CHAPTER 7 TREFETHEN 1994 - 232

Chapter 7.

Fourier spectral methods
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7.2. Unbounded grids
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7.4. Stability

7.5. Notes and references

Think globally. Act locally.
— BUMPER STICKER (1985)
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Finite difference methods, like finite element methods, are based on local
representations of functions—usually by low-order polynomials. In contrast,
spectral methods make use of global representations, usually by high-order
polynomials or Fourier series. Under fortunate circumstances the result is a
degree of accuracy that local methods cannot match. For large-scale compu-
tations, especially in several space dimensions, this higher accuracy may be
most important for permitting a coarser mesh, hence a smaller number of data
values to store and operate upon. It also leads to discrete models with little
or no artificial dissipation, a particularly valuable feature in high Reynolds
number fluid flow calculations, where the small amount of physical dissipation
may be easily overwhelmed by any dissipation of the numerical kind. Spectral
methods have achieved dramatic successes in this area.

Some of the ideas behind spectral methods have been introduced several
times into numerical analysis. One early proponent was Cornelius Lanczos, in
the 1950s, who showed the power of Fourier series and Chebyshev polynomials
in a variety of problems where they had not been used before. The emphasis
was on ordinary differential equations. Lanczos’s work has been carried on,
especially in Great Britain, by a number of colleagues such as C. W. Clenshaw.

More recently, spectral methods were introduced again by Kreiss and
Oliger, Orszag, and others in the 1970s for the purpose of solving the par-
tial differential equations of fluid mechanics. Increasingly they are becoming
viewed within some fields as an equal competitor to the better established
finite difference and finite element approaches. At present, however, they are
less well understood.

Spectral methods fall into various categories, and one distinction often
made is between “Galerkin,” “tau,” and “collocation” (or “pseudospectral”)
spectral methods. In a word, the first two work with the coefficients of a global
expansion, and the latter with its values at points. The discussion in this book
is entirely confined to collocation methods, which are probably used the most
often, chiefly because they offer the simplest treatment of nonlinear terms.

Spectral methods are affected far more than finite difference methods by
the presence of boundaries, which tend to introduce stability problems that are
ill-understood and sometimes highly restrictive as regards time step. Indeed,
difficulties with boundaries, direct and indirect, are probably the primary rea-
son why spectral methods have not replaced their lower-accuracy competition



CHAPTER 7 TREFETHEN 1994 - 234

in most applications. Chapter 8 considers spectral methods with boundaries,
but the present chapter assumes that there are none. This means that the spa-
tial domain is either infinite—a theoretical device, not applicable in practice—
or periodic. In those cases where the physical problem naturally inhabits a
periodic domain, spectral methods may be strikingly successful. Conspicuous
examples are the global circulation models used by meteorologists. Limited-
area meteorological codes, since they require boundaries, are often based on
finite difference formulas, but as of this writing almost all of the global circula-
tion codes in use— which model flow in the atmosphere of the entire spherical
earth-— are spectral.
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7.1. An example

Spectral methods have been most dramatically successful in problems with
periodic geometries. In this section we present two examples of this kind that
involve elastic wave propagation. Both are taken from B. Fornberg, “The
pseudospectral method: comparisons with finite differences for the elastic wave
equation,” Geophysics 52 (1987), 483-501. Details and additional examples
can be found in that paper.*

Elastic waves are waves in an elastic medium such as an iron bar, a build-
ing, or the earth, and they come in two varieties: “P” waves (pressure or
primary), characterized by longitudinal vibrations, and “S” waves (shear or
secondary), characterized by transverse vibrations. The partial differential
equations of elasticity can be written in various forms, such as a system of
two second-order equations involving displacements. For his numerical simu-
lations, Fornberg chose a formulation as a system of five first-order equations.

Figures 7.1.1 and 7.1.2 show the results of calculations for two physical
problems. In the first, a P wave propagates uninterruptedly through a periodic,
uniform medium. In the second, an oblique P wave oriented at 45° hits a
horizontal interface at which the wave speeds abruptly cut in half. The result
is reflected and transmitted P and S waves. For this latter example, the actual
computation was performed on a domain of twice the size shown — which is
a hint of the trouble one may be willing to go to, with spectral methods, to
avoid coping explicitly with boundaries.

The figures show that spectral methods may sometimes decisively outper-
form second-order and fourth-order finite difference methods. In particular,
spectral methods are nondispersive, and in a wave calculation, that property
can be of great importance. In these examples the accuracy achieved by the
spectral calculation on a 64 x 64 grid is not matched by fourth-order finite dif-
ferences on a 128 x 128 grid, or by second-order finite differences on a 256 x 256
grid. The corresponding differences in work and storage are enormous.

