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Abstract. It is shown how to define difference equations on particular lattices
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Approximation by rational functions .

1. Difference equations on elliptic lattices.

We consider functional equations involving the difference operator

(Df)(x) =
f(ψ(x)) − f(ϕ(x))

ψ(x) − ϕ(x)
, (1)

most instances [17] are (ϕ(x), ψ(x)) = (x, x + h), or the more symmetric (x −
h/2, x + h/2), or also (x, qx) in q−difference equations [10, 12, 13]. Recently, more

complicated forms (r(x) −
√

s(x), r(x) +
√

s(x)) have appeared [1, 2, 12, 13, 14, 15,
18,19,16], where r and s are rational functions.

This latter trend will be examined here: we need, for each x, two values f(ϕ(x))
and f(ψ(x)) for f .
A first-order difference equation is F (x, f(ϕ(x)), f(ψ(x))) = 0, or f(ϕ(x))−f(ψ(x)) =
G (x, f(ϕ(x)), f(ψ(x))) if we want to emphasize the difference of f . There is of
course some freedom in this latter writing. Only symmetric forms in ϕ and ψ will
be considered here:

(Df)(x) = F (x, f(ϕ(x)), f(ψ(x))) , (2)

where D is the divided difference operator (1) and where F is a symmetric function
of its two last arguments.

For instance, a linear difference equation of first order may be written as a(x)f(ϕ(x))+
b(x)f(ψ(x)) + c(x) = 0,
as well as α(x)(Df)(x) = β(x)[f(ϕ(x)) + f(ψ(x))] + γ(x),
with α(x) = [b(x)−a(x)][ψ(x)−ϕ(x)]/2, β(x) = −[a(x)+b(x)]/2, and γ(x) = −c(x).
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The simplest choice for ϕ and ψ is to take the two determinations of an algebraic
function of degree 2, i.e., the two y−roots of

F (x, y) = X0(x) +X1(x)y +X2(x)y
2 = 0, (3a)

where X0,X1, and X2 are rational functions.
Remark that the sum and the product of ϕ and ψ are the rational functions

ϕ+ ψ = −X1/X2, ϕψ = X0/X2. (3b)

When the divided difference operator D of (1) is applied to a rational function,
the result is still a rational function.

Difference equations must allow the recovery of f on a whole set of points. An
initial-value problem for a first order difference equation starts with a value for
f(y0) at x = x0, where y0 is one root of (3a) at x = x0. The difference equation at
x = x0 relates then f(y0) to f(y1), where y1 is the second root of (3a) at x0. We
need x1 such that y1 is one of the two roots of (3a) at x1, so for one of the roots of
F (x, y1) = 0 which is not x0. Here again, the simplest case is when F is of degree
2 in x:

F (x, y) = Y0(y) + Y1(y)x+ Y2(y)x
2 = 0. (3c)

Both forms (3a) and (3c) hold simultaneously when F is biquadratic:

F (x, y) =

2
∑

i=0

2
∑

j=0

ci,jx
iyj . (4)

The construction where successive points on the curve F (x, y) = 0 are (xn, yn),
(xn, yn+1), (xn+1, yn+1), is called “T-algorithm” in [23, Theorem 6], see also the
Fritz John’s algorithm in [3, 4] . The sequence {xn} is then an instance of elliptic
lattice, or grid.

Of course, the sequence {yn} is elliptic too, xn and yn have elliptic functions
representations

xn = E1(t0 + nh), yn = E2(t0 + nh), (5)

where (x = E1(t), y = E2(t)) is a parametric representation of the biquadratic curve
F (x, y) = 0 with the F of (4).

