-1 -1 2
-1 -1 2
-1 -1 2
represents the discretization of h? aa—; on the finest grid in Figure 2.8. The trans-
formation with
1 1/2
1 1/2 1/2
1 1/2 1/2
J= 1 1/2
1
1
1
to the two-level hierarchical basis yields
2
2
2
A=J"AJ = 2
1 —1/2
-1/2 1 -1/2
-1/2 1

This induces that the transformation of a matriz
A=[-1 2 -1

to the multilevel hierarchical basis leads to a diagonal matriz A.

Since D! A, where D = diag(A), is well conditioned, the inverse of A can be
approximated by a Jacobi or a Gauf3-Seidel iteration. This leads to the hierarchical
basis multigrid method.

The HBMG can be written and implemented as standard multigrid method, with
the modification that the smoother operates only on those unknowns, which do not
exist on coarser levels. Hence, each unknown is modified only on one multigrid level.
Moreover, in this sense, each unknown is assigned to exactly one level in the HBMG,
while in the standard multigrid method some unknowns occur on several levels.

The convergence theory is typically based on the strengthened Cauchy-Schwarz in-
equality

(’UF,AFC ’Uc)% < §2 (’UF,AFF VE)o (’UCaACC ve)e Yup ERY ) yo € R (2.7.2)

with & < 1. While the convergence is almost independent of the mesh width A for
2D problems, the HBMG is less efficient for 3D problems.
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As explained in [Griebel 1994], multigrid methods can be viewed as Jacobi- or Gau$}-
Seidel iteration of a transformed system as well. For a detailed discussion of the
HBMG, we refer to [Bank 1997; Bank, Dupont, and Yserentant 1988; Yserentant
1986].
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3 Matrix-Dependent Transfer Opera-
tors

Multigrid methods with matrix-dependent transfer operators are based on the multi-
grid algorithm (2.3.2). Only the linear prolongation and restriction operators are
replaced by new operators. For the construction of these transfer operators, infor-
mation from the system matrix is used. The restriction R;_;; and the coarse grid
matrices A; are defined by

T
Ri1y=Py_y, A1=R-1, AP,

for all algorithms discussed in this chapter.

3.1 A One-Dimensional Model Problem

The discretization of the one-dimensional differential equation

_% <D<$>a§ff)) = f(z), z€Q=(0,1) (3.1.1)
u(0) =u(l) = 0,
€ : xT<igph,
D(z) = 1 : igh<z<ih,

€ : xT>1i1h,
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on the equidistant grid Q, = {z € Q|z =ih, i=1,...,n, h =
system matrix

n%_l } leads to the

2¢ —¢
—€ 2¢ —e¢
— 14+¢ -1
-1 2 -1
-1 14+e€¢ —e¢
—€ 2¢ —¢

—e 2¢

For ¢ — 0, the eigenvector corresponding to the largest eigenvalue of the Jacobi
iteration S =T —wD ! A,

1 —1/2
-1/2 1 —1/2

The Tre

g ~1/2 1 —1/2
-1 _
T 1 e

\ REVY

converges towards the vector e(©®)
ih o x<igh,
(6(0))i = ‘io h H ’I:() h S T S il h,
i . ig-(n+1) . .
il_’g_lzh— iol_n_lh : x>0 h

(see Figure 3.1).

While the eigenvalue A0, §e(® = A(0) () converges towards 1 for € — 0, the linear
interpolation at z;, and z;, is only of first order.

((1 - PRinj)e(O))‘ = ioh—0.5[(o —1)h+ioh] = 0.5k,
20

_PR..)eO — ik — ; ; N S S [

((1 PRuy)e )z'1 ioh = 05[igh +igh+ -— b = =5 -—"—h

Therefore, the multigrid convergence deteriorates for ¢ — 0. For interface problems
like (3.1.1), better prolongations and restrictions can be constructed using matrix
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Figure 3.1: Eigenvector e(%).
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information. The description of matrix-dependent transfer operators in this chapter

follows the paper of de Zeeuw [de Zeeuw 1990]. Similar construction schemes for

matrix-dependent transfer operators have been proposed e.g. in [Alcouffe, Brandt,
Dendy, and Painter 1981; Dendy 1982; Fuhrmann 1994; Fuhrmann 1995; Hackbusch
1985; Kettler 1981; Reusken 1994; Reusken 1995; Reusken 1996; Wagner, Kinzel-

bach, and Wittum 1997].

3.2 Prolongation Stencil

The two-dimensional equidistant grid

O ={(z1,22) €Q|z1 =10hy, T2o=jMh, i,jE€EL}

is split into four disjunct subsets (h;—1 = 2 hy)

21,00,0)
2,1,0)
Q0 =
Wy =

O,

{ (@1 + hi,2) € Q| (21, 72) € Y1 ],
{(z1,22 + hy) € Y| (z1,22) € Y1 },
{ (@1 + hyy 2 + hy) € Q| (71,22) € Q1 }-

The following prolongation F;;_; is introduced

(Pri—1w—1)(z) = <

;

\

up—1(x)

by(z) uj—1(xz + hy (—1,0))
+a;(z) w—1 (z + hy (1,0))

bi(z) w—1(z + hy (0,1))
+a(z) wi-1(z + ki (0, —1))

bi(z) wi—1(z + My (=1,1))
+e(z) w1 (z +hi (1,1))
+di(z) wi—1(z + by (=1, —

1))
+a(z) up—1 (z + hy (1, -1))

I xE Ql,(0,0)7
LT E Ql,(l,O)a

LT e Ql,(0,1)7

. T e Ql,(l,l)'
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P,; 1 can be written in stencil notation as

ai(z+h (=1,1))  a(z+h(0,1))  di(z+h(1,1))
P_i(z) = ai(z + h; (—1,0)) 1 by(x + hy (1,0)) . (3.2.1)
a(z+h (=1,-1)) bz +h (0,-1)) bz +h(L,-1))
3.3 Properties of the Coarse Grid Equation
LEMMA 3.3.1 P defined by (3.2.1) satisfies
ai(z) + bi(z) =1 tox € Q1,00 U Qi 0,0);

P, 111 =1 &
b=t A= A { ai(z) +bi(z) +az) +di(r) =1 : x€Qayq,

where 1; = (1,...,1)T e R™.
PROOF. Straightforward computation. m|

LEMMA 3.3.2 Assume Ijl,l—l 1,1 =1y, Rl—l,l = Ijlj!;_l, and fl—l = Rl—l,l fl. Then,
fic1 and A1 = Ry_1; A; P;_1 have the following properties:

. ni—1 ng
1) > (ficr)i = D ()i
=1 =1
. ni—1 n;
(i) 22 (Ai1)ig = 22 (Aiy,
1,j=1 i,j=1
g . ni—1 )
(ii) > (4)i; =0 Vi = > (A-1)i; =0V,
7j=1 7j=1
. g . ni—1 ]
(iv) X (A)ij=0 V5 = > (A1) =0 Vj,
=1 =1

(V) A = AlT = A= AlT—l
PROOF.

() 1 =17 Ry fi=@uau)" fi=1f fi.

(i) 1V Ay =1 Ry APy =Py )T A =17 41,

(i) A1 L1 =Ry APy 111 =R Al =Ry_1,0, =0;_;.
)
)

(iv) Al 1, =R, APy )" 1 =R_1, A 1, = R_1,0, = 0,_1.
(v) ALy = (R APy )" =P ATR =R 1, AT Py

=R, AP 1=A4A.

O

For a generalization of part (iii) and (iv) in Lemma 3.3.2, we refer to [de Zeeuw
1990].
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3.4 Matrix-Dependent Prolongation
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The system matrix A; is split into a symmetric matrix S; and an asymmetric matrix

Z.
1 T
S = A+ A7),
1
Z =§mrAﬂ

This corresponds to splitting the stencil of A; at x €

as follows

Al(iL‘)(Z,j) =
Sl(iL')(Z,]) =

Zi(z)(i,5) =

Sl(x)(%]) + Zl(.’E)(’i,j),
SLA@) ) + A+ hali, ) (~ )],

gmm@ﬁ—m@+m%m6%ﬁﬂ

(3.4.2) is rewritten as

ar ag Qg 87 88 89 27 28 29
as a5 ag | = | sS4 s5 Ssg | + | 22 25 =26
ai a2 a3 §1 82 83 Z1 22 23

The symmetric part is decomposed by

S7 88 89 [ 0 0 0 i [ 00 0 i
S4 S5 S = —S8147 -1 1 0 — 8369 01 -1
S§1 89 83 | 0 0 0 | L 0 0 0 |
[0 0 0] [0 -1 0]
—8123 0 1 0 — 8789 0 1 0
[0 —1 0 [0 0 0|
[0 0 0] [ 1 -1 0]
—81 1 -1 0f4+s7y| -1 1 0
| -1 1 0] | 0 0 0|
[0 0 0 ] [0 1 -1
+s31 0 1 —-1|—-s]0 -1 1 + 3
[0 -1 1 | [0 0 |

where sgps = 54 + 5, + 55, and ¥ =
i=1

be identified as discretizations of the differential operators &, 2

0
0
0

32
dz’ Oy’ Oz dy"

0
1
0

(3.4.1)

(3.4.2)

(3.4.3)

(== R en R an]

9
>~ si. The elementary stencils in (3.4.3) can

Thus,
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schematically, the diffusion coefficients D(z) in the differential operator V- (D(z)V)
are found to be as in Figure 3.2. Similarly, the coefficients of the convection term
V- (vu) (see (1.2.1)) are approximated by

c1 = (z3+26+29)— (21 + 24+ 27),

o = (21428 +29) — (21 + 22+ 23).

-S 789
X X
-S -S
147 369 _5123
_p202 _p20% 29
h ox? h o3 h Ox1 0x2

Figure 3.2: Diffusion coeflicients.

Assume a;(z) and b(z) at O 0,1) and € (1 o) have already been constructed. In
order to get smooth vectors after the interpolation, the prolongation is supposed to
satisfy

Z A(z) (%, 7) (Prg—1w—1)(z + (i,5)) =0 Vo € Q).

7]771
Substituting the weights a;(z) and b;(z) at € 1) and € (1 o) as defined in (3.2.1)
leads for z € 0y (4 1) to

a(z) = —[A(z)(1,-1) + A(z)(0,~1) - ar(z + hy (0, 1))
+Ay(2)(1,0) - ay(z + hi(1,0))][Ai(2)(0,0)] 7, (3.4.4)
bi(z) = —[Ai(z)(=1,1) + Ay(z)(=1,0) - boy(z + hy(—1,0))
+A;(2)(0,1) - bi(z + hy(0,1))][Ai (2)(0,0)] (3.4.5)
a(r) = —[A(z)(1,1) + A(z)(1,0) - bi(z + ki (1,0))
+A1(2)(0,1) - ay(x + hy(0,1))][A(x)(0,0)] ", (3.4.6)
di(z) = —[Ai(z)(—=1,-1) + A(2)(0,-1) - by(z + hy(0,—1))

+A1(2)(=1,0) - @z + hy(=1,0)][Ai(2)(0,0)] 7. (34.7)

REMARK 3.4.1 Ifbj(z+h; 2)+ai(xz+h z) =1 for z € {(-1,0),(1,0),(0,-1),(0,1)}
and A;(z)(0,0) # 0, then

S A2)Gi,)

(@) +bile) + @) + de) = 1= o

)(0,0)
holds for x € y (1,1). In addition, if A)(x)(i,5) <0 for (i,7) # (0,0), A ( )(0,0) >
0, and both by(z + hy z),ai(z + hy z) > 0, then a)(z), b (z), ¢ (z),di(x) >
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PROOF. The remark follows immediately from (3.4.4) — (3.4.7). O

The same procedure is applied in the horizontal and the vertical direction. Therefore,
we restrict the description to the horizontal direction. In order to simplify the
notation, we write for some z € {2 (1 ¢)

(Pri—1w—1)(z) = ww uw + wg ug,

with uy = w—1(z + hy(—1,0)) and ug = u—1 (z + hy(1,0)).

To determine the weights wyy and wg, we formulate some guidelines for their con-
struction.

. 1
v A
ww +wg =1— b=l
Ai(2)(0,0)
In Section 3.3, we have seen that we should satisfy wyw + wg = 1 for any

1
matrix with >  A;(z)(¢,7) = 0.
3,j=—1

and wwy,wg > 0.

(ii) In the simple case

(=0 : (i,5) #(0,0),
Al(‘”)(””{#o ) - (0.0),

ww +wg = 0 is required. This is an optimal choice, because (local) smoothing
solves the equation at once and any nonzero coarse grid correction would be
harmful.

(iii) In the one-dimensional case,

s4 = —Dw, s¢=—-Dg, ss=Dw+Dgp+%,
1 1
Z4 = —5C1, 2 = t3C1,

si =z =0fori<4ori>06,

the prolongation should reduce to interpolation by means of the differential
operator. This is achieved by

1 1
Dw + 5C1 Dg — 5C1

wy =———=-_ wp=—-—=""_
Y Dw+Dp+y P Dy+Dp+3

With these guidelines in mind, the following formulas for wy and wg are proposed

Dw = max(|s1a7l,|s1],]s7]), Dr = max(|s3e,|s3],[s9]),

Dy = max(|s7sol,|s7],[s9]), Ds = max(|si23,|s1],[s3|),
by

o = min(1,|1——|>,
as

! ( Dy +1 C1 )
wy = o = ,
W Dw +Dg ' 2Dw + Dg+ Dy + Ds
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' ( DE 1 C1 )
wp = o - = ,
B Dw +Dgp 2Dw + Dg+ Dy + Dg

wy = min(o, max(0,wy)),

wg = min(o, max(0,wp)).

REMARK 3.4.2

EXAMPLE 3.4.1 Let a differential operator A
Au = V-(D(z)Vu(z)), ze€Q2=(0,1)x(0,1)

Dy
P = {pn 1 BSE €<

be given. Then,
(Pig-1uw-1)(§) = ww uw + wg ug,
with
Dy, Dpg

W Dr+Dr " T D+ Dr

3.5 The Coarse Grid Stencil

In order to apply the same procedure recursively on all levels, the coarse grid matrix
Apg = R A P needs to have a 9-point stencil as the matrix A.

o\ N\ N
P P
C A )
A R
R R A
R XA
Q A D
P P
A\ \\j N\

Figure 3.3: Construction of the coarse grid stencil.

Figure 3.3 illustrates how the coarse grid stencil is obtained. Starting at a node
which exists on the coarser grid too (C-node, black dot), we move according to the
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restriction to an F-node (circle) which only exists on the fine grid or we stay at the
coarse grid node. Thus, at most, we can move to a neighbor node.

The next step following the non-zero entries in the system matrix again leads us
either to a neighbor node or we stay at the same node (diagonal entry). If we have
arrived at an F-node, due to the prolongation, we move to an C-node neighbor. If
we have arrived at an C-node, we do not move.

Hence, all together, starting at a C-node we can only move 3 steps following the
non-zero matrix entries. Only the direct neighbors on the coarse grid of a C-node
are in this range. Therefore, we will get a 9-point stencil on the coarser grid.

3.6 Similar Methods

Alcouffe, Brandt, Dendy and Painter propose in [Alcouffe, Brandt, Dendy, and
Painter 1981] a similar approach for the construction of matrix-dependent transfer
operators. For the matrix stencil (3.4.1), the weights

o~ —A@)(=1,1) — Ay(2)(=1,0) — Ay()(=1,1) (3.6.1)
v Al(x)(o,O)+Al(w)(0,—1)+Al z)(0,1) .
S —Al(w)<1,1) Ay(@)(1,0) — Ay(z)(1,1) (36.2)

Ay()(0,0) + Ay(z)(0,—1) + A;(2)(0,1) w

are suggested. Note that in the symmetric case A; = AZT if

Ay(z)(4,5) <0 for (i,5) # (0,0), Ay(x)(0,0) >0, and 'Z Ay(z) (i, 5) =0

(3.4.8), (3.4.9) and (3.6.1), (3.6.2) are equivalent.

The weights for z € (1 1) in [Alcouffe, Brandt, Dendy, and Painter 1981] and the
weights (3.4.4)—(3.4.7) in [de Zeeuw 1990] are identical.

3.7 Numerical Experiments

EXPERIMENT 3.7.1

-V - (D(z)Vu(z)) = 1, ze€Q=(1,25) x(1,25),
8u 1
Bn = 3% % € 090

is discretized on an equidistant 25 x 25 grid. Four grid levels are used. D(z) = Dy =
1/3 outside the shaded region and D(x) = Do = 10* Dy inside the shaded region (see
Figure 3.4).
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25

14
12+ B

1 12 14 25

Figure 3.4: Diffusion coefficient.

De Zeeuw [de Zeeuw 1990] compares the numbers of iteration steps for his method
(MGDeZeeuw), the standard multigrid method (MGM), and an algorithm pro-
posed by Kettler [Kettler 1981] (MGKettler) for a 10~% reduction of the residual
(|d™ ]2 < 1079 ||d©]|). The results are shown in Table 3.1. In all algorithms,
1 post-smoothing step with ILLU (block-ILU factorization, see [Kettler 1981]) is
computed.

MGM | MGDeZeeuw | MGKettler
52 8 19

Table 3.1: Iteration steps for Experiment 3.7.1.

Alcouffe et al. report convergence rates of their algorithm (MGABDP) proposed
in [Alcouffe, Brandt, Dendy, and Painter 1981] and of the SOR method for the
same problem (see Table 3.2). In MGABDP, 1 pre- and 1 post-smoothing step with
GauB-Seidel is applied.

D,/D; | MGABDP | SOR
1074 0.486 0.731
102 0.486 0.731

109 0.490 0.744
102 0.532 0.875
10* 0.537 0.990

Table 3.2: Convergence rates for Experiment 3.7.1.

EXPERIMENT 3.7.2 The staircase problem

V. (D(z)Vu(z)) = f, ze€Q=(1,17) x (1,17),
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17

f

1 17

Figure 3.5: Diffusion coefficient for the staircase problem.

ou 1
pZ - 2 QO
o gt T €0
is discretized on an equidistant 17 x 17 grid. D(xz) = Dy = 10% and f(z) = fi =1
inside the shaded region; D(x) = Dy = 1 and f(z) = fo = 0 outside the shaded
region (see Figure 3.5). Three grid levels are used.

MGM | MGDeZeeuw | MGKettler
130 9 10

Table 3.3: Iteration steps for Experiment 3.7.2.

