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RATIONAL INTERPOLATION TO exp (-x) WITH 

APPLICATION TO CERTAIN STIFF SYSTEMS* 


ARIEH ISERLES? 

Abstract. Rational functions which interpolate the exponential function along an equispaced mesh are 
investigated. The C-polynomial theory of Norsett is extended to the interpolatory case, demonstrating the 
connection between exponential interpolations and the usual exponential approximations. Explicit expres- 
sions for interpolatory type analogues to Pad6 and N-approximations are derived. The paper is supplemented 
by a numerical example. 

1. Introduction. Exponential approximations, mainly the Pad6 approximations 
[I], [2], [lo], N-approximations [6] and exponentially fitted approximations 131, 
141, have attracted great interest during recent years, because they are connected with 
methods for the numerical solution of ordinary differential systems. 

The common feature of these approximations is that they mainly fit to the 
exponential and to its derivatives at the origin. Hence, they are, in fact, Hermitian 
interpolations rather than approximations. The high degree of interpolation at the 
origin is of great benefit if (in the case of linear or mildly nonlinear autonomous 
differential systems) the behavior of the solution is determined by a single principal 
eigenvalue of the Jacobian matrix. 

From the computational point of view, this is not the case if parabolic or hyperbolic 
partial differential systems are solved by the method of lines: If u = u(t;  xl, . . . ,xN) is 
in an appropriate Banach space and satisfies a partial equation 

together with appropriate initial and boundary conditions, where A is a differential 
operator which is dependent on the spatial variables xl, . . . ,XN, then the method of 
lines consists of replacing A by a finite difference approximation Ah. Thus the partial 
equation is replaced by the ordinary differential system ur =Ahu +f (or u,, =Ahu+f).  
Since the operator A is usually either linear (for a heat conduction equation, wave 
equation, etc.) or mildly nonlinear, the numerical solution of the ordinary differential 
system to a very large extent depends on the approximation to exp (gAh), where g is the 
time step. Even a simple case of a heat conduction equation in one spatial variable 
exemplifies the difficulty which is encountered when one uses the conventional 
exponential approximation for this purpose. Applying the approximation 

the equation u, = (a2/8x2)u is approximated by V'= BV, where V is the space dis- 
cretization of u and the prime denotes differentiation with respect to t and 
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If there are n mesh points, then the eigenvalues of exp (gB) are 

If exp (gB) is approximated by a rational or polynomial function of gB, then it is often 
necessary to use an approximation method that would give good accuracy for each of 
the terms exp (gAkI), 1 5k 5 n, separately. Hence, one can expect rather poor results 
from an approximation which centers on the origin. 

In general, the spectrum of the Jacobian matrix of Ah is unknown, but sometimes a 
useful practical assumption is that the eigenvalues are more or less spread uniformly in 
an interval [-T, 01. Out of these eigenvalues, a smaller subset, contained in [-To, 01, 
0 < To<< T, may influence strongly the numerical solution of the system. There is a need 
for exponential approximations that take into account this particular behavior. In order 
to meet this need, this paper presents rational approximations which interpolate the 
exponential function along an equispaced mesh in [To, 01, instead of high-degree 
interpolation at the origin. 

It should be mentioned that an alternative approach exists, namely to use rational 
Chebyshev approximations to exp (-x) over [O, a).These approximations were 
extensively studied by Cody, Meinardus and Varga 1131 and were generalized by 
Ehle 131. 

In § 2 the C-polynomial theory of Narsett [7] is extended to the interpolatory case. 
It is proved that a one-to-one correspondence exists between functions of a certain form 
and interpolations to the exponential. In § 3 interpolatory type analogues to Pad6 
approximations and N-approximations are obtained. In 8 4 upper bounds on the mesh 
size are found which yield Ao-acceptability. Furthermore, it is shown that sometimes 
stricter bounds prevent oscillations of the error curve. In § 5 numerical results regarding 
the heat conduction equation are given. It is shown that, using the same amount of 
computation, the interpolation method of this paper provides better accuracy than the 
usual Pad6 approximation method. 