Note that the names of the x− and y− lattices are sometimes inverted, as in [23,
eq. (1.2)]

As yn and yn+1 are the two roots in t of F (xn, t) = X0(xn) + X1(xn)t +
X2(xn)t2 = 0, useful identities are

yn + yn+1 = −
X1(xn)

X2(xn)
, ynyn+1 =

X0(xn)

X2(xn)
, (6)

and the direct formula

yn and yn+1 =
−X1(xn) ±

√

P (xn)

2X2(xn)
, (7)

where

P = X2
1 − 4X0X2 (8)

is a polynomial of degree 4.
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Also, as xn+1 and xn are the two roots in t of F (t, yn+1) = 0,

xn + xn+1 = −
Y1(yn+1)

Y2(yn+1)
, xnxn+1 =

Y0(yn+1)

Y2(yn+1)
. (9)

As the operators considered here are symmetric in ϕ(x) and ψ(x), we do not
need to define precisely what ϕ and ψ are. However, once a starting point (x0, y0)
is chosen, it will be convenient to define ϕ(xn) = yn and ψ(xn) = yn+1, n ∈ Z.

The difference operator applied to a simple rational function is of special inter-

est. Let f(x) =
1

x− A
, then D

1

x− A
=

1

ψ(x) − ϕ(x)

[

1

ψ(x) −A
−

1

ϕ(x)− A

]

=

−
1

(ψ(x) − A)(ϕ(x)− A)
= −

X2(x)

X0(x) + AX1(x) + A2X2(x)
,

and let {(x′n, y
′
n), (x′n, y

′
n+1)} be the elliptic sequence on the biquadratic curve

F (x, y) = 0 such that y′0 = A, then

D
1

x− A
= −

X2(x)

Y2(A)(x− x′0)(x− x′−1)
(10)

Special cases. We already encountered the usual difference operators (ϕ(x), ψ(x)) =
(x, x + h) or (x − h, x) or (x − h/2, x + h/2) corresponding to X2(x) ≡ 1, X1 of
degree 1, X0 of degree 2 with P = X2

1 − 4X0X2 of degree 0. For the geometric dif-
ference operator, P is the square of a first degree polynomial. For the Askey-Wilson
operator [1, 2, 11,12,14,15], P is an arbitrary second degree polynomial.

2. Rational interpolatory elliptic expansions.

Let {(xn, yn), (xn, yn+1)} be a first elliptic sequence on the biquadratic curve
F (x, y) = 0, and {(x′n, y

′
n), (x′n, y

′
n+1)} be another elliptic sequence on the same

curve. The two sequences have the same formula (5), but with different starting
values t0 and t′0.

Rational interpolants of some functions f at y0, y1, . . . , with poles at y′1, y
′
2, . . . ,

are successive sums

c0 = f(y0), c0 + c1
x− y0
x− y′1

, . . . ,
∑

ckYk(x), (11)

where

Yn(x) =
(x− y0) · · · (x− yn−1)

(x− y′1) · · · (x− y′n)
,Xn(x) =

(x− x0) · · · (x− xn−1)

(x− x′1) · · · (x− x′n)
.

If, by chance, ck shows a similar form of ratio of products, we see special cases
of hypergeometric expansions!

See that

DYn(x) = CnX2(x)
Xn−1(x)

(x− x′0)(x− x′n)
(12)

Indeed, (ϕ(x)−y0)(ϕ(x)−y1) · · · (ϕ(x)−yn−1) and (ψ(x)−y0)(ψ(x)−y1) · · · (ψ(x)−
yn−1) both vanish at x = x0, x1, . . . , xn−2; (ϕ(x) − y′1)(ϕ(x) − y′2) · · · (ϕ(x) − y′n)
vanishes at x = x′1, . . . , x

′
n, whereas (ψ(x)− y′1)(ψ(x)− y′2) · · · (ψ(x)− y′n) vanishes

at x = x′0, . . . , x
′
n−1.
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Simple fractions give D
1

x− y′k
= −

X2(x)

Y2(y′k)(x− x′k−1)(x− x′k)
, as seen earlier in

(10).
The constant Cn is found through particular values of x, either x−1, where

Yn(ψ(x)) = 0 but Yn(ϕ(x)) 6= 0, or xn−1, where Yn(ϕ(x)) = 0 but Yn(ψ(x)) 6= 0 :

Cn = −
Yn(ϕ(x−1) = y−1)(x−1 − x′0)(x−1 − x′n)

(y0 − y−1)X2(x−1)Xn−1(x−1)
(13a)

Cn =
Yn(ψ(xn−1) = yn)(xn−1 − x′0)(xn−1 − x′n)