De Zeeuw'’s results are summarized in Table 3.3. The average convergence rate of
MGABDP is 0.59.
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4 Interpolation Methods

For some problems, the grid hierarchy applied in standard multigrid methods may
not be optimal. Therefore, an important feature of algebraic multigrid methods
is the possibility to choose coarse grids which are more appropriate for the given
problem.

The algebraic multigrid methods discussed in this chapter combine the multigrid
algorithm (Algorithm 2.3.2), matrix-dependent transfer operators, and strategies
for the selection of the coarse grids.

Since it is a priori not known how many coarse grids will be constructed, the coarse
levels are now numbered in the opposite direction. The finest grid and the corre-
sponding system matrix are called €y and Ay = A respectively. ;1 denotes the
grid which arises from the coarsening of ;. Therefore, the AMG cycle reads as
follows.

ALGORITHM 4.0.1 Let a hierarchy of grids Qo D Q4 D +-- D ., prolongation and
restriction operators Ppji1, Ri11, between these grids, and matrices A; be constructed
and smoothing iterations S; on these grids be given. Then, the function AMG (ug, fo,0)
defines the approximate inverse MKI\IAG on the finest grid Q.

AMG (uy, f1, D
{
iE( = lmax) w = A; ' f1s
else
{
up = S (g, fi) s
diy1 = Ry (fi — Ayw);
vy = 03
for(j=0; j<7v; j=7+1) AMG(vi41,di41,0+1);
u =u;+ P14t
up = S (u, f1) 3
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4.1 An Anisotropic Model Problem

A discretization of the anisotropic differential equation

=V - (D(x)Vu(z)) = f(z), ze€Q2=(0,1) x(0,1) (4.1.1)
u(z) = g(z), =z €09,

o - (3 4)

on the equidistant grid

Qh = {x(z,]) € le(z,]) = (Zh’]h)7 Zaj = ]-a > 10, h = n+1 }
produces the system matrix A
0 -1 0
A=| —€ 2+2 —e€ |. (4.1.2)
0 -1 0

The eigenvectors e(**) and eigenvalues A\ of the damped Jacobi iteration S for A
are given by

eg’f)) = sin(nvhi) sin(wphj), v,p=1,...,n,
A (4) = 24 2e — 2ecos(nvh) — 2 cos(muh),

APH(S) = 1-w—w

P 26(6 cos(mvh) + cos(muh)).

Figure 4.1 shows A*#)(S) for w = 0.5, e = 1 and, € = 0.001.

Obviously, for (e = 0.001), the high frequency modes in the vertical direction (j, u)
are efficiently damped. But, the damping in the horizontal direction is almost inde-
pendent of the frequency (v). Thus, error modes with high frequency components in
the horizontal direction and low frequency components in the vertical direction are
not reduced. Hence, after a couple of smoothing steps, the error is smooth in the di-
rection of the strong coupling of the unknowns (vertical direction). In the direction
of the weak coupling (horizontal direction), the error may still be rough. Therefore,
(linear) interpolation in the direction of the weak coupling of the unknowns will not
be successful.

Robust smoothers (see Section 2.6) like ILUg [Wittum 1989b] or line smoothers
[Kettler 1981] can be combined with standard multigrid in order to get an robust
method for anisotropic problems. However, ILUg and especially line smoothers are
only efficient for structured grids and anisotropy in one direction only. In [Kettler
and Wesseling 1986], it is shown that line smoother are not robust for problems in
three spatial dimensions.

If standard point smoothers are used, interpolation in the direction of the weak cou-
pling must be avoided. Thus, algebraic multigrid methods typically do not coarsen
the grid in the direction of the weak coupling. For structured grids and anisotropy
in one direction only, this technique is called semi-coarsening (see Figure 4.2). But
in contrast to line smoothers, this technique is not restricted to these cases.
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N
ok oo~

Figure 4.1: Damped Jacobi iteration for an anisotropic problem (h = 1/64).

Figure 4.2: Semi-coarsening.
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4.2 Algebraic Smoothness

Section 4.2 — 4.6 follow the classic paper of Ruge and Stiiben [Ruge and Stiiben
1987]. For the theoretical discussion, the system matrix A is always assumed to be
symmetric and positive definite. The prolongation operators P must have full rank
and the restriction R and the coarse grid matrices Ay are defined by

R=P', Ay=RAP.
Along with their corresponding norms ||u|lyi = /(u,u)yi, ¢ € {0,1,2}, the scalar
products
(,v)30 = (Du,v)a, (u,0)30 = (Au,v)2, (u,0)32 = (D Au, Av)s

are needed. D = diag(A) denotes the diagonal of A. In some sense, these norms
are discrete counterparts of the H*-Sobolev (semi-)norms (see e.g. [Braess 1997;
Hackbusch 1986]).

In algebraic multigrid, an error e is called smooth if it is slow to converge with
respect to a smoother S. For example

1S ellzr = [lellp-

Depending on A an algebraically smooth error may well be highly oscillation geo-
metrically.

For typical relaxation schemes like GauB-Seidel, the inequality
IS el5n < llell3n — allell3e (4.2.1)

holds with @ > 0 (e.g. @ = 1/4) [Ruge and Stitben 1987]. Therefore, an smooth
error has to satisfy ||e||42 < |le|lz1- Applying the Cauchy-Schwarz inequality to
(Ae,e)2 = (D12 Ae, D'/?¢)y shows

lelfn = (D72 Ae,D2e)y
< ID72 Ae|olID2 ellz = ez llello-

Therefore, ||e||z2 < |le|ls implies ||e||41 <K |le]|40, or more explicitly

1 1 1
(Aee)s = o Z —aij(ei — )" + 5 Z aizel + 5 Zaz‘,je?
%] %,J %]

1
= 3 Y —aijlei—e) +> | D aig | €] <D aiiel. (4.2.2)
&Y i J i

For the important case ;. ; |ai,j| & ai;, this means that, on the average for each i,
1 2 2
2 Z —aij(ei —ej)” < aigej,
J#i
2
a; ;| (e; —e;
sl @—el
;4 €
PR i
In other words, a smooth error generally varies slowly in the direction of strong
connections, i.e. from e; to e; if V;’—J‘ is relatively large.
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4.3 Two-Level Convergence

Without essential loss of generality, we restrict our discussion of the two-level con-
vergence to the case with post-smoothing only. Assuming the smoothing property
(4.2.1), we will give a general condition on the prolongation P that allows an esti-
mation of the two-level convergence factor ||ST'||4:-

THEOREM 4.3.1 Let A be spd, T=1—P(RAP)"'RA, R= PT and let S satisfy
the smoothing property (4.2.1). Suppose that the interpolation P has full rank and
that for each e

min e — Penll3o < 6 lelB, (4.3.1)
with B > 0 independent of e. Then, a < B and the two-level convergence factor

satisfies

(6
ST < /1 ——.
[ST3p < 3

PROOF. Since range(T') is orthogonal to range(P) with respect to (-, -)y1,
lell3,: = (Ae,e — Peg)s Ve € range(T).
Using the Cauchy-Schwarz inequality, we get

lell2, = ((D7Y?Ae,DY?(e— Pen))s
|D Y2 Ael|s|DY? (e — Peg)|2

el lle = P er[l50-

AN

Because of (4.3.1), this proofs ||e||%{1 <p ||e||3{2 for all e € range(T'). Therefore,
IT el <BlTelF: Ve

holds. Finally,

0<|[STelfn < [Tel3n —alTel3e
e
< T el — Tl
B
@ @
< (1-5) el < (1-5) lelB
proofs the theorem. m|

Now, we consider the graph G 4(V, E) (see Section 1.2) of the system matrix A. Let
a splitting of the set of vertices (nodes/unknowns) V = {vy,...,v,} into a set C of
C-vertices (C-nodes/C-unknowns) and a set F' of F-vertices (F-nodes/F-unknowns)

V=CUF=CeF



44 Interpolation Methods

be given, Then, the C-unknowns build the coarse grid 2z = C. An algorithm for the
labeling of the nodes as C-node or F-node is presented in Section 4.6. To simplify
the notation, we write

Z or Z instead of Z or Z
v €C v EF j with v;ec i with v;eF
in the remainder of the course notes.
An interpolation (prolongation) P from the coarse grid to the fine grid is defined by
(PGH)Z' = Z Wy 5 (GH)j, v, €V and W;,j = 5,'7]' if v; € C. (4.3.2)
v;eC
0;; denotes the Kronecker symbol.
LEMMA 4.3.1 Assume A is spd and P is of the form (4.3.2) with w;; > 0. Then,

property (4.3.1) is satisfied with 8 > 0 for any given set C of C-unknowns if the two
inequalities

DD aiiwiglei—e)? < gz —a;j (ei — ¢j)%, (4.3.3)
ij

vieFv;eC

Z:aiﬂ-(l—si)ez2 < BZ Zai,j ef (4.3.4)
{ J

v, €F
hold with s; = Zvjec wij < 1.

PROOF.

1161;1'1 ||6 - PeHHg-LO S ||6 — PRinj 6||,2H0 = Z Qi €; — Z wi ; €5

v, EF v; €C
2
= Z Qs Z wij(e; —e;) +(1—s;)e
v, €EF v;€C
< Z i Z w; (e —ej)? + (1 —si)? €]
v, EF v; €C
< Y ai | Yo wiglei—e)’+(1—si)ef
v, EF v; €C
(4.2.2), (4.3.3) and, (4.3.4) show
doaii | D wijlei—e)? +(1—si)ef
v, EF v, €C
1
<P\ g2 ma(e—e) | +8 3| D i | el = Blleliy-
i,J i J

Hence, (4.3.3) and (4.3.4) are sufficient for (4.3.1). O
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4.4 Interpolation Operators

The tools developed in the previous section are now used to construct interpolation
operators which guarantee uniform two-level convergence. Throughout this section,
A is assumed to be a symmetric, weakly diagonally dominant (a;; > Zj i @i ;|)
M-matrix.

The neighborhood N; of the node v; is defined by (see Section 1.2)

N; = {’Uj € Qy |] # 1, aj j # O}. (4.4.1)
As a first step, we consider interpolation nodes v; € C; with C; C N; N C and
corresponding weights of the form

1
> laigl’

v;eC

wij =7ilaigl, 0<n; < (4.4.2)

which ensures s; < 1. In order for property (4.3.1) to hold, it is, due to Lemma
4.3.1, obviously sufficient to require for every v; € F', v; € C;

0< Q5 Wi 5 < J6] \ai,j|, 0< Qg (1 — Si) <pg Z ;- (4.4.3)
J

From these simple inequalities, more practical condition can be derived, which can
be used to develop an automatic coarsening algorithm with 8 as input parameter.
An example is given in the following remark.

REMARK 4.4.1 Let 8 > 1 be fized and the interpolation weights be given by (4.4.2)

with n; =1/ ) a;;. Assume that A is a symmetric, weakly diagonally dominant
v; ¢C;
M-matriz and the C-points are picked such that for each v; € F there is a nonempty
set C; C N; N C with
B aij > ai

v; ¢C;
Then, (4.3.1) is satisfied.
PROOF.
Qi Wij = Qi i |aig) = —=o—lai | < Blaigl,
v; €C;
420- o451 22 ai
a;i;(1—s;) =a;; | 1— 1217,1” = Q;; é i < B a.
vaC’i ’ vaCi ’ J
O
More general interpolation weights can be obtained by
k
Wi,j =1 |a,~,j| + Z nz(,j) |ai’k| , Vi EF, w;€ G, (4.4.4)

v ED;
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where D; = N; \ (C; N N;) denotes the set of neighbor nodes which are not in C;.
Here, a weighted distribution of all noniterpolatory connections a;, vy, € D; to the
interpolation points v; € C; is performed. Cj is not required to be a subset of N;.
Thus, long range interpolation from points without a direct connection is allowed.

REMARK 4.4.2 If A is a symmetric, weakly diagonally dominant M-matriz, C, C; C
C' are picked such that for each k and v; € NyNC

¢ Z lagm| > Z lagsl, wvi € Fyj, Frj={v€F|vjeC;Nv, € D;},
vm €C; v €F,j

for a { > 0 and the weights w; ; are defined by (4.4.4) and

®) _ ok,

i = @a 771,3 — Z |ak,m"
’UmEC'i

(4.4.5)

then, property (4.8.1) is satisfied with some 3 which only depends on ¢ but not on
A.

PROOF. See the proof of Theorem 5.5 in [Ruge and Stiiben 1987]. O

o C OO F

Figure 4.3: Example for the construction of interpolation weights.

EXAMPLE 4.4.1 Let us consider a system matriz A with the constant 9-point stencil

_1 1 1
4 2 4

A=| -3 3 -3 (4.4.6)
1 1 _1
4 2 4

Figure 4.3 shows two parts of the corresponding graph. For the situation on the left
hand side, F}, j = {v;,vs} and the condition for { in Remark 4.4.2 reads

C(1/4+1/4)>1/24+1/2 = (>2
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The interpolation coefficient w; ; is given by
1
Wij =3 [1/2+(1/2-1/2+1/2-1/2+1/4-1+1/4-1)] =1/2.
The situation on the right hand side yields Fy, j = {v;, vy, Vs, Vs, },
¢(1/2+1/2)>1/2+1/2+1/44+1/4 = (> 1.5,

and
Wy = % [1/4+(1/2-1/24+1/2-1/2)] = 1/4.

The interpolation weights defined by (4.4.4) and (4.4.5) can be deduced by observing
that

A;; € = — Z ;.5 €j5-
J
for a smooth vector e. Replacing all e; with j # C; by

> lajklex

v €C;

e, — REC
! > lajml

vm€C;
yields those weights. The weights which are used in the Ruge-Stiiben AMG are
slightly different. They are defined in Section 4.6. Similar techniques can be found
e.g. in [Heppner 1999; Reusken 1994; Wagner, Kinzelbach, and Wittum 1997] (see
Section 4.7).

4.5 Multigrid Convergence

In order to recursively set up a multigrid algorithm, the essential properties of the
system matrix must carry over to the coarser grids.

REMARK 4.5.1 Let A be a symmetric, weakly diagonally dominant M-matriz and
let the interpolation weights (4.4.2) satisfy (4.4.3) with B < 2. Then, Ay = PT AP
s a symmetric, weakly diagonally dominant M-matriz as well.

PROOF. Because of the Galerkin formulation, Ay is spd. The entries affj of Ay are
computed according to

H — - .
G5 = Z Wi Gm,k Wk,j
m,k

= aj;+ E (wm,i Am,j + W5 ai,m) + § Wm i Om,k Wk,j
UYmEF VUm W EF

1
= gt Y (Wmi | Gmgt 5 Y WejGmk
vm EF v EF

+ Z (Wm,j | @im +% Z Wi Qk,m | 5

UmE€F v EF
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where w; j = 6; ; for v;,v; € C has been used. Due to the assumption @, m wm,; <
2|am,j| (vm € F, vj € C’)

1
a'myj +35 Z wk,] a’m k < a’m,] + 2’U)m"7 amm S 0 (451)
’UkEF

holds, which implies, using the symmetry of A, a ; < 0,7 # j. Adding up E a
leads to

Yaly = Yt Y o | 3 amitg 3 sjams
J

v;€C vm€EF v;€C v EF

+ Z Sm | @im +% Z Wi Ck,m

UmE€F UkEF

= Daiy— ) aigt ) (W §:ama+ D %
j

vjeF VmEF vkEF

_ Z Wi, Z Ak + Z Sm | @im +% Z Wi Gk,m

vm EF vy EF VYmEF v EF
= E a;j + g wmz E am]“‘ E a'mlc
vm EF vkEF
1
+ E (sm—1) | aipm + 2 E Wi k,m
vm EF v €EF

(4.4.3) yields

Zam,]—l- Z sp—1) amk>Zam,J+ —1)amm > 0.
v €EF

This imphes together with (4.5.1) , s;, <1, and }; a;; > 0 the diagonal dominance
of Ag. Od
The construction of the interpolation operators in Section 4.4 is mainly based on
the condition (4.3.1). Unfortunately, condition (4.3.1) is not strong enough for
a successful V-cycle convergence theory. A more suitable condition for a V-cycle
convergence theory would be

minfle ~ Penl3 < flele or minfle— Penlo < flelfe. (452

For smooth errors e, (4.5.2) is much stronger than (4.3.1) because |le|y2 < ||e]|2:-
For instance, in the case of a second order scalar partial differential equation and
smooth error frequencies on a regular grid of the mesh size h typically |le|y2 =
O(h) [lellz-

However, the interpolation operators developed in Section 4.4 turned out to be good
enough in practice if certain objectives (Criterion 4.6.1 and 4.6.2) are added to the
interpolation requirements.
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4.6 The Coarsening Strategy
An important idea of the coarsening strategy is the strong connection.

DEFINITION 4.6.1 A node v; € V is strongly connected to a node v; € V' with respect
to A if
—a;j > 0 max(—a;m).

m#i

NiS denotes the set of all strongly connected neighbors of v;

Ny = {vj € Ni| — ai;j > 0 max(—a;m)}.
m#i

The set of nodes which are strongly connected to v; is denoted by
(NZ-S)T ={v; eV]v € N]S}
The interpolatory nodes C; are the strong C-node neighbors
C; =Ny nCcC.

The noninterpolatory nodes D; are split into strong DZS and weak DZW noninterpo-
latory nodes

D;=N;\C;, D?=D;nNS, DY =D;\D?.

Once again looking at

;5 €5 ~ — Z Q; j €5
J
for a smooth vector e, we can expect that the interpolation of e;, v; € D;

Y lajklex

v €C;

> lajml

’UmECi

ej =

is better for nodes v; which are strongly connected to the nodes in C;. If we add
nodes to Cj, very likely the quality of the interpolation increases. But on the other
hand, the stencil sizes of the prolongation and hence the stencil sizes of the coarse
grid matrices and the numerical cost grows.

Therefore, the following criteria are taken as guidelines in order to get good inter-
polations and a reasonable numerical complexity.

CRITERION 4.6.1 For each node v; € F, each node v; € Nz-S should either be in C,
or should be strongly connected to at least one node in C;.

CRITERION 4.6.2 C should be a mazimal subset of all nodes with the property that
no two C-nodes are strongly connected to each other.
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Criterion 4.6.1 shall ensure that the interpolation is good enough while Criterion
4.6.2 enforces the coarsening algorithm to generate coarse grids with significantly
less nodes than the fine grid. Since it is not always possible to satisfy strictly both
criteria, Criterion 4.6.2 is only taken as guideline while Criterion 4.6.1 must strictly
be satisfied.