It is important to mention that according to the maximal interpolation theorem [4], 
if R = P/Q is a rational function, deg P = m, deg Q = n, then the equation R (x)-
exp (-x) = 0 has at most n + m + 1zeros, where each zero is counted according to its 
multiplicity. This result is relevant because it provides a bound on the number of 
interpolation points. 

2. C-function theory. Let d = P/Q be a rational function, deg P = m, deg Q = 

n Z-m, such that l?(x)-exp (-x)= O(xn"). Then, according to Narsett [7], and 
Norsett and Wanner 1121, a unique polynomial p' exists, degp' = n, (dn/dxn)p'(x)= 1, 
such that 

where ~ ' ~ ' ( x )  denotes (dk/dxk)p'(x). Conversely, if I? is of the form (2. I ) ,  where p' is any 
polynomial of degree n, p""'(x) = 1, then R(x)  -exp (-x) = O(xn"). This polynomial is 
called the C-polynomial of the approximation d. 

Let c > 0 be the mesh size and 

where po(c),. . . , pnVl(c) are arbitrary functions of c. We denote ~ , k p ( x ,c) = 

iak/axk)pix, c). 
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and 

where ( - y ) k  is the factorial function (-y)o = 1, ( - y ) k  = (-y)(-y  + 1) . . . (-y +k - 1) for 
k 2 1, then 

forevery integerqsuch that O S q  5 n. I fD,kp( - l / (eC - I ) ,  c )  # 0 forevery OS k S n ,  then 
Q does not vanish at the mesh points {kc);=o, and if 

then R (qc, c, p)  =exp (-qc),  0 5 q 5 n. 
Proof. If x = qc, 0 5 q 5 n, then 

- l k ! / q  k  ! OS k s q ,  
(-x/c)k = (-q)k = { o  

q + l S k ,3 

and 

P(qc, c, p ) / q !  = 2 (-l)*D:-'p(l ,  c ) ( l  -e- ' )*/(q -k ) ! ,  
k =O 

Q(qc, c, p ) / q !  = 5 ( - 1 ) * ~ : - $ ( 0 ,  c ) (ec  - l )* / iq- k ) ! .  
k=O 

c )= c )= - by changing 
summation sequence and interchanging i and k ,  
But D : - ~ ~ ( o ,  P , - ~ ( c ) ,  ~ , " - ~ p ( l ,  

k 
p , - i ( ~ ) / ( k  i ) ! ; hence 

It remains to prove that if D,kp ( - l / ( eC-  I ) ,  c )  f 0 ,  0 s  k S n ,  then Q does not 
vanish at the mesh points. But 

for every q, 0 S q  5 n, and the proof follows. Q.E.D. 
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DEFINITION.The function pix, c )  is called the C-function of the rational inter- 
polation (2.2). 

THEOREM2. If R =P/Q, deg P = m,  deg Q = n 2m and R (sc)  = exp (-sc),  s 
integer, 0 5 s 5 n, c # 0 ,  then a unique C-function p exists and R ( x )  = R ( x ,  c, p) (cf. 
(2.2)). 

Proof. The set { ( - X / C ) ~ ,  . . . , (-xlc) ,}  forms a basis of ~ , [ x ] ,the vector space of 
polynomials of degree n at most. Therefore poic), . . . ,pn(c) ,  qo(c),  . . . ,qn(c)exist 
such that 

Set p(x, c )  = ( l / k ! ) p k  ( c ) xk .  Then R (sc, c )  =exp (-sc),  s integer between 
zero and n, implies 

S S 

(2.4) C ( - l ) k q n - k ( ~ ) ( l  - e-Sc C (- l )kpn-k(c)(ec l l k / ( s  k ) ! .- e - c ) k / ( ~  k ) != - -
k=O k=O 