(yn − yn−1)X2(xn−1)Xn−1(xn−1)
(13b)

(Of course, C0 = 0). Or through residues at x′0, where Yn(ψ(x)) = ∞, or x′n where
Yn(ϕ(x)) = ∞,

Cn =
(y′1 − y0) · · · (y

′
1 − yn−1)

dψ(x′0)

dx
(y′1 − y′2) · · · (y

′
1 − y′n)

x′0 − x′n
(y′1 − y′0)X2(x′0)Xn−1(x′0)

(13c)

Cn = −
(y′n − y0) · · · (y

′
n − yn−1)

(y′n − y′1) · · · (y
′
n − y′n−1)

dϕ(x′n)

dx

x′n − x′0
(y′n+1 − y′n)X2(x′n)Xn−1(x′n)

(13d)

Let (Mf)(x) = [f(ϕ(x)) + f(ψ(x))]/2.
Also, 2(MYn)(x) =

(ϕ(x) − y0)(ϕ(x)− y1) · · · (ϕ(x)− yn−1)

(ϕ(x)− y′1)(ϕ(x)− y′2) · · · (ϕ(x)− y′n)
+

(ψ(x) − y0)(ψ(x) − y1) · · · (ψ(x) − yn−1)

(ψ(x) − y′1)(ψ(x)− y′2) · · · (ψ(x) − y′n)

= 2Dn(x)
(x− x0)(x− x1) · · · (x− xn−2)

(x− x′0)(x− x′1) · · · (x− x′n)
= 2Dn(x)

Xn−1(x)

(x− x′0)(x− x′n)
,

where Dn is a polynomial of degree 2.
Interesting values are found at the same point as in (13a)-(13d):

Dn(x−1) = −
CnX2(x−1)(y0 − y−1)

2
, (14a)

Dn(xn−1) =
CnX2(xn−1)(yn − yn−1)

2
, (14b)

Dn(x′0) =
CnX2(x

′
0)(y

′
1 − y′0)

2
, (14c)

Dn(x′n) = −
CnX2(x

′
n)(y′n+1 − y′n)

2
, (14d)

when n > 0. Of course, D0 = 1.
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3. Linear 1st order difference equations.

a(x)(Df)(x) = c(x)(Mf)(x) + d(x) (15)

Where is b? The full flexibility of first order difference equations is achieved with
the Riccati form [16]
a(x)(Df)(x) = b(x)f(ϕ(x))f(ψ(x)) + c(x)[f(ϕ(x)) + f(ψ(x))] + d(x)
but only linear equations will be considered here. However, (15) already allows

elliptic exponentials (c(x) ≡ a(x)) or logarithms (c(x) ≡ 0).
We now try to expand a solution to (15) as an interpolatory series. If the

initial condition is f(y0) at x = x0, the difference equation allows to find f(y1) =
[a(x0)/(y1 − y0) + c(x0)/2]f(y0) + d(x0)

a(x0)/(y1 − y0) − c(x0)/2
, f(y2), . . . This works fine if no division

by zero is encountered. Let us call x′0 one of the roots of the algebraic equation

a(x)

ψ(x) − ϕ(x)
−
c(x)

2
= 0, at x = x′0 (16)

and let, as usual, ψ(x′0) = y′1, ϕ(x′0) = y′0. This shows that y′1 is a singular point
of f , as trying to compute f(y′1) from f(y′0) requires a division by zero. Then y′2,
y′3, . . . are poles as well. That’s why the expansion in (11) starts with poles at
y′1, y

′
2, . . . We also see that such expansions represent meromorphic functions with

a natural boundary made of poles. At least, if the poles are spread on a curve, this
will be discussed in § 4

We also manage to have the initial value f(y0) completely determined by the
equation, i.e., independent of f(y−1), so, considering

f(y0) =
[a(x−1)/(y0 − y−1) + c(x−1)/2]f(y−1) + d(x−1)

a(x−1)/(y0 − y−1) − c(x−1)/2
,

we ask x−1 to be a root of

a(x)

ψ(x) − ϕ(x)
+
c(x)

2
= 0, at x = x−1. (17)