The coarsening algorithm is divided into two steps. In the first step, a relatively
quick C-node choice is performed. C-nodes are distributed uniformly over the grid
attempting to enforce Criterion 4.6.2. In the second part, the tentative F-nodes
are tested to satisfy Criterion 4.6.1 and the interpolation weights are computed.
Tentative F-nodes not satisfying Criterion 4.6.1 are labeled as C-nodes.

ALGORITHM 4.6.1 Let a matriz A with corresponding graph G 4(V, E) (see Section
1.2) be given. Then, RS_Coarsenl (G4(V, E)) performs the first step of the Ruge-
Stiben coarsening algorithm.

RS_Coarsenl (G A(V, E))
{
C={} F={: U=V;
for(Gi=1; i<|V|; i=i+1) z=|(N)T];
while (U # {})
{
get v; € U with z; maximal;
C=CU{v}; U=U\{v};
for(v; € (N)TNU)
{
F=FU{vj}; U=U\{vj};
for (v, € NJ-SﬂU) 2y =2+ 1;

}

for(v; € NiSﬂU) zj=2zj—1;

}

z; measures the value of the node v; as C-node given the current status of C' and F.
Initially, nodes with many other nodes strongly connected to them become C-nodes.
Later, the tendency is to pick as C-nodes those on which many F-node depend. This
tends to produce grids with only very few strong C-C connections (Criterion 4.6.2).
In addition, Algorithm 4.6.1 guarantees that each F-node produced has at least one
strong connection to a C-node.

ALGORITHM 4.6.2 Let a tentative splitting in C- and F-nodes generated by Algo-
rithm 4.6.1 be given. Then, RS_Coarsen2(G4(V,E),C,F) computes the interpola-
tion weights and determines the final F/C-labeling.

RS_Coarsen2(G4(V, E),C,F)
{

T ={};
while(F\T # {})
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pick v; € F\T;
T =TU{v;}; done = 0;
C;=NNC; DY =N\ C;; DV =N;\N7; Ci={};
while(!done)
{
di = aii+ Yy epw Giks dj = aij Yoj € Gi;
for (v; € DY)
{
if (N,‘f NC; # {}) dj = dj + a;k ak,j/ vaeci O V'Uj € C;;
else

if(C; #{}) { C=CU{v;}; F=F\{v;}; break;}
else
i
sz{vk}; Ci:CiU{’Uk}; DZSZDZS\{’U;C};
done = 0; break;

}
}

if(v; € F) {CZCUC_'i; F:F\C_'i; ’wi,j:—dj/di V’UJ'ECZ';}

The main idea of Algorithm 4.6.2 is to sequentially test each tentative F-node wv;
if Criterion 4.6.1 is satisfied. If a node vy € D7 is found which is not strongly
connected to a C-node in C;, this node k is tentatively put into the sets C; and C;,
and the testing of Criterion 4.6.1 for v; is restarted. If Criterion 4.6.1 is now fulfilled
k is labeled as C-node and is permanently added to C;. If Criterion 4.6.1 is still not
valid, the node v; is marked as C-node and the next tentative F-node is tested. The
algorithm terminates if all tentative F-nodes are in the set of tested nodes T

The computation of the interpolation coefficients w; ; is summarized by the formula

a’lka’k,]
Wi = —~— a;; + Z , (4.6.1)
(R Z ak.m
”kED, v €C;
Gij = Qi+ Z @i -

’UkEDlVV

EXAMPLE 4.6.1 If0 < 1/2, then D)V = {} for A in (4.4.6). Hence, the coefficients
w;j in Example 4.4.1 satisfy (4.6.1). The F/C-labeling shown in Figure 4.3 is a
typical result of Algorithm 4.6.1 and Algorithm 4.6.2 for A in (4.4.6).
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e C

o0 F

° ® ® ® '
Figure 4.4: Possible F/C-labeling for an anisotropic problem.
EXAMPLE 4.6.2 Algorithm 4.6.1 and Algorithm 4.6.2 may generate an F/C-labeling

as shown in Figure 4.4 for the anisotropic problem in (4.1.2). In this case, the
interpolation weights are given by

1 1
Gi; =2+2e—2€, w;; :_5(_1+0) =3

4.7 Similar Methods

Reusken proposed in [Reusken 1994] a similar method. The system matrix A is
partitioned into four blocks according to the F/C-labeling of the unknowns. For the
labeling, a given finite element grid hierarchy is used in [Reusken 1994]. After that,
a modified system matrix A is constructed by a lumping procedure.

Arr Arc ) ( App Apc ) 3
A= — = A.
( Acr Acc Acr Acc

The blocks flp r and flpc are given by

App = diag(Arr), (4.7.1)

~ Qi k

Gij = aij+ Y 7ICHZW Ni (4.7.2)
’UkED,;

For the two-grid method, A is inverted exactly by block-elimination

it — [ Ine —AppArc Agp 0 Inp 0
0 I 0 Ag' —AcrApp Ing )’
As = Acc— Acr AL Arc.

The definitions

—A7L A o
P — ( rr FC), R:(—ACFAF; Inc), (4.7.3)

nc

Ag = RAP = Acc — Acr A4 Arc, (4.7.4)
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of the prolongation P, the restriction R, and the coarse grid matrix Ay yield

-1 _ Afr}: 0 1
i _( reo )+ PAGR

In the same way, the matrices A; on the coarse levels are recursively constructed.

ALGORITHM 4.7.1 Let a system matriz A = Ay and an F/C-labeling strategy be
given and A be defined by (4.7.1) and (4.7.2). Then, Reusken SCGM(Agy) computes
the coarse grid matrices Aj.

Reusken_SCGM(Ag)

{

for(I=0; | <lpux; I=14+1)

{

Al — A~l; 5 B
—A i Avrc i1
P = ( l’ij ’ , Ry = (—Al,CF Al Fr Inl,c>;
n,c

Aip1 = Rip1 Ay Prgas

Note that for symmetric A, the coarse grid matrices are not necessarily symmetric.
The corresponding multigrid method can be written as algebraic multigrid cycle
(Algorithm 4.0.1) with the additional step

1—1
u,p = uF + A ppdip-

ALGORITHM 4.7.2 Let transfer operators P i1, Riy1; and coarse grid matrices A;
be constructed by Algorithm 4.7.1. Then, Reusken proposes in [Reusken 199/4] the
following semi-algebraic multigrid algorithm.

Reusken _SAMG (u;, fi,1)
{
iU = lmax) w =4, f1;
else
{
up = S (w, fi) s
di = fi— Ay
U F = U F + A;;F dir;
div1 = Ryp1d;
v = 05
for(j =0; j<<v; j=3j+1) Reusken SAMG(v;y1,djy1,0+1);
up =u + P vg;
up = S (uy, f1) ;
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A modified version of this technique has been introduced in [Wagner, Kinzelbach,
and Wittum 1997]. Looking at

Z Q3,5 Tj = fi, (4.7.5)
J
the unknowns z; € D; are approximated by
Qg Tj
T — Z kg g fk , v € D;. (4.7.6)
> Gkm ak,k
v; €C; omeC;

Substituting «; € D; in (4.7.5) with (4.7.6) leads to

D Qi Ok jT;

1 UECZ G,',kfk
s k| St X S 3 g,
Uk

Aj4 k,m
v; €C; v €ED; UmECZ

In matrix form, this can be written as

Az=f — Az=FF,

where

5 App AFC)
A = , 4.7.7
(ACF Acc ( )
App = diag(Arr), (4.7.8)
&Z,] Qi j + Z (;ik a(];,] ) 7.9

vRED; oG 7,m
F o= ( 2Ine—ArrApr . (4.7.10)
I,

Then, the modified linear system Az = F f is solved by simple block-elimination as
described above.

The prolongatiosn P, ;,1, the restrictions R;y1; and the coarse grid matrices A
are constructed as in Algorithm 4.7.1 but with the modified definition of A;.

ALGORITHM 4.7.3 Let a system maitriz A = Ay and an F/C-labeling strategy be
given and A be defined by (4.7.7)-(4.7.9). Then, SchurMG_CGM(Ag) computes the
transfer operators Pj1, Riy1; and the coarse grid matrices A;.

SchurMG_CGM(Ap)

{
for(I=0; | <lpax; [ =1+1)
{ )
Al—)Al; 5

—AL Al C 1—
Py = ( l’}?F o v Ry = (_AI,CF Al,ll'“F I”l,C);

ny,c
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Aipi =Ry, A Prigas

This leads to a multigrid method which can be written as standard algebraic multi-
grid algorithm (Algorithm 4.0.1) with the additional steps

d = Fpd,

i1
u,p = wrp+ A ppdp.

ALGORITHM 4.7.4 Let transfer operators P11, Ri11,; and coarse grid matrices A,
be constructed by Algorithm 4.7.3 and F; be defined by (4.7.10). Then, the Schur-
complement multigrid method introduced in [Wagner, Kinzelbach, and Wittum 1997]
reads

SchurMG (uy, fi,1)

{
if(l = lnax) w = Aflfl;
else
{
uy = S (wy, f1);
di=F (fi — Ayw);
upp = up + Af;%«p dir;
diy1 = Ryq1,dyg;
vy = 03
for(j=0; j<7v; j=37+1) SchurMG(v;41,dj+1,0 + 1) ;
w = U+ P11 vg;
uy = S (uy, f1);
}
}

The methods by Reusken and Wagner discussed in this section have been proposed
and tested in [Reusken 1994; Wagner, Kinzelbach, and Wittum 1997] only on a
given standard multigrid hierarchy. Heppner combined both methods with several
F/C-labeling strategies. For the results, we refer to [Heppner 1999].

4.8 Numerical Experiments

EXPERIMENT 4.8.1 The anisotropic differential equation

=V (D(z)Vu(z)) = f(z), z€Q=(0,1)x(0,1)
z) = g(x), z€ N,

e O
D(z) = 01),
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is discretized on the equidistant grid (h =1/64)

using the 5-point stencil (4.1.2).
EXPERIMENT 4.8.2 The convection-diffusion problem
=V - (eVu(z) +v(z)u(z)) = f(z), z€2=(0,1) x(0,1)
u(z) = g(z), =€,
vi(z) = —4dzi(z1—1)(1 —2x9),
vo(z) = 4dzo(ze —1)(1 —221),

is discretized on the equidistant grid (4.8.1) (h = 1/64) with a 5-point finite differ-
ence upwind scheme. The rotating convection v(x) is illustrated in Figure 4.5.

EXPERIMENT 4.8.3 The interface problem

-V - (D(z)Vu(z)) = f(z), z€Q=(0,1)x(0,1)
u(z) = g(x), =z€ 09,

1 : 0<3<05 A 0<y<0.5,
D) = 410 ¢+ 0S2<05A05<y<10,
100 : 05<z<10 A 0<y<0.5,

1000 : 05<z<10 A 05<y<1.0,

is discretized on the equidistant grid (4.8.1) (h =1/64) using a 5-point stencil.

Ruge and Stiiben [Ruge and Stiitben 1987] report asymptotic convergence rates for
their algorithm (Algorithm 4.0.1 + Algorithm 4.6.1 + Algorithm 4.6.2) with V(1,1)-
cycle, GauB-Seidel relaxation and 8 = 0.25. The results for Experiment 4.8.1 and
Experiment 4.8.2 can be found in Table 4.1 and Table 4.2 respectively. The asymp-
totic convergence rate for Experiment 4.8.3 is 0.082. Further results are presented
in Section 6.6.1.

€ 0.001 | 0.01 0.1 1 10 100 | 1000
convergence rate || 0.082 | 0.094 | 0.063 | 0.054 | 0.079 | 0.095 | 0.083

Table 4.1: Asymptotic convergence rates for Experiment 4.8.1.
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Figure 4.5: Rotating convection.

€

0.1

0.001

0.00001

convergence rate

0.056

0.160

0.173

Table 4.2: Asymptotic convergence rate for Experiment 4.8.2.

o7
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5 Aggregation Methods

An iteration step of the aggregation algebraic multigrid methods is described by Al-
gorithm 4.0.1. The main difference to the interpolation methods is the construction
of the transfer operators and the coarse grids. In interpolation methods, typically,
each coarse grid degree of freedom has an directly associated degree of freedom on
the fine grid. Since aggregation methods cluster the fine grid unknowns to aggre-
gates representing the unknowns on the coarse grid, aggregation methods do not
allow such a simple identification of degrees of freedom on the coarse and the fine
grid.

Cell-centered finite volume discretizations lead to aggregation methods in a very
natural way. The same idea can be applied to standard vertex-centered discretiza-
tions.

5.1 Cell-Centered Multigrid Methods

Figure 5.1: Cell-centered discretization.

Cell-centered finite volume discretizations (see e.g. [Wesseling 1992]) generate linear
systems where the unknowns are located in the center of the elements of the tri-
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angulation (see Figure 5.1). Hence, depending on the partial differential equation,
the unknowns describe for example the pressure, the electrostatic potential or the
concentration in the corresponding grid cell.

C | G| D3 | Dy

A Ay B1 Bo

Figure 5.2: Cell-centered multigrid.

For the cell center arrangement in Figure 5.2, zeroth-order prolongations and re-
strictions can be easily derived by

(PO ug)a,

UH,A, 1= 11233143
14
(0) - -
(RO dn)a = 5 Zdh,Ai.
i=1
Bilinear interpolation gives

1
(P(l) ’u,H)A’4 = E (9 ug,A+3ug,B+3ug,c+ uH,D). (5.1.1)
The other values of P uy follow by symmetry in the same fashion. The corre-
sponding restriction is obtained by R(Y) = 1/4 (PU)T. A generalization to one and
three spatial dimensions is straightforward [Wesseling 1992].

It has been shown in [Khalil and Wesseling 1992; Wesseling 1988] that cell-centered
multigrid methods can handle interface problems (see Section 3.1, Experiment 3.7.1,
and Experiment 3.7.2) with simple transfer operators. A suitable choice is the
zeroth-order interpolation

pO — [ 11 ]

11

in combination of the bilinear restriction R") and the Galerkin coarse grid matrix
RM AP©) ., This gives mp = 1, mg = 2 such that (2.5.1) is satisfied. Since C*
continuity cannot be assumed at the interfaces, the zeroth-order interpolation is a
reasonable choice.
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5.2 Smoothed Basis Functions

©
Figure 5.3: Smoothed basis functions.
The standard one-dimensional model problem
Au=f A=[-12 —1], AcR®*™ (5.2.1)
is considered. The application of the smoother S
S=1-— gD_l A, D =diag(A),
to a vector ¢ = (0,...,0,1,1,1,0,...,0)T yields the smoothed vector

1 2 21
S¢p=v=(0,...,0,=-,=-,1,=-,-,0,..
$=v=I 33" "3°3
Vectors of the form 1 € R" and ¢ € R™ (see Figure 5.3) can be used as coarse grid
basis vectors for a multigrid algorithm. In that sense, the solution u is approximated
by a linear combination of the coarse grid basis vectors

0T,

u Z ¢i-(um)i < u=mPyuy, PyeR"W*"H,
’iSTLH
u ~ Z wz(uH)Z =N uzP,wuH’ Pq/;ERnhan,

<ng

where

P¢:(¢17"'a¢’n1~1)a P¢:(¢la"'a¢nH)'
Substituting w in (5.2.1) and multiplying both sides with Ry € R"#*"k or Ry €
R"™# %™ Jeads to the coarse grid systems

R¢AP¢UH=R¢f, RwAPwuHZwa.

Note that, the number of degrees of freedom on the coarse grid ny generated
by R4, Py or Ry, Py is approximately 1/3 of the number of fine grid unknowns
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Figure 5.4: Typical 2D aggregates.

(ng =~ 1/3ny). The standard (1D) multigrid prolongation induced by the basis
functions (0,...,0,1/2,1,1/2,0,...,0)T leads to a coarsening factor of about 1/2
(ng =~ 1/2np). Nevertheless, the prolongation Py is still a linear interpolation
scheme.

In two (or three) spatial dimensions, the basis functions ¢ are constructed by cluster-
ing some unknowns to so-called aggregates (see Figure 5.4). Then, the basis function
¢; corresponding to the aggregate A; is defined by

_l1 s geA;

(¢Z)9_{ 0 : j¢A.
In the remainder of this chapter, the algebraic multigrid method by Vanek, Brezina,
and Mandel which is based on smooth aggregation is discussed [Vanek, Mandel, and

Brezina 1994; Vanek, Mandel, and Brezina 1996; Vanek, Brezina, and Mandel 1998].
The aggregation method by Braess [Braess 1995] is briefly summarized.

5.3 The Construction of the Aggregates

Following [Vanek, Mandel, and Brezina 1996], this section describes the construction
of a system of aggregates {AL}"%" based on the graph G4,(V}, E;) (see Section 1.2)
of the matrix A;.

For a given parameter 8, the strongly coupled neighborhood of the node v; is defined
as

NHO) = {vj € Vi||aij| > 0 /ai a5, }.

ALGORITHM 5.3.1 Let an nyxn; matriz A; with the corresponding graph G 4,(V;, E;)
and 0 € (0,1] be given. Then Aggregate(Ga,(Vi, E;)) generates a disjoint covering
{AGHY of the set Vi = {v1,...,vp,}.
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Aggregate(G4,(V, E}))

/* Initialization */

U = {v; € V| N}(0) # {vi} };
J=0;

/* Step 1 */

for(v; € U)

{
}

/* Step 2 x/
for(z <j) AL =A;
for(v; € U)

{

IE(NHO) CU) { j=j+1; AA=NNO); U=U\A; }

for(z < j)

{

}
}
/* Step 3 */
for(v; € U)

{
}

if(NHO)NAL £ {}) {AL=AL U{v}; U=U\{v;}; break;}

j=j+1; A=N@ONU; U=U\A,;

In the initialization phase of Algorithm 5.3.1, the set U of not yet clustered nodes
is filled. Isolated nodes are not aggregated. After that, in step 1, disjoint strongly
coupled neighborhoods are selected as the initial approximation of the covering.
Step 2 adds remaining nodes v; € U to one of the sets AL to which the node v;
is strongly connected if any such set exists. Finally, in step 3, the still remaining
nodes v; € U are clustered into aggregates that consist of subsets of strongly coupled
neighborhoods.

5.4 The Construction of the Prolongators

In [Vanek, Brezina, and Mandel 1998], a construction scheme for prolongators for
systems of differential equation is introduced. For an easier description, the discus-
sion in the section is limited to scalar equations.

