


Université catholique de Louvain

Analyse numérique 2

MATH2180 2006-2007

Alphonse Magnus,
Institut de Mathématique Pure et Appliquée,
Université Catholique de Louvain,
Chemin du Cyclotron,2,
B-1348 Louvain-la-Neuve
(Belgium)

(0)(10)473157, magnus@inma.ucl.ac.be, http://www.math.ucl.ac.be/membres/magnus/

Table des matières

Quelques references	7
0.1. Livres et articles	7
0.2. Ressources réseau	8
0.2.1. Usenet, FAQ, KuLeuven, Matlab, Netlib	8
0.2.2. Packages	9
Introduction	17
1. Solutions d'EDP, caractéristiques. [Courant & Hilbert]	17
1.1. Premiers exemples	17
1.2. Problème de Cauchy	20
1.3. Un exemple exemplaire : équation de la membrane	21
1.4. EDP d'ordre 2 : caractéristiques	
Chapitre 1. Équations elliptiques, formulations variationnelles	27
1. Équations elliptiques et problèmes aux limites.	
1.1. Solution donnée sur une frontière	
1.2. Formulations variationnelles: introduction	28
1.3. Méthode numérique associée à une formulation variationnelle	$\frac{20}{30}$
1.4. Espaces de fonctions continûment dérivables par morceaux	30
1.5. Traitement complet d'un problème à une dimension	33
1.5.1. Formulation classique	33
1.5.2. Formulation variationnelle forte.	33
1.5.3. Formulation variationnelle semi-faible.	
1.5.4. Formulation variationnelle faible, ou distributionnelle.	34
1.6. EDP elliptiques et formulations variationnelles en dimension > 1	34
1.6.1. Où se trouve la solution d'une EDP elliptique?	36
2. Formes coercives, problème de minimisation, méthode de Ritz-Galerkin	37
2.1. Formulation variationnelle dans un espace vectoriel	
2.2. Méthode de Ritz-Galerkin	
3. Formes bilinéaires et opérateurs dans des espaces de Hilbert	
3.1. Espaces de Banach et de Hilbert	
3.2. Le problème de l'existence de la solution. Théorème de Lax-Milgram	
4. Relations entre méthodes de projection : Galerkin, etc.	54
4.1. Galerkin	54
4.2. Ritz	54
4.3. Galerkin-Petrov	55
4.4. Moindres carrés	57
4.5. Collocation	57

Chapitre 2. Méthode des éléments finis	58
1. Introduction et définition.	58
2. Ensembles unisolvants, interpolation	. 59
3. Eléments unidimensionnels	61
3.1. Interpolation linéaire par morceaux	61
3.2. Interpolation polynomiale de Lagrange	62
3.3. Interpolation polynomiale d'Hermite	63
3.4. Interpolation cubique d'Hermite par morceaux	63
4. Éléments bidimensionels	76
4.1. Éléments rectangulaires	78
4.1.1. Éléments produits	78
4.1.2. L'élément " serendipity "	79
4.1.3. Hermite bicubique	. 80
4.2. Éléments triangulaires	81
4.2.1. Élément linéaire (Courant)	81
4.2.2. Triangle à six points	84
4.2.3. Autres éléments triangulaires d'interpolation	84
4.2.4. Triangle d'Hermite	85
4.2.5. Triangle d'Argyris	
5. Résumé de ce chapitre	87
Charitan 2 Farance de Cabalan accompany	00
Chapitre 3. Espaces de Sobolev, convergence.	
1. Introduction et définitions. 1.1. Produit scalaire de Sobolev	
1.1. Froduit scalaire de Sobolev 1.2. Espaces de Sobolev	
1.2.1. Définition	
1.2.1. Definition 1.2.2. Identification à un espace de fonctions	
2. Propriétés des espaces de Sobolev.	
2.1. Formes définies sur $H^m(\Omega)$	
2.2. Formes bilinéaires et opérateurs; dérivées faibles	
2.3. Traces	
ſ	
3. Coercivité de \int_{Ω} grad $u \cdot$ grad $v dx$ dans $H_0^1(\Omega)$	99
4. Erreur d'approximation de la méthode de Ritz	
5. Méthodes d'éléments finis non conformes, "crimes variationnels"	103
6. Estimation a posteriori; méthodes adaptatives	108
Charitre 1 Méthodes représieues d'abtention de l'appropries de Dits	110
Chapitre 4. Méthodes numériques d'obtention de l'approximation de Ritz	
1. Elaboration et résolution des équations. Conditionnement.	
2. Un exemple de traitement en matlab	113
Chapitre 5. Schémas de différences finies : problèmes elliptiques	122
1. Opérateurs de prolongement et de restriction.	
1.1. Normes	
2. Approximation d'opérateurs. Consistance	
2.1. Définition	
2.2. Discrétisations du laplacien	
3. Solubilité des équations discrètes. Stabilité numérique	125