Using (2.4),induction on k easily gives 

and the proof follows. Q.E.D. 
DEFINITION.If p(x, C )  is defined for every 0 <c S coand limc,o+ pix, c )  exists, the 

C-function is said to be smooth. 
COROLLARY1. I f  p is a smooth C-function, let e ( x )  = limc,o+ p(x, c ) ,  and let 

I? ( x ,q )  be the exponential approximation (2.1) which is generated by the C-polynomiale. 
Then, if for all sufjiciently small c, and for a positive integer s, R (kc ,  c, p)  =exp ( -kc) ,  
0 5 k 5 n +s, then I? (x ,  q )  =exp ( - x )  +O(xn+"").  

Proof. By letting c >0 tend to zero in (2.2),the form (2.1)(with p") is obtained. Let 
us suppose that R(qc, c, p)  =exp (-qc) for every integer q between n + 1 and n +s.  
Straightforward algebra, using the proof of Theorem 2,  shows that 

Hence the interpolation order is n +s if and only if P: (1,C )  = 0 for every integer k 
between one and s, where 

P ~ ( x , c ) = P ( x , c ) .  ~ : + ~ i ~ , ~ ) = ~ ~ ~ ~ : i t , ~ ) d t .  

Hence, in the limit Pz(1,O)= 0,  1 5  k S s ,  and the equality of interpolation and 
approximation orders follows by [7].  Q.E.D. 

COROLLARY2. Let p and p' be as in Corollary 1 and R and I? be as in (2.2) and 
(2.1) respectively. Let I? be strongly Ao-acceptable and p be smooth. Then R is Ao-
acceptable for c >0 small enough. 
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Proof. A function r is said to be Ao-acceptable if Ir(x)l< 1 for every x > 0. It is 
strongly Ao-acceptable if, additionally, lim,,, Ir(x)l< 1. The C-function p is smooth. 
Hence, by (2.1,2),Corollary 1 and the C-polynomial theory for c > O  small enough S 
exists such that R (x ,  c, p)  = Z? (x ,p') + S(x)c ,and IS1 is uniformly bounded for 0 d x. Let 

m,  = oo and M,  = min (1-max l ~ ( x ) l <  IZ? (x ,p')l)
r S x  r C x  

for r > 0. Strong Ao-acceptability of d implies that M,  > 0.  Then, if 0 < c 5Mr/mr,  

IR (x ,  c, p)l < 1 for every x 2 r> 0 .  

We cannot let r tend to zero, because limr,o Mr= 0 . However, we can show that if 
x, c > 0 are in the neighborhood of the origin then R is Ao-acceptable: the formula (2.2) 
implies that if R = P/Q then 

The acceptability for x, c > 0 is equivalent to P(x ,  c )  < Q(x ,  c ) ,  hence to D:-'p'(l) > 
D:-'p'(0). But D:-'p'(l) = D : - ' ~ ( 0 )+ D:~' (o)= D:-'p'(0) + 1, and the corollary is 
established. Q.E.D. 

3. Pade interpolations and N-interpolations, The N-approximations [6] are of the 
form 

Rn(x )  = P n ( x ) l ( l  +ax)",  

where, in general, deg P, d n. One of the most interesting cases is when deg P, = n and 
a is such that 

R, (x )  -e-" = O(xn") .  

DEFINITION.The N-interpolation to the exponential function is the rational 
function R,(x, c )  =-P,(x, c ) / ( l  +ax)",  such that deg P, = n and R,(qc, c )  = exp (-qc), q 
an integer between zero and n. 