Let a system matrix A = Ay € R *™ be given. The goal of this section is to create
a hierarchy of tentative prolongators (prolongation operators) Yll+1 such that for a
given vector ty € R0,

to €range(Y)), Y =Y?Yy .Y/l YQ =1, 1=0,...,lmax- (5.4.1)
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A typical example for tg is tg = (1,...,1)T or ¢y = kernel(A).

Similar so-called test vectors have been introduced in [Wittum 1992; Wagner 1997a;
Wagner and Wittum 1997]. For systems of partial differential equations, these test
vectors #; become matrices B! in [Vanek, Brezina, and Mandel 1998].

To enforce (5.4.1), we simultaneously create the prolongator Yll+1 and a vector t;41 €
R™+1 satisfying
Vi tipr = 1, (5.4.2)

where ?; has been constructed during the setup of Yll*1 or is given for [ = 0. Note
that (5.4.2) induces
Y2t = to. (5.4.3)

The tentative prolongator Yll+1 is constructed from a given disjoint system of aggre-
gates { AL} as discussed in Section 5.3. The column of Y}, | associated with the
aggregate .Aé is formed by restriction of the columns of #; onto the aggregate .Aé.
Each aggregate gives rise to one degree of freedom on the coarse grid.

The detailed algorithm follows. For ease of presentation, we assume that the fine
level unknowns are numbered by consecutive numbers within each aggregate. This
assumption can be easily avoided by renumbering.

L (t|+1)1
1

t|1 ql L (tl+l)2
- | (tea ),

t2 @

t3 q? ||
— = LTS
T, v!

1+1

Figure 5.5: The tentative prolongator Yll+1

ALGORITHM 5.4.1 For a given system of aggregates {AL}I5]' and a vector t; € R™
satisfying (5.4.3), a tentative prolongator Yll+17 a vector ti1 satisfying (5.4.2), and
degrees of freedom on level I + 1 are created as follows:
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1. Partition the vector t; € R™ into nyy1 blocks tf €RY%, i =1,...,m41, each
corresponding to the set of degrees of freedom on an aggregate .Aé (see Fig.5.5).
d; denotes the number of degrees of freedom associated with the aggregate .Aé.

2. Write t; = g (ti41)i, where ||g}|| = 1.
3. Set (see Fig.5.5)

qt (tis)1

! i _
Y= - s b=

qlnl+1 (tl+1)nz+1

4. The coarsening gives rise to one degree of freedom on the coarse level (the i-th
column of Yll+1} for each aggregate A..

The smoothed composite prolongator Fy; is defined by
Poy=2Z0Y -2 Y™, Poo=1,

where Z; denotes a prolongator smoother. The prolongation Fj;, 1, the restriction
R4 1, and the coarse grid matrices A; are defined by

Py =7Z1Yhy, Ruy=Pun)’, A =R APy, 1=0,0 0 lmax — 1,

(5.4.4)
For the convergence analysis, the prolongator smoother
4 -1
Zl — I — ——W‘/Ifl Al, (5.4.5)
3N

W = YOI ), N =pw A,

turned out to be useful. Later, we will show for system matrices A produced by a
finite element discretization of an elliptic partial equation, that

No=97tX (5.4.6)

is a possible choice for XYV, where X > p(A) is an upper bound for the spectral radius
of A. A more heuristicly motivated prolongator smoother

Z = I-wD A, (5.4.7)
L aij : jE€N(e) ., .
Bij = { 0 :  otherwise, L7 s

Qi = Gij— Z(ai,j — i),

J#

2 1\
W = g, e =0.08 (5) )

is proposed in [Vanek, Mandel, and Brezina 1996].
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5.5 Convergence Theory

This section summarizes the convergence theory in [Vanek, Brezina, and Mandel
1998]. The convergence analysis is restricted to the symmetric case A = AT. The
following additional assumptions are required.

ASSUMPTION 5.5.1 The system matriz A is spd. The prolongation Py, 1, the re-
striction Ryy1; and the coarse grid matrices Ajyq are defined by (5.4.4) with Z; in
(5.4.5) and Yll+1 is constructed by Algorithm 5.4.1. The smoothers

Sy =1I—(MP)"" 4, M spd,

satisfy
/\min(Sl) > O, )\max(Mls) < Cg' p(Al), (551)

with a constant Cs > 0 independent of the level.

DEFINITION 5.5.1 The hierarchy of coarse grid spaces V;_,. C Vi ..—1 C - C Wy
is induced by the smoothed composite prolongators Py

V, = range(FPy ).

The spectral radius of p(A;) of the coarse grid matrices is defined by
T
ey \Jfuly,

[ully, = min{[jz]| : u= Pz, = € R"}.

where

The approximate inverse corresponding to one algebraic multigrid iteration step
(Algorithm 4.0.1) is denoted by M and the iteration matrix by T =1 — M~ A.

The convergence theory is based on an abstract convergence result in [Bramble,
Pasciak, Wang, and Xu 1991]. It can be written in our notation as follows.

THEOREM 5.5.1 ([Bramble, Pasciak, Wang, and Xu 1991], Theorem 1). Assume
there are linear mappings Q; : Vo — Vi, Qo = I and constants Cy,Cs > 0 such that

IQuulla < Cillulla YueVe, 1=0,... Lnax— 1, (5.5.2)

Co
Qi — Qir1) ully, < A

Then, if Assumption 5.5.1 is fulfilled,

lula Yu€eVy, 1=0,...Inax—1. (5.5.3)

1
||Te||A < (1— _C ) ||e||A Ve €V
0

holds with Cy = (1 + C1 + C2Cg) Imax
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The assumption (5.5.2) addresses the (algebraic) smoothness of the coarse grid basis
functions. The smoothing of the tentative prolongators Yll+1 is necessary to satisfy
(5.5.2). The condition (5.5.3) requires that constant functions are exactly interpo-
lated. Therefore, the filter condition (5.4.1) must hold for a constant test vector ¢.
Note that the connection to the considered multigrid method is made by the coarse
grid spaces V.

Before the main convergence result is formulated, the composite aggregate and the
associated norm must be introduced. The composite aggregate flﬁ is the aggregate

/g understood as the corresponding set of unknowns on the finest level. Formally,
Al is defined by

i 1,0 L Lj—1 -
Ai= A7, where A=A, AT =) A

zEAi’j

The corresponding discrete /2-(semi)norm of the vector z € R™ is given by

1/2

lzlpay=| >

dof j of A

THEOREM 5.5.2 Let Assumption 5.5.1 hold with NV in (5.4.6) and the tentative

prologators Yll+1 created using the test vector tg € R" and the aggregates {.Ai}?fll,
1=0,...,lmax — 1. Assume there is a constant C4 > 0 such that
ni+1 9l
. 2 2
;géﬁ”u_tﬂwnp(ji) < Caxllul’ (5.5-4)

for every u € R™ and everyl =0,...,lmax — 1. Then,
1
ITel|la < (1 — 5) llela Yee Wy
0
holds with Co = [2+ C4 Cs + 5Cs + 3C4 (1 + $Cs)lmax)” lmax-

PROOF. For a detailed proof, we refer to [Vanek, Brezina, and Mandel 1998]. A
sketch of the proof can be found in the rest of this section. O

The following lemma, prepares the proof of Theorem 5.5.2. Readers not interested in
the technical details of the proof may skip this part and continue with the verification
of the assumptions of Theorem 5.5.2 in the next section.

The idea of the proof is to verify the assumptions of Theorem 5.5.1 (5.5.2) and
(5.5.3) form the properties of Z; and Yl0 rather than Pp;. It is shown in [Vanek,
Brezina, and Mandel 1998], that for the prolongator smoother Z in (5.4.1) and A}V
in (5.4.6) the assumptions (5.5.2) and (5.5.3) are equivalent to (5.5.5) and (5.5.6) in
the following lemma.
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LEMMA 5.5.1 Let the prolongator smoother be given by (5.4.5) with NV in (5.4.6).
Assume that C1 and Cw are such that there are linear mappings

Ql:R'nO _)]Rnl, l:O,...,lmax, QOZI’

with

||Yl0 Ql u— Yl(}H QH—I UH% < Cf j
cond(W;) < C%, 1=0,..., max (5.5.6)

luli YueR™, 1=0,... Inax— 1, (5.5.5)

Then, if Assumption 5.5.1 is satisfied,

1
Irella< (15 ) lela veevs

holds with

4 1 4
Co = [2 + C1 Cw Cs + gCW Cs + §C1 (1 + gCW Cs)lmax]2 Imax-

PROOF. The proof uses several algebraic properties of the prolongator smoother Z;
and shows that Q; = Y,? @, fulfills (5.5.2) and (5.5.3). The detailed proof can be
found in [Vanek, Brezina, and Mandel 1998|. O

The key assumption (5.5.5) of Lemma 5.5.1 is a weak approximation property for
disaggregated functions. With the choice Q; = Wfl (YT, the mappings Y,° Q;
are orthogonal projections onto range(Y,%). Since range(Y’, ;) C range(Y,%), v exists
with
(=Y Qu, Y’ Qu—-Y2, Quuau) = (u—Y'Qu,YQv)
((YIO)T (I - }/lo Ql) u, Ql U)? = 0;
and we obtain
lu = Y5 Quaully = 1Y’ Quu—Y5 Quuaully + llu - Y Quull3
> Y Quu—YS, Qi ull3.
Hence, from the minimization property of the orthogonal projection follows

||Y20 Ql U — Yl(—)i—l Ql+1 U”% <llu— Yl(—)i—l QH—I u||§ = mi% llu — Yl(—)i—l UH—IH%-
ul+1ER I+1

Thus, the weak approximation property in the more usual form

min u—Y% u 2 <« 2 (lull2
up41 ERMAH1 I I+1 1llz < C4 [lullz

induces (5.5.5) with C% = C? 971.
The tentative prolongators Yll+1 constructed in Algorithm 5.4.1 are block-diagonal
matrices with normalized blocks. Therefore, (Yll+1)T Yll+1 = Ij41 and

W= =Y Y)Y, v =1,
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showing Cw =1 in (5.5.6).

Finally,
Ni4+1
: 0 2 : 0 2
min = flu =Y waly < min = u — Y wgallp g
U1 ER™MHL " i=1 ug41 ER™MH + 2(A)
ni+1

. 2
< ; min |lu — to wlj 4

completes the proof of Theorem 5.5.2.

5.6 The Convergence Results Applied to a Model Prob-
lem

The goal of this section is to demonstrate the verification of the key assumption
(5.5.4) for a simple model problem. For the verification of the smoothing assump-
tion (5.5.1), we refer to [Bramble, Pasciak, Wang, and Xu 1991; Hackbusch 1985;
Hackbusch 1993; Hackbusch 1994; Reusken 1991].

We consider the discretization Au = f of the second order scalar elliptic problem
a(u,v) = f(v), VvEV, uey,

on a quasi-uniform finite element mesh 7, on Q C R? associated with a finite element
space V}, of piecewise linear or bilinear basis functions ;, ||¢;|lL~ = 1. a(:,-) is
supposed to be H'-equivalent (c |u|§{1(m <a(u,u) <C |u|§ll(ﬂ)).

On level 0, each degree of freedom is associated with one finite element node not
lying on a Dirichlet boundary.

ASSUMPTION 5.6.1 On every level | < lmax, for each aggregate .Aé there is a ball
le- € R such that

1. all finite element vertices of the corresponding composite aggregate flﬁ are lo-
cated within Bé;

2. diam(Bg) < Cg 3" h, where h is the characteristic mesh-size of 7, and Cg > 0
8 a positive constant independent of the level;

3. there is an integer constant N independent of the level such that every point
x € Q belongs to at most N balls Bf. (Owverlaps of the balls are bounded.)

According to [Vanek, Brezina, and Mandel 1998], Algorithm 5.3.1 generates aggre-
gates satisfying Assumption 5.6.1.
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Let to = (1,...,1)T and Q' C Q denote the domain consisting of all elements of the
mesh 73, that are not adjacent to a finite element node with prescribed Dirichlet
boundary conditions. Then,

Zgo,(w) =1, ze€9,
i

and, as all active degrees of freedom are located in ), the equivalence of discrete
and continuous L2-norms gives

hd ||’U, to b“lz(Al <C ||ll - b||%2(B§OQI) <C ||Ell - b”i2(3£),

where C is a generic constant and E : H'(Q2) — {v| V] 1 (ray < oo} is the extension
operator satisfying

Eu=u z€Q, [Eu|lgige <Clulgi(g)
Due to the scaled Poincare inequality, there is a number bé for each ball Bé such that
15w = Wl 2 ety < C (B 1B ul s s
Here, C' is a Poincare constant on the unit ball. Hence, for all balls Bé

< Ch %diam(B})? |Eul?, ()

; l
I{HEHU t()b ||12(Al

holds. From the assumption diam(B!) < C3'h, the bounded overlaps of the balls
BL, the property |E u|z ®dy < Clulgi(q), the well known estimate p(A) < Ch2,
and the H'-equivalence of a( 1), we get

Ni41 ! ! !

9 9 9
2 : : _ 2 < 2 2 < 2
P me}RI?I ||U t0w||l2(A£) = hd,Q |Eu|H1(Rd) = CAp(A) hd a( ) CA (A) ||u||A

completing the verification of (5.5.4).

5.7 Similar Methods

A simple aggregation method has been proposed by Braess in [Braess 1995]. Braess
clusters the unknowns into groups of between one and four unknowns (see Figure
5.6).

Those groups are constructed in two steps. In the first step, strongly coupled un-
knowns are glued to pairs. After that, the pairs are combined to groups of two
pairs.
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Figure 5.6: Typical groups of unknowns.

ALGORITHM 5.7.1 Let an ny x ng matriz A; with an corresponding graph G a,(Vy, Ey)
be given. Then, Group(G 4,(V}, E;)) generates a disjoint covering {gz}fjll of the set
Vi= {Ula"' avnl}'

Group (G, (Vi, i)

{

/* construction of pairs */
U=Vi; g=0;
while(U # {})
{
choose v; € U;
if(V;NU = {}) P, :{’Ui};
else

{

2
. . al, .
determine v; € U with —=— maximal;
2,0 7,7
Pg = {vi, vj};

U=U\Pg; g=q+1;
}
/* construction of groups */
U=UPi; g=0;
1<q
while(U # {})
{
choose P; € U;
zij = number of {as;|s€ P;, t€P;};
if(z; =0 Vj) Gg="Ps;
else

{

determine j* with z;;« is maximal;



72 Aggregation Methods

Gq =Pi UPjs;
}
U=U\Gy; g=q+1;

N; (see Section 1.2) denotes the neighborhood of the node 1.

The prolongation P, ;41 = (p; ;), the restriction R;y1; and the coarse grid matrices
Aj11 are defined by

i = : " R =P, Ai+1=—R APy,
Pij { 0 : i¢g, 1+1,1 1Li+1 1= g A

where « is a constant (e.g. a = 1.8).

Figure 5.7: Regular clustering.

In order to motivate the factor «, we observe that, using the regular clustering in
Figure 5.7, the coarse grid matrix A;,1 for

~1
A= -1 4 -1
~1

is given by
1 -2
Ajjn=—1| -2 8 =2
@ —2

The coarse grid correction ¢; = P41 Al_+11 Ry 1, Aje for a smooth error e; should

be pretty close to the error e;. In the situation in Figure 5.7, a smooth residual d
is approximately multiplied with a factor 4 after the restriction

(dir1)i =Y (di)j = 4-(d)j, j€EGi

JEG;
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If ; and d;; are close to the eigenvectors corresponding to the smallest eigenvalues
of A; and A;;1 respectively, ¢; is approximately given by

Amin(4
cg =4 Wf(‘llj—)l) €.
Since (see 2.1.2)
Amin(4;) = 4(mhy)?,
Amin(Ai41) =~ 2 - A(mhyy)? =

we get

thus, a =~ 2 should be a good choice.

In [Braess 1995], the method discussed above is only applied as a 4-level method
(Imax = 3), independent of the number of unknowns.

5.8 Numerical Experiments

In [Wesseling 1988], average convergence rates for a cell-centered multigrid method
with prolongation P(®) and restriction R(Y) (see Section 5.1) are described.

EXPERIMENT 5.8.1

-V .- (D(z)Vu(z)) = z122, €Q=(0,1)x(0,1),
u(z) = 2i+a23, x€0Q

is discretized on an equidistant grid with mesh size h. D(x) = Dy = 2 outside the
shaded regions and D(z) = Dy = 1/3-10° inside the shaded regions (see Figure 5.8).

Figure 5.8: Diffusion coeflicient for Experiment 5.8.1.

The average convergence rates for Experiment 5.8.1 are presented in Table 5.1 for
these sizes of the shaded regions which yield the worst convergence rates.
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‘ h ‘ convergence, Figure 5.8 left ‘ convergence, Figure 5.8 right ‘

1/16 0.362 0.300
1/32 0.304 0.273
1/64 0.290 0.237

Table 5.1: Average convergence rates for Experiment 5.8.1.

The convergence of the method in [Vanek, Mandel, and Brezina 1996; Vanek, Brez-
ina, and Mandel 1998] has been tested for the prolongator smoother in (5.4.7) and
vy = vp = 7 = 1. The pre-smoother is an SOR step with relaxation parameter
w = 1.0 in the forward sweep and w = 1.85 in the backward sweep. Post-smoothing
is symmetric consisting of a backward sweep w = 1.85 and a forward sweep w = 1.0.
The average convergences rates for a only 1075 reduction of the residual can be
found in Table 5.2.

EXPERIMENT 5.8.2 The anisotropic problem with jumps in the coefficients

—v-((g 601>Vu(m)) — f(z), zeQ=(0,1)x(0,1),

u(z) = 0, ze€09,
0.01 : z€(0,0.5) x (0,0.5),
€ = 1 : z€(0,0.5) x (0.5,1),
100 : z€(0.5,1) x (0,1),

is discretized with piecewise linear basis functions on a reqular grid with 108 un-
knowns.

EXPERIMENT 5.8.3 The 3D problem

-V - (D(z) Vu(z)) = f(z), z€Q2=(0,1) x(0,1) x (0,1),
u(z) = 0, z€dQ,

exp(ri(z)) 0 0
D(z) = 0 exp(rz(z)) 0
0 0 exp(rs(z))

(ri(z) € [In(10~2),1n(1072)]) with random coefficients r;(x) is discretized with piece-
wise linear basis functions on a reqular grid with 68921 unknowns.