Finally, we shall need the polynomials c and d to be of degree 3, with X2 as
factor:

c(x) = (βx+ γ)X2(x), d(x) = (δx+ ε)X2(x). (18)

We now have enough information for understanding the
Theorem. The difference equation (15) on the elliptic lattice F (xn, yn) = 0 of

(3a)-(4), where a, c, and d are polynomials of degree 6 3, X2 being a factor of c and

d as in (18), has a solution with the formal expansion (11), where x−1 is a root of

(17) and x′0 is a root of (16), with c0 = f(y0) =
d(x−1)

a(x−1)/(y0 − y−1) − c(x−1)/2
=

−
d(x−1)

c(x−1)
= −

δx−1 + ε

βx−1 + γ
,

c1 =
(δ + βc0)(x0 − x′1)

C1(a(x0) − c(x0)(y1 − y0)/2)
=

(γδ − βε)(y1 − y′1)X2(x
′
0)

(y1 − y′0)(x0 − x′0)[a(x0) − c(x0)(y1 − y0)/2]
,
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and when n > 1,

cn = c1
C1

x′1 − x0

x′n − xn−1

Cn

n−1
∏

k=1

a(x′k) + c(x′k)(y′k+1 − y′k)/2

a(xk) − c(xk)(yk+1 − yk)/2

(xk − x−1)(xk − x′0)

(x′k − x−1)(x
′
k − x′0)

= −c1
C1

x′1 − x0

(x′n − xn−1)
(y−1 − y′1) · · · (y−1 − y′n−1)X2(x−1)(x−1 − x0) · · · (x−1 − xn−2)

(y−1 − y1) · · · (y−1 − yn−2)(x−1 − x′0) · · · (x−1 − x′n)
n−1
∏

k=0

a(x′k) + c(x′k)(y′k+1 − y′k)/2

a(xk) − c(xk)(yk+1 − yk)/2

(xk − x−1)(xk − x′0)

(x′k − x−1)(x′k − x′0)

(19)

Proof: put the expansion (11) in

d(x) = a(x)Df(x) − c(x)Mf(x) =
∞
∑

0

cn [a(x)DYn(x) − c(x)(MYn(x)]

= −c0c(x) +

∞
∑

1

cn [a(x)CnX2(x) − c(x)Dn(x)]
Xn−1(x)

(x− x′0)(x− x′n)
,

The polynomial a(x)CnX2(x)−c(x)Dn(x) = [a(x)Cn−(βx+γ)Dn(x)]X2(x) already
has X2 as factor from (18). A factor of degree 6 3 remains. Complete factoring
follows:

at x−1, a(x)CnX2(x)−c(x)Dn(x) = CnX2(x−1)[a(x−1)+(y0−y−1)c(x−1)/2] = 0
from (14a) and (17),

at x′0, a(x)CnX2(x)− c(x)Dn(x) = CnX2(x
′
0)[a(x

′
0)− (y′1−y

′
0)c(x

′
0)/2] = 0 from

(14c) and (16),
therefore we have three factors of first degree a(x)CnX2(x) − c(x)Dn(x) =

X2(x)(x− x−1)(x− x′0)[ξn(x− xn−1) + ηn(x− x′n)], where

ξn =
a(x′n)CnX2(x

′
n) − c(x′n)Dn(x′n)

X2(x′n)(x′n − x−1)(x′n − x′0)(x
′
n − xn−1)

= Cn
a(x′n) + c(x′n)(y′n+1 − y′n)/2

(x′n − x−1)(x′n − x′0)(x
′
n − xn−1)

(20)
from (14d),

ηn =
a(xn−1)CnX2(xn−1) − c(xn−1)Dn(xn−1)

X2(xn−1)(xn−1 − x−1)(xn−1 − x′0)(xn−1 − x′n)
= Cn

a(xn−1) − c(xn−1)(yn − yn−1)/2

(xn−1 − x−1)(xn−1 − x′0)(xn−1 − x′n)
(21)

from (14b)
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0 = a(x)Df(x) − c(x)Mf(x) − d(x) = −c0c(x) − d(x) +
∞
∑

1

cn [a(x)CnX2(x) − c(x)Dn(x)]
Xn−1(x)