Fornberg picked his examples carefully; spectral methods do not always
perform so convincingly. Nevertheless, sometimes they are extremely impres-
sive. Although the reasons are not fully understood, their advantages often
hold not just for problems involving smooth functions, but even in the presence
of discontinuities.

*The figures in this section will appear in the published version of this book only with permission.
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(a) Schematic initial and end states

(b) Computational results

Figure 7.1.1. Spectral and finite difference simulations of a P wave
propagating through a uniform medium (from Fornberg, 1987).
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(a) Schematic initial and end states

(b) Computational results

Figure 7.1.2. Spectral and finite difference simulations of a P wave
incident obliquely upon an interface (from Fornberg, 1987).
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7.2. Unbounded grids

We shall begin our study of spectral methods by looking at an infinite, un-
bounded domain. Of course, real computations are not carried out on infinite
domains, but this simplified problem contains many of the essential features
of more practical spectral methods.

Consider again £2, the set of square-integrable functions v = {v;} on the
unbounded regular grid hZ. As mentioned already in §3.3, the foundation
of spectral methods is the spectral differentiation operator D : E% — 2,
which can be described in several equivalent ways. One is by means of the
Fourier transform:

SPECTRAL DIFFERENTIATION BY THE SEMIDISCRETE FOURIER TRANS.

(1) Compute 0(§);
(2) Multiply by i&;
(3) Inverse transform:

Dv=F; (i€ F;,(v)). (7.2.1)

Another is in terms of band-limited interpolation. As described in §2.3,
one can think of the interpolant as a Fourier integral of band-limited complex
exponentials or, equivalently, as an infinite series of sinc functions:

SPECTRAL DIFFERENTIATION BY SINC FUNCTION INTERPOLATION.

(1) Interpolate v by a sum of sinc functions q(z) = Y72 _ v Sy, (x —x1,);
(2) Differentiate the interpolant at the grid points z:

(Dv);=4q'(z;) (7.2.2)

Recall that the sinc function Sy (), defined by

__sin(rz/h)

Sy(z) = wa/h (7.2.3)
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is the unique function in L? that interpolates the discrete delta function €

L 5=0,
e]—{o 40, (7.2.4)
and that moreover is band-limited in the sense that its Fourier transform has
compact support contained in [—7/h,7/h].

For higher order spectral differentiation, we multiply F;(v) by higher
powers of i£, or equivalently, differentiate ¢(z) more than once.

Why are these two descriptions equivalent? The fundamental reason is
that S, (z) is not just any interpolant to the delta function e, but the band-
limited interpolant. For a precise argument, note that both processes are
obviously linear, and it is not hard to see that both are shift-invariant in the
sense that D(K™v)= K™Dwv for any m. (The shift operator K was defined
in (3.2.8).) Since an arbitrary function v € £2 can be written as a convolution
sum v; =372 _ Ve _g, it follows that it is enough to prove that the two
processes give the same result when applied to the particular function e. That
equivalence results from the fact that the Fourier transform of e is the constant
function h, whose inverse Fourier transform is in turn precisely S} (z).

Since spectral differentiation constitutes a linear operation on ¢2, it can
also be viewed as multiplication by a biinfinite Toeplitz matrix:

-1 0 1 — (7.2.5)

>

Wl
N[ =
N[
Wl

As discussed in §3.3, this matrix is the limit of banded Toeplitz matrices
corresponding to finite difference differentiation operators of increasing orders
of accuracy; see Table 3.3.1 on p. 131. (In this chapter we drop the subscript
on the symbol D used in §3.3.) We shall be careless in this text about
the distinction between the operator D and the matrix D that represents it.
Another way to express the same thing is to write

1

Dv=axv, a=ﬁ(---§—% 1 0-1 $-1--) (7.2.6)

ol
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Figure 7.2.1. The sinc function S, (z) and its derivative (S}),(z).

as in (3.3.16).

The coefficients of (7.2.5)—(7.2.6) can be derived from either the Fourier
transform or the sinc function interpretation. Let us begin with the latter.
The sinc function has derivative

cos(mz/h) sin(mz/h)

(Sh)m(‘r) = T 7T.I2/h ’ (727)
with values
0 if =0,
(Sh)z(z;) = ; (7.2.8)
TG i#o

at the grid points. See Figure 7.2.1. This is precisely the “zeroth column”
of D, since that column must by definition contain the values on the grid of
the spectral derivative of the delta function.* The other columns, correspond-
ing to delta functions centered at other points T, contain the same entries
appropriately shifted.