In [Braess 1995], the performance of the algebraic multigrid method proposed in
[Braess 1995] as preconditioner in a conjugate gradient algorithm is compared with
line-SSOR. The number of iteration steps for an only 10~ reduction of the residual
are reported for three different groundwater simulation problems. The smoother for
the algebraic multigrid method is line-SSOR and three coarse grids (Imax = 3) are
generated. Note that the coarsening in [Vanek, Brezina, and Mandel 1998] is much
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‘ Experiment ‘ convergence ‘ Imax ‘

5.8.2 0.1 4
5.8.3 0.21 3

Table 5.2: Average convergence rates.

‘ preconditioner ‘ realization ‘ i) ‘ iter. steps ‘ time ‘

line-SSOR 1 9246 30 4.6 s
Braess. AMG 1 9246 7 5.4's
line-SSOR 2 16464 278 83 s
Braess. AMG 2 16464 128 105 s
line-SSOR 3 45666 150 60 s
Braess_ AMG 3 45666 30 81s

Table 5.3: Iteration steps of the preconditioned CG-methods.

faster than in [Braess 1995]. The numbers of iteration steps and the computing
times are shown in Table 5.3.

For the five-point stencil (1.2.4), the numbers of conjugate gradient steps with ICC
(incomplete Cholesky) as preconditioner or the algebraic multigrid method by Braess
(Imax = 3 and SSOR (w = 1) smoothing) as preconditioner are compared in Table
5.4.

‘ i) ‘ preconditioner ‘ iter. steps ‘ time ‘

400 Braess_ AMG 5 0.13 s
400 I1CC 15 0.08 s
1600 | Braess_ AMG 6 0.38 s
1600 I1CC 26 0.46 s
6400 | Braess. AMG 7 1.62 s
6400 1CC 49 3.00 s
14400 | Braess_ AMG 7 3.76 s
14400 ICC 72 9.84 s

Table 5.4: Iteration steps of the preconditioned CG-methods.
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6 ILU-type Methods

The main goal of this section is to show the close relationship of algebraic multi-
grid methods (especially hierarchical basis multigrid schemes, Section 2.7) and ILU
schemes (see e.g. [Hackbusch and Wittum 1993; Saad 1996b]). An ILU method with
some characteristic multigrid features (NGILU) has been introduced in [van der
Ploeg, Botta, and Wubs 1996]. In [Bank and Xu 1994; Bank and Smith 1998] an
(algebraic) hierarchical basis multigrid method is constructed using an ILU tech-
nique. A similar technique is applied for the construction of an algebraic multigrid
method in [Bank and Wagner 1999].

6.1 Graph Theoretical Aspects

As already discussed in Section 1.2, a sparse matrix A is always connected with a
graph G 4(V, E), consisting of a set of vertices (nodes, unknowns) V = {v1,...v,}
and a set of edges E. For a vertex v;, the set of neighbor vertices NN; is defined by

Ni:{’l)jEV|e,',j€E}.

DEFINITION 6.1.1 A cliqgue Vo CV is a set of vertices which are all pairwise con-
nected; that is
Vg, Uj c Vc,i ;é] = €i,j e FE.

With a proper ordering of the vertices a clique corresponds to a dense submatrix of
the matrix A.

In graph theoretical terms, a single Gaussian elimination step transforms the graph
G a(V, E) to a new graph G',,(V', E') as follows.

1. Eliminate the vertex v; and all its incident edges from G 4. Denote the resulting
set of edges By C E. Set V! =V — {v;}.

2. For each distinct pair vj, v, € N; in V', add the edge e;, to the set of Er of
fill-in edges if not already present in E;. Set E' = E; U Ep.
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Figure 6.1: Illustration of a single Gaussian elimination step. The original mesh is
shown on the left. v; and its incident edges are removed (middle) and fill-in edges
are added (right).

The elimination process is illustrated in Figure 6.1.

Note that the set N; in G4 becomes a clique in G’;,. Within this framework, the
classical ILU-decomposition does not allow any fill-in Er = {}. This forces the
new matrix A’ corresponding to G’; to have the same sparsity structure as the
corresponding submatrix of A. The graph G';, would then correspond to the center
of Figure 6.1.

To interpret hierarchical basis multigrid (HBMG, Section 2.7) as a generalized ILU
scheme, we consider the case of two nested meshes, where the fine mesh is an uniform
refinement of the coarse mesh, generated by pairwise connecting the midpoints of
the coarse grid edges in the usual way [Bank, Dupont, and Yserentant 1988; Bank
1994; Hackbusch 1985]. Here the direct sum decomposition V = C @ F, where C is
the set of coarse grid vertices and F' is the of fine grid vertices (those not in C') can be
made. For each vertex v; there is an unique pair of vertices v;,v;, € C' such that v; is
the midpoint of the edge connecting v; and vy on the coarse grid (v; = (v; +vg)/2).
The pair v;, vy is called vertex parents.

We now view HBMG as an ILU algorithm in which only selected fill-in edges are
allowed. In this algorithm, we sequentially eliminate the vertices in the set F' as
follows.

1. Eliminate the vertex v; and all its incident edges from G 4. Denote the resulting
set of edges By C E. Set V! =V — {v;}.

2. Let vj,v; € N; denote the parents of v;. Create a set Er of fill-in edges of the
form
€j,m OF € m With vy, € N, m #k,j

for edges not already present in E;. Set E' = F1 U Ep.

In other words, the classical HBMG algorithm connects the vertex parents v;, v € C
of an vertex v; € F with all neighbors v,, € N; of v;.

An even more simple elimination strategy is to use just one vertex parent. Although
this does not correspond to the HBMG, it has been studied in a different context as
a partitioning scheme for general graphs [Karypis and Kumar 1995a; Karypis and
Kumar 1995b]. The elimination algorithm is similar to the case of two parents
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1. Eliminate the vertex v; and all its incident edges from G 4. Denote the resulting
set of edges E1 C E. Set V' =V — {v;}.

2. Let v; € N; denote the parent of v;. Create a set Er of fill-in edges of the
form

ejm With v, € N;j, m # j

for edges not already present in E;. Set E' = E; U Ep.

The one-parents scheme produces fewer fill-in edges. When the initial graph is a
finite element triangulation (or a tetrahedral mesh in three space dimensions), the
graph G';, remains a finite element triangulation. This property can be maintained
at all steps of the elimination process through a careful selection of the parents. In
general, this is not possible for the two-parents scheme. Both elimination techniques
are illustrated in Figure 6.2.

Vi

Y
Figure 6.2: Tllustration of the one- and two-parents elimination schemes. The origi-
nal mesh is shown on the left. The fill-in patterns for two parents (v; and vy) and
one parent v; are shown in the middle and on the right respectively.

The extension to more than two parents nodes is straightforward. Allowing all
vertices in N; to be parents results in classical Gaussian elimination.

In the case of a sequence of regularly refined meshes, if the triangulation represents
the stiffness matrix on the fine grid, after all fine-grid nodes are eliminated using
either the one- or the two-parents scheme, the resulting graph is just the coarse grid
triangulation. This is illustrated in Figure 6.3 and Figure 6.4.

Figure 6.3: Two-parents elimination schemes for a regularly refined sequence of
grids.
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Figure 6.4: One-parents elimination schemes for a regularly refined sequence of grids.

For unstructured meshes, the main problem is to determine reasonable vertex parents
for each vertex to be eliminated. Once this is done, the elimination (coarsening) is
done exactly as in the case of nested meshes. This may lead to graphs which are
not finite element triangulations.

6.2 Schur-Complement Approximation

The following simple example illustrates the connection between ILU schemes and
the hierarchical basis multigrid algorithm. Let A € R®*™ be a sparse matrix arising
from the discretization of a partial differential equation. A can be partitioned as

d r’ n-1 i - pn—l)x(n-1)
A= ;A , d#0, rleR"™, AeR .

The hierarchical basis multigrid method is based on a change of basis, from the nodal
basis to the hierarchical basis (see Figure 2.8). The first step of the transformation

involves forming the matrix
10 d 1
I I 1 A 0 I

_ d rT 4 d7T
- l+dl A+IrT +177 +1di" |-

L AU,y

If the first vertex v is associated with the refinement of the edge between v; and v;,
for classical HBMG@G, [ and 7 are given by

[=F= (ei+ej)/2,

where e; is the i-th column vector of the identity matrix I,,_;.

On the other hand, the two-parents elimination scheme chooses the vectors [ and 7
according to o B

l=1lie;+1lje;, T=r;e;+7jej,
assuming that v; and v; are the parents of the first vertex v;. Here l},l},ﬁ,?:j are
simply the multipliers in an incomplete LU factorization of the matrix A.
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The matrix [77 + 177 + [ dFiT typically creates some fill-in in the rows and columns
corresponding to the vertex parents. These are precisely the fill-in edges shown in
Figure 6.2. Note that the elimination step can be viewed as adding a rank one
perturbation to the exact Schur-complement Ag = A — 1d~!rT

A+l 4177 +1di" = As+ ((+d 1 D)d(F+d ' r)T,

In the standard formulation of HBMG as well as for the incomplete LU decompo-
sition, the next step is a transformation of the same form applied to the matrix
A+1rT + 17T +1diT .

Two popular choices exist for the selection of the multipliers in [ and 7. For the ILU
decomposition, the multipliers are chosen to zero certain components in [+d 'l and
7 +d 'r. In the MILU approach (see [Gustafsson 1978; Hackbusch and Wittum
1993; Wittum 1989b]), the multipliers are chosen that

Atr = MMILU t,,- and tlT A= t;‘r MMILU

holds for certain test vectors t,,#;. The usual choice is ¢,,¢; = (1,...,1)T.

6.3 The Incomplete Factorization Multigraph Algorithm

The ILU-type algebraic multigrid methods (e.g. [Bank and Smith 1998; Bank and
Wagner 1999; van der Ploeg, Botta, and Wubs 1996]) differ in the approximation
of the Schur-complements, i.e. the choice of the multipliers in [ and 7, and in the
ordering of the unknowns. In this section, the method proposed in [Bank and Smith
1998] is discussed.

6.3.1 Ordering

Ordering means to find a permutation matrix P such that the reordered matrix
P APT has some desired properties. For classic sparse Gaussian elimination, the
permutation matrix P is constructed based solely on the graph of the matrix (e.g. a
minimum degree ordering [George and Liu 1981]) and not on the values of the matrix
elements. In the multigraph algorithm, both the graph and the numerical values of
the matrix are used to construct the ordering and the vertex parents. To simplify
the description, only the ordering and the elimination of one vertex v; is explained.
The remaining vertices are ordered inductively by the same algorithm.

Let f() describe the number of fill-in edges which must be added if v; € N; is
chosen as the only vertex parents of v;. Then, the quality rgm ) is given by

i) 195] +agil

= ! . v>0,
VI N
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where
pi = laiil + Y (laij| + lajal)-
J#i
Then, for the case of one vertex parent, the quality function ¢ (v;)
) — (4,4)
;) = maxr 6.3.1
0() = max r{ (6:3.1)
represents a compromise between choosing a parent v; which is as strongly con-
nected to v; as possible, and choosing v; to cause as little fill-in as possible. The
parameter - indirectly controls the number of fill-in edges resulting from the or-

dering. Experimentally, v = 10 turned out to be a good choice for the one parent
algorithm.

The quality function go(v;) for the two parent scheme is developed in a similar
fashion. Suppose that v;,v; € N; (k # j). Then, the qualities are given by
|aig| + lajil + laik] + |ak,]

PG )

(i:5:k) —
Ty =

where f (4:3:%) is the number of fill-in edges required if the pair {v;, vy} is chosen as
parents. go(v;) is then defined by

g2(vi) = max{qo(v:), G1(vi), g2(vi) } (6.3.2)
with as]
. Qi . .. . .
do(vi) = #, 4i(vi) = max 1), go(vi) = , hax, r{isih),

v = 50 was determined experimentally for the two parent algorithm. Actually, the
two parent algorithm offers the possibility to each vertex of having zero, one or two
parents. Along with the quality function, tentative parents are assigned to each
vertex. In case where no parents can be assigned, g,(v;) =0, (p = 1,2). We are now
in the position to formulate the ordering algorithm.

ALGORITHM 6.3.1 Let an nxn matriz A be given and quality functions q, be defined
by (6.3.1) or (6.3.2). Then, the ordering algorithm according to [Bank and Smith
1998] reads

Order(p)
{
/* Initialization */
for(: <n)
{
compute gp(v;);
U=UU{v};
}
/* Elimination */
get v; € U with gp(v;) maximal;
while (v; exists && gp(v;) > 0)
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U=U\{vi};

order the vertex v;;

the tentative parents of v; become the actual parents;
eliminate v; ;

update the graph and the partially factored matrix;
for(v; € N;)) update g,(v;);

get v; € U with ¢,(v;) maximal;

There is an interesting modification of Algorithm 6.3.1. We might set (artificially)
gp(v;) = 0 for all vertices which have been chosen as parent vertices. Hence these
vertices v; will not be eliminated. When U contains only vertices v; with g,(v;) =0,
the remaining nodes are called coarse grid vertices and those eliminated are fine grid
vertices. This provides a two level blocking analogous to two level multigrid methods.
Reinitializing ¢, (v;) for the remaining vertices and restarting the elimination process,
leads to a natural multilevel blocking.

6.3.2 Factorization

For the factorization, a diagonal matrix ¥ is defined by

n

o; = max{0, — Z(ai,j +aji)},

i=1
Y = diag(o1,...,0n).
Actually, an incomplete factorization of A+ X is computed. Such an a priori shift is

a simple way to insure the existence and the stability of the factorization. The first
elimination step leads to

d r’ 1 0 d 0 1 dtr?
A+2_<l A)_(Zd—11)<o A—ld—er)(o I '
The sparsity pattern of the matrix A—1d 17T will generally not coincide with the
allowed pattern. Thus, [d~! r’" is decomposed into
—ld T =8 + Ny,

where S has the required sparsity pattern. N is the error matrix for the first
step. With the same technique, the first column/ row of _A + 51 is eliminated. If the
factorization is inductively continued as A+ S = A=LDU + N, we get

1 0 d 0 1 d1tsT
A+¥ = (ld—11>(o A+N1>(o I >

B 1 0 d 0 1 dtoT (0 0
- ld ! L 0 D 0 U 0 N+MN

— LDU+N. (6.3.3)
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Thus,
A=LDU+N —-X=LDU+ N.

The matrix —{d~' T is decomposed as S; + N; by a procedure similar to classical
MILU [Gustafsson 1978; Wittum 1989b]. Suppose that i > j and the entry I, d~tr,
is not allowed in the fill-in pattern. Consider the matrix () which is zero except
for the four elements

F;(,;’]) = —li dil Tj, Fj(’ii’j) = _lj dil Ty FZ(;J) = F}(,Z]’]) = (lz dil Ty + lj dil ’I"i)/Q.
Then, N7 and Sy are defined by

Ny =Y FOD 8 =—1d"'r" — Ny,
(4,3)

where the sum is taken over all pairs (4, j)' falling outside the allowed fill-in pattern.
This is a typical MILU approach, aside from the unusual averaging of the diagonal
entries appearing in F(7).

ALGORITHM 6.3.2 The incomplete factorization multigraph preconditioner M is de-
fined by
M=LDU

with L,D,U in (6.3.3).

6.4 The Multilevel ILU Decomposition

The multilevel ILU decomposition (MLILU) [Bank and Wagner 1999] is an ILU-
type algebraic multigrid method including more classic multigrid features than the
incomplete factorization multigraph algorithm. In particular, distinct levels are
defined which allow the computation of smoothing steps on the coarse grids.

6.4.1 The Labeling Scheme

Since the labeling algorithm proposed in [Bank and Wagner 1999] is rather complex,
the description of the scheme has to be restricted to some basic features.

Similar to the incomplete factorization multigraph algorithm, parent nodes are as-
signed to each node which is eliminated. In general, two parent nodes must be
assigned. Only in some special cases, one or more than two parent nodes are al-
lowed.

The basic idea of the labeling strategy is to mark all nodes on each level either
as F-node or as C-node. While the F-nodes are eliminated, the C-nodes represent
the unknowns on the next coarser level. Only C-nodes are allowed to be parent
nodes. A node is only marked as F-node, if an appropriate set of parent nodes can
be assigned.
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Aside from a couple of exceptions, an appropriate set of parent nodes for the node
(vertex) v; needs to contain two strongly coupled neighbors v; and vy, i.e.

l l 1 1
aij 2 o max{a; g}, iy 2 0 max{a;g}

with a parameter o, 0 < o < 1. Since A; = (aé,j), "strongly coupled“ refers to the
matrix A; on the currently labeled level and therefore not to the partially factored
matrix as in Section 6.3.

In order to locally minimize the number of fill-in edges and the number of C-nodes,
each pair of neighbor nodes v; and vy, strongly coupled to v; gets a weight

Ej’k) =qay— o ncz(-j’k) — g nez(-j’k) — a3 f(j’k), g, a1, o, a3 >0 (6.4.1)

depending on

e the number of new C-nodes ncz(j ’k),

(4,k)

e the number of fill-in edges ne;”",

e the coupling £U/F) between v; and vy

¢(k) is small for weakly coupled v; and vy.

The weight w; for the node v; is then defined by

_ (4:k)

w; = ma wW; 6.4.2

¢ vj, Uk EXNl{ ? } ( )
and the corresponding pair of parent nodes is called optimal pair. We can now
formulate the labeling algorithm for one level [. The same algorithm is applied to
all levels. The construction of the coarse grid matrices is discussed in the following
section.

ALGORITHM 6.4.1 Let an n; X n; matriz A; be given and weights w; be defined by
(6.4.1) and (6.4.2). Then, the labeling of the unknowns on level | is performed by
Label(4;).