(x− x′0)(x− x′n)

= −c0c(x) − d(x) +
∞
∑

1

cnX2(x) [ξn(x− xn−1) + ηn(x− x′n)]
(x− x−1)(x− x0) · · · (x− xn−2)

(x− x′1) · · · (x− x′n)

= −c0c(x) − d(x) +X2(x)

∞
∑

1

cnξn
(x− x−1)(x− x0) · · · (x− xn−2)(x− xn−1)

(x− x′1) · · · (x− x′n)

+X2(x)

∞
∑

1

cnηn
(x− x−1)(x− x0) · · · (x− xn−2)

(x− x′1) · · · (x− x′n−1)

= −c0c(x) − d(x) + c1X2(x)η1(x− x−1)

+X2(x)

∞
∑

1

(cnξn + cn+1ηn+1)
(x− x−1)(x− x0) · · · (x− xn−2)(x− xn−1)

(x− x′1) · · · (x− x′n)

= (x− x−1)X2(x)

[

−c0β − δ + c1η1 +
∞
∑

1

(cnξn + cn+1ηn+1)Xn(x)

]

X2 is a factor everywhere, from (18), so 0 = −c0(βx+γ)−(δx+ε)+c1C1

a(x0) − c(x0)(y1 − y0)/2

x0 − x′1
(x−

x−1 +

∞
∑

1

(cnξn + cn+1ηn+1)Xn(x): c0 = f(y0) =
d(x−1)

a(x−1)/(y0 − y−1) − c(x−1)/2
=

−
d(x−1)

c(x−1)
= −(δx−1 + ε)/(βx−1 + γ),

c1 =
(δ + βc0)(x0 − x′1)

C1(a(x0) − c(x0)(y1 − y0)/2)
=

(γδ − βε)(y1 − y′1)X2(x
′
0)

(y1 − y′0)(x0 − x′0)(a(x0) − c(x0)(y1 − y0)/2)
,

as
cn+1

cn
= −

ξn
ηn+1

= −
Cn

Cn+1

a(x′n) + c(x′n)(y′n+1 − y′n)/2

a(xn) − c(xn)(yn+1 − yn)/2

(xn − x−1)(xn − x′0)(xn − x′n+1)

(x′n − x−1)(x′n − x′0)(x
′
n − xn−1)

cn = ...
x′n − xn−1)

Cn

n−1
∏ a(x′k) + c(x′k)(y′k+1 − y′k)/2

a(xk) + c(xk)(yk+1 − yk)/2
Xn(x−1)Xn(x′0)

The formula (19) achieves a construction of hypergeometric type, as each term is
a product of values of elliptic functions with arguments in arithmetic progression.
The exact order of each term, i.e., the number of zeros and poles in a minimal
parallelogram, is not obvious [22]. Of course, a factor like, say, x−1 − xk is an
elliptic function of order 2 of t0 + kh from (5). The same order holds for the ratio
x−1 − xk

y−1 − yk
=

x−1 − E1(t0 + kh)

y−1 − E2(t0 + kh)
, as zeros of the numerator and the denominator

cancel each other.
Similar effects probably hold in other ratios encountered in (19), such as

a(xk) − c(xk)(yk+1 − yk)/2

(xk − x−1)(xk − x′0)
but it is not clear if more can be obtained by keeping

elementary means, or if more elliptic function machinery (theta functions) is needed.
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4. A word on convergence.

We expect products occurring in (11) to behave like powers, like

n
∏

1

(x− xk) =

n
∏

1

(x−E(t0+kh)) ≈ Φ+(x)n. What is Φ+(x) = expV+(x), where V+ is the complex

potential of the distributions of the xks. For the x′ks, we write V−(x).
Let h be a real irrational multiple of a period ω, then the same factors reappear

approximately in the product afterN steps ifNh is close to an integer times ω. Φ(x)
is the limit of the N th roots of such products. The various kh, for k = 1, 2, . . . , N ,
modulo ω, fill uniformly the segment [0, ω], and the xks fill a curve which is the set
of E(t0 + u), u ∈ [0, ω]:

for any j in {1, 2, . . . , N}, there is a k such that kh is close to jω/N modulo ω.
Indeed, let Nh be close to MNω, with gcd(N,MN ) = 1.Then,

kh−
jω

N
= ω

(

h

ω
−
MN

N

)

k + ω
kMN − j

N
,

to any j, there are integers k and m such that kMN −mN = j (Bezout).