Now let us rederive (7.2.5)—(7.2.6) by means of the Fourier transform. If
Dv = axv, then Du(€) = a(€)5(€), and for spectral differentiation we want
a(&) =i€. Therefore by the inverse semidiscrete Fourier transform (2.2.7),

7w/h .
L / iceiih e

a; = —
J 2 J—n/h

For j =0 the integral is 0, giving ag =0, while for j # 0, integration by parts

*Think about this. Make sure you understand why (7.2.8) represents a column rather than a row of
D.
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yields
1 . eish m/h
%G = 52 h

__/—ﬂ'/h ijh )

—x/h 27

The integral here is again zero, since the integrand is a periodic exponential,
and what remains is

_ (T —m‘)
%= onjn (he (=3)e

— 1 iy —imj _(_1)']
2 )=

(7.2.9)

as in (7.2.6).

The entries of D are suggestive of the Taylor expansion of log(1+z), and
this is not a coincidence. In the notation of the spatial shift operator K of
(3.2.8), D can be written

D = l(K_lK2+lK3_...)_

-1 17-—2 17--3
(K= (K'—1Kk241K3 ..,

which corresponds formally to

D= %log(l—FK)—%log(l—FK_l)

1 1+ K 1
= Elog (71_'_}{_1) = ElogK.

(7.2.10)

Therefore formally, e’ = K, and this makes sense: by integrating the deriva-
tive over a distance h, one gets a shift. See the proof of Theorem 1.2.

If v; = '€t for some & € [—m/h,7/h], then Dv=ifv. Therefore i€ is an
eigenvalue of the operator D.* On the other hand, if v has the same form with
& ¢ [—m/h,m/h], then £ will be indistinguishable on the grid from some alias
wave number &' € [—/h,7/h] with £’ =&+ 2mv/h for some integer v, and the
result will be Dv=1€v. In other words in Fourier space, the spatial differen-
tiation operator becomes multiplication by a periodic function, thanks to the
discrete grid, and in this sense is only an approximation to the exact differ-
entiation operator for continuous functions. Figure 7.2.2 shows the situation
graphically. For band-limited data, however, the spectral differentiation op-
erator is exact, in contrast to finite difference differentiation operators, which
are exact only in the limit £ — 0 (dashed line in the Figure).

* Actually, this is not quite true: by definition, an eigenvector must belong to ¢2, and ¢I" does not.
Strictly speaking, i€ is in the spectrum of D but is not an eigenvalue. However, this technicality is
unimportant for our purposes, and will be ignored in the present draft of this book.
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1 .
— X eigenvalue
i

Figure 7.2.2. Eigenvalue of D (divided by ) corresponding to the
eigenfunction e%%, as a function of £&. The dashed line shows corre-
sponding eigenvalues for the finite difference operator D,.

mi/h
C C
i/h
_i/h
—mi/h
(a) D, (finite difference) (b) D (spectral)

Figure 7.2.3. Eigenvalues of finite difference and spectral first-order
differentiation matrices, as subsets of the complex plane.

Figure 7.2.3 compares the spectrum of D to that of the second-order finite
difference operator Dy = ¢, of §3.3.
D is a bounded linear operator on ¢2, with norm

™
D = & = — 211
1Dl = max | Ji€] = (7.2.11)

(see §§2.5,3.5). Notice that the norm increases to infinity as the mesh is refined.
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This is inevitable, as the differentiation operator for continuous functions is
unbounded.

So far we have described the spectral approximation to the first derivative
operator 0/0x, but it is an easy matter to approximate higher derivatives too.
For the second derivative, the coefficients turn out to be

=N
3
el
=N
NI

(7.2.12)

>
N
ol
NI
ol

To derive the entries of this matrix, one can simply square D; this leads to
infinite series to be summed. One can differentiate (7.2.7) a second time. Or
one can compute the inverse Fourier transform of a(¢) = —£2, as follows. Two
integrations by parts are involved, and terms that are zero have been dropped.
For j#0,

w/h .
a; = 1/ —£2e8Ih e

I o

w/h
¢ it w/h ¢iim L emiim 9(—1)i+1

For j =0 the integral is simply

1 273 2

"= "5r (3p3) = o

The effect of D? on a function v; = eI is to multiply it by the square
of the factor associated with D, as illustrated in Figure 7.2.4. Again one has
a periodic multiplier that is exactly correct for £ € [—n/h,m/h]. The dashed
line shows the analogous curve for the standard centered three-point finite
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eigenvalue

. —3n/h \ -7/h
\\ /// \\\

Figure 7.2.4. Eigenvalue of D? corresponding to the eigenfunction
e? as a function of £. The dashed line shows corresponding eigen-
values for the finite difference operator J..

—4/h? —n2/h?

(a) d5 (finite difference) (b) D? (spectral)

Figure 7.2.5. Eigenvalues of finite difference and spectral second-
order differentiation matrices, as subsets of the complex plane.

difference operator &, of §3.2. The spectrum of D? must be real, since D is
symmetric; it is the interval [—72/h2,0].