Label (A4;)

{

/* Initialization */
for(i <n)

if (|N;| ={}) label v; as F-node; /* no parent nodes needed */
else
{

compute wj;

U=UU {’Uz‘};
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/* Labeling */
while (nodes with an appropriate set of parent nodes exist)

{

get v; € U with w; maximal;
U=U\{vi};
label the node v; as F-node;
the optimal parents v;,vy of v; become the actual parents;
label the parent nodes v;,v; as C-nodes;
for(vg € N; U Nj UNy) update wyg;
¥

/* Remaining nodes */
while (U # {}
{

get v; €U ;
label the node v; as C-node;
U=U\{vi};

6.4.2 Decomposition

As a first step, we describe the elimination of the first column of the matrix A®) e

Rn(i) xn(®)
A(Z) - ( l; Az(l) ) ?

di €R, d; #0, r;,l; € ]Rn(i+1), A c ]R"(HI)XW(H—I)’ nlt) = p6) _ 1,

Exact Gaussian elimination leads to the factorization

A(n_( 10 ) Lo (di ”’T>
o lidi_l I Gty 0 Ag) 0 I,u+

with the n(t1) x n(it+1) identity matrix I, ;+1) and the Schur-complement

AY = A6 — gt

In order to limit the fill-in, the Schur-complement is approximated by

ACD = A0 — g 7T — L YT+ Td T, ol e RPCY (64.3)
The values of the non-zero components in 7; and I; are controlled by a test vector
t. Since the size n(? x n() of the matrices A®) decreases for increasing 7, only the
last n{Y) components of the test vector are required for the i-th elimination step. We
therefore define the operator [v],, which returns the last m components of the vector
v. Thus, the test vector t() for the i-th elimination step is given by t&) = [t], «).
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The standard choice for ¢ is ¢ = (1,...,1)”. In particular, the non-zero components
of r; and [; are given by

()l > )tiﬁl

z<n(’+1) .
. : JEPR A (ri)2 1@ > 0,
2€P;
0 : otherwise,
)l Y )Y,
z<n(i+1) .
TN = . :jEP‘/\Z|()|t >0,
(l:); = 3 1)), RS et
2€P;
0 :  otherwise.

If > |(ri). |tz+1 >0and Y |(;):] t;(zi4)-1 > 0, the construction scheme satisfies the
z€P; z€P;
filter conditions

(0,7 —rl)t® =0, (t“))T(,.EZ.)ﬂ-

Since,

A — AD = ([~ i)y (7~ )"

?

the error matrix N

G) _ 1 0 1 0 d; T;TF 0
N ( lidz-_l I+ ) ( 0 Al+1) 0 1,6+ 4

B 1 0 0 0o di 1}
=\ Ld ' I 0 AGHD — 49 0 I+

B ( 0 0 )
0 (li—l)dy" (Fi—r)T
is symmetric and positive semi-definite if A® is symmetric and positive definite.

Using the same technique, all F-nodes are eliminated iteratively. This yields the

two-level decomposition
I 0
Myt =L .F
1,TL ! ( 0 A, ) U

with a lower triangular matrix L; and an upper triangular matrix U; of the form

* 0 * *
u=(1 ) u=(o )

For A spd, it can be shown that A;; is spd and the two-level error matrix N; T, =
M 11, — A; is symmetric and positive semi-definite. The filter conditions

Ny t=0, t'Nyr,=0
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still hold.

Apy1 represents the system matrix on the coarser level [ + 1. Next, on level [ + 1,
the unknowns are labeled. Then, the F-nodes on level [ + 1 are eliminated which
yields a new matrix A;y2. The same procedure is applied to level [ +2 ... .

We are now in the position to formulate the MLILU algorithm.

ALGORITHM 6.4.2 Assume the matrices U;, L; and A; have been computed by an
Imax-level MLILU decomposition and smoothers S; are defined. The operator v,
returns the last m components of the vector v. Then, the function MLILU(O,u, f)
calculates one iteration step of the MLILU method.

MLILU(’i,uZ’, fz)
{
if(6 == lmax) wi = A; ' fis
else
{
u; = 8" (ui, fi);
d; = fi — Ajug;
d; = L 'd;;
div1 = [diln; s
vir1 = 03
for(j =0;j <v;j=j+1) MLILU(i + 1,vi41,dit1);
[di]nHl = Vj+1;
U; = U; + U,L-_l d;;
u; = S (ui, fi)s

}

Ui, di, fi,vi € R,

In Algorithm 6.4.2, the matrices L; and U; play the role of restriction and prolon-
gation respectively. Without smoothing steps, the MLILU decomposition becomes
an ILU decomposition with a special ordering and a special approximation strategy
(6.4.3). In this case, distinct levels are not necessary.

THEOREM 6.4.1 Let A be spd. Then, the energy norm of the iteration matriz I, —
M~YA, where M is the MLILU decomposition of A (v1 = vy =0,y = 1), is smaller
than one

I, — M A4 < 1

independent of the of 7; and I; in (6.4.3). The filter conditions
Mt=At, t'M=¢"A

hold.

PROOF. The proof is based on the positive semi-definiteness of the error matrix. A
detailed proof can be found in [Bank and Wagner 1999]. a
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6.5 The Nested Grids ILU Decomposition

For the Nested grids ILU decomposition (NGILU) introduced in [van der Ploeg,
Botta, and Wubs 1996], the unknowns are numbered according to a nested multi-
grid partitioning. After that, an LU-factorization based on a drop tolerance is
constructed.

6.5.1 Numbering

Let a sequence of nested grids € D @y D --- D (Y, be given. Similar to the
hierarchical basis multigrid, the set of unknowns £2; on level [ is then defined by

Q= \ Q41, where Q. 41 ={}.

Hence, each unknown is assigned to exactly one level. The unknowns are numbered
such that if

uiEQlandu]-EQmwithl<m = 1<

For instance, on an uniform sequence of grids, this may lead to the numbering

1 2 3 4 5 6 7
8 41 9 42 10 48 11
12 13 14 15 16 17 18
19 4/ 20 49 21 45 22
23 24 25 26 27 28 29
30 46 31 47 32 48 33
34 35 36 37 38 39 40

where
u; € QO, 1 <40, wu; € Ql, 41 <1 < 48, QQ = Uy4g.

6.5.2 Factorization

In [van der Ploeg, Botta, and Wubs 1996], a splitting A = LU + N is constructed
for matrices A with diag(A) = I. Of course, all matrices A with a;; # 0 can be
transformed into this form by simple diagonal scaling.

The construction scheme guarantees, that all entries n; ; of the error matrix N are
bounded by a threshold parameter ¢; j, |n; ;| < & ; (¢ # 7).

Given the first ¢ — 1 rows of L and U, the row ¢ of L and U is constructed from
N=A—-LU as
min{i,j}
Nij = Qi,j — Z Lk ug,j- (6.5.1)
k=1
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Let j < i. Hence, uy ; has already been calculated for k¥ < j. Using (6.5.1), I; ; is
inductively constructed from
j—1
N + li’j Ujj = Qi — Z li,k U, j- (6.5.2)
k=1

starting at j = 1. Note that [;; for £ < j has been computed from (6.5.2) with
j = k. Then,

j—1
ai,j*kgl bik Uk,j j—1 _
Lj={ ——w;—— laij — > likugj| > €V edge e;j exists
’ ’ k=1
0 :  otherwise.
For j >, (6.5.1) yields with /;; = 1
i—1
Nig +Uij = aij — Y lijup. (6.5.3)
k=1
Because uy; is already computed for k < i, we can set

i1 i1
w = i~ Dolikuky o laig— Y Liguk | > € Vedge e;; exists
0 = k=1 k=1
0 :  otherwise.

The neglected fill-in n; ; in the case /; j; = 0 or u; ; = 0 is added to the main diagonal.
Hence, with [;; = 1, u;; is computed from

i1
Nig + Ui = Qi — § Li g ks,
k=1
where
N = — E Tk
ki

and n; is calculated according to (6.5.2) and (6.5.3). Hence,
Z Nik = 0,
k
and therefore
Nt=0, t=(1,...,1)%.

For a symmetric matrix A, an incomplete Cholesky decomposition with LT = U is
constructed in a similar fashion.

On uniform grids, the drop tolerance is ¢; ; is chosen as
U; € Ql, u; € Qk = &= amax{l’k} 8(0)

with 0 < @ < 1. For 2D-problems £ = a = 0.2 turned out to be a good choice.
The optimal value for o for 3D problems is smaller.

ALGORITHM 6.5.1 The nested grids ILU decomposition (NGILU) M is defined by
M=LU,

where L and U are constructed as described above.
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6.6 Numerical Experiments

6.6.1 Incomplete Factorization Multigraph Algorithm

In [Bank and Smith 1998], the number of iteration steps for a 10~% reduction of the
residual are compared for the incomplete factorization multigraph algorithm and the
algebraic multigrid method in [Ruge and Stiiben 1987] (see Section 4). The incom-
plete factorization multigraph algorithm is applied as preconditioner in an composite
step biconjugate gradient procedure. The following problems are considered.
EXPERIMENT 6.6.1

—Au=1 1inD,

with Dirichlet boundary conditions where D is a domain in the shape of Lake Supe-
rior. The results are shown in Table 6.1.

AMG | AMG || one parent | one parent || two parents | two parents
unknowns || steps | time/s steps time/s steps time/s
5-103 8 0.17 11 0.11 9 0.10
20-103 10 1.33 16 0.79 12 0.70
80-103 12 8.07 27 6.14 15 4.10

Table 6.1: Results for Experiment 6.6.1.

For the 2D Poisson equation on an uniform grid, the number of iteration steps is
proportional to the logarithm of number of unknowns.

EXPERIMENT 6.6.2 This experiment features discontinuous and anisotropic coeffi-
cients. A simple 2D-domain is divided into three regions 1,9, Q3 where the dif-
ferential equations

—eAu = 0 inQq,
—Au = 1 in QQ,

v 0%u ,
- w — € (9—’!/2 = 1 Qg

are discretized with Dirichlet and Neumann boundary conditions. See Table 6.2 for
the results.

EXPERIMENT 6.6.3

—V-(Vu+pu)=0 and —-V-(Vu—pFu)=0

with Dirichlet and Neumann boundary conditions. |B| ~ 10* inside a narrow curved
band and B = 0 in the rest of the domain. The problem is taken from semiconductor
device modeling. The results for both equations are shown in Table 6.3.
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AMG | AMG || one parent | one parent || two parents | two parents
unknowns | steps | time/s steps time/s steps time/s
5-103 49 1.24 35 0.38 14 0.17
20 - 10° 48 6.76 53 2.74 19 1.15
80 - 10° 32 22.1 128 28.9 26 7.29
Table 6.2: Results for Experiment 6.6.2.
AMG | AMG || one parent | one parent || two parents | two parents
unknowns | steps | time/s steps time/s steps time/s
5-10° div 93 1.69 70 1.58
20 - 10° 49 | 7.45 96 9.28 64 6.99
80- 103 11 8.11 119 51.10 68 34.00
5103 div 10 0.2 7 0.18
20 - 10° div 10 1.01 7 0.88
80 - 10° 13 9.62 12 5.54 8 4.48

Table 6.3: Results for Experiment 6.6.3.

6.6.2 Multilevel ILU Decomposition

In this section, the performance of the MLILU algorithm is analyzed (see [Bank and
Wagner 1999]). For all experiments, V-cycle with one post-smoothing Gauf3-Seidel

step is applied (y =1, v; = 0, vp = 1). As test vector, t = (1,1,...,1)7 is used.

The average convergence rates of the first s steps

=

If — Aul |
1f — Aul®]l

1/s
) , kS<10710,

necessary for a ten orders of magnitude reduction of the residual are reported.

EXPERIMENT 6.6.4

Ap=0

in D,

where D is a complex domain (drift chamber). The boundary conditions are of
Neumann and Dirichlet type. A detailed description of this problem can be found
in [Bastian 1996] and [Wagner 1995]. The coarsest triangulation consists of 112
triangles, some with very small angles. Table 6.4 shows convergence rates for several
grids, which are obtained from the regular refinement of the coarsest triangulation

(0 =1/2).
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unknowns convergence
890 k15 = 0.210
3578 ko1 = 0.322
14330 ko3 = 0.360
14330 (y=2) | ki1 =0.114

Table 6.4: Results for Experiment 6.6.4.

A similar, small dependence of the convergence rates on the number of unknowns
for the fine grids can be observed for the standard multigrid method, although the
convergence rates are much worse for standard multigrid. The convergence rates for
the Poisson equation on an uniform grid are independent of the number of unknowns.

EXPERIMENT 6.6.5 The results for the anisotropic differential equation
2 2 .
e$%+ey2712‘: in Q= (0,1) x (0,1),

u(z,y) =L on 0Q,

where
=€ =1 z<1/2, y<1/2,
e2=1, € =c¢, z>1/2, y<1/2,
ez=1, € =c¢, z<1/2, y>1/2,
€z =€ € =1, z>1/2, y>1/2,
which is discretized with linear basis functions on an uniform grid (h = 1/128,

o = 1/2) are presented in Table 6.5. Figure 6.5 shows a typical graph of a coarse
grid matriz for small values of € indicating a kind of semi-coarsening..

‘ € ‘ convergence ‘

1 k11 = 0.109
1072 | ky5 = 0.207
107 | k19 = 0.288
1078 | ki = 0.288

Table 6.5: Results for Experiment 6.6.5.

EXPERIMENT 6.6.6 A typical interface model problem is given by

V- (DVu) = 0 inQ=(0,1) x(0,1),
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Coarse grid for Experiment 6.6.5.

Figure 6.5

d<y<l—0 Nd<z<1-—4,

otherwise,

The convergence results for several values of € and § can be found in Table 6.6.

The differential equation was discretized with bilinear basis functions on an uniform

grid (h = 1/128, 0 = 1/4). The graph of a coarse grid matriz for ¢ = 10°% and

0 = 33/128 is presented in Figure 6

6

33/128 |

5=

9

=1/4 ‘ conv. rate

‘ conv. rate, §
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Figure 6.6: Coarse grid for Experiment 6.6.6.

EXPERIMENT 6.6.7 The convection term in the differential equation
e Au — sin(w x) COS(?Ty)a—Z + sin(7 y) COS(?T.’,C)g—Z =0 inQ=(0,1) x (0,1),
u(z,y) = sin(wz) + sin(137z) + sin(wy) + sin(137y) on 9N

simulates a rotating flow (see Figure 4.5). Convergence rates and a typical graph of
a coarse grid matriz are shown in Table 6.7 and Figure 6.7 respectively. (uniform
grid, bilinear basis functions, h = 1/128, 0 =1/2).

‘ € ‘ convergence ‘

1 ko = 0.066
1072 | kg = 0.275
1074 | Koy = 0.342
108 | koy =0.333

Table 6.7: Results for Experiment 6.6.7.

6.6.3 Nested Grids ILU Decomposition

The performance of the NGILU decomposition applied as preconditioner in a conju-
gate gradient algorithm is considered in this section. In [van der Ploeg, Botta, and
Wubs 1996], the number of steps s until the stopping criterion

IZ7H(f = Au) |2 < 1078 L7H(f — Au®)|2
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Figure 6.7: Coarse grid for Experiment 6.6.7.

is reached are reported.

EXPERIMENT 6.6.8 The Poisson equation
Au=1 1in(0,1) x (0,1),

with Dirichlet and Neumann boundary conditions was discretized on an uniform and
on stretched m x m grids. The results for the uniform mesh can be found in Table
6.8, the results for the stretched grids are shown in Table 6.9.

‘ m ‘ steps ‘ non-zero entries/m? ‘ flops/m?> ‘

64 7 3.6 204
128 7 4.0 217
256 7 4.3 226
512 7 4.5 233

1024 7 4.6 236

Table 6.8: Results for Experiment 6.6.8.
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m = 64 m = 64 m=128 | m=128 | m =256 | m =256
Z—m‘f‘l steps | entries/m? | steps | entries/m? | steps | entries/m?
102 b) 11.5 7 11.2 9 11.2
10* 4 15.6 5 22.0 9 25.1
108 3 15.0 5 22.4 6 31.0

Table 6.9: Results for Experiment 6.6.8 on stretched grids.
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7 Block-Elimination Methods

The basic idea of the block-elimination algebraic multigrid methods, is to construct
a factorization of the system matrix A of the form

(AFF AFC):< I 0 )(AFF 0 )(Inp AF};'AFC>
Acr Acc Acr Azp Ing 0 Ag 0 In,

In general, the Schur-complement Ag = Acc — Acr A;}, Apc is a dense matrix.
Thus, it must be approximated.

Nevertheless, a tridiagonal matrix A can be reordered, such that the blocks App
and Acc are diagonal and the Schur-complement Ag is again tridiagonal. Hence, in
the same way, Ag can be decomposed. This method is called cyclic reduction and
can be used, for example, for solving a linear system with a tridiagonal matrix or
with a special block-tridiagonal matrix.

Several methods based on this block-elimination idea have been introduced e.g. in
[Axelsson and Vassilevski 1989; Axelsson and Vassilevski 1990; Fuhrmann 1994;
Fuhrmann 1995; Notay 1997; Notay 1998; Reusken 1997; Reusken 1998].

Classic line smoothers or line preconditioners like ILLU (see e.g. [Kettler 1981]) or
the frequency filtering decomposition [Wittum 1992; Wagner 1997a; Wagner 1997b]
are based on a similar partitioning of the system matrix into more blocks corre-
sponding to grid lines.

7.1 A Semi-Algebraic Multigrid Preconditioner

The preconditioners introduced and analyzed in [Axelsson and Vassilevski 1989;
Axelsson and Vassilevski 1990] are based on block-elimination, although a given
finite element grid hierarchy is used and the coarse grid matrices are computed by
standard finite element discretization on these grids.
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ALGORITHM 7.1.1 Let a hierarchy of nested grids Qy D Qp D -+ D Q. and
system matrices A; on these levels be given. Then, the proconditioner M = M in
[Azelsson and Vassilevski 1990] is recursively defined by

Birr 0 ) ( I, —B, tn AL rc )
M, = ~b I,F IL,LFF*=t , 71.1
! ( Aicr Aic 0 I, o ( )

where

Ay pc = Aype + (Aupr — Bupr) Jures  Ayer = Aicr + Jlpe(Aurr — Burr),

Ji,rc is the FC-block from the hierarchical basis transformation (2.7.1) in Section
2.7, By rr 15 an approzimation for A;rpr, and Ajc is implicitly defined by

Almax_lac = Mlmax = Almax
(Ae) ™t = [T=Py(M5 A AL, 1 <lmax— L

P, is a polynomial of degree v > 1 and satisfies

0<P(t) <1 VYte(0,1], Py (0)=1.

Possible choices for the matrix B; pr are either By pr = A; pr which leads to the
method analyzed in [Axelsson and Vassilevski 1989] or a maybe scaled incomplete
(block-)factorization of A; pp. For the theoretical analysis, B; pr is supposed to
fulfill

B
W, Burrvls oy 4y, (7.1.2)

1<
~ (v, ALFFv)2

with a constant b.