THEOREM3. If 

" 1  k 
(3.1) R.(x, 1i (  1(-l) '(  1. ) ( l+cai)" e - ~ ) ( - x / c ) ~ / ( l +  c, a )= k - 0  k .  ax)",I=,, 

then R,(qc, c, a )  = exp (-qc), 0 5 q 5 n and the C-function is 

(1- -c -" n n - k  
P(x ,  c, a )  = ( - I ) ~ (  . ) ( I  +cai)" e-lc)((x - I ) ( I  -e-')lk.1(n)(nik

n !  k = o  k i = ~  1 

In addition, if a. is a zero of the polynomial c::: ( - l )k (" : ' ) ( l+  kca)" e-ck, then 
R,((n + l ) c ,  c, ao)  = exp (-(n + 1)c).  

Proof. Let Pn(x )=I;=, and R,(x, c, a )  = p , ( x ) / ( l  +ax)".  Thenp " , k ( - x / ~ ) ~  

R ,  (qc, c, a )= exp (-qc), 0 5q 5 n 

is equivalent to 

(3.2) P,(qc) = ( 1+ aqc)" e-qc, o 5 q 5 n. 

Hence P, is the Lagrange interpolation polynomial to ( l + a ~ c ) " e - ~ 'at x, = q ,  
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O S q S n .  But 

Hence 

m m - k  
= k = o  (m -k)! ( 1 ) 4 ))pn,, =m 

But 

Therefore 

and (3.1) is established. The expression for the C-function is readily established, using 
Theorem 1. 

If, in addition, Rn((n + l)c, c, a )  =exp (-(n + 1)c) then, together with (3.2), 

must be satisfied. Equations (3.2) and (3.3) form a set of n + 2  equations in the n + 1 
variables PnYo, . . . ,p,, .  The consistency implies that these equations are dependent; 
i.e., multipliers yo, . . . ,yn+l exist such that 

By proceeding as in the first part of the theorem it is easy to verify that yq = 
(-I)~(":'). Therefore, if a. is such that 

then (3.3) is satisfied and the rational function (3.1) interpolates exp (-x) at xq =qc, 
O S q S n + l .  Q.E.D. 

The analogues of Pade approximations are no less interesting than the N-approx- 
imations. 

DEFINITION. If R,,,(x, C )=Pn,m(x, c)/Q,,,(x, c) satisfies R,,,(qc, c )  =exp (-qc), 
0 5 q 5 n +m, it is said to be a Pad6 interpolation. 

Another technique will be used in the derivation of explicit expressions of the Pad6 
interpolations. This technique, which was described by the present author in [ 5 ] , relies 
on certain properties of the hypergeometric functions. 

LEMMA. If a +b is neither zero nor a negative integer, then for every x and 
O<c< ln2 ,  



7 RATIONAL INTERPOLATION TO exp ( - x )  

Proof. If 0 <c <ln 2,  then -1 <1-ec, 1-e-' <1, and the hypergeometric 
functions in (3.4)exist and converge. Furthermore, 

But, according to [8, p. 741, 

e-(x -nc )  -- (1- ( 1- e - c ) ) x / c - n  -- ,Fo(-x/c +n ; 1-e-") 

Therefore 

Let us define 

Zm( t )is a polynomial, deg Zm= m. But for every integer p, 0 5p 5 m - 1, 

0 5-n 5p implies ( n-p),-, =0, 

p + 15 n 5 m implies (-p) ,  =0. 

Hence Zm( p )=0, 0 5p 5 m -1. Therefore Zm( t )= d (-t),. The constant d can be 
computed by collecting the coefficients of (-t)": 

d = ( - l ) n ( n ) ~ = 2 ~ l ( - m ,b ; a + b ; l ) ,  
n=O m ( a + b ) ,  

and, according to the Vandermonde theorem [8, p. 691 

Hence 

=2F1(a,- x / c ;  a +b ;  1 -e-'). Q.E.D. 

THEOREM4. The explicit form of Pade' interpolations is 

Rn,mix, c )=Pn,mix, c)lQn.mix, c ) ,  
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and the expansion of G,,, ( x ,  c )=P,,, (x ,  c )  -e-"Q, ,  (x ,  c )  is 

Proof. It is sufficient to establish the theorem for 0 <c <In 2. The result for In 2 S c 
follows by analytic continuation. 

By proceeding as in 151, let m and n be nonnegative integers, let O< E < 1 and 
a = m  + E ,  b = n in the formula (3.4).Hence 

We split the sum on the left i n n  the three parts 

We now consider the effect of letting E tend to zero: 

m !  
O S k S m ,  


lirn ( -m - E ) ~= 

€ + O +  

m + l S k ,  
and 

( n  + m ) !  
lim (-n - m - ~ ) k  = ( - I )  ( n + m - k ) ! '  O S k S n + m .  

E+O+ 

Hence 

(n+m -k ) !m! ( -x / c )*  - -clirn 11,,= e =Pn,m(x,c),
E +0+ k - o  ( n  + m ) ! k ! ( m  - k ) !  

lirn 12,E=0,  
E'O+ 

and 
" (-n)k(-x/c)k " ( n+m -k ) ! n ! ( - x / c ) ~lim 1 (1-eClk= (1 -eClk.  

€+O+ k - o  k ! ( -n  - m  - E ) ~  k = o  ( n  + m ) ! k ! ( n  -k ) !  


According to [5],for k 2 n +m + 1 


( -m - ~ ) k- m ! ( k - m  - I ) !
lim -

E+O+ (-n -m - ~ ) k  ( - l ) n ( n + t n ) ! k ! ( k - n - m - l ) ! '  

implying 

lirn 13,E= (-1)" C m  ! (k  -m - I ) ! ( - x / c ) ~  
(1-e-'lk. 

E -O+ k=n+m+l  ( n  + m ) ! k ! ( k - n  - m  - I ) !  

Therefore, 
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For every integer q, 0 S q S n +m,  G,,,(qc, c )= 0. Hence R , ,  as given in (3.5) is 
indeed the Pade interpolation. Q.E.D. 

Remark. It is possible to deduce Theorem 4 from the C-function theory and the 
order conditions which appear in the proof of Corollary 1. Still, the lemma provides a 
result which is of some interest in the theory of special functions, being a generalization 
of the first Kummer formula [8]. 

COROLLARY.If c >0 is small enough and n 2 m + 1 then the m l n  Pade' inter- 
polation R,,, is Ao-acceptable. 

Proof. If n 2 m + 1, then the strong Ao-acceptability of the respective Pad6 
approximations 191, together with Corollary 1 to Theorem 2, implies the Ao-accept- 
ability of R,,,(x, c )  for c >0 small enough. Q.E.D. 

Remark. In a forthcoming paper [ I  11the author proves that no Pad6 interpolation 
can be A-acceptable, with the exception of Rl ,oand RlZ1.  

4. Ao-acceptability and computational considerations. As most of the parabolic 
systems give rise to either symmetric or almost symmetric Jacobian matrices when 
solved by the method of lines, the Ao-acceptability of the exponential approximation is 
important, in order to provide stability. 

The conventional Pad6 approximations R,,, are Ao-acceptable if and only if n 2m 
[9]. If n 2m + 1 this feature is preserved in respect to Pade interpolations if the mesh 
size c >0 is small enougli by the corollary to Theorem 4.Table 1 gives the upper bounds 
for c for 1 S n S 4 ,  O S m S n .  

TABLE1. 

Upper bounds for c for A,-acceptability for Pad6 interpolations. 


Consideration of the error curve for small values of n and m shows that the 
Ao-unacceptability for growing c is due to oscillation of the interpolation error in the 
interval [0,  ( n  +m)c] .So, even if the interpolation is Ao-acceptable, such oscillations 
can prohibit its application. Hence, sometimes stricter bounds on the mesh size must be 
imposed. 