The developments of this section are summarized, and generalized to the
mth-order case, in the following theorem:
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SPECTRAL DIFFERENTIATION ON AN UNBOUNDED REGULAR GRID

Theorem 7.1. The mth-order spectral differentiation operator D™ is a
bounded linear operator on 6121 with norm

™

Il =G (7.2.14)

If m is odd, D™ has the imaginary spectrum [—i(7/h)™,i(7/h)™] and can
be represented by an infinite skew-symmetric Toeplitz matrix with entries

ag =0, a;=h~™( 7 ) for j#0. (7.2.15)

If m is even, D™ has the real spectrum (—1)™/2 x [0, (7/h)™] and can be
represented by an infinite symmetric Toeplitz matrix with entries

ag= 7 a;=h""( ? ) for j#0. (7.2.16)

The purpose of all of these spectral differentiation matrices is to solve
partial differential equations. In a spectral collocation computation this is
done in the most straightforward way possible: one discretizes the continuous
problem as usual and integrates forward in time by a discrete formula, usually
by finite differences.* Spatial derivatives are approximated by the matrix
D. This same prescription holds regardless of whether the partial differential
equation has variable coefficients or nonlinear terms. For example, to solve
u; = a(z)u, by spectral collocation, one approximates a(z)u, at each time step
by a(z;)Dv. For u, = (u?),, one uses D(v?), where v? denotes the pointwise

square (v%); = (v;)2. (Alternative discretizations may also be used for better
stability properties; see....) This is in contrast to Galerkin or tau spectral
methods, in which one adjusts the coefficients in the Fourier expansion of v to
satisfy the partial differential equation globally.

*Spectral approximations with respect to time can also sometimes be used; see H. Tal-Ezer, “Spectral
methods in time for hyperbolic equations,” SIAM J. Numer. Anal. 23 (1986), pp. 11-26.
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EXERCISES

> 7.2.1. Coefficients of D3. Determine the matrix coefficients of the third-order spectral
differentiation matrix D3. Compare your result with the coefficients of Table 3.3.1.

> 7.2.2.

(a) Compute the integral [ S, (z)dz of the sinc function (7.2.3). One could do this by
complex contour integration, but instead, be cleverer than that and find the answer
by considering the Fourier transform. The argument is quite easy; be sure to state it
precisely.

(b) By considering the trapezoid rule for integration (Exercise 2.2.4), explain why the
answer above had to come out as it did. (Hint: what is the integral of a constant
function?)
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7.3. Periodic grids

To be implemented in practice, a spectral method requires a bounded domain. In this
section we consider the case of a periodic domain—or equivalently, an unbounded domain
on which we permit only functions with a fixed periodicity. The underlying mathematics
of discrete Fourier transforms was described in §2.4. The next chapter will deal with more
general bounded problems.

T_y=-T z,=0 Ty =T f,%z_% & =0 5%:%
6 o6 6 6 6 6 6§ —o o 6 6 6 6 6 0
h ’ 1 ¢

Figure 7.3.1. Space and wave number domains for the discrete Fourier trans-
form.

To repeat some of the material of §2.4, our fundamental spatial domain will now be
[—7,7), as illustrated in Figure 7.3.1. Let N be a positive even integer, set

_27r

N

and define z; = jh for any j. The grid points in the fundamental domain are

h (N even), (7.3.1)

T_Njp=—Ty, Zg=0,..., Ty =7—h,

and the “invaluable identity” is this:
N =

The 2-norm ||-|| and space £% were defined in §2.4, as was the discrete Fourier transform,
N/2—-1
ﬁg == (.7:N1))5 = h Z €_i€jh1}j, (7.3.3)
j==N/2
the inverse discrete Fourier transform,
| N2t
v; = (Fyl0); = > D ettty (7.3.4)
Te—"N/2
and the discrete convolution,
N/2—-1
(v*w), =h Z Vg W, (7.3.5)

j=—N/2
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Recall that since the spatial domain is periodic, the set of wave numbers £ is discrete—
namely the set of integers Z—and this is why we have chosen to use £ itself as a subscript
in (7.3.3) and (7.3.4). We take £ = —N/2,...,N/2—1 as our fundamental wave number
domain. The properties of the discrete Fourier transform were summarized in Theorems 2.9
and 2.10; recall in particular the convolution formula

i

(’U*'U))g zﬁgﬁ)g. (7.3.6)

As was described in §2.4, the discrete Fourier transform can be computed with great
efficiency by the fast Fourier transform (FFT) algorithm, for which a program was given on
p- 104. The discovery of the FFT in 1965 was an impetus to the development of spectral
methods for partial differential equations in the 1970’s. Curiously, however, practical imple-
mentations of spectral methods do not always make use of the FFT, but instead sometimes
perform an explicit matrix multiplication. The reason is that in large-scale computations,
which typically involve two or three space dimensions, the grid in each dimension may have
as few as 32 or 64 points, or even fewer in so-called “spectral element” computations, and
these numbers are low enough that the costs of an FFT and of a matrix multiplication may
be roughly comparable.