Examples for the polynomials P, (t) are

P(t) = (1—t) (7.1.3)
or
T, (71 Ti;”) +1
P,(t) = — . 0<a<l, (7.1.4)
T, (—O‘> +1
1«

where T, (z) is the Chebyshev polynomial
To(z) =1, Ti(z)=z, Ts(z)=2zTs1(z)—Ts_2(z), s>1

For a — 1, the polynomials based on the Chebyshev polynomials converge to the
polynomials in (7.1.3). For an optimal value of a, good estimates of b in (7.1.2) and
the constant ¢ in the strengthened Cauchy-Schwarz inequality (2.7.2) are required.
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(7.1.1) can be rewritten as

~1
M, =

( Inl,F _BlTI;F Al,FC > BljblF 01 ( 5 Inz,F ) 0 )
0 Inl,C 0 AlTC _Al,C'FBlTFF I”l,C‘

B tw O —B, pp A _ i -
_ ( 0 0 ) +< e )Al,é( ~Aicr Bty Tuc )

ni,c

Hence, the structure of Algorithm 7.1.1 resembles the structure of the classical multi-
grid method, where y coarse grid correction steps are computed on every grid level.
Note that in Algorithm 7.1.1, Pi(t) = (1—t) and P(t) = (1—1)? yield a V-cycle and
W-cycle respectively. Furthermore, the multiplication with —Al,cF Blj Pl > Which oc-
curs in the forward substitution, can be seen as a restriction. The multiplication

with —BlT P{ F fL, rc during the backward substitution can be seen as a prolongation
and Bl_}% p is a smoothing step for the fine grid unknowns only.

The difference with the classical multigrid method is that only the fine grid nodes
are modified by the smoother. In this respect, the method is similar to the hierar-
chical basis multigrid method. It is well known, that the hierarchical basis multigrid
method does not converge independent of the mesh size especially in three spatial
dimensions. Therefore, we can not expect mesh size independent convergence for
P (t) = (1 —t). However, as stated in the following theorem, mesh size independent
convergence can be obtained for 7 large enough.

THEOREM 7.1.1 Let A; be symmetric and positive definite and assume that the
strengthened Cauchy-Schwarz inequality (2.7.2) holds with & < 1. The precondi-
tioner My defined in Algorithm 7.1.1 with P, in (7.1.4) and Bpp satisfying (7.1.2)
is spectrally equivalent to Agy if v > (1 — {2)_1/2.

PROOF. The proof is rather technical. We therefore refer to [Axelsson and Vas-
silevski 1990). O

7.2 The Approximated Cyclic Reduction Preconditioner

The approximated cyclic reduction preconditioner introduced in [Reusken 1997;
Reusken 1998] is based on the cyclic reduction/block-elimination idea. The coarse
grids are constructed using a maximal independent set labeling technique. The
coarse grid matrices are determined by an approximation of the Schur-complements
resulting from the block-elimination and can be computed by a typical Galerkin
approximation.
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7.2.1 F/C-Partitioning

In this section, the F/C-labeling strategy proposed in [Reusken 1997; Reusken 1998]
is discussed. As we have seen in Section 4, if simple (point) smoother are used, to
enhance robustness, coarsening should only occur in the direction of strong connec-
tions. Let G4(V, E) denote the graph of the matrix A where V is the set of vertices
(unknowns) and E is the set of edges (non-zero matrix entries). Every diagonal
connection e;; € E is labeled strong. For every non-isolated vertex v; € V, an edge
eij € E is labeled strong if
|ai ;| > B max|as ;|
J#i

with a given parameter 0 < 8 < 1. An edge is labeled weak if it is not strong. This
yields a splitting £ = Eg U Ey of the edges into strong Egs and weak Ey edges.
The directed graph consisting of the vertices V' and the set of strong edges FEg is
called the reduced graph and is denoted by G 4(V, Eg).

The next step is the construction of a maximal independent set F' of the reduced
graph G 4(V, Eg). Several different techniques for the construction of a maximal
independent set are known [Saad 1996a]. Two vertices v; and v; are said to be
independent with respect to Eg if ¢;; ¢ Eg and e;; ¢ Es. A subset Vs of V is
called independent set if every two vertices in Vs are independent. Vs is a maximal
independent set if no proper superset of Vs is independent.

The algorithm proposed in [Reusken 1997; Reusken 1998] consists of a graph traver-
sal and a labeling method. For the graph traversal, the breadth first search (BFS)
[Horowitz and Sahni 1984] is applied. The BFS algorithm starts with a vertex vy € V'
and marks it as visited. Unvisited vertices adjacent from vy are visited next and
so on. This approach is applied to every connected component of G4(V, Eg). The
labeling scheme is summarized in the following algorithm.

ALGORITHM 7.2.1 Let a reduced graph G 4(V, Es) be given and N be defined by

NP ={vj € V|laij| > 8 max |ai;| and i # j .

Then, the set F of vertices labeled F by BFS _Label() is a mazimal independent
set with respect to GA(V, Eg). If G4(V,Eg) can be split into several unconnected
sub-graphs, BFS_Label () is applied to all these sub-graphs.

BFS_Label()

{

FIFO0_in(vg) ;
F={}; ¢={}
while (FIFO not_empty())

{

v; = FIFO_out();
if (v; is not labeled)

{

if (v; € Nis NF exists)
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label(w;) = C;
C:CU’UZ';

}

else

{
label(v;) = F;
F =FUuw;;

for (v; € N7) { label(v;) = C; C=CUuw;; }

}
}

for (v; € N° && v; not visited ) FIFO_in(v;);
j i j j

Note that for many related coarsening techniques with maximal independent sets
(e.g. [Reusken 1996; Ruge and Stiiben 1987]) the coarse grid nodes V¢ build an
independent set.

The F/C-partitioning induces a

A ( Arr Arc )
Acr Acc

partitioning of the system matrix. Let 3 be defined by

0 i Ew = {}7

p= sup M :  otherwise.
2,]

deg(v;) = |N;| is the number of neighbor vertices N; = {v; € V|e;; € Eand i # j }.
The maximum degree of the graph G 4 is denoted by A(G4) = max deg(v;).
v; €

LEMMA 7.2.1 Consider the F/C-partitioning as described above and assume that
the system matriz A is a weakly diagonally dominant M-matriz. Then, the following
holds:

(A(Ga) -

1)
(A(Ga) - 1)

1y = Db Aprllos < i

where Dpp = diag(Arr).

PROOF. Since A is an M-matrix,

||InF - DE;‘ AFFHOO = ||(I’nF - D}_T‘}U‘ AFF) lnF ||007
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where 1,,, € R*F is given by 1,, = (1,...,1)T. Then, with Wy = NyNF for vy € F
and deg(vg) > 0

lak ;| Zv'eWk |a'k,j| Zu-EWk |ak,j|
Z 2] < J — J

< - (7.2.1)
v; EWy, akak Z’UjENK |a’k’j‘ Z’UjEWk ‘a'kyj| + Z’l}jENkﬂc |akaj|

Because deg(vy) > 0, there is at least one strong edge ey ;, v; € C, and thus |W| <
A(G 4) — 1. Using the notation my, = max; |ag |, we get

> lakl < (A(Ga) — 1) By

vj eWy

Combining this with (7.2.1) yields

3 kgl o (AGa) =D Fme (7.2.2)
vicT, ik (A(Ga) — 1) Bmg +my
Since
S %l g for deglug) =0,
. Qg k
v; EWy
(7.2.2) proofs the lemma. =

7.2.2 Schur-Complement Approximation

The Schur-complement Ag = Acc— Acr Afvll[7 Apc is the result of a block Gaussian
elimination. Since Ag is in general a dense matrix, Ag has to be approximated.
Note that any left transformation of the form

( I, 0 ) ( Arr Arc ) _ ( Arr Arc )
—Ber  Ing Acr Acc ) \ Acr —BerArr Acc — Ber Arc
does not change the Schur-complement. We consider a sequence of such left trans-
formations with matrices Bop € R"¢ XnF of the form Borp = Acr DFF (Dpr =
diag(App) or Bep = Acr DFF The matrix Dpp is the diagonal matrix which
satisfies

Apply, = Dppla,. (7.2.3)

In particular, for k € N the sequences A*) and A%®) are recursively defined by

A = 4 (7.2.4)
I 0
AR = ( nr_ )AU“), k>0, 7.2.5
_ACFDF%? Inc ( )
. I 0
F G ( )Aw—n, k>0, 726
—Acr Dy Ing ( )
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The Schur-complements of A*) and A®) are equal for all k. The definitions in
(7.2.5) and (7.2.6) yield

A®) = Aok (Iny — Dk App)t, (7.2.7)

This implies with Lemma, 7.2.1 that the blocks Agcl); and flgfl); are ”"small“ for k

sufficiently large and that, for k large enough, the diagonal blocks Ag% and fl(cl%

might be reasonable approximations of Ag. We will use Ag)c for our preconditioner.

For the analysis in the remainder of the section, we consider arbitrary k& > 0.

LEMMA 7.2.2 Let A be a weakly diagonally dominant M-matriz with a given F/C-
partitioning as described in Section 7.2.1. Then,

Ag% is a weakly diagonally dominant M-matriz for all k,
Ag = Ag% — N®) is a regular splitting for all k (see Definition 1.3.1),
m A%) = Ag.

li =
k—00 ce

PROOF. Ag is a weakly diagonally dominant M-matrix and obviously Acr < 0 and
Apc <0 (componentwise inequalities). Due to Lemma, 7.2.1,

p(Arr) <1 for App= Iy — DI_?}p App > 0.

Hence, we have the representation

o0
As = Acc — Acr | Y Ayp Dy | Arc.

j=0

Using (7.2.7), we obtain by induction
k-1 '

A(Cl% = Acc — Acr A% D;ﬁllg‘ Apc.

j=0

Thus,

k = j
N® =A%) — As=4cp | Y AL, Dk | Apc > 0. (7.2.9)
=k

All off-diagonal entries of A(CI% are non-positive because all off-diagonal entries of
Acc are non-positive and A%F D;l{ﬂ > 0 for all 5. We conclude that Ag% is an
M-matrix and the splitting Ag = A(Cl% — Nk g regular. Ag% > As and Agl,, >0
show that A(Cl% is weakly diagonally dominant. Finally, klggo N®) = 0 leads to

lim A% = Aq. O
proe CC S
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According to Lemma 7.2.2 and Lemma, 1.3.2 Agf)c is a stable approximation of Ag
and i
pllnc — (AGH) ' 4s) < 1

(see e.g. [Varga 1962]). However, the approximation of Ag is very poor for smooth
vectors. Therefore, the resulting preconditioner for reasonable small k behaves like
a smoother. To improve the approximation quality for smooth vectors, the block-
elimination is constructed with the matrix DFF which satisfies the filter condition
(7.2.3).

LEMMA 7.2.3 With the same assumptions as in Lemma 7.2.2, the following holds
for A%, in (7.2.6).

(a) ;1((,]% has only non-positive off-diagonal entries for all k,

(b) flg% is weakly diagonally dominant for all k,

(c) if Ag% is regqular then it is an M-matriz,

(d) flg% is an M-matriz for k sufficiently large,

(e) lim A(CI% = Ag,

k—00

(f) if Arcw = —ArFr 1N, then A(C]%w = Agw for all k,

~ _ _ ~_ 1, = 0
(g) Inc — A(CI% ASI = ACF(InF — DF%?AFF)kilDF;'(DFF Apc)Afl ( I )

ngc
PRrROOF. By definition
A(cl% = A((,I*Cc_l) - A((,{CEI) Dyp Arc- (7.2.10)

Because Agc(;l) is an M-matrix (Lemma 7.2.2), Agcgl) <0 (see (7.2.7)), Dyt > 0,

and Arpc <0, the result (a) holds. (7.2.5) leads to
AGL Lng+ AG) Lnp = AGGD Lng+ ALY 1np —ASE ) Dpp(Apr Lngp+Aro 1ng) 2 0.
The inequality follows by induction from
Acclyg +Acrln, >0, Aprly, +Arcly, > 0.
The filter condition (7.2.3) shows
Dy lng + Apc lng = App lnp + Arclng >0 and DyppArc lng > —1ng.
This yields with (7.2.10) the result in (b)

(k—1) (k—1)

Ag% Lne = A(C]*cc_l) Lng — A((/{c;l) D;}? Arc lng 2 ACC Lne + ACF lpg 2 0.
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Since A(Ck(); is weakly diagonally dominant and the off-diagonal entries are non-
positive, we conclude from Gerschgorin’s circle theorem that every real eigenvalue

of fi(cl% is non-negative. Therefore, if flg% is regular, fi(cl% is an M-matrix [Berman
and Plemmons 1979].

Lemma 7.2.2 and (g) induce p(I,, — figf) Ag') < 1 for k sufficiently large and,
hence, A((,,% is regular for k£ sufficiently large.

We obtain from (7.2.7), (7.2.9), and (7.2.10)
Agh—4As = Agg" —As— AgRY Dpjp Arc
k

oo
= Acr | Y ApDpk | Ape — A%V DLl Ape
=k—

j 1

= Acr(In, — DppAre)* " App Arc — A%RY Dk Arc
= AC’F(InF — DE;‘AFF)IC_I(I”F — D;%AFF)A;'%AFC’ (7.2.11)

which proofs (e). For w in (f)

holds. Thus, (7.2.11) shows (f).
From the identity

a1 — (e —AppArc Az 0 Inn 0
0 Ing 0 Ag' ~Acr App Ing )

we get

_ 0 _ _
(In, 0) A7 ( ) = —App Apc Ag'

I,

and

~ -~ _ ~ _ 0
—(Drr — Apr) App Arc Ag' = (Dpp — App) (In, 0) A7} (I )

no
= (Drr Arc) A ( ISC )

— (Iny 0) AA7! (IO )

nc
N o 0
- (DFF AFC) A .
I,
Finally, the multiplication of (7.2.11) with —Ag"
1,

— A®). AT = —Acp(In, — DpbAre) ' (In, — DibApr)AnhArc A"

proofs (g). O
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REMARK 7.2.1 fl((?)c can be computed as

I

nc

A1
(2 1 -D AFC
Agé = (_ACF Dyr Inc) A ( Er ) .
Introducing the matriz-dependent prolongation and restriction

—D7L A _
p=( PR ) R=(-AorDik 1..)

ne

A(C% can be constructed using the Galerkin approach ;1(02)0 =RAP.

Due to the different approximations of A;}; in the prolongation P and the restriction
R, the coarse grid matrix Agé is not necessarily symmetric if A is symmetric. If
D;ll; is used in both P and R, the approximation of Ag is stable but very poor
for smooth vectors. On the other hand, if D;}, is used for P and R then due to

instabilities the approximation turned out to be poor for certain problems.

The multigrid convergence theory of Hackbusch [Hackbusch 1985] is based on the
approximation and the smoothing property (see Section 2). In [Hackbusch 1985], it
is shown that the approximation property is closely related to a regularity property
which holds for a certain class of elliptic partial differential equations. Below, in
Lemma 7.2.4 a sort of an algebraic regularity term is introduced. The norms in
Lemma, 7.2.4 for vectors wg € R*C and wrp € R™F need to be understood in the

sense
0
el =1 (g I Tl =0 (% )1

LEMMA 7.2.4 With the assumptions of Lemma 7.2.1, the following holds for fl(gé
in (7.2.6):

ne — A%), ASY| < || Ack (Iny — DpkAre)* "Dkl |(Drr Arc) A7Y.

PROOF. Use (g) in Lemma 7.2.3 and || ( IO ) | =1. O

ne
The first term on the right hand side in Lemma 7.2.4 can be controlled with linear
algebra arguments only. Since (Dpr Apc) is a difference operator, bounds for A~
as an operator between spaces with different smoothness properties are required in
order to bound the second term on the right hand side in Lemma 7.2.4. Such results
can be considered as discrete counterparts of results in the regularity theory for
continuous elliptic boundary value problems. For a detailed discussion, we refer to
[Hackbusch 1985] Section 6.3.2.

(2)

Numerical experiments showed that the Schur-complement approximations ACC are
in general less sparse than the system matrix A. To avoid too dense coarse grid ma-
trices, the smallest off-diagonal entries in absolute values are added to the diagonal
entry (lumping) such that the number of entries per row is bounded by a given
constant MSIZE (e.g. MSIZE = 3A(G4)).
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7.2.3 Model Problems
In this section, we consider the norms
|Ack (Iny, = DppAre)* ' Drplla,  (Drr Arpc) Ao

for a couple of model problems. These model problems represent discretizations of
partial differential equations on the unit square 2 = (0,1) x (0,1) with periodic
boundary conditions on an uniform grid with mesh size h.

We consider the 9-point stencil

1 1 _1

4 2 4

= -1 _1
A= 3 3 2
1 _1 _1

4 2 4

For # > 0.5 (see Section 7.2.1), standard red-black coloring yields a maximal inde-
pendent set which results in the blocks

N[

App = 3 , Arc=Acr=| —3 -

Dpp = 3I,,, Dpp=2I,,.

Using
lAcrls < | Acrll [ Acrllo <4, I1DFFl2 =2,
we obtain
5 1 k—1
I4cr(Tnp ~ Dok Are) =Dyl < Iy - Debrell ™ < (5)
Note that
(Dprp Apc) At = (I, 0)AAL
where .
A= % -1 4 -1
-1

Straightforward Fourier analysis proves ||A A~!||; < 1 and therefore,
(k) 1 k-1
e~ A8 45 < (3) -

For the five-point stencil discretization of the anisotropic diffusion equation

—€
A= -1 2+42¢ -1
—€
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with 0 < € < 1 and S large enough, standard semi-coarsening (coarsening only in
x-direction) produces a maximal independent set. This yields the blocks

—€
App = 2+4+2¢ |, AFC:AC’F:[_l 0 —1],

—€

Dprp = (2426 I,,, Dpp=2I,,.