For every d >0 an upper bound cd can be computed, such that for every 0 <c <cd 
the oscillations of the error curve do not exceed d in the interval. [0,  ( n  +m ) c ] :  

These upper bounds are listed in Table 2 for d = -05, . lo ,  .15, .25 and 1 S n  S 4 ,  
O S m S n .  

It is evident from Tables 1 and 2 that, while the avoidance of oscillations of the 
error curve does not place restrictions on the use of Pad6 interpolations with n = 3 or 4, 
it apparently does so for n = 1 and 2. 
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TABLE2. 

cd for d = $05, .lo, .15, .25 for Padt  interpolations. 


5. Numerical results. In this section the performances of the Pad6 approximations 
and Pad6 interpolations are compared when applied to the heat conduction equation 
with a single spatial variable. 

To remove any influence of initial and boundary conditions, the approximation 
error llR (B) -exp (-B)II was computed for the matrix 

Two Hermitian L2-norms were used, corresponding to two typical situations. The 
norm 11 . Ill, induced by the Euclidean scalar product (f, g)l  =fTg, corresponds to the 
error along the boundary layer, where the contribution of the very small negative 
eigenvalues (i.e., large in absolute value) cannot be neglected. The norm 11.112, induced 
by the scalar product (f, g)2 =f exp (B)g, corresponds to the error along a "smooth" 
segment, emphasizing the error due to the larger eigenvalues. Observe that exp (B) is 
symmetric and positive definite, and so 1 1 .  / I 2  is indeed a norm. 

The results were computed for a 100x 100 matrix (corresponding to spatial 
discretization with 100 mesh points) and g/h2 = 100. 

Table 3 gives errors of the approximation R,,,(B, c ) to e - B  in the first norm versus 
the error for the Pade approximations. For the sake of comparison, the least-squares 
approximation error (in respect to this norm) for the n-by-n rational functions was 
computed; it appears in the last column. The last approximation is Ao-acceptable for 
n = 2 , 4  only ( 1 5 n  5 4 ) .  

Table 4 gives the same data for the second norm. Also, in this case, the Ao-  
acceptability of the best n-by-n rational approximations to the exponential is attained 
for n =2 ,4  only. 
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TABLE3. 
Columns 0-4 give the error of Padk aoproximations (first line) and Pad6 interpolations (second 

line) in the first norm. The third lines gives the mesh size c which yields the smallest error. The last 
column gives the error of the least-squares n-by-n rational approximations. 

Least-squares 
rational 

0 1 2 3 4 approximation 

Inspection of Tables 3 and 4 shows that Pad6 interpolations are better than the 
corresponding Pad6 approximations, when applied to the heat conduction equation in 
the above-mentioned conditions, both in the boundary layer and along "smooth" 
segments of the solution. It seems that there is little to be gained by using the 
least-squares n-by-n rational approximations, even in the cases when they are Ao- 
acceptable. 

There is one further advantage in Pad6 interpolations: The results for the diagonal 
approximations are better in the absence of transient components of the numerical 
solution, when the order matters most, while in the boundary layer the subdiagonal 
Lo-acceptable approximations give better results. This behavior is consistent both for 

TABLE4. 
The same information as Table 3 ,  for the second norm. 

Least-squares 
rational 

1 2 3 4 approximation 
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Pad6 approximations and for Pad6 interpolations. However, this distinction is less acute 
for the Pad6 interpolations: in the boundary layer the [1/4] Pad6 approximation gives 
an error which is smaller than the error for the [4/4] approximation by a factor of 487. 
The corresponding factor for the respective interpolations is only 8 (cf. Table 3).Hence, 
if Pad6 approximations are used, the best strategy is to employ different approximations 
for different segments of the solution, while the diagonal Pad6 interpolations are 
effective both inside and outside the boundary layer. 

Acknowledgment. The author wishes to thank Professor M. J. D. Powell for his 
very kind remarks and the significant improvements of this paper. The proof of 
Theorem 3 is due to Professor Powell; it replaces a different proof which was rather 
tedious and less elegant. 
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