Now we are ready to investigate D : £ — €%, the spectral differentiation operator
for N-periodic functions. As usual, D, can be described in various ways. One is by means
of the discrete Fourier transform:

SPECTRAL DIFFERENTIATION BY THE DISCRETE FOURIER TRANSFORM.
(1) Compute 9;
(2) Multiply by i€, except that @_N/z is multiplied by 0,

(3) Inverse transform:

Dyv=Fy"(0 for E==N/2; &b, otherwise). (7.3.8)

The special treatment of the value o, /2 is required to maintain symmetry, and appears
only in spectral differentiation of odd order.

Another is in terms of interpolation by a finite series of complex exponentials or,
equivalently, periodic sinc functions:

PERIODIC SPECTRAL DIFFERENTIATION BY SINC INTERPOLATION.

(1) Interpolate v by a sum of periodic sinc functions

N/2-1
q(z) = Z VSN (T —zy);

k=—N/2

(2) Differentiate the interpolant at the grid points T

(Dyv); =4 (2;)- (7.3.9)
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In the second description we have made use of the periodic sinc function on the N-point
grid,
sin ZZ
o tan b}

which is the unique 27-periodic function in L? that interpolates the discrete delta function
e; on the grid,

ts=0 (7.3.11)

e, = D
I 0 j=-N/2,...,—-1,1,...,N/2—1,

and which is band-limited in the sense that its Fourier transform has compact support
contained in [~ /h,m/h] (and furthermore satisfies ¢_p , =0y ;). Compare (7.2.3).

For higher order spectral differentiation on the periodic grid, we multiply o, by higher
powers of i£, or equivalently, differentiate ¢(x) more than once. If the order of differentiation
isodd, ¥_, /2 is multiplied by the special value 0 to maintain symmetry.

As in the last section, the spectral differentiation process can be viewed as multiplica-
tion by a skew-symmetric Toeplitz matrix D (compare (7.2.5)):
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0 %cot% —%cot% —%cot%
Dy = leotZ —Llcotl 0 lcotZ —lcotZ: . (7.3.12)
1. h 1. 2h 1..h
ECOtE ECOtT —ECOtE 0
In contrast to the matrix D of (7.2.5), D is finite: it applies to vectors (v_y,--- va/2—1):

and has dimension N x N. D, is not only a Toeplitz matrix, but is in fact circulant.
This means that its entries (Dy),;; “wrap around,” depending not merely on i —j but on
(t—7)(mod N).*

As in the last section, the entries of (7.3.12) can be derived either by the inverse discrete
Fourier transform or by differentiating a sinc function. The latter approach is illustrated in
Figure 7.3.2, which shows Sy and Sy for N =16. Since N is even, symmetry implies that
Sy (x) =0 for x =+ as well as for x =0. Differentiation yields

cos 5% sin T2
Sh(z) = h _ h | 7.3.13
N(‘Z') 2tan % 4T7|— Sin2 % ( )
and at the grid points the values are
0 if j=0,
Sn(x;) = (7.3.14)

L(—1)icot Zt if j#0.
Notice that for |jh| < 1, these values are approximately the same as in (7.2.8). Thus the
(¢,5) entry of Dy, as indicated in (7.3.12), is

0 if =34,
(Dn)ij = (7.3.15)

L(=1)H cot(Z52) if i #j.

* Any circulant matrix describes a convolution on a periodic grid, and is equivalent to a pointwise
multiplication in Fourier space. In the case of D, that multiplication happens to be by the function

i€.
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Sn(z) S (x)
N
b D/—\n\/ v./\n b b /e\\q/ b /\E\\J/ b
(2) (b)

Figure 7.3.2. The periodic sinc function Sy (z) and its derivative Si(z).

To derive (7.3.15) by the Fourier transform, one can make use of “summation by parts,”
the discrete analog of integration by parts. See Exercise 7.3.1.

The eigenvectors of D, are the vectors e%® with £ € Z, and the eigenvalues are the
quantities i€ with —N/2+1 < £ < N/2—1.*% These are precisely the factors i€ in the definition
of D by the Fourier transform formula (7.3.8). The number 0 is actually a double eigenvalue
of D, corresponding to two distinct eigenvectors, the constant function and the sawtooth.

What about the spectral differentiation operator of second order? Again there are
various ways to describe it. This time, because —¢? is an even function, no special treatment
of £ =—N/2 is required to preserve symmetry in the Fourier transform description:

(1) Compute 7,
(2) Multiply by —¢£2,
(3) Inverse transform:

DYv=Fyt(—E%0). (7.3.16)

The sinc interpolation description follows the usual pattern:
(1) Interpolate v by a sum of periodic sinc functions
N/2-1
q(z) = Z VSN (T —3p);

k=—N/2

(2) Differentiate the interpolant twice at the grid points x >

(DYv); =q"(z;). (7.3.17)

The matrix looks like this (compare (7.2.12)):

*Now that Dy is finite, they are truly eigenvalues; there are no technicalities to worry about as in
the footnote on p. 241.
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2

_m _1 1...2h _1...22h 1...2h
s —§  5C8C7 % sesc? 2 scsc? 8
DY = ~Llesc22h Llege2h  _m L lege2h _leg22h
N 2 2 2 2 3h2 " 6 2 2 2 2
1.g2h _l.ge22h  L.o2h 7% 1
2C8C 5 2C8C" 5" 508CT3 3R 8

(7.3.18)
Note that because £ = —N/2 has been treated differently in the two cases, Dg) is not the
square of Dp, which is why we have put the superscript in parentheses. In general, the

mth-order spectral differentiation operator can be written as a power of Dg\?) if m is even,

and as a power of Dy (or as D, times a power of D%)) if m is odd. See Exercise 7.3.2.
Figures 7.3.3-7.3.6 are the analogs of Figures 7.2.2-7.2.5 for a periodic grid.
We summarize and generalize the developments of this section in the following theorem:
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SPECTRAL DIFFERENTIATION ON A PERIODIC GRID

Theorem 7.2. Let N be even. If m is odd, the mth-order spectral differentiation matrix
DJ((,”) is a skew-symmetric matrix with entries

ag =0, a;=( ? ) for j#0, (7.3.19)

eigenvalues [—i(7 —1)™, i(} —1)™], and norm

10§ =(F-1)". (7.3.20)

If m is even, D\™ is a symmetric matrix with entries

ap= 7 , a;=( ? ) for j#0, (7.3.21)

eigenvalues (—1)™/2 x [0, (Z)™], and norm

1D = (%)m (7.3.22)
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1 .
— X eigenvalue
)

Figure 7.3.3. Eigenvalue of Dy (divided by 7) corresponding to the eigenfunc-
tion e%”, as a function of ¢, for N =16. The smaller dots show corresponding
eigenvalues for the finite difference operator 4.

mi/h
C C
i/h
—i/h
—mi/h
(a) &, (finite difference) (b) DN (spectral)

Figure 7.3.4. Eigenvalues of finite difference and spectral first-order differenti-
ation matrices on a periodic grid, as subsets of the complex plane, for N =16.
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eigenvalue

Figure 7.3.5. Eigenvalue of Dg\%) corresponding to the eigenfunction €%, as a
function of &, for N =16. The smaller dots show corresponding eigenvalues for
the finite difference operator 4, .

C C
—4/h? —m2 /h?
®6 6 6 008 —% 6 6 6 06 6 o0& —
(a) §, (finite difference) (b) D% (spectral)

Figure 7.3.6. Eigenvalues of second-order finite difference and spectral differen-
tiation matrices on a periodic grid, as subsets of the complex plane, for N =16.
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EXERCISES

> 7.3.1. Fourier transform derivation of D . [Not yet written.]

> 7.3.2. DJ(\?) # D%. For most values of N, the matrix D3, would serve as quite a good discrete
second-order differentiation operator, but as mentioned in the text, it is not identical to D%).

(a) Determine Dy, D%, and Dg) for N =2, and confirm that the latter two are not equal.
(b) Explain the result of (a) by considering sinc interpolation as in Figure 7.3.2.
(c) Explain it again by considering Fourier transforms as in Figure 7.3.3 and 7.3.5.

(d) Give an exact formula for the eigenvalues of DJ(\',]) for arbitrary J > 0.
» 7.3.3. Spectral differentiation.

Making use of a program for computing the FFT (in Matlab such a program is built-in; in
Fortran one can use the program of p. 102), write a program DERIV that computes the
mth-order spectral derivative of an N-point data sequence v representing a function defined
on [—m,n] or [0,2x]:

N: length of sequence (power of 2) (input)

m: order of derivative (integer > 0) (input)

v: sequence to be differentiated (real sequence of length N) (input)

w: mth spectral derivative of v (real sequence of length N) (output)

Although a general FFT code deals with complex sequences, make v and w real variables
in your program, since most applications concern real variables. Allow m to be any integer
m > 0, and make sure to treat the distinction properly between even and odd values of m.

Test DERIV with N =32 and N =64 on the functions
uy (z) = exp(sin 3x) and uy(z) = |sin z|®

for the values m =1,2, and hand in two 2 x 2 tables—one for each function—of the resulting
errors in the discrete co-norm. Put a star * where appropriate, and explain your results.
Plot the computed derivatives with m =1.

» 7.3.4. Spectral integration. Modify DERIV to accept negative as well as positive values of
m. For m <0, DERIV should return a scalar representing the definite integral of v over one
period, together with a function w representing the |m/|th indefinite integral. Explore the
behavior of DERIV with various v and m < 0.

» 7.3.5. Hamming window. Write a program FILTER that takes a sequence v and smooths
it by transforming to ¢, multiplying the transform by the “Hamming window”,

2k
Wy, = (0.5440.46 cos %)ﬁk,

and inverse transforming. Apply FILTER to the function [sin z| and hand in a plot of the
result.
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> 8.3.1. Fourier transform derivation of Dy. [Not yet written.]

> 8.3.2. DY # D2,. For most values of N, the matrix D2, would serve as quite a good discrete
second-order differentiation operator, but as mentioned in the text, it is not identical to D%).

(a)Determine D, D%, and Dg‘;) for N =2, and confirm that the latter two are not equal.
(b)Explain the result of (a)by considering sinc interpolation as in Figure 8.3.3.
(c)Explain it again by considering Fourier transforms as in Figures 8.3.4 and 8.3.6.

» 8.3.3. Spectral differentiation. Type the program FFT of Figure 8.3.2 into your computer
and experiment with it until you are confident you understand how to compute both a
discrete Fourier transform and an inverse discrete Fourier transform. For example, try as
input a sine wave and a sinc function, and make sure the output you get is what you expect.
Then make sure you can get the input back again by inversion.

Making use of FFT, write a program DERIV(N,m,v,w) which returns the mth-order spec-
tral derivative of the N-point data sequence v representing a function defined on [—m, ] or
[0,27]:

N: length of sequence (power of 2) (input)

m: order of derivative (integer > 0) (input)

v: sequence to be differentiated (real sequence of length N) (input)

w: mth spectral derivative of v (real sequence of length N) (output)
Although FFT deals with complex sequences, make v and w real variables in your program,
since most applications concern real variables. Allow m to be any integer m >0, and make
sure to treat the distinction properly between even and odd values of m.

Test DERIV with N =32 and N =64 on the functions
u, (z) = exp (sin® ) and Uy () = |sin z|®

for the values m =1,2, and hand in two 2 x 2 tables—one for each function—of the result-
ing errors in the discrete co-norm. Explain your results. If possible, plot the computed
derivatives with m =1.

» 8.3.4. Spectral integration. Modify DERIV to accept negative as well as positive values of
m. For m <0, DERIV should return a scalar representing the definite integral of v over one
period, together with a function w representing the |m/|th indefinite integral. Explore the
behavior of DERIV with various v and m < 0.

> 8.3.5. Hamming window. Write a program FILTER(N ,v,w) which takes a sequence v and
smooths it by transforming to ¢, multiplying the transform by the “Hamming window”,

27k
wy, = (.54+ .46 cos %)ﬁk,

and inverse transforming. Apply FILTER to the function |sin | and hand in the result. A
plot would be nice.
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7.4. Stability

[Just a few results so far. The finished section will be more substantial.]

Spectral methods are commonly applied to time-dependent problems according to the
“method of lines” prescription of §3.3: first the problem is discretized with respect to space,
and then the resulting system of ordinary differential equations is solved by a finite difference
method in time. As usual, we can investigate the eigenvalue stability of this process by
examining under what conditions the eigenvalues of the spectral differentiation operator are
contained in the stability region of the time discretization formula. The separate question of
stability in the sense of the Lax Equivalence Theorem is rather different, and involves some
subtleties that were not present with finite difference methods; these issues are deferred to
the next section.

In §§7.2,7.3 we have introduced two families of spectral differentiation matrices: D and
its powers D™ for an infinite grid, and D, and its higher-order analogs D%”) (not exactly
powers) for a periodic grid. The spectra of all of these matrices lie in the closed left half of
the complex plane, and that is the same region that comes up in the definition of A-stability.
We conclude that if any equation
_0™u
~ dzm
is modeled on a regular grid by spectral differentiation in space and an A-stable formula in
time, the result is eigenvalue stable, regardless of the time step.

By Theorem 1.13, an A-stable linear multistep formula must be implicit. For a model
problem as simple as (7.4.1), the system of equations involved in the implicit formula can be
solved quickly by the FFT, but in more realistic problems this is often not true. Since spec-
tral differentiation matrices are dense (unlike finite difference differentiation matrices), the
implementation of implicit formulas can be a formidable problem. Therefore it is desirable
to look for explicit alternatives.

On a regular grid, satisfactory explicit alternatives exist. For example, suppose we
solve u, = u, by spectral differentiation in space and the midpoint formula (1.2.6) in time.
The stability region for the midpoint formula is the complex interval [—i/k,i/k]. From
Theorem 7.1 or Figure 7.2.3, we conclude that the time-stability restriction is w/h < 1/k,
ie.

Uy (74.1)

h
<-. 4.2
k< (742

This is stricter by a factor 7 than the time-stability restriction k < h for the leap frog
formula, which is based on second-order finite difference differentiation. The explanation
goes back to the fact that the sawtooth curve in Figure 7.2.2 is 7 times taller than the
dashed one.
On a periodic grid, Theorem 7.2 or Figure 7.3.4 loosens (7.4.2) slightly to
h 2

k< —— =

—_ 4.
T— N-2 (7.4.3)

Other explicit time-discretization formulas can also be used with u, =u_, so long as
their stability regions include a neighborhood of the imaginary axis near the origin. Figure
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1.7.4 reveals that this is true, for example, for the Adams-Bashforth formulas of orders 3—6.
The answer to Exercise 1.7.2(b) can readily be converted to the exact stability bound for
the 3rd-order Adams-Bashforth discretization.

For u, = u,,, the eigenvalues of D or D, become real and negative, so we need a
stability region that contains a segment of the negative real axis. Thus the midpoint rule
will be unstable. On the other hand the Euler formula, whose stability region was drawn in
Figure 1.7.3 and again in Figure 1.7.4, leads to the stability restriction 72/h% < 2/k, i.e.

2
L2

k (7.4.4)

2
On an infinite grid this is 72 /4 stricter than the stability restriction for the finite difference
forward Euler formula considered in Example 4.4.3.* (The cusped curve in Figure 7.2.4 is
7% /4 times deeper than the dashed one.) By Theorem 7.2, exactly the same restriction is
also valid for a periodic grid: \
2h 8
k< poal oL

As another example, the answer to Exercise 1.7.2(a) can be converted to the exact
stability bound for the 3rd-order Adams-Bashforth discretization of u, =u,,,.

In general, spectral methods on a periodic grid tend to have stability restrictions that
are stricter by a constant factor than their finite difference counterparts. (This is opposite
to what the CFL condition might suggest: the numerical domain of dependence of a spectral
method is unbounded, so there is no CFL stability limit.) The constant factor is usually
not much of a problem in practice, for spectral methods permit larger values of h than finite
difference methods in the first place, because of their high order of spatial accuracy. In other
words, relatively small time steps k are needed anyway to avoid large time-discretization
errors.

(7.4.5)

EXERCISES

» 7.4.1. A simple spectral calculation.

Write a program to solve u, = u, on [—m,n] with periodic boundary conditions by the

pseudospectral method. The program should use the midpoint time integration formula

and spatial differentiation obtained from the program DERIV of Exercise 7.3.3.

(a) Run the program up to ¢t =27 with k=h/4, N =8 and N =16, and initial data
09 = f(z), v! = f(z+k), with both

cos’z for |z| <7 /2 (mod2m),
fi(z)=cos’z and folz)=

0 otherwise.

List the four ¢3¢ errors you obtain at ¢ =2x. Plot the computed solutions v(z,27) if
possible.

(b) Rerun the program with k= h/2 and list the same four errors as before.

(c) Explain the results of (a) and (b). What order of accuracy is observed? How might it
be improved?

*Why is the ratio not 72 ? Because 8, =Jq(h/2)2, not do(h)%.



7.4. STABILITY TREFETHEN 1994 - 260

» 7.4.2. Spectral calculation with filtering.

(a) Modify the program above so that instead of computing v™ at each step with DERIV
alone, it uses DERIV followed by the program FILTER of Exercise 7.3.5. Take k = h/4
again and print and plot the same results as in the last problem. Are the errors smaller
than they were without FILTER?

(b) Run the program again in DERIV/FILTER mode with k= h/2. Print and plot the
same results as in (c).

(c) What is the exact theoretical stability restriction on & for the DERIV/FILTER method?
You may consider the limit N = oo for simplicity.

Note. Filtering is an important idea in spectral methods, but this simple linear problem is
not a good example of a problem where filtering is needed.

» 7.4.3. Inviscid Burgers’ equation.

Write a program to solve u, = (u?), on [0,27] with periodic boundary conditions by the
pseudospectral method. The program should use forward Euler time integration formula
and spatial differentiation implemented with the program DERIV.

(a) Run the program up to t = 27 with k= h/8, N =32, and initial data v = 0.3+
0.08sinz. Plot the computed results (superimposed on a single plot) at times ¢ =
0,7/4,7/2,...,2m.

(b) Explain the results of part (a) as well as you can.

(c) (Optional.) Can you find a way to improve the calculation?