Similar to the first example,

k—1
_ 1~ _ _ €
I4cr(Top — Dok Ape) = Dbl < 1 ~ Debrell < (57)

follows and

(Dpp Arc) At = (I, 0)AATY,
holds for
X 0
A= -1 2 -1
0

Note that the algebraic regularity is only measured using the difference operator A
which contains differences only in the direction of the strong connections. In the
classic multigrid convergence theory, there is a severe deterioration of regularity for
€ — 0. Here, however, due to the problem dependent measure of the regularity, a
Fourier analysis yields

k—1
. 3 NOE €
(Ore Ar) A7 <1 5 Mo - A8 A7 < ()

Let us consider the five-point stencil discretization of a convection-diffusion equation
with the stencil

—€
A=| —1—¢ 14+4e —€¢ |, O0<exl.
—€

As in the previous example, semi-coarsening generates a maximal independent set
with respect to G 4. The stencils of the blocks are given by

—€
App = 1+4+4e |, AFC:ACF:[—l—G 0 —6],

—€

Dpr = (1+4€)InF, DFF:(1+2€)InF-

With the same technique as in the previous examples, we obtain

i o ) B 2¢ k1
|Acr(In, — DFll;'AFF)k IDF}:HZ < |Mnp — DJ}«“IIFAI"F||]2C ' < (1 +4e) ’
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and
(Drr Apc) At = (In, 0)AAT,
for
0
A= —1le 1+2¢ —¢
0

Fourier eigenvalue analysis shows

k—1
o i) 4=t 2¢
IAAT o<1 = |l — AGL A2 < (1+4e> '

7.2.4 The Preconditioner

The coarse grid matrices for the algebraic multigrid preconditioner in [Reusken 1997;
Reusken 1998] are recursively constructed as explained in Section 7.2.2.

ALGORITHM 7.2.2 Reusken CGM(A) constructs the coarse grid matrices A;, | =
1,...,lmax for a given matrizx A = Ay.

Reusken CGM(A)
{
Ag = 4A;
for(l =15 <lmax;l =1+1)

~(2
A= Al(—)l,CC’;

reduce the stencil size of A; by lumping if necessary;

To formulate one iteration step of the preconditioner, we need to introduce a special
smoother for the F-vertices. Sl’f rp(T1F, fi,F) computes an approximate solution z;

of the linear system A; pr Tip = fi,r using v GauB-Seidel iterations starting with

the initial guess a:l(f)} = DZ]%'F JiF-

ALGORITHM 7.2.3 Assume the coarse grid matrices A; have been constructed as
in Algorithm 7.2.2 and partitioned according to Algorithm 7.2.1. Let a fine grid
smoother S} (x1, fi) be given as explained above. The function Reusken AMG(0, u, f)
calculates one iteration step of the preconditioner in [Reusken 1997; Reusken 1998].

Reusken_AMG([, u;, f;)

{
if(l == lmax) Uy = Al_1 fl;
else
{

SKFF(ZFa fiF);



112 Block-Elimination Methods

fic = fic — Aicr 2r;

fiy1 = fies

U1 =03

for(j=0;j <7;j=7+1) Reusken AMG(l + 1,v;41, fi+1);
U,c = Vi+1;

firF = fiF — Ayrcucs
S pp(w,rs fir);

7.3 Approximated Inverses in Algebraic Multigrid Meth-
ods

In [Notay 1998], the approximation of the block Arp of the symmetric and positive
definite system matrix

Arr Arc )
A= 7.3.1
( Acr Acc ( )
by a matrix Brp in the two-level block-elimination preconditioner
BFF 0 In Bil AFC )
M = G 7.3.2
( Acr Ac ) ( 0 Inc (73:2)

is analyzed. Ag = Ag is supposed to be a spectrally equivalent approximation
of the Schur-complement Ag = Acc — Acr A;}; Apc. Since App is usually a well
conditioned matrix, only little attention is paid to the approximation of Apr in many
papers dealing with block-elimination methods. Although Arg is well conditioned,
inverting App exactly might be quite expensive and the approximation of AEm might
lead to very inefficient preconditioners as shown in [Notay 1998] and summarized
below.

In order to derive a lower bound for the condition number (M ! A) the Rayleigh

quotients
(0, AD)s (v, Av)g

T
(5,Mv)y” — (v, M),
associated to vectors of the form

— ( _BE%?AFC"UC ) v — ( —A;};Apc’vc )

v
Vo vc

r =

are evaluated. A straightforward computation shows

(5,A%)s = (ve,Asvc)2+ (vo, Acr [Apy — 2By + Bk Arr Bphl Arcve)a,
(0,Mv)e = (ve,Acve)s2,
(v,Av)es = (vc,Asvc)2,
(v, Mv)y = (ve,Acvc)s+ (vo,Acr [Bpp —2Ankh + Apk Brr Apk] Apc ve)a.
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Let Aps be defined by Ayr = Amax(Bpp Arr), then using
App = 2Bpp + Bpp Arr Bpp = (Ine — Bpp Arr)* Apg,
we get for all wp

(wr, [Bpp — 2 App + App Brr App]wr)a =
= (wr, [App Brrl[App — 2 Bgp + Bpp Arr Brp|wr)2
< M\t (wp,y [Iny — Bpk Apr]® Aph wr)2.

Hence, with

¢ (ve, Asve)2
ve (ve, Acve)2’

P (ve, Acr Iny — Brp Arr)? App Apc ve)2
vC - ]

(ve, Asve)2

we obtain .

Goc + Aot Yoo
Since Amax(M ™1 A) > 7 and Apin(M ! A) < r, this implies

,F:qvc(]-_f_g’l)c)a ES

v
181 =3

> (1+ goe) (1 + i”—cgvc> : (7.3.3)
M

(7.3.3) shows that the two-level method can only be efficient if g,,, is bounded above
independently of the mesh size. If A is the result of a standard finite element
discretization of a second order elliptic partial differential equation, (ve, Asve)2 =
O(h?) for smooth vectors v¢ which further implies

(v, Acr App Arcve)2 = (ve, Acc ve)z = O(1).
Hence, g, can only be bounded independently of the mesh size if BE}, acts nearly
as an exact inverse of Agg for these smooth vectors.

To illustrate this, let A be the standard five-point stencil (1.2.5) discretization of
the Laplacian on the unit square with a uniform mesh €2;, of mesh size h

Qp ={(z,y) € Q| (z,y) =(ih,jh), i,7j=1,...,n, h= }.
The set of vertices V = ), is split into V = F & C' such that
F=Qp\Qp, C=QN0%.
Assume that Bpp = Dpp = diag(App). The vectors e(Vs1)

eV =sin(vrz) sin(vry), (2,y) € Vo
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are shown [Reusken 1995] to be the eigenvectors of Ag with corresponding eigenval-
ues

Amm—4< ! + ! + ! + ! )1
4—-2(cy+cu) 4—2(co—cy) 4+2(ch—cy) 4+2(ch+cy)
where ¢, = cos(vh), ¢, = cos(pumh). For v = p, it takes the simpler expression

8(1—c2)

v

A(Ual/) —
2—c2

It is easy to check that

2
— v Cy v
(InF —DF%;AFF)ZAFC 6( V) = EAFCe( ' )

Thus, because Acc = 4 I, and (I, — Dpp Arr) = (Inp — Dpg Arr)”

cp (e¥), [Age — As]e™)),
2 (e(U,V)’ASe(I/,V))2

02 02

22(1-¢a2)

ge(”a”)

Therefore, for the smoothest mode v =1,
B2
Je(11) = An2
showing with (7.3.3) that k(M A) = O(h=%) !
The analysis in [Notay 1998] shows that the following two conditions
(v, Brrur)s < (vr,Arrvr)2 Yop € R'F, (7.3.4)
(ve, Ack Bpp Arcvc)y < (1—€)(ve, Accvo)e

+&(ve, Acr App Arcvc)2 Voo € R* (7.3.5)

with ¢ < 1 are sufficient to get an appropriate approximation Brp of App. This
is relatively weak since £ might be negative, but nevertheless sufficient to entail an
acceptable behavior, as it can be seen on an intuitive basis: whenever

(ve, Accve)2 = (14 O(h?))(ve, Acr Apy Arc ve)2,
(7.3.4) and (7.3.5) imply
(ve, Acr Apk Arcve)s < (ve, Ack Bpp Arcve)2
< 1+ (1=80h?)(ve, Acr App Arc ve)a,

ie. B;}m has to act nearly as an exact inverse for the corresponding modes as long

as 1 —¢=0(1).

(7.3.4) and (7.3.5) are the main assumptions for the following theorem in [Notay
1998].
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THEOREM 7.3.1 Let A in (7.8.1) be symmetric and positive definite and let M be
defined by (7.3.2) with Apr and Bpp regular. Assume that (7.8.5) and

B (vr, Arrvr)2 < (vr, Brrovr)2 < (vr, Arrvr)2 Voup € R'F

hold for some B with 0 < 8 < 1 and & < 1. Further assume that Ac = Ag 18
spectrally equivalent to the Schur-complement As = Acc — Acr A;}, Apc

N (ve, Asve)2 < (ve, Acve)2 < ((ve, Asve)2 Ve € R
with 0 <n<1<(. Then,
a(v,Av)s < (v,Mv)s <~v(v,Av)2 VveR",
where vy is the smallest root of
Y= +1=E+BE+Bn=0

and « s the largest root of

o —al(+1-E+BE+B(=0.

Moreover,
" np
n+1-6+E6°
1-p0-¢ ))
o < ¢(14 82029,
(-8
PROOF. Since the proof is rather technical, we refer to [Notay 1998]. O

Finally, an approximation Brp of App which meets the conditions (7.3.4) and (7.3.5)
has to be found. As shown above, simple Jacobi smoothing Brpr = diag(App) is
not sufficient. Therefore, an MILU [Axelsson 1994; Dupont, Kendall, and Rachford
1968; Gustafsson 1978; Wittum 1989b] factorization of App is analyzed in [Notay
1998].

PROPOSITION 7.3.1 [Berman and Plemmons 1979] A symmetric matriz C that has
non-positive off-diagonal entries is an (possibly singular) M-matriz if and only if is
positive semi-definite or, equivalently, if and only if Cx > 0 for some x > 0.

PROPOSITION 7.3.2 [Notay 1998] Let Brr be the result of a (possibly blockwise)
MILU decomposition of a symmetric M-matriz Apr satisfying the filter condition

Brrzrp = Arrzr >0

for a vector xp > 0. Then, App — Brp is a symmetric M-matriz.

Proposition 7.3.2 shows (7.3.4) for an MILU factorization Brp of App. In the
remainder of this section, (7.3.5) is discussed.
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LEMMA 7.3.1 Let A be a symmetric and positive definite M-matriz and let x =
(zp,zc)T > 0 be a vector with Az > 0. (Such a vector exists for all M-matrices.)

Drpr denotes the diagonal matriz which satisfies the filter condition

Drrar = Appxp.
Then, )
(vr, Brrvr)2 > (vr, DrF vr)2 (7.3.6)
yields (7.8.5) with € = 0.

PROOF. Since Az = Az for

A— ( Drr Arc )
Acr Acc )’

A is a symmetric M-matrix and, hence, positive definite. Note that (1 — &) Ao —
Acr (Bpp — € Apt) Apc is the Schur-complement of

( Brpp Arc )

Acr Acc —E&As

Thus, (7.3.5) holds if and only if the latter matrix is positive definite. Due to
assumption (7.3.6), it is sufficient to check

o7 < Drr Arc

>0 Vo,
Acr Acc — EAs ) v v

which obviously holds for ¢ = 0 because A is positive definite. O

A better bound ¢ > 1/2 is shown in [Notay 1998] for z = (1,...,1)7 when 4 is a
linear finite element matrix.

Having Lemma 7.3.1 in mind, only (7.3.6) is left to prove. This is done in the follow-
ing lemma for a class of factorizations Brp. For instance, an (possibly blockwise)
MILU factorization of an M-matrix is a member of this class.

LEMMA 7.3.2 Let Brr = (Q — F1) Q71 (Q — F) be such that Q is a symmetric
M-matriz and F > 0 is strictly upper triangular. Assume that Bpr yr > 0 for some
yg > 0. Then,

(vr, Brror)2 > (vr, Aprvr)2 Vop

where App is the diagonal matriz with Bprpyr = App yp-
PROOF. Since Q is an M-matrix, @~ > 0. From
(I — Q_l F)zp = Q_l[Appr +FT (I — Q_l F)xp]

it is easily seen by induction that (I — Q™! F)zr > 0. Let Z be the diagonal matrix
such that Zzp = Q! F zp. This yields

Brr—App = (Z-F" Q) Q(Z-Q ™' F)+[Q-2QZ—(I-2) F~F" (I-2)-Al.
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The first term of the right hand side is positive semi-definite with (Z—Q ! F) zp = 0.
Therefore, the term under brackets satisfies

Q—-ZQZ-(I—-Z)F-F*(I-2Z)—Alzp =0

and has non-positive off-diagonal entries because Z is diagonal with I — Z > 0.
Therefore, this term is a (singular) M-Matrix and, hence, positive semi-definite. O

COROLLARY 7.3.1 The choice yr = zp and App = l~7FF with T g, l~7FF in Lemma
7.8.1 and yp and App in Lemma 7.8.2 proofs (7.8.6). Thus, due to Lemma 7.3.1
and Proposition 7.3.2, the assumptions of Theorem 7.3.1 are met for an MILU
decomposition Brr of App.

7.4 Numerical Experiments

The performance of the semi-algebraic multigrid preconditioner in Section 7.1 is
numerically tested in [Axelsson and Vassilevski 1990]. As matrix Bpp in Algorithm
7.1.1 a block-ILU decomposition of App is applied and the polynomials (7.1.4) with
an appropriate choice of a are used.

EXPERIMENT 7.4.1 The standard model problem
Au(z)=f, z€QL

on the L-shaped domain in Figure 7.1 with mized Dirichlet and Neumann boundary
conditions is discretized on a reqular grid.

Figure 7.1: L-shaped domain {2,.

The number of conjugate gradient iteration steps, the average reduction factor p and
the computing times (on an obviously not very powerful machine) with Algorithm
7.1.1 as preconditioner are shown for v = 1 in Table 7.1, for v = 2 in Table 7.2, and
for v = 2 in Table 7.3.
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unknowns ‘ steps ‘ p ‘ time/s ‘
736 15 0.2431 | 30.6
3008 18 | 0.3050 134
12160 21 0.3526 600
48896 24 | 0.4020 | 2719

Table 7.1: Results for Experiment 7.4.1 for v = 1.

unknowns ‘ steps ‘ p ‘ time/s ‘
736 7 0.0324 51
3008 7 0.0331 189
12160 7 0.0327 711
48896 7 0.0337 | 2788

Table 7.2: Results for Experiment 7.4.1 for v = 2.

unknowns ‘ steps ‘ p ‘ time/s ‘
736 4 0.0039 86.7
3008 4 0.0043 351
12160 4 0.0055 | 1368

Table 7.3: Results for Experiment 7.4.1 for v = 3.
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Reusken discusses in [Reusken 1997; Reusken 1998] the performance of the approx-
imate cyclic reduction preconditioner as preconditioner in an GMRES(5) iteration
(restart after 5 iteration steps). For all experiments, the parameters 5 = 0.7, v = 2,
and MSIZE = 14 are used. The coarsening factor for the presented experiments is
slidly larger than 1/2.

EXPERIMENT 7.4.2 The discretized convection-diffusion equation

ou(zx, Jdu(z,
Auley) +ale,n) P52 4 b(a,) P5EY — f, (o) €0 =0,1) x 01)
where
B 0.1 : (z,y) €(0.5,0.8) x (0.5,0.8),
a(zy) = { 100 : otherwise,
_ 0.2 : (z,y) €(0.5,0.8) x (0.5,0.8),
blz,y) = { 200 : otherwise,

with Dirichlet boundary conditions and an uniform grid with mesh size h = 1/96
(9025 unknowns) is considered.

The numbers of GMRES(5) steps for a 10710 reduction of the residual for several
values of € are documented in Table 7.4.

1000
1

0.001

[SUR LN |

Table 7.4: Results for Experiment 7.4.2.

The results for a rotated anisotropic equation (Experiment 7.4.3) can be found in
Table 7.5.
EXPERIMENT 7.4.3 The rotated anisotropic equation

0% u(x,y)
02

0* u(z,y)
0xdy

0% u(x,y)
0y?

(z,y) € 2=(0,1) x (0,1),
u(z,y) =0, (z,y) € 09,

—(ec® +5%) —2(e—1) —(es® +¢?) = f,

with 0 < e <1, c=cosp, s =siny and
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is discretized on an uniform mesh (h = 1/96, 9025 unknowns), resulting in a discrete
operator with stencils

He—1) —e 0 0 —e  S(e—1)
A= —€ 3e+1 —€ , A= —€ Je+1 —€
0 —  3(e—1) (e—1) —e 0

on the left half (x < 1/2) and on the right half (z > 1/2).

0.5
102
104

N | Qo[

Table 7.5: Results for Experiment 7.4.3.

EXPERIMENT 7.4.4 SHERMANS3 with 5005 unknowns and 20033 non-zero entries

is taken from the Harwell-Boeing collection. 6 GMRES(5) steps are required for a
10710 reduction of the residual.

Notay compares in the following experiment (see [Notay 1998]) the condition of
M~ A (see (7.3.2)) for Bpp is either an ILU decomposition of Apr or an MILU
decomposition of App. The results are shown in Table 7.6.

EXPERIMENT 7.4.5 The model problem
Au(z,y) = f, (z,y) €2=(0,1) x (0,1),
uw(z,y) = g, (z,y) €00

is discretized on two uniform grids Qp and Qop. The coarse grid matriz Ac in
(7.3.2) is just the system matriz on the coarse grid Qgp,.

| A [ k(M1 A)ILU | k(M~' A) MILU |

16 2.78 2.45
32 6.00 2.54
64 28.3 2.58
128 258 2.58

Table 7.6: Results for Experiment 7.4.5.

The condition of M~! A with an MILU decomposition Brr of App is reported for
Experiment 7.4.6 and Experiment 7.4.7 in Table 7.7.
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EXPERIMENT 7.4.6 The interface model problem
V- (DVu(z,y) =f, (x,y) €2=(0,1)x(0,1),
with

S (1000 et x (),
1 1 otherwise,

is discretized on two uniform grids Qp and Qop. The coarse grid matriz Ac in
(7.3.2) is just the system matriz on the coarse grid Qop,.

EXPERIMENT 7.4.7 The anisotropic problem

V(DVU(.’E,y)) =1 ($7y) €= (07 1) X (Oa 1)1
dy 0
o= (% )

L1000 s e (D x (b,
“” 1 . otherwise,

with

where

L {000 e (B x (),
y 1 :  otherwise,

is discretized on two uniform grids Qp and Qop. The coarse grid matriz Ac in
(7.3.2) is just the system matriz on the coarse grid Qop,.

‘ h ‘ k(M~1 A) Experiment 7.4.6 ‘ k(M~! A) Experiment 7.4.7

32 2.85 2.93
64 2.87 3.04
128 2.87 3.10

Table 7.7: Results for Experiment 7.4.5.
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