3.1. Spectres de laplaciens discrétisés	
3.2. Déterminant, constante de Catalan	$\dots 127$
3.3. Consistance et stabilité numérique ⇒ convergence	127
4. Méthodes itératives de résolution numérique. Méthodes multigrilles.	
4.1. Méthode de Jacobi	
4.2. Méthodes multigrilles	
5. Matrices d'inverses positives. Convergence	
5.1. Matrices positives, M -matrices	
5.2. Application au laplacien	
5.3. Processus stochastique	
6. Autres méthodes de traitement du laplacien	
6.1. Transformation conforme (2D)	
6.2. Equations intégrales sur la frontière, fonction de Green	
6.3. Développements multipolaires	
7. Décomposition de domaine, complément de Schur, substructuring	
8. Conditionnement et méthodes itératives, préconditionnement	147
Chapitre 6. Schémas de différences finies : problèmes d'évolution	151
1. Equation de la chaleur; de la diffusion	
1.1. Equation de la chaleur	
1.2. Solution par noyau de Poisson	
1.3. Equation de la diffusion; diffusion des euros	
1.3.1. Effect of adding fresh coins.	
1.4. Modes et séries de Fourier	
1.5. Exemples de stabilité et instabilité numérique	
2. Consistance et stabilité pour problèmes d'évolution $\partial u/\partial t + Mu = f$	
2.1. Problèmes bien posés. Opérateur solution.	
2.2. Consistance et stabilité de discrétisations de problèmes d'évolution	
3. Théorème d'équivalence de Lax	
4. Classe des équations paraboliques	
4.1. Examen de quelques schémas	
4.2. Schémas à deux niveaux de temps	
4.3. Schémas à plus de deux niveaux de temps	
5. Equations hyperboliques	
5.1. Caractéristiques, domaine d'influence	
5.2. Théorème	
5.3. Stabilité numérique	
5.4. Quelques comptes rendus de recherches récentes	
5.4.1. Méthodes adaptatives	177
5.4.2. Galerkin discontinu	178
5.4.3. Hyperbolicité	
5.4.4. Condition nécessaire	
5.4.5. Obtention de la solution par superposition	
5.4.6. Transport, advection, diffusion.	
5.4.7. Problème 1D	
5.4.8. Cas général	184
5.4.9. References.	

Chapitre 7. Problèmes d'évolution : conditions de stabilité numérique	
1. Norme matricielle	188
2. Quelques conditions suffisantes	189
2.1. Norme $\leq 1 + \text{const.}\Delta t$	
2.2. Matrices symétriques, normales	
2.3. Formes de Jordan et de Schur	189
3. Condition nécessaire de von Neumann	190
4. Théorème de Kreiss	190
4.1. Préparation	190
4.2. Le théorème de Kreiss	191
4.3. Preuve	191
Chapitre 8. Méthodes (pseudo) spectrales	195
1. Fonctions propres d'opérateurs autoadjoints	195
2. Calcul en représentation spectrale	
2.1. Ritz-Galerkin	
2.2. Un problème de Trefethen	
2.3. Méthode des tau	201
3. Calcul en représentation ponctuelle	201
3.1. Méthode de collocation	
3.2. Représentation matricielle des opérateurs différentiels	
4. Exemples de conditions de stabilité numérique :	
Index	205

1007 - 0 - Intro. - 6

Le cours passe en revue les principales méthodes de résolution numérique des équations aux dérivées partielles. Il se situe entre des cours consacrés à la théorie de ces équations et de leurs solutions

cf. > UCL > Enseignement et formation > Programme d'études 2006-2007 http ://w

INMA 2345 Equations différentielles ordinaires : problèmes aux limites [30], Q2, 3 créd., D. Bonheure,

MAT 1321 Analyse fonctionnelle et équations aux dérivées partielles, [45-45], Q1 , 8 créd., M. Willem.

MATH 2421 Analyse convexe et méthodes variationnelles [30-0], Q1, 3 créd., M. Willem, MATH 2490 Problèmes aux limites pour les EDO et EDP [45-0], Q1, 4,5 créd., J. Mawhin, MAPA 3037 Méthodes topologiques et variationnelles en analyse [30], Q1 + Q2, 2 créd., P. Habets, M. Willem.

et des cours orientés vers des applications spécifiques

INMA2715 Calcul scientifique sur ordinateurs parallèles [30-30], Q2, 5 créd. , R. Keunings, (pas en 2006-2007)

Mcsh MECÁ 2120 Introduction aux méthodes d'éléments finis[†] [30-30], Q1, 5 créd., V. Legat,

MECA 2170 Conception assistée par ordinateur en génie mécanique [30-30] , Q1, 5 créd., V. Legat,

MECA 2620 Simulation des phénomènes de transfert dans les procédés industriels [30-10], Q1 , 4 créd. , F. Dupret,

MECA 2660 Méthodes numériques en mécanique des fluides [30-22,5], Q2 , 5 créd., G. Winckelmans,

PHY2371 Simulation numérique en physique [22.5h+30h exercices] ,Q2, 5 crdits, Eric Deleersnijder, Bernard Piraux

Cela ne veut pas dire qu'il faut avoir suivi un ou des cours théoriques (cependant vivement recommandés, bien entendu), on établira (ou rappellera, plus ou moins bien) l'essentiel des bases théoriques nécessaires.

Au fait, le présent cours vaut 4,5 créd.

http://www.mema.ucl.ac.be/teaching/meca2120/index.html

extrait de

http://www.meca.ucl.ac.be/memawww/members/vl/figure.gif

Ce cours a été créé par le Professeur **Jean Meinguet** qui assura son enseignement jusqu'en 1995. Au fil des années, l'accent fut mis sur les recherches contemporaines en méthodes de résolution de divers problèmes d'analyse fonctionnelle appliquée.

En 1973, le Professeur **Jean Descloux**, de l'École Polytechnique Fédérale de Lausanne, vint donner à Louvain-la-Neuve un cours sur l'analyse mathématique de la méthode des **éléments finis**, méthode qui commençait alors à être convenablement formalisée^{††}. Les notes du Professeur Descloux forment encore l'essentiel de la première partie du présent cours.

[†] Voir, à ce sujet,

^{††} Parmi les pionniers de la méthode, citons *Fraeijs de Veubeke*, professeur à Liège et Louvain. Par ailleurs, notre Université reçut également les visites de *P. Ciarlet* et *P. Raviart* (Paris).