So, we rearrange the product as Φ(x) ∼





N
∏

j=1

(x− E(jω/N + t0))





1/N

∼ exp

[

1

ω

∫ ω

0

log(x− E(u+ t0)) du

]

.

As E is the inversion of an elliptic integral of the first kind, u + t0 =

∫ E dv
√

P (v)
,

we have Φ(x) = exp

[

1

ω

∫

{xn}

log(x− v) dv
√

P (v)

]

, where {xn} is the locus of the xns

= {E(u + t0)}, u ∈ [0, ω]. The constant 1/ω is such that Φ(x) ∼ x for large x:

ω =

∫

{xn}

dv
√

P (v)
.

So, let the complex potential V+(x) =
1

ω

∫

{xn}

log(x− v) dv
√

P (v)
,

(V− will be used with the x′ns)
The formula for the potential will be linear after a convenient conformal map.

derivative: V ′
+(x) =

1

ω

∫

{xn}

dv

(x− v)
√

P (v)
,

P (x)V ′
+(x) = polynomial +

1

ω

∫

{xn}

√

P (v)dv

x− v
,

(P (x)V ′
+(x))′ = (another) polynomial +

1

ω

∫

{xn}

P ′(v) dv

2(x− v)
√

P (v)
,

Finally

P (x)V ′′
+(x) + P ′(x)V ′

+(x)/2 = (still another) pol.

(
√

P (x) V ′
+(x) )′ =

pol.
√

P (x)

so, V ′
+(x) = an incomplete elliptic integral of the second(?) kind divided by

√

P (x).

With ξ such that x = E(ξ), dx/dξ =
√

P (x):
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d2V+(x)

dξ2
= a pol. (in x = E(ξ))

What is this polynomial, by the way? V ′
+(x) = x−1+(µ+,1/µ+,0)x

−2+(µ+,2/µ+,0)x
−3+

· · · ,
√

P (x) = π0x
2 + π1x+ π2 + · · · ,

the pol. is

(π0x
2 + π1x+ π2 + · · · )[π0 − (π2 + π1(µ+,1/µ+,0) + π0(µ+,2/µ+,0))x

−2 + · · · ]

= π2
0x

2 + π1π0x+ π2π0 − π0(π2 + π1(µ+,1/µ+,0) + π0(µ+,2/µ+,0))

where µ+,k =

∫

{xn}

vk dv
√

P (v)
is the kth moment of the contour drawn by the xns.

The result is

π2
0x

2 + π1π0x+ π2π0 −
π0

µ+,0

∫

{xn}

π2 + π1v + π0v
2 =

√

P (v)− O(1/v)
√

P (v)
dv

The contour integrals on the x′ns are the same(yes, see later on), so, at last

d2V(x)

dξ2
= 0,

where V = V+ − V−.

Jump of V ′(x) when x crosses the xn line: V ′(x)average ± πi
1

ω

1
√

P (x)
, or in ξ:

(

dV

dξ

)

average

± πi
1

ω

A much faster and more complete derivation: V+(x) and V−(x) are contour
integrals on the locii filled by {xn} and {x′n} drawn by E(nh+ t0) and E(nh+ t′0).

If x is between these two locii, the two contour integrals of
dv

(x− v)
√

P (v)
are the

same for V ′
+(x) and V ′

−(x), up to the residue at v = x:

V ′(x) = V ′
+(x) − V ′

−(x) =
2πi

ω
√

P (x)
⇒

dV(x)

dξ
=

2πi

ω

Rate of approximation has already been related to potential problems by Walsh
[24], in papers and books going back to the 1930s! See also Ganelius [5]. For more
recent surveys and papers, the works by Gončar and colleagues are recommended
[6,7, 8, 9].

The properties of the irrational number relating the step h to a period ω must
also be considered [21